Project Title
: Intelligent Door Emulation Application (IDEA)

Team Name
: System Design and Architecture: DBMS (SDA3)

Members

: Heng Wei Chu and Daniel Lim Chen-Yi

Objectives

1. To develop and maintain a database for the IDEA system.
2. To develop tools to aid IDEA programmers for purposes of testing and debugging.
3. To provide timely advice and assistance to IDEA programmers, with regards to the database and SQL.
Introduction

This report was written by Heng Wei Chu and Daniel Lim from UIT2201 offered in the University Scholars Programme, for the DBMS component of the Intelligent Door Emulation Application (IDEA). IDEA is a project undertaken by members of the class.
This document seeks to provide critical information for future project team members who wish to embark on the IDEA project and maintain the database management system (DBMS), and will cover the specifications of the Door, our database schemas, the assumptions we made, how it was implemented and tested, the facilities we provided and the provision for future improvement.

Special thanks must go to Associate Professor Leong Hon Wai, of the School of Computing and the University Scholars Programme for his patience and invaluable guidance during the project.
This document contains the following sections:
Section 1.

Introduction (this section)

1
Section 2.

IDEA Requirements Specification

2
Section 3.

IDEA Database Design

4
Section 4.

Implementation of the IDEA Database

6
Section 5.

Testing of the IDEA Database

9
Section 6.

Summary and Conclusion

10
Appendix A-1:
Source Code: populateDB.java

11
Appendix A-2:
Source Code: checkTable.php

15
Appendix B:

Test Data: checkTable.php Screen Dumps

16
Section 2

IDEA Requirements Specification

IDEA was implemented by several teams. SDA1 prepared the controller module of the project. SDA2 prepared the graphical user interface (GUI). Our team, SDA3, was responsible for the database management. Various Feature Implementation (FI) teams programmed the different aspects of the application.
Our team met with SDA1 on 6 April 03 to discuss the system requirements, as relevant to the setup of the database. Features like weather forecast were not discussed as these did not involve the database.
The Intelligent Door is an application that will be able to provide security to the residence by allowing access to friendly persons and deny access to strangers. It should also provide its users with useful functions like personal scheduler, messaging system to communicate with other users, weather forecast, et cetera. It should provide entertainment like telling jokes. Certain degree of autonomy and programmed intelligence is invested in it to provide functions like automatically switching off the lights when the house is empty. In addition, it should have a unthreateningly personal interface, by cheerfully greeting its users, even with special greetings on occasions like birthdays and holidays. Its look and feel should also be customizable to the user’s preferences.

Below is a break-down of key features of the Door, with description of its function. Special focus is placed on the data that is required for each function. Understanding the data needed to be captured will allow us to optimize the design of the database.
1. Login
When a user comes to the Door, he should be presented with a login prompt. Upon his input, his identity should be checked against the database and his status (occupant, friend, unwanted person) should be ascertained. If he is occupant or friend, he should be allowed entry, otherwise a warning screen should be displayed.
A list of people, represented by their screen handle, should be captured. Besides the handle, each person’s status, whether he is occupant, friend or unwanted, should be captured also. A uniquely identifying user id should also be assigned to each person as a primary key.
2. Personal Scheduler
A personal scheduler allows the users to record their appointments and activities. Upon retrieval of his personal schedule, the user should be able to view it in either a day view or a weekly view.
The name of the activity, a description of it, the start date/time and the end date/time should be stored in the database. Since one table is used to contain all the scheduled events of all users, it is also necessary to indicate the user (referred to by user id) the record originates from. It was also decided that the database should retain the record until the activity happens. When the end date/time of the activity has passed, it is deemed to have happened. Periodically, the feature engine should check the database for such ‘expired’ records and purge them.
3. Welcome Messages
To add a personal touch to the Door, it should be programmed to greet users in an appropriate manner. For variety, this greeting should be randomly chosen from a collection of generic greetings. Special greetings for birthdays and holidays are considered for future implementation.
All welcome messages will be stored in database, along with a unique message id which is useful for the feature engine to choose the message. Each record should also have a flag which signals it as a generic, birthday or holiday greeting. In the case of holiday greetings, the date of the holiday should also be stored in the record. For the purpose of birthday greetings, each user’s (occupant and friend) birthday should be captured.
4. Messaging Service
Users will be able to leave messages for one another through the IDEA system. They will also be able to read the messages others have left for them.
The user id of the sender and that of the intended recipient, together with the message text and the date/time of the message is recorded. The feature engine should purge the message either after it is read, or the user might be given the option of purging it or not.

5. Joke-telling
Upon request, the Door will tell the user a joke. Considered for future implementation is the ability of the user to select his preferences for jokes by category.
Jokes are stored in the database with a unique key, for the purpose of randomization. Each joke should also have a category code tagged to it, so it can be chosen by category.
6. Automatic Lights Switch-Off
An intelligent feature of the Door is to detect that nobody is in the house and in this event, switch off the lights automatically. When users enter or leave the house through the Door, their location should be tracked – whether they are inside or outside – in order to determine if the house is empty.
Upon logging in and logging out, a flag should be set in the record of the user to indicate inside or outside. The feature engine periodically checks the database and upon detecting that all users are outside, the lights can be switched off.

7. User Preference: Door Colour

The Door can be personalized. At our early stage, only one preference is implemented. Users can decide on their preferred colour for the Door. The Door will switch to the desired colour according to the user’s preference when he is using it.
The preferred colour is stored in the user’s record.
Section 3

IDEA Database Design
Listed here is our database schema. The attributes in each table are listed, with their data-type and a description of its purpose. Null? indicates whether that attribute is optional in the record. Those listed as NOT NULL are data vital to certain functionalities and cannot be left blank, whereas the remaining attributes are not vital to proper functioning and can be left blank if chosen. The features that require the table are also indicated, according to Section 2 above.

PEOPLE
Features requiring data: Login, Personal Scheduler, Welcome Messages, Messaging

 Service, Automatic Lights Switch-Off, User Preference: Door Colour
--------------------- -------- ---------- ------------------------

Name Null? Type

Description of attribute

--------------------- -------- ----------

PERS_ID NOT NULL NUMBER

Primary key
PERS_HANDLE NOT NULL CHAR(10)

for authentication
PERS_FIRST_NAME NOT NULL VARCHAR2(20)
for greeting

PERS_LAST_NAME VARCHAR2(20)
for formal greeting

PERS_STATUS NOT NULL NUMBER(1)

0-occupant/1-friendly/

2-unwanted

PERS_BIRTHDATE DATE

used to check for

birthday (see WELCOME)
PERS_LOCATION NOT NULL NUMBER(1)

flag upon entry/exit

0-outside/1-inside

PERS_PREF_DOORCOLOR
 NUMBER

preference of door color

SCHEDULE
Features requiring data:
Personal Scheduler
--------------------- -------- ---------- ------------------------

Name Null? Type

Description of attribute

--------------------- -------- ----------

SCH_ID NOT NULL NUMBER

Primary key
SCH_FROM_ID NOT NULL NUMBER

user id of originator
SCH_START NOT NULL DATE

start date/time of event

SCH_END DATE

end date/time of event

SCH_ACTIVITY NOT NULL VARCHAR2(40)
brief title of event

SCH_NOTES VARCHAR2(500)
description/notes of

event

MESSAGE
Features requiring data:
Messaging Service

--------------------- -------- ---------- ------------------------

Name Null? Type

Description of attribute

--------------------- -------- ----------

MSG_FROM_ID NOT NULL NUMBER

user id of sender
MSG_TO_ID NOT NULL NUMBER

user id of receipient

MSG_TIME NOT NULL DATE

date/time stamp of

message

MSG_TXT NOT NULL VARCHAR2(500)
message text

WELCOME
Features requiring data:
Welcome Messages

--------------------- -------- ---------- ------------------------

Name Null? Type

Description of attribute

--------------------- -------- ----------

WEL_ID NOT NULL NUMBER

Primary key

WEL_TXT NOT NULL VARCHAR2(500)
greeting text
WEL_TYPE NOT NULL NUMBER(1)

Type of greeting

0-generic/1-birthday/

2-holiday

WEL_DATE DATE

used to check for

holidays

JOKE
Features requiring data:
Joke-telling

--------------------- -------- ---------- ------------------------

Name Null? Type

Description of attribute

--------------------- -------- ----------

JOKE_ID NOT NULL NUMBER

Primary key

JOKE_TXT NOT NULL VARCHAR2(500)
joke text

JOKE_CAT NUMBER(1)

joke category (for

future
 implementation)

LOG
This simple table can be used by any feature of IDEA to dump log messages for purpose of testing and debugging

--------------------- -------- ---------- ------------------------

Name Null? Type

Description of attribute

--------------------- -------- ----------

LOG_TIME NOT NULL DATE

date time stamp

LOG_TXT NOT NULL VARCHAR2(500)
log message text

Section 4

Implementation of the IDEA Database
The IDEA database is housed in SoC’s Oracle server. There are many ways you can use to interface with the server. Mainly we used SQL*PLUS, a text-based SQL client available from the Unix platform, and Java. We found SQL*PLUS to be useful for the creation and alteration of tables, as well as carrying out simple queries. Java was indispensable for creating programs that can populate the table with test data – the same process done in SQL*PLUS would have been tedious. Our programs also enable us to reset the tables, useful during the testing stage. Below are the details:

Creation of tables

There are 2 main ways you can do this:

Using SQL*PLUS

Simply run the SQL create statements at the SQL*PLUS command prompt.

CREATE TABLE <table-name>
(<attribute-1> <type> [constraints],
 <attribute-2> <type> [constraints],
 <attribute-n> <type> [constraints]);

For example, to create the PEOPLE table (see IDEA Database Design) the SQL statements we ran were as follows:
CREATE TABLE PEOPLE (
pers_id number NOT NULL,

pers_handle char(10) NOT NULL,

pers_first_name varchar2(20) NOT NULL,

pers_last_name varchar2(20),

pers_status number(1) NOT NULL,

pers_birthdate date,

pers_location number(1) NOT NULL,

pers_pref_doorcolor number);

Tip: Don’t forget the semi-colon at the end of the line. SQL*PLUS recognises that as the end of your instruction.

Using Java or a third party tool

Every time you access the database you need to check the following:

Set your classpath
To do this in Unix, type at your command prompt:

Export CLASSPATH=/usr/local/java/jdbc-
 oracle816/classes12.zip:.:/usr/local/java/

 jsdk/jsdk22.jar:/usr/local/java/jsdk/jsdk22.jar:/usr/local/java/

 jdk/lib/tools.jar:/usr/local/java/jdk/lib/dt.jar

Setting your classpath ensures that the Java compiler knows where to find the Oracle database drivers so that your Java program can interface with the database.
Also type source /oracle/latest/bin/oraenv before using any of the drivers.
Make sure you have the directory DBClasses
This directory should be placed in the directory where you store your java files. The directory contains a file dbManager.java which provides a method which you can use to connect to the database.

e.g.
if your java files are in c:\public_cgi\idea, then there should exist a directory c:\public_cgi\idea\DBClasses which contains the java database connector.

Procedure in the java file where you access the database

The standard procedure for executing an SQL command in java is as follows:

1. Create a connection to the database

2. Prepare a Statement object through which SQL queries will be executed

3. Run your SQL statement.

4. Close connection and Statement object.

In java code, the creation of a table will look like this:

//get a connection to the database

dbManager dbmgr = new dbManager();

Connection con = dbmgr.getConnection();

//prepare a statement object

Statement stmt = con.createStatement();

//run the SQL statement

createString = “CREATE TABLE people (NAME VARCHAR(30), …)”;

stmt.executeUpdate(createString);

//close connection and statement

con.close();

stmt.close();

Population of records

Again, there are 2 main ways to populate the database.

Using SQL*PLUS

Simply run the SQL create statements at the SQL*PLUS command prompt.

INSERT INTO <table-name>
 VALUES(<attribute-1>, <attribute-2>,...... <attribute-n>);

For example, to create a record for a generic welcome message:
INSERT INTO WELCOME

 VALUES (1, ‘Welcome to IDEA!’, 0, null);

Tip: Once again, don’t forget the semi-colon at the end of the line. SQL*PLUS recognises that as the end of your instruction.

Using Java

We wrote a java program to populate the database based on data stored in text files. The reason why we did this was to facilitate the resetting of the oracle database whenever required. The text files also provided a means of backup in case anything goes wrong.

The code for populateDB.java can be found in the appendix.

What populateDB does is use the StringTokenizer class in java to break up a line in a text file and then puts it into a database record.

The format of our text files are as follows:

Field-1-value|Field-2-value|………|Field-3-value

And they are named according to their table names with a .dat extension. For example, the data file for the people table is named people.dat.
Section 5
Testing of the IDEA Database

Test data added to tables

Test data was inserted into the tables for the use of the FI developers. This was done using our populateDB java program described in the previous chapter. After running this java program, we also went to the SQL*PLUS command prompt to list the contents of data.

We also ensured that all access to the database was consistent. That is, the query results from PHP pages, java queries and SQL*PLUS queries were exactly the same.

Our test data is given in the appendix, in the form of screen dumps of the executed PHP pages.

Viewing tables using PHP pages

The database team also came up with PHP pages for displaying the contents of the tables. The main function of these no-frills pages is to aid FI developers during their development process. It is invaluable because it allows the developer to check the results of his program’s interaction with the database, in the convenient GUI rather than having to manually enter queries in the text-based SQL*PLUS.
The PHP scripts are provided in the appendix. NOTE: the scripts uses the foreach statement, which is only implemented from PHP 4 onwards. If the scripts are to be installed on another server, check if the PHP parser installed is up to date.
Section 6

Summary and Conclusion

The DBMS forms the backbone of the IDEA project and is critical to many functions in the Door. Thus coming up with a good design was important to make the jobs of the developers easier.

Possible enhancements in the future include the following:
1. Instead of one table SCHEDULE that stores schedules for all users, consider using nested table. i.e. a SCHEDULE table as a attribute in PEOPLE, unique to each user record.

2. The same can be done for the Messaging Service. MESSAGE can be a table nested in PEOPLE, such that each user has his own unique MESSAGE table.
3. The same can be done for user preferences. A nested PREFS table will be a better feature as IDEA might mature and become more customizable. Using one attribute in PEOPLE for each preference will eventually make the PEOPLE table messy and disorganized. Using a nested PREFS table allows new preferences to be included easily.
4. More tools can be created, in PHP or Java, to enhance the FI development process. Possible ones are a GUI-based SQL interface for submitting queries, and a GUI-based table editor.

5. When IDEA is built and implemented, it will be inappropriate to dump test data in the database and/or reset the data. Future developers who are working on enhancements for IDEA will need a means to test and debug without affecting existing data. Perhaps a virtual database interface can be created where the changes are reversible. Such a feature will be invaluable to future developers.
In the implementation, Wei Chu was instrumental in developing PHP tools for accessing the database and also in the creation of tables while Daniel concentrated on coming up with test data, and writing Java tools. Both team members offered timely advice and assistance to FI developers, with regards to programming for Oracle and SQL.
It was a unique learning experience for us. We had a taste of what working in a decentralized development team is like, and the importance of communicating ideas and specifications in a clear and unambiguous way. We learnt also the value of cooperation and how different teams are dependent on each other for their work to progress smoothly. In addition, we appreciated the value of the Internet in large-scale projects. Aside from initial face-to-face meetings in the early stage of the project, most of the teams had not met and all correspondence was carried out on email, ICQ and an online forum. Interestingly, the two members of SDA3, with their busy schedules, had never met. Division of labour was decided in email correspondence and both went about their own responsibilities, keeping in touch through email, ICQ and SMS. We managed to work in this manner and found it to be efficient. Indeed, Information Techonology has made such collaboration easier.

Appendix A-1

Java Source code: populateDB.java
import java.sql.*;
import java.util.*;
import java.io.*;

import DBClasses.*;

class populateDB {

 public static void LoadPeople() throws IOException, SQLException

 {

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 Statement stmt = conn.createStatement();

 FileInputStream infile= new FileInputStream("people.dat");

 BufferedReader stdin= new BufferedReader(new InputStreamReader (infile));

 String record;

 while ((record = stdin.readLine()) != null) {

 if (record.equals("")) {

 //ignore blank line and do nothing

 } else if ((record.substring(0,2)).equals("//")) {

 //do nothing

 } else { //take in first token, and run method

 System.out.println(record);

 StringTokenizer st = new StringTokenizer (record, "|");

 int A = Integer.parseInt(st.nextToken()); //number

 String B = st.nextToken();

 String C = st.nextToken();

 String D = st.nextToken();

 int E = Integer.parseInt(st.nextToken()); //number

 String F = st.nextToken();

 int G = Integer.parseInt(st.nextToken()); //number

 int H = Integer.parseInt(st.nextToken()); //number

 //prepare insert sql statement for record

 String insert_string = "INSERT INTO people " +

 "VALUES (" + A +", '" + B + "' ,'" + C + "' ,'" +

 D + "', " + E + ", '" + F + "', " + G + "," + H + ")";

 //execute insertion

 stmt.executeUpdate(insert_string);

 } //end if-else

 } // end of while loop

 stmt.close();

 conn.close();

 System.out.println("Table: People successfully populated.");

 } //end method LoadPeople()

 public static void LoadSchedule() throws IOException, SQLException

 {

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 Statement stmt = conn.createStatement();

 FileInputStream infile= new FileInputStream("schedule.dat");

 BufferedReader stdin= new BufferedReader(new InputStreamReader (infile));

 String record;

 while ((record = stdin.readLine()) != null) {

 if (record.equals("")) {

 //ignore blank line and do nothing

 } else if ((record.substring(0,2)).equals("//")) {

 //do nothing

 } else { //take in first token, and run method

 System.out.println(record);

 StringTokenizer st = new StringTokenizer (record, "|");

 int A = Integer.parseInt(st.nextToken()); //number

 int B = Integer.parseInt(st.nextToken()); //number

 String C = st.nextToken();

 String D = st.nextToken();

 String E = st.nextToken();

 String F = st.nextToken();

 //prepare insert sql statement for record

 String insert_string = "INSERT INTO schedule " +

 "VALUES (" + A + ", " + B + " , (to_date('" + C + "', 'dd-mm-yyyy hh:MI AM')), " +

 "(to_date('" + D + "', 'dd-mm-yyyy hh:MI AM')), '" + E + "', '" + F + "')";

 //execute insertion

 stmt.executeUpdate(insert_string);

 } //end if-else

 } // end of while loop

 stmt.close();

 conn.close();

 System.out.println("Table: Schedule successfully populated.");

 } //end method LoadSchedule()

 public static void LoadMessage() throws IOException, SQLException

 {

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 Statement stmt = conn.createStatement();

 FileInputStream infile= new FileInputStream("message.dat");

 BufferedReader stdin= new BufferedReader(new InputStreamReader (infile));

 String record;

 while ((record = stdin.readLine()) != null) {

 if (record.equals("")) {

 //ignore blank line and do nothing

 } else if ((record.substring(0,2)).equals("//")) {

 //do nothing

 } else { //take in first token, and run method

 System.out.println(record);

 StringTokenizer st = new StringTokenizer (record, "|");

 int A = Integer.parseInt(st.nextToken()); //number

 int B = Integer.parseInt(st.nextToken()); //number

 String C = st.nextToken();

 String D = st.nextToken();

 //prepare insert sql statement for record

 String insert_string = "INSERT INTO message " +

 "VALUES (" + A +", " + B + " , (to_date('" + C + "', 'dd-mm-yyyy

 hh:MI AM')), '" + D + "')";

 stmt.executeUpdate(insert_string);

 } //end if-else

 } // end of while loop

 stmt.close();

 conn.close();

 System.out.println("Table: Message successfully populated.");

 } //end method LoadMessage()

 public static void LoadWelcome() throws IOException, SQLException

 {

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 Statement stmt = conn.createStatement();

 FileInputStream infile= new FileInputStream("welcome.dat");

 BufferedReader stdin= new BufferedReader(new InputStreamReader (infile));

 String record;

 while ((record = stdin.readLine()) != null) {

 if (record.equals("")) {

 //ignore blank line and do nothing

 } else if ((record.substring(0,2)).equals("//")) {

 //do nothing

 } else { //take in first token, and run method

 System.out.println(record);

 StringTokenizer st = new StringTokenizer (record, "|");

 int A = Integer.parseInt(st.nextToken()); //number

 String B = st.nextToken(); //number

 int C = Integer.parseInt(st.nextToken());

 String D = (st.nextToken()).trim();

 String insert_string=""; //initialise

 if (D.equals("NULL")) {

 insert_string = "INSERT INTO welcome " +

 "VALUES (" + A +", '" + B + "' , " + C + ", null)";
//d is added as null

 System.out.println(D);

 } else {

 //prepare insert sql statement for record

 insert_string = "INSERT INTO welcome " +

 "VALUES (" + A +", '" + B + "' , " + C + ", '" + D + "')";

 } //end if-else

 stmt.executeUpdate(insert_string);

 } //end if-else

 } // end of while loop

 stmt.close();

 conn.close();

 System.out.println("Table: Welcome successfully populated.");

 } //end method LoadWelcome()

 public static void LoadJoke() throws IOException, SQLException

 {

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 Statement stmt = conn.createStatement();

 FileInputStream infile= new FileInputStream("joke.dat");

 BufferedReader stdin= new BufferedReader(new InputStreamReader (infile));

 String record;

 while ((record = stdin.readLine()) != null) {

 if (record.equals("")) {

 //ignore blank line and do nothing

 } else if ((record.substring(0,2)).equals("//")) {

 //do nothing

 } else { //take in first token, and run method

 System.out.println(record);

 StringTokenizer st = new StringTokenizer (record, "|");

 int A = Integer.parseInt(st.nextToken()); //number

 String B = st.nextToken();

 int C = Integer.parseInt(st.nextToken()); //number

 //prepare insert sql statement for record

 String insert_string = "INSERT INTO joke " +

 "VALUES (" + A +", '" + B + "', " + C + ")";

 stmt.executeUpdate(insert_string);

 } //end if-else

 } // end of while loop

 stmt.close();

 conn.close();

 System.out.println("Table: Joke successfully populated.");

 } //end method LoadJoke()

 static void emptyAll() throws IOException, SQLException{

 //get connection to database

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 Statement stmt = conn.createStatement();

 //delete records from all tables

 String emptyString = "DELETE FROM people";

 stmt.executeUpdate(emptyString);

 System.out.println("Table: People emptied.");

 emptyString = "DELETE FROM schedule";

 stmt.executeUpdate(emptyString);

 System.out.println("Table: Schedule emptied.");

 emptyString = "DELETE FROM message";

 stmt.executeUpdate(emptyString);

 System.out.println("Table: Message emptied.");

 emptyString = "DELETE FROM welcome";

 stmt.executeUpdate(emptyString);

 System.out.println("Table: Welcome emptied.");

 emptyString = "DELETE FROM joke";

 stmt.executeUpdate(emptyString);

 System.out.println("Table: Joke emptied.");

 emptyString = "DELETE FROM log";

 stmt.executeUpdate(emptyString);

 System.out.println("Table: Log emptied.");

 stmt.close();

 conn.close();

 }

 public static void main(String[] args) throws Exception {

 emptyAll();

 LoadPeople();

 LoadSchedule();

 LoadMessage();

 LoadWelcome();

 LoadJoke();

 }

} //end class declaration

//note: please direct all queries to Daniel at isc10136@nus.edu.sg =)

Appendix A-2

PHP Source code: checkTable.php
Parameter(s): table (specifies the table to display, must be in uppercase)
Eg. checkTable.php?table=PEOPLE will show contents of the PEOPLE table.
<!--
Title: [IDEA] Script for checking table contents

Author: Heng Wei Chu

Date: 14 April 2003 -->

<HTML>

<HEAD>

<TITLE> [IDEA] Script for checking table contents </TITLE>

</HEAD>

<BODY>

<?php

#makes connection to the server, with username and password

$connection = OCILogon("idea", "uit-2201", "sid3.comp.nus.edu.sg");

#get the list of fields in the required table

$fields = OCIParse($connection, "SELECT column_name, data_type FROM cols WHERE

 table_name = '" . $table . "' order by column_id");

OCIExecute($fields);

#store fields list in an array and at the same time generate the query string
#it is necessary to generate this string using the column names because we want

#to return the dates in a custom format. Using select * … will give us the date

#in default format, not what we want.

while (OCIFetch($fields)) {

$columnname[] = OCIResult($fields, "COLUMN_NAME");

$temp = OCIResult($fields, "COLUMN_NAME");

if (OCIResult($fields, "DATA_TYPE") == "DATE") {

$querycolumns = $querycolumns .
 "TO_CHAR(" . $temp . ", 'DD-MON-YYYY HH24:MI:SS') AS " . $temp . ", ";

}

else {

$querycolumns = $querycolumns . $temp . ", ";

}

}

$querycolumns = substr($querycolumns, 0, strlen($querycolumns)-2);

 #select all records from required table

 $records = OCIParse($connection, "SELECT " . $querycolumns . "FROM " . $table .

" ORDER BY " . $columnname[0]);

 OCIExecute($records);

#print HTML table with Database table content

print "<TABLE cols=" . strval(count($columnname)-1) . "border=1>\n";

print "<tr>\n";

foreach ($columnname as $col) {

//foreach is a PHP4 command

print "<td> " . $col . " </td>";

}

print "\n</tr>\n";

#reading the query result

while (OCIFetch($records)) {

print "<tr> \n";

foreach ($columnname as $col) {

print "<td> " . trim(OCIResult($records, $col)) . "</td>";

}

print "\n</tr>\n";

}

print "</table>";

#Finishing the session

OCIFreeStatement($records);

OCIFreeStatement($fields);

OCILogoff($connection);

?>

</BODY>

</HTML>
Appendix B
Test Data: checkTable.php Screen Dumps
PEOPLE
	PERS_ID
	PERS_HANDLE
	PERS_FIRST_NAME
	PERS_LAST_NAME
	PERS_STATUS
	PERS_BIRTHDATE
	PERS_LOCATION
	PERS_PREF_DOORCOLOR

	1
	leonghw
	Leong
	Hon Wai
	0
	04-APR-1955 00:00:00
	0
	0

	2
	weichu
	Heng
	Wei Chu
	1
	03-DEC-1981 00:00:00
	0
	0

	3
	daniel
	Lim
	Daniel
	1
	10-JUL-1980 00:00:00
	0
	0

	4
	frankie
	Teah
	Huan Ying
	1
	23-JUN-1980 00:00:00
	0
	0

	5
	benching
	Ching
	Chung Siang Benjamin
	1
	23-DEC-1980 00:00:00
	0
	0

	6
	lijia
	Li
	Jia
	0
	05-JUN-1981 00:00:00
	0
	0

	7
	jiajie
	Liang
	Jiajie
	1
	03-FEB-1981 00:00:00
	0
	0

	8
	sunyin
	Sun
	Yin
	2
	03-MAR-1982 00:00:00
	0
	0

	9
	tongchoon
	Koh
	Tong Choon
	2
	02-FEB-1980 00:00:00
	0
	0

	10
	junyun
	Tay
	Junyun
	1
	27-FEB-1983 00:00:00
	0
	0

	11
	hongee
	Low
	Hong Ee
	1
	01-JAN-1981 00:00:00
	0
	0

	12
	chris
	Mendis
	Chris
	2
	09-SEP-1935 00:00:00
	0
	0

	13
	Willie
	Koh
	Lok Kiang William
	2
	19-FEB-1944 00:00:00
	0
	0

	14
	santa
	Claus
	Santa
	1
	25-DEC-1982 00:00:00
	0
	0

	15
	bingo
	Game
	Card
	2
	01-JAN-1966 00:00:00
	0
	0

SCHEDULE
	SCH_ID
	SCH_FROM_ID
	SCH_START
	SCH_END
	SCH_ACTIVITY
	SCH_NOTES

	1
	1
	14-APR-2003 12:30:00
	14-APR-2003 13:30:00
	Mid Term 2
	Conduct mid term for UIT2201 Students

	2
	3
	14-APR-2003 12:30:00
	14-APR-2003 13:30:00
	Mid Term 2
	ARGHH going to fail!!

	3
	1
	15-APR-2003 14:30:00
	15-APR-2003 17:30:00
	Mark Mid Term
	Lets see more G names!

	4
	2
	16-APR-2003 12:00:00
	16-APR-2003 12:00:00
	Hand in DBMS report
	Hand in our report to Prof Leong

MESSAGE
	MSG_FROM_ID
	MSG_TO_ID
	MSG_TIME
	MSG_TXT

	1
	7
	16-APR-2003 09:02:00
	You have to come back for extra class tomorrow.

	1
	1
	18-APR-2003 20:02:00
	hello from 1 to 1.

	1
	3
	15-APR-2003 20:00:00
	You failed your midterm. Why like that!

	2
	3
	15-APR-2003 20:01:00
	We have to hand in our DBMS report tomorrow faster!!

	2
	3
	18-APR-2003 20:02:00
	hello from 2 to 3.

	2
	10
	18-APR-2003 20:02:00
	hello from 2 to 10.

	2
	12
	18-APR-2003 20:02:00
	hello from 2 to 12.

	2
	11
	18-APR-2003 20:02:00
	hello from 2 to 11.

	2
	5
	18-APR-2003 20:02:00
	hello from 2 to 5.

	3
	3
	18-APR-2003 20:02:00
	hello from 3 to 3.

	3
	4
	18-APR-2003 20:02:00
	hello from 3 to 4.

	3
	2
	18-APR-2003 20:02:00
	hello from 3 to 2.

	4
	11
	18-APR-2003 20:02:00
	hello from 4 to 11.

	5
	14
	18-APR-2003 20:02:00
	hello from 5 to 14.

	6
	3
	18-APR-2003 20:02:00
	hello from 6 to 3.

	6
	13
	18-APR-2003 20:02:00
	hello from 6 to 13.

	9
	15
	18-APR-2003 20:02:00
	hello from 9 to 15.

	15
	3
	18-APR-2003 20:02:00
	hello from 15 to 3.

WELCOME
	WEL_ID
	WEL_TXT
	WEL_TYPE
	WEL_DATE

	1
	Welcome to the family of UIT2201. Make yourself at home!
	0
	

	2
	Merry christmas buddy!
	2
	25-DEC-2002 00:00:00

	3
	Say Meow
	2
	12-FEB-2002 00:00:00

	4
	Happy birthday. Have a wonderful day and many happy returns of the day =)
	1
	

	5
	Hi. you are not welcome in the family. go away! NOW!!
	0
	

JOKE
	JOKE_ID
	JOKE_TXT
	JOKE_CAT

	1
	say meow. MEOW!
	0

	2
	When did the chicken cross the road? Give up? When he crossed the road. Ha ha!
	0

	3
	Repeat: Study for UIT2201 Mid term II Until: pass on Monday!
	0

	4
	Laugh. Thanks =)
	0

	5
	"Hello?" "Wrong Number" "Really?" "Have I ever lied to you?"
	0

PAGE
12

