1. Introduction

Authors: Koh Tong Choon, Hoang Dong Nghi(Nicky), Mohammad Ferhad Ismail

Purpose of the report : to give detailed outline of development of functionalities

1.
Daily Personal Schedule for a given day.

2.
Weekly Personal Schedule for a given week.

3.
Personal Schedule details for an activity.

4.
Login

13.
Welcome messages from database

Scope of the report: Scope of this report is to explain the implementations as well as testing of the assigned functions.

Target audiences of the report: Software Development Personnel for the IDEA project.

2. IDEA Requirements Assigned to Team

Function 1: Daily Personal Schedule for a given day.

This function takes as input a pers_id and a date and output a personal schedule for that specific day.
Function 2: Weekly Personal Schedule for a given week.

This function takes as input a pers_id and a date and outputs a weekly schedule for the entire week in which that day belongs to.

Function 3: Personal Schedule details for an activity.

This function takes as input a schedule ID and output all details relating to that specific activity

Function 4: Login

This function takes as input a user name and outputs the pers_status of the person in the database. If he is not present in the database, we reply a not welcome status which is 2.

Function 13: Welcome Message

This function takes as input a number, which specifies the Welcome Message type and outputs a Welcome Message accordingly.

3. IDEA Function Implementation and Testing

Function 1: Daily Personal Schedule for a given day.

Input: pers_id, date. The date and pers_id are accepted from the command line and stored in an array of string. pers_id will be the users personal ID. Date would be in the format DDMMYYYY. All integers Day(1-31), Month(1-12), Year(2000-2099). Eg. 23122003 (23-day,12-month,2003-year)

Output: Output on the first line the date of the acitivity, followed by a line for each activity of that day and the details relating to that activity (String). Each line indicating an activity contains the start time, end time and activity separated by a space in-between. If there are no activities on that day, only the date will be printed.

Data Structures:

GregorianCalendar: to get information about date from the system

Recordset: to store the records from the databases to proceed

Array of Strings: to store and work with all the data in the program

PseudoCode:

Accept input from command line and store in string

Get the date from input and covert it (just the month) into the format of Oracle

Create conection object

Query the database by the command:

"SELECT ch_id,sch_start,sch_end,sch_activity,sch_notes FROM Schedule WHERE sch_from_id = '"+pers_id+"' AND sch_start > '"+sDate+"' AND sch_end < '"+tmrDate+"' ORDER BY sch_start ASC";

While the recordset is not empty

Print(“activity id” + “start time” + “end time” + “Activity”)

End while

Exit

convert (String mon){

Pre: accept a string parameter(in the format 0 or 00), which is the month

 we get from system

Post: output another format of this month to suit the format in Oracle

Ex: 01 or 1 will be converted into Mon

}

Testing : Test was carried out with the following test data: 2 14042003, for a
special case you can key in anything that is not valid such as "abc 263536347"
java IDEA_Schedule 2 16042003—valid

java IDEA_ScheduleActivity 2 2345—invalid (output “no activity”)

Comments : this algorithm runs in O(N) time. Future enhancements might include the ability to change details of the activities, schedule for tomorrow, yesterday, schedule which is scrollable by day.

Function 2: Weekly Personal Schedule for a given week.

Input: pers_id, date. The date and pers_id are accepted from the command line and stored in an array of String .pers_id will be the users personal ID. Date would be any date in a week and in the format DDMMYYYY. All integers Day(1-31), Month(1-12), Year(2000-2099). Ex:-23122003 (23-day, 12-month, 2003-year)

Output: Prints out a weekly schedule sorted by the dates according to the format in function 1

sch_start

date

ORACLE's starting date format

displaying only the time data

sch_end

date

ORACLE's ending date format

displaying only the time data

 sch_activity

varchar2(40)

brief description of event

Data Structures:

GregorianCalendar: to get information about date from the system

Recordset: to store the records from the databases to proceed

String of Arrays: to store and work with all the date in the program

PseudoCode:
Accept input from command line and store in string, use substring to get information about day, month, year from date input to construct a new GregorianCalendar object to proceed

Find the first day of the week

Make use of the function 1(Daily Personal Schedule for a given day) we use the for loop running from the first day to the last day of this week calling the PrintDaily method which is all the things we do in the function 1 to print out all the activities on days in that week. All steps of this function were presented above in the pseudocode of function 1.

Testing : Test was carried out with the following test data: 2 14042003, for a

special case you can key in anything that is not valid such as "abc 263536347"
java IDEA_Schedule 2 16042003—valid

java IDEA_ScheduleActivity 2 2345—invalid (output no activity)

Comments : this algorithm runs in O(N). It was built on what we did in function 1. Future enhancements might include the ability to change details of the activities, schedule for next week, previous week, which are scrollable by day.
Function 3: Personal Schedule details for an activity.

Input: sch_id which is activity id

Output: date, time from sch_start, time from sch_end, sch_activity, sch_notes separated by spaces
sch_start

date

ORACLE's starting date format

displaying only the time data

sch_end

date

ORACLE's ending date format

displaying only the time data

 sch_activity

varchar2(40)

brief description of event

 sch_notes

varchar2(500)

additional info, elaboration, etc

Data Structures:

Recordset to store the records

String to store the Input

PseudoCode:

Accept input from command line and store in string

Create conection object

Query the database by using the command:

"SELECT sch_id,sch_start,sch_end,sch_activity,sch_notes FROM Schedule WHERE sch_id = '"+sch_id+"'";

While the recordset is not empty

Print(“date” + “start time” + “end time” + “Activity”)

Print(“note”)

End while

Exit

Testing :

java IDEA_ScheduleActivity Y—invalid (output “no notes”)

java IDEA_ScheduleActivity 3—valid

Comments : this algorithm runs in O(N) time. Future enhancements might include the ability to change details of the activities, input new activities and add additional notes.
Function 4:Login
Input: pers_handle. It belongs to string type and consists of 10 characters maximum.

Output: whether pers_handle exists in the table, if yes, proceed to provide user functionalities, if not, deny access (0 if occupant, 1 if friendly, 2 if name is not found)

Data Structures:

Recordset to store the records

String to store the Input

PseudoCode:

Accept input from command line and store in string

Create connection object

Query the database by calling the command:

"SELECT pers_status FROM People WHERE pers_handle = '"+pers_handle+"'";

While the recordset is not empty

Compare the input with the information in databases.

Print out 0 if occupant, 1 if friendly, 2 if name is not found

End while

Exit

Testing : Test were carried out with the following test data

java IDEA_Login Ferhad -- return 2
java IDEA_Login Anyone--return 2

java IDEA_Login Daniel --return 1

java IDEA_Login leonghw -- return 0

Comments : this algorithm runs in O(N) time and is quite fast. Future enhancements might include the ability to check the password access

Function 13: Welcome messages from database

Input: pers wel_type (always 0 for current use). It belongs to number type and just consist of a digit - 0 for generic, 1 for birthday, 2 for holidays

Output: wel_txt

Data Structures:

Recordset to store the records

Strings to store the Input

Vector to store all the messages

Random: to get the number randomly to proceed

PseudoCode:

Accept input from command line and store in string

Create connection object

Query the database by using this command:

"SELECT wel_txt FROM Welcome WHERE wel_type = '"+index+"'";

While the recordset is not empty

Get all the messages from databases

End while

Get a number randomly (smaller than the number of messages) which is smaller

Than or equals to the maximum amount of items in the vector

Print out the messages according to that number, the index position of this

message in the vector is equal to this random number

Testing : Test were carried out with the following test data

java IDEA_Welcome 2--valid
java IDEA_Welcome 1--valid
java IDEA_Welcome 0--valid
java IDEA_Welcome "anything else"--invalid

Comments: this algorithm runs in O(N) time and is quite fast. Future enhancements might include the ability to customize message checking birthday and holidays and also provide news for that day.
7. Summary and Conclusion

Contribution of the team:

Our team has contributed to the login, schedule as well as welcome functions of the Intelligent Door. We also included in this reports some ways that the functions could be improved.

Distribution of work:

Coding – everyone (gathered together to do it)

Debugging – Tong Choon

Report compilation – Nicky, Ferhad
Editing report – Tong Choon, Ferhad
Complete the report and print it out: Nicky

Appendix: Documents, Codes, etc

