IDEA Specification and High Level Design Report

[image: image3]

(SDA1)
IDEA Specification and High-Level Design Report
UIT2201 – Computer Science & the IT Revolution

Prepared by:

Li Jia (U018225X)

Benjamin Ching (U017471J)
Table of Contents
31. Introduction

3Authors of the report

3Purpose of this report

3Scope of the report

3Target audience of this report

42. The Overall System Architecture of IDEA

4Architecture

4Brief Explanation

5Event Driven System

63. Requirements Chosen for Implementation

6Overview of the (high level) requirements chosen for IDEA

6Reasons for the choice

6How these requirements are broken down into events and functions for the FeatureImplementation Components

6Events

6Functions

8An example

94. Design of the IDEA Controller

9Overview of the controller design

9How input is sent to the controller (IDEA.ini)

9Information required

9Syntax and semantics

10Examples of some events and functions

10Constants definition

11Event definition

11Function definition

125. The Implementation of the IDEA Controller

12Language used

12High-level pseudocode

12Data structures/specialized methods used

12References

136. Testing and Installation of the IDEA Controller Codes

13Steps needed to install the controller

13How testing is done

147. Summary and Conclusion

14Contribution of our team

14Division of Labour

14What we have learnt from the project

14Possible future enhancements

16Appendix: Documents and Codes

16constants.ini

16IDEA.ini

22controller.php

1. Introduction

Authors of the report

This report was prepared by Li Jia and Benjamin Ching, who took UIT2201 – Computer Science & the IT Revolution in semester 2 of academic year 2002/2003.
Purpose of this report

This report was created to document the efforts of our team, SDA1. Our team was responsible for the design of the system architecture and integrating the various sub-systems of the Intelligent Door Emulation Application (IDEA).
It is hoped that this report would be useful for anyone who would like to get an in-depth look into how IDEA works from a developer’s perspective.

Scope of the report

The scope of the report is limited to the specifications and high level design of IDEA, (which includes the documentation of the controller). Please refer to the other reports for other relevant functions and features of IDEA.
Target audience of this report
This report is aimed at future developers of IDEA who will be maintaining and/or upgrading the system.
2. The Overall System Architecture of IDEA

Architecture
The following architecture shown in Figure 1 was carefully designed by A/Prof Leong Hon Wai after consultation with his graduate students, Francis Ng and Chong Ket Fah. This architecture is designed so that each of the four main components (Controller, GUI, DBMS, and Feature-Engine) can be independently developed after each team has understood the idea behind the architecture.

[image: image1]
Figure 1 - IDEA Architecture
Brief Explanation
Web pages served out by IDEA are called IDEA Pages (which may be simple html or html with forms and buttons and other stuffs).
Whenever an IDEA page is activated, the request is send to the IDEA system for processing (via PHP). The IDEA system should "process" the web request, computing whatever it needs (using the IDEAFeatureEngine) and return a new IDEA Page that will display the "outcome" (or "result") of the web request.

The result IDEA Page may also contain Forms or Buttons or menu for other action.

In order to reduce the inter-dependence of the various subsystems, there are four components:
1. IDEAController: This component is the most important component. It receives the web request, figures out what is needed, and then call the appropriate "function" in the IDEAFeatureEngine to compute the result. It also receives the results computed, figures out the answer code and calls the appropriate "function" in the IDEAGUI component to generate correct result IDEA Page to be returned.

2. IDEAGUI: This component is responsible for generating the IDEA Pages (GUI) for the IDEA system. Note that the IDEA Pages for any given web request may be different depending on the outcome of the computation from the IDEAFeatureEngine.

3. IDEAFeatureEngine: This component is responsible for processing each of the web requests. It may call the database stored in IDEADBMS to get the information it needs to compute the answer. (Note: The "functions" in IDEAFeatureEngine can be written in any language (C/C++, Java, perl, sh, csh) provided that an executable file is provided and the program reads in the appropriate input parameter list and prints out the correct output parameter list.)

4. IDEADBMS: This component implements the underlying database that stores all the requisite information that is needed by the IDEA system. It also includes suitable interfaces where necessary to facilitate online/offline updating of the database.

Event Driven System
We use an event driven system because the design of IDEA is such that it responds differently to the events that are triggered. Hence, it would only be natural to design it in an event driven way in which events can be user initiated or system generated.

In each event, there will be a sequence of functions that will be executed when this event is triggered. There will also be an associated GUI page that will be displayed upon completion of the event.

For example, the IDEA_Event_User_Login event triggers four functions namely IDEA_Login, IDEA_Welcome, IDEA_Daily_Schedule and IDEA_Show_Msg_From_Others. After these functions are executed, the user is directed to a GUI page which will display the outcome of this event.
3. Requirements Chosen for Implementation

Overview of the (high level) requirements chosen for IDEA
The following are the high level requirements that we have chosen for IDEA:
a) User Login
b) Personal Schedule
c) Messaging function
d) Security function to simulate a camera in front of the door that does face recognition
e) Updates functions
f) Automated Smart Functions

Reasons for the choice

These features have been chosen for ease of implementation in this first version of IDEA. Due to time constraints and the fact that we hope to have a complete working IDEA working first, features that were deemed to be frills have been left out of the system design for future implementation.

How these requirements are broken down into events and functions for the FeatureImplementation Components
Events

There are a total of 10 events that have been defined for our purpose. They are:

1. IDEA_EVENT_USER_LOGIN
2. IDEA_EVENT_USER_LOGOUT
3. IDEA_EVENT_REQUEST_DAILY_SCHEDULE
4. IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE
5. IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL
6. IDEA_EVENT_HUMAN_APPROACHING
7. IDEA_EVENT_USER_ENTER
8. IDEA_EVENT_USER_LEAVE
9. IDEA_EVENT_REQUEST_COLOUR_CHANGE
10. IDEA_EVENT_REQUEST_JOKE
Functions

The following functionalities were implemented for the first version of IDEA (type of function given in brackets, corresponding to the alphabet given to the requirement in the overview):

1) Daily Personal Schedule for a given day (b)
· Displays the activities of a user for any given day.

2) Weekly Personal Schedule for a given week (b)
· Displays the activities of a user for any given week.
3) Personal Schedule details for an activity (b)
· Displays the details of a specific activity of a user.

4) Login (a)
· To log in a user into IDEA.

5) Enter/Leave (d)
· To simulate entering and leaving the place through the door.

6) Security - User activated (d)
· To initiate a simulation of someone approaching the door through a user clicking on a button, handing over to either function 8 or 9.
7) Security - System generated (d)
· To initiate a simulation of someone approaching the door by generating it randomly through the system, handing over to either function 8 or 9.

· Implemented through page “refresh” in a frame.

8) Security - User input pers_handle (d)
· Continuing the simulation from functions 6 or 7, to select the person who's approaching the door through input of the user’s ID.

9) Security - System generated pers_handle (d)
· Continuing the simulation from functions 6 or 7, to select the person who's approaching the door by generating it randomly through the system.

10) Change door colour (f)
· Change the user’s preferred door colour.

11) Turn off lights automatically (when no occupants in house) (f)
· To simulate turning off of the lights automatically when there are no occupants in the house.

· Implemented through page “refresh” in a frame.

12) Intruder alarm (when no occupants in house and intruder tries to enter) (f)
· To simulate an intruder alarm when there are no occupants in house and an unauthorised intruder (or non-occupant of the house) tries to enter.

· Implemented through page “refresh” in a frame.

13) Welcome messages from database (a)
· To generate a random welcome message from the database when a user logs in.

14) Tell jokes (c)
· To generate a joke from the database when a user requests for it.

15) Leave messages for other users (c)
· To leave a message for other users.

16) Show messages from other users (c)
· To see messages that has been left by other users.

17) Light sensor (f)
· To simulate a light sensor which turns off the lights when it is bright and turns them on when it is dark. (For our purpose, we only simulate it by the checking of the time and turning it off in the day and on at night).
· Implemented through page “refresh” in a frame.
18) Clock (e)
· To show the current time and/or date.

19) Weather updates (e)
· To show the current weather forecast in Singapore.

An example
IDEA_EVENT_USER_LOGIN invokes IDEA_Login, IDEA_Welcome, IDEA_Daily_Schedule and IDEA_Show_Msg_From_Others.
4. Design of the IDEA Controller

Overview of the controller design

There are two main components to the controller, the main controller code itself and the configuration files that dynamically configure the controller for the different functionalities.

[image: image2]
Figure 2 - Overview of the controller
Figure 2 above shows how the different components work together. IDEA.ini and constants.ini are basically text files containing only variable declarations defined in PHP.
The controller would normally be called by posting to “controller.php” through forms, passing it the relevant variables so that it knows which event to invoke. There should be a hidden input type with name “Event” and the value should be the requested event that this form triggers.
How input is sent to the controller (IDEA.ini)
Information required
For each event, we require its ID, name, relevant functions to execute and the GUI function to call.
For each function, we require its name, command, parameter(s) to pass to the command in the form of variable names and the name(s) of the return variables.
Syntax and semantics
Commented lines start with // or are enclosed with /* and */.
Each variable starts with a $ sign. For our variables, we follow it immediately with IDEA.

Arrays would be defined by the use of [] brackets. For function and event definitions, what follows would be either [‘Events’], [‘Functions’] or [Function name] depending on which type of variable is being defined. Further sets of [] might be needed for some variables to define multi-dimensioned arrays.

An assignment is done with the = sign followed by the string which has to be enclosed in quotes (‘ ‘). Finally, end each line with a semi-colon.

E.g.

$IDEA['Functions']['IDEA_Human_Approaching'] = 'IDEA_Human_Approaching';
To call an external command, we use the backtick (`) to enclose the external command.

E.g.

$return=`java -classpath /home/stuproj/uit2201p/public_cgi IDEA_Login.Login andy`;

Whatever output that the command returns will be stored into $return.
Examples of some events and functions
Constants definition
Many constant variables are declared in constants.ini and at the start of IDEA.ini for ease of reference later on in the file. They are simply declared as in the following example:
$IDEA_LOGIN_VALID = "1";
Some of these constants are not only used by the controller but also various GUI forms that post data to the controller.

E.g.
In login.php, the following line at the top of the file loads the constants.ini file:
<?include("/home/stuproj/uit2201p/public_cgi/constants.ini")?>
This following line uses one of the constants that have been defined in constants.ini:

...

<input type="hidden" name="EVENT" value="<?=$IDEA_EVENT_USER_LOGIN?>">
...
Event definition

Event’s ID
$IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['ID'] = $IDEA_EVENT_USER_LOGIN;

Event’s Name
$IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['Name'] = 'IDEA_EVENT_USER_LOGIN';

Functions to call
$IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['Functions'] = 'IDEA_Login IDEA_Welcome IDEA_Daily_Schedule IDEA_Show_Msg_From_Others';

GUI Function to call
$IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['GUI'] = 'IDEA_GUI_User_Login';

Function definition

Function's Name
$IDEA['Functions']['IDEA_Welcome'] = 'IDEA_Welcome';

Function’s program to call to process this function
$IDEA['IDEA_Welcome']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Welcome.Welcome';

The input parameters that the GUI has to pass in for this function and the input parameters for the function’s program

$IDEA['IDEA_Welcome']['Params'] = 'IDEA_LoginName IDEA_Password';

Variable name that the returned values for this function will be assigned to

$IDEA['IDEA_Login']['ReturnVar'] = 'IDEA_Login_Status';
Returned values from function’s program

(By default there should be only one; use space to separate the different kinds of returned values if there is more than one)
$IDEA['IDEA_Welcome']['Returns'] = 'IDEA_LOGIN_VALID IDEA_LOGIN_INVALID';

5. The Implementation of the IDEA Controller

Language used

We have chosen to implement the IDEA Controller in PHP because it is a simple scripting language that is highly flexible, allowing us to implement the controller in a short amount of time.
It also allows variable variables and variable functions in which the value stored in the variable can be used as the name of another variable or function.

E.g.
$IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['GUI'] = 'IDEA_GUI_User_Login';

To call IDEA_GUI_User_Login() function, just call:

$IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['GUI']()
High-level pseudocode
1. Load the configuration files, IDEA.ini and constants.ini
2. For all the events defined in IDEA.ini
a. If specified event equals to a defined event
i. Obtain functions from IDEA.ini

ii. For each of the functions found for the event
1. Locate it in the Functions declarations in IDEA.ini

2. Obtain information on the found function
3. Execute the function through its command and parameters

4. Obtain return values from the function
5. Assign this return values to the specified return variables

iii. End For

iv. Read the specified GUI function for this event from IDEA.ini

v. Call the specified GUI function

b. End If

3. End For

4. End
Data structures/specialized methods used
A table-like structure has been implemented using multidimensional arrays which are used to store the configuration variables (as specified in IDEA.ini).
References
Leong, Hon Wai. UIT2201 (Spring 2003), NUS.
http://www.comp.nus.edu.sg/~leonghw/uit2201/Sp2003/Project/
6. Testing and Installation of the IDEA Controller Codes

Steps needed to install the controller

1. An account that can interpret PHP files should be used. Creating a public_cgi folder in your SoC account would serve that purpose. Access the server through http://www-cgi.comp.nus.edu.sg:8000/~unixid
2. Copy controller.php, constants.ini and IDEA.ini into the root of the folder in which IDEA is stored.
3. Set permissions for all the PHP and executable files to 755.
4. Set permissions for all folders to 711.
5. If Java programs are to be executed, ensure that the proper classpaths are set.
E.g.

export CLASSPATH=/usr/local/java/jdk/lib/dt.jar:$CLASSPATH

export CLASSPATH=/usr/local/java/jdk/lib/tools.jar:$CLASSPATH

export CLASSPATH=/usr/local/java/jsdk/jsdk22.jar:$CLASSPATH
How testing is done
We used black box testing by entering data and checking whether the result was correct. We also have a $_DEBUG flag which if set to true would print out various debugging messages to better facilitate the debugging process.
Initial testing was done through the use of stubs in place of the actual programs. We simply fed in fixed data and expected a fixed output to be generated. For example, in testing the login part, we only encoded the user name ‘idea’ to be recognised, and expected it to bring us to the correct page while rejecting all other inputs.
7. Summary and Conclusion

Contribution of our team

During the development of IDEA, we did the following:

· planned and designed the various IDEA sub-systems;
· implemented the central controller that integrates the various sub-systems;

· designed the appropriate interface so that the various sub-systems could be separately and independently developed and tested;
· and managed the integration of the various sub-systems.
Division of Labour

Li Jia was responsible for the implementation of the controller and the main integration while Benjamin was involved in the specifications of the controller, the generating of the requirements that were to be implemented and the writing of this report.
What we have learnt from the project

Li Jia: I have learnt to view a project from the top architect’s point of view, i.e. how to make the system as generic as possible while not losing flexibility and configurability. I have also learnt how to define and use protocols among sub-teams so that they can work on a common basis and make the integration easier to carry out.
Benjamin: I have learnt how architectures can be designed to suit different purposes (having been involved in the design of an e-commerce web portal in my CS3214 project); in this case, how to design a flexible system that could be up and running quickly with minimal expectations on what developers should know by encapsulating every layer from each other. I have also picked up PHP and gained much experience in coming up with a set of specifications and realistic requirements for a system.
Possible future enhancements
· Standardisation of IDEA on a common language platform (e.g. Sun J2EE, Microsoft .NET or pure PHP). However, we foresee that it would be unrealistic to expect everyone to learn and work on the same platform in a short period of time.
· The change door colour feature could be extended to change the background texture instead.

· Personal schedule – implement views for tomorrow, yesterday and scrolling by day; views for next week, previous week and scrolling by week; input an activity through a form into the database.

· Password authentication for login system.

· Showing a list of who are currently in the house and who are outside in a separate frame that is always present.

· Customised welcome message such as for birthdays and holidays when a user logs in.
· Having different categories of jokes and allowing users to select which they would like.
· Incorporating weather content seamlessly into IDEA. Checking of weather in other places.

· A self diagnostics feature that would test all features automatically would be useful.
Appendix: Documents and Codes
The following codes are correct as of 16 April 2003 1437hrs. However, due to the on-going nature of the project, the following codes may not be the most current. The latest codes could be obtained from A/Prof Leong. We apologise for any inconvenience caused.
constants.ini

<?

/*

 *SYSTEM CONSTANTS

 *global constants used in function protocols

 */

$IDEA_LOGIN_VALID = "1";

$IDEA_LOGIN_INVALID = "0";

$IDEA_DAY = 17;

$IDEA_MONTH = 4;

$IDEA_YEAR = 2003;

$IDEA_TIME = "";

 /********SYSTEM EVENTS CONSTANTS*************/

 $IDEA_EVENT_USER_LOGIN = 0;

 $IDEA_EVENT_USER_LOGOUT = 1;

 $IDEA_EVENT_REQUEST_DAILY_SCHEDULE = 2;

 $IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE = 3;

 $IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL = 4;

 $IDEA_EVENT_HUMAN_APPROACHING = 6;

 $IDEA_EVENT_USER_ENTER = 8;

 $IDEA_EVENT_USER_LEAVE = 9;

 $IDEA_EVENT_REQUEST_COLOUR_CHANGE = 10;

 $IDEA_EVENT_REQUEST_JOKE = 11;

?>
IDEA.ini

<?

/*

 *ENVIRONMENT CONSTANTS

 *global constants used to define environment attributes

 */

$IDEA_JAVA_CLASSPATH = '/home/stuproj/uit2201p/public_cgi';

/*

 *SYSTEM CONSTANTS

 *global constants used in function protocols

 */

$IDEA_LOGIN_VALID = "1";

$IDEA_LOGIN_INVALID = "0";

$IDEA_DAY = 17;

$IDEA_MONTH = 4;

$IDEA_YEAR = 2003;

$IDEA_TIME = "";

/*

 *All GUI Must Include a html form control (i.e a type="hidden" input control) with name "Event" and specify the Event Name for

 *it.

 *The Event Name must be one of the constants in SYSTEM EVENTS CONSTANTS:

 */

 /*********IDEA_EVENT_USER_LOGIN*********/

 $IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['ID'] = $IDEA_EVENT_USER_LOGIN;

 $IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['Name'] = 'IDEA_EVENT_USER_LOGIN';

 $IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['Functions'] = 'IDEA_Login IDEA_Welcome IDEA_Daily_Schedule IDEA_Show_Msg_From_Others';

 $IDEA['Events'][$IDEA_EVENT_USER_LOGIN]['GUI'] = 'IDEA_GUI_User_Login';

 /*********IDEA_EVENT_REQUEST_DAILY_SCHEDULE*********/

 $IDEA['Events'][$IDEA_EVENT_REQUEST_DAILY_SCHEDULE]['ID'] = $IDEA_EVENT_REQUEST_DAILY_SCHEDULE;

 $IDEA['Events'][$IDEA_EVENT_REQUEST_DAILY_SCHEDULE]['Name'] = 'IDEA_EVENT_REQUEST_DAILY_SCHEDULE';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_DAILY_SCHEDULE]['Functions'] = 'IDEA_Daily_Schedule';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_DAILY_SCHEDULE]['GUI'] = 'IDEA_GUI_Daily_Schedule';

 /*********IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE*********/

 $IDEA['Events'][$IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE]['ID'] = $IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE;

 $IDEA['Events'][$IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE]['Name'] = 'IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE]['Functions'] = 'IDEA_Weekly_Schedule';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_WEEKLY_SCHEDULE]['GUI'] = 'IDEA_GUI_Weekly_Schedule';

 /*********IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL*********/

 $IDEA['Events'][$IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL]['ID'] = $IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL;

 $IDEA['Events'][$IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL]['Name'] = 'IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL]['Functions'] = 'IDEA_Schedule_Activity_Detail';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_SCHEDULE_ACTIVITY_DETAIL]['GUI'] = 'IDEA_GUI_Schedule_Activity_Detail';

 /*********IDEA_EVENT_HUMAN_APPROACHING*********/

 $IDEA['Events'][$IDEA_EVENT_IDEA_EVENT_HUMAN_APPROACHING]['ID'] = $IDEA_EVENT_HUMAN_APPROACHING;

 $IDEA['Events'][$IDEA_EVENT_IDEA_EVENT_HUMAN_APPROACHING]['Name'] = 'IDEA_EVENT_HUMAN_APPROACHING';

 $IDEA['Events'][$IDEA_EVENT_IDEA_EVENT_HUMAN_APPROACHING]['Functions'] = 'IDEA_Human_Approaching';

 $IDEA['Events'][$IDEA_EVENT_IDEA_EVENT_HUMAN_APPROACHING]['GUI'] = 'IDEA_GUI_Human_Approaching';

 /*********IDEA_EVENT_REQUEST_COLOUR_CHANGE*********/

 $IDEA['Events'][$IDEA_EVENT_REQUEST_COLOUR_CHANGE]['ID'] = $IDEA_EVENT_REQUEST_COLOUR_CHANGE;

 $IDEA['Events'][$IDEA_EVENT_REQUEST_COLOUR_CHANGE]['Name'] = 'IDEA_EVENT_REQUEST_COLOUR_CHANGE';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_COLOUR_CHANGE]['Functions'] = 'IDEA_Change_Colour';

 $IDEA['Events'][$IDEA_EVENT_REQUEST_COLOUR_CHANGE]['GUI'] = 'IDEA_GUI_Change_Colour';

 /*********IDEA_EVENT_USER_LEAVE*********/

 $IDEA['Events'][$IDEA_EVENT_USER_LEAVE]['ID'] = $IDEA_EVENT_USER_LEAVE;

 $IDEA['Events'][$IDEA_EVENT_USER_LEAVE]['Name'] = 'IDEA_EVENT_USER_LEAVE';

 $IDEA['Events'][$IDEA_EVENT_USER_LEAVE]['Functions'] = 'IDEA_Check_Lighting';

 $IDEA['Events'][$IDEA_EVENT_USER_LEAVE]['GUI'] = 'IDEA_GUI_User_Leave';

 /*

 *To FI Team: The "Commands" parameters below can be changed to running C or other programs.

 *The default value is Java now, and it can be changed upon request

 *If you use java, please note that each function has to be in its own package for structural purposes

 *this can be done by putting "package IDEA_your_function;" on the first line of the program before compiling

 */

/*

 *Explanation on FUNCTIONS entries

 *

 *Function's Name

 *$IDEA['Functions']['IDEA_Welcome'] = 'IDEA_Welcome';

 *

 *FI's program to call to process this function

 *$IDEA['IDEA_Welcome']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Welcome.Welcome';

 *

 *The input parameters GUI has to pass in for this function

 *and the input parameters for the FI's program

 *

 *$IDEA['IDEA_Welcome']['Params'] = 'IDEA_LoginName IDEA_Password';

 *

 *Returned values from FI' program, by default there should be only one

 *use space to separate different kind of returned values if more than one

 *$IDEA['IDEA_Welcome']['Returns'] = 'IDEA_LOGIN_VALID IDEA_LOGIN_INVALID';

 *

 *Parameters to be passed to GUI function below

 *$IDEA['IDEA_Welcome']['Pass'] = 'IDEA_LoginName';

 *

 *GUI functions to call to display the output

 *if different functions needs to be called for each type of Returned values above,

 *use space to separate each output function (!must be in the same order of the Returned values)

 *$IDEA['IDEA_Welcome']['Output'] = 'IDEA_Welcome_Welcome IDEA_Welcome_Wrong_ID';

 */

/********Check Lighting Function Protocol************/

// activated: not activated by user, but checked via "screen refresh" in a small frame of the page

// input: pers_location of all users

// output: on or off depending on whether there is still anyone in the house

// result: a frame showing the status by changing the background colour depending on output eg white for lights on, black for lights off

// future implementation?:

$IDEA['Functions']['IDEA_Check_Lighting'] = 'IDEA_Check_Lighting';

$IDEA['IDEA_Check_Lighting']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Check_Lighting.Check_Lighting';

$IDEA['IDEA_Check_Lighting']['Params'] = 'IDEA_Check_Lighting';

$IDEA['IDEA_Check_Lighting']['Returns'] = 'IDEA_Check_Lighting_New_Lighting';

/********Change Colour Function Protocol************/

// activated: by selecting colour from drop down box

// input: new colour

// output: store colour preference into pers_prefs.Door_Colour

// result: screen showing the changed door colour

// future implementation?:

$IDEA['Functions']['IDEA_Change_Colour'] = 'IDEA_Change_Colour';

$IDEA['IDEA_Change_Colour']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Change_Colour.Change_Colour';

$IDEA['IDEA_Change_Colour']['Params'] = 'IDEA_Change_Colour';

$IDEA['IDEA_Change_Colour']['Returns'] = 'IDEA_Change_Colour_New_Colour';

/********Human Approaching Function Protocol************/

// description: to initiate a simulation of someone approaching the door

// activated: by clicking a button

// input:

// output:

// result: screen for selection for input method for pers_handle

// future implementation?:

$IDEA['Functions']['IDEA_Human_Approaching'] = 'IDEA_Human_Approaching';

$IDEA['IDEA_Human_Approaching']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Security.HumanApproaching';

$IDEA['IDEA_Human_Approaching']['Params'] = '';

$IDEA['IDEA_Human_Approaching']['Returns'] = 'IDEA_Login_Name IDEA_User_Location';

/********Schedule Activity Detail Function Protocol************/

// activated: by link generated by daily or weekly schedule for every activity listed

// input: sch_id

// output: date, time from sch_start, time from sch_end, sch_activity, sch_notes

// result: page with details of the activity

// future implementation?: Input new activity;

$IDEA['Functions']['IDEA_Schedule_Activity_Detail'] = 'IDEA_Schedule_Activity_Detail';

$IDEA['IDEA_Schedule_Activity_Detail']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Schedule_Activity_Detail.Schedule_Activity_Detail';

$IDEA['IDEA_Schedule_Activity_Detail']['Params'] = 'IDEA_Schedule_ID';

$IDEA['IDEA_Schedule_Activity_Detail']['Returns'] = 'IDEA_Schedule_Activity_Detail_Detail';

/********Weekly Schedule Function Protocol************/

// activated: by link or button on door, given option of this week (by which the today's date would be passed) or a certain date by entering day, month, year

// input: pers_id, any date (of that week) in the format Day Month Year. All integers Day(1-31), Month(1-12), Year(2000-2099).

// output: date start (week to start on Monday, as above format), date end, list of [time from sch_start, time from sch_end, sch_activity, link to activity details]

// result: page with output sorted by day; within each day, by sch_start, period from 00:00hrs - 23:59hrs (as in daily schedule)

// future implementation?: Next week; previous week; scrolling by week;

// note by li jia: it should be the FI module's job to figure out the week the current day belongs to

// so the input should be the same as the Daily_Schedule

$IDEA['Functions']['IDEA_Weekly_Schedule'] = 'IDEA_Weekly_Schedule';

$IDEA['IDEA_Weekly_Schedule']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Weekly_Schedule.Weekly_Schedule';

$IDEA['IDEA_Weekly_Schedule']['Params'] = 'IDEA_Login_Name $IDEA_DAY $IDEA_MONTH $IDEA_YEAR';

$IDEA['IDEA_Weekly_Schedule']['Returns'] = 'IDEA_Weekly_Schedure_Schedule';

/********Daily Schedule Function Protocol************/

// activated: by link or button on door, given option of today (by which the today's date would be passed) or a certain date by entering day, month, year

// input: pers_id, date in the format Day Month Year. All integers Day(1-31), Month(1-12), Year(2000-2099).

// output: date (as above format), list of [time from sch_start, time from sch_end, sch_activity, link to activity details]

// result: page with output sorted by sch_start, period from 00:00hrs - 23:59hrs

// future implementation?: Tomorrow; Yesterday; Scrolling by day;

$IDEA['Functions']['IDEA_Daily_Schedule'] = 'IDEA_Daily_Schedule';

$IDEA['IDEA_Daily_Schedule']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Daily_Schedule.Daily_Schedule';

$IDEA['IDEA_Daily_Schedule']['Params'] = 'IDEA_Login_Name $IDEA_DAY $IDEA_MONTH $IDEA_YEAR';

$IDEA['IDEA_Daily_Schedule']['Returns'] = 'IDEA_Daily_Schedure_Schedule';

/********Login Function Protocol************/

// activated: by clicking a button and entering user id

// input: pers_handle

// output: whether pers_handle exists in the table, if yes, proceed to provide user functionalities, if not, deny access

// result: either welcome page for user or access denied page

// future implementation?: password access;

$IDEA['Functions']['IDEA_Login'] = 'IDEA_Login';

$IDEA['IDEA_Login']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Login.Login';

$IDEA['IDEA_Login']['Params'] = 'IDEA_Login_Name';

$IDEA['IDEA_Login']['ReturnVar'] = 'IDEA_Login_Status';

$IDEA['IDEA_Login']['Returns'] = 'IDEA_LOGIN_VALID IDEA_LOGIN_INVALID';

/********Welcome Function Protocol************/

// activated: when user logs in and is in the house (i.e. also activated when user clicks enter)

// input: wel_type (always 0 for current use)

// output: wel_txt

// result: screen showing the randomly generated welcome message from the database

// future implementation?: customised message checking birthday and holidays;

$IDEA['Functions']['IDEA_Welcome'] = 'IDEA_Welcome';

$IDEA['IDEA_Welcome']['Precondition'] = '$IDEA_Login_Status==$IDEA_LOGIN_VALID';

$IDEA['IDEA_Welcome']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Welcome.Welcome';

$IDEA['IDEA_Welcome']['Params'] = 'IDEA_Login_Name';

$IDEA['IDEA_Welcome']['Returns'] = 'IDEA_Welcome_Message';

/********Tell Jokes Function Protocol************/

// activated: when user clicks on a button

// input:

// output: joke_txt

// result: screen showing the randomly generated joke from the database

// future implementation?: generating based on category of the joke;

$IDEA['Functions']['IDEA_Tell_Jokes'] = 'IDEA_Tell_Jokes';

$IDEA['IDEA_Tell_Jokes']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Tell_Jokes.Tell_Jokes';

$IDEA['IDEA_Tell_Jokes']['Params'] = '';

$IDEA['IDEA_Tell_Jokes']['Returns'] = 'IDEA_Tell_Jokes_Joke';

/********Leave Message From Others Function Protocol************/

// activated: when user clicks button and comes to a screen with a form to enter pers_handle of other person and message

// input: pers_handle of other person, msg_txt

// output: enter input into database together with current date/time and pers_id of current user

// result: screen saying message left for user

// future implementation?:

$IDEA['Functions']['IDEA_Leave_Msg_From_Others'] = 'IDEA_Leave_Msg_From_Others';

$IDEA['IDEA_Leave_Msg_From_Others']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Leave_Msg_From_Others.Leave_Msg_From_Others';

$IDEA['IDEA_Leave_Msg_From_Others']['Params'] = 'IDEA_Login_Name';//this corresponds to pers_id in Database

$IDEA['IDEA_Leave_Msg_From_Others']['Returns'] = 'IDEA_Leave_Msg_From_Others_Msg';

/********Show Message From Others Function Protocol************/

// activated: when user login and enters

// input: pers_id of current user

// output: msg_from_id translate to pers_handle of person from, msg_time and msg_txt

// result: shown on same screen as welcome message

// future implementation?:

$IDEA['Functions']['IDEA_Show_Msg_From_Others'] = 'IDEA_Show_Msg_From_Others';

$IDEA['IDEA_Show_Msg_From_Others']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Show_Msg_From_Others.Show_Msg_From_Others';

$IDEA['IDEA_Show_Msg_From_Others']['Params'] = 'IDEA_Login_Name';//this corresponds to pers_handle in Database

$IDEA['IDEA_Show_Msg_From_Others']['Returns'] = 'IDEA_Show_Msg_From_Others_Msg';

/********Light Sensor Function Protocol************/

// activated: not activated by user, but checked via "screen refresh" in a small frame of the page

// input: current time

// output: on or off depending on time, eg 7am-7pm off, 7pm to 7am on lights

// result: a frame showing the status by changing the background colour depending on output eg white for lights on, black for lights off

// future implementation?:

$IDEA['Functions']['IDEA_Light_Sensor'] = 'IDEA_Light_Sensor';

$IDEA['IDEA_Light_Sensor']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Light_Sensor.Light_Sensor';

$IDEA['IDEA_Light_Sensor']['Params'] = 'IDEA_Time';

$IDEA['IDEA_Light_Sensor']['Returns'] = 'IDEA_Light_Sensor_Lighting_Intensity';

/********Weather Reporting Function Protocol************/

// activated: by clicking on a link or button

// input:

// output: weather report of singapore from some external website (eg yahoo)

// result: screen showing the weather report

// future implementation?: weather for other cities/places

$IDEA['Functions']['IDEA_Weather_Report'] = 'IDEA_Weather_Report';

$IDEA['IDEA_Weather_Report']['Command'] = 'java -classpath '.$IDEA_JAVA_CLASSPATH.' IDEA_Weather_Report.Weather_Report';

//The below parameters can be ignored in the current phase, but they have to be there for possible

//future expansion

$IDEA['IDEA_Weather_Report']['Params'] = 'IDEA_Weather_Report_Location IDEA_Weather_Report_Period';

$IDEA['IDEA_Weather_Report']['Returns'] = 'IDEA_Weather_Report_Report';

/********END OF IDEA.INI**********************/

?>
controller.php

<?

//$_DEBUG = true;

include("constants.ini");//this must come first

include("IDEA.ini");

include("GUI.php");

for ($i=0;$i<count($IDEA['Events']);$i++){

 if ($Event == $IDEA['Events'][$i]['ID']){

 /*

 *Obtain Functions from INI file

 */

 echo $Event;

 $Functions = $IDEA['Events'][$i]['Functions'];

 $Functions = explode(" ",$Functions);

 if($_DEBUG){

for ($p=0;$p<count($Functions);$p++)

 echo "Function $p of Event ".$Event." is ".$Functions[$p]."
";

 }

 /*

 *For each of the functions found for the event

 *locate it in the Functions declarations in the INI

 *and obtain information on the found function

 */

 for ($j=0;$j<count($Functions);$j++){//for each of the functions found

if($_DEBUG){

echo "Function $j of ".count($Functions)."
";

}

$Command = $IDEA[$Functions[$j]]['Command'];

 if($_DEBUG){

 echo "Command for Function $Functions[$j] is ".$Command."
";

 }

 /*

 *Obtain parameters

 */

 $Params = explode(" ",$IDEA[$Functions[$j]]['Params']);

 if($_DEBUG){

for ($m=0;$m<count($Params);$m++){

 echo "Param $m is ".$Params[$m]." value is ";

 echo $$Params[$m]."
";

}

 }

 /*

 *Form command

 */

 for ($k=0;$k<count($Params);$k++){

 //$Command .= " ".escapeshellarg($$Params[$k]);

 $Command .= " ".$$Params[$k];

 }

 if($_DEBUG){

 echo "command now is ".$Command."
";

 }

 /*

 **Execute command

 */

 $return = `$Command`;

 $return = trim($return);

 if($_DEBUG){

 echo "return value from command is *".$return."*
";

 }

 /*

 **Obtain return parameters from INI file

 */

 //$ReturnVar = explode(" ",$IDEA[$Functions[$j]]['ReturnVar']);

 $ReturnVar = $IDEA[$Functions[$j]]['ReturnVar'];

 //for($k=0;$k<count($ReturnVar);$k++){

 //

if($_DEBUG){

 // echo "returns $k is ". $ReturnVar[$k]."
";

 //
}

$$ReturnVar = $return;

 //}

if ($_DEBUG){

echo "return var is put into ".$ReturnVar."
";

}

 }

if ($_DEBUG){

echo "GUI to call is ".$IDEA['Events'][$i]['GUI'];

}

$IDEA['Events'][$i]['GUI']();

break;

 }

}

?>

IDEA Page (Submit)

IDEA Result Page

IDEAController

IDEAGUI Component

IDEA

IDEADBMS Component

IDEAFeatureEngine Component

PHP

PHP

IDEA.ini

Configuration for the events and associated functionalities

constants.ini

Constants that need to be loaded.

controller.php

Loads variables from IDEA.ini and constants.ini, generates the necessary codes and then executes the relevant block of code.

PAGE
2

[image: image3]