
LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 1 © Leong Hon Wai, 2003-2008

Algorithms (more examples…)

Ø  Supplementary Notes:
1.  For your reference…

 (esp. those new to programming)
2. More and simpler examples given…

Ø  Readings: [SG] Ch. 2 & 3
Ø  If you are new to algorithms

❏  read the textbook
❏  TRY out the algorithms
❏  do the exercises

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 2 © Leong Hon Wai, 2003-2008

Overview…

Ø After this “extra lecture/notes”, you can
expect to be able to do…
❏  Read a set of operations presented to you.
❏  Determine if the set is an algorithm or not.
❏  If so, determine whether it solves the problem

or not.
❏  Also, determine what happens if changes are

made to algorithms we have studied.
❏  If changes are made and the algorithm is no

longer correct, what must be done to make it
correct.

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 3 © Leong Hon Wai, 2003-2008

Notes about Algorithm Design…

Ø To design an algorithm to solve a problem,
❏  you must FIRST know how to solve it,
❏  Figure out the steps involved,
❏  Organize these steps into steps
❏  Express them as algorithms

Ø To FIRST know how to solve the problem
❏  Suggest you work out some cases
❏  As many cases as it takes…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 4 © Leong Hon Wai, 2003-2008

Pseudo-Code to express Algorithms

Ø Pseudo-Code
❏  Mixture of computer language and English

◆ Somewhere in between
◆ precise enough to describe what is meant without

being too tediuos
❏  Examples:

◆  Let c be 0;
◆  c ß 0;
◆  Sort the list A of numbers in increasing order;

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 5 © Leong Hon Wai, 2003-2008

Variables and Arrays…
Ø  Computers work with data (numbers, words, etc)
Ø  Data must be stored (in variables)
Ø  Each variable is assigned a storage “box”

❏  can store one number at any time
❏  eg: sum, j, carry

Ø  Arrays:
❏  Often deal with many numbers
❏  Such as A1, A2, A3, … , A100

❏  Store as an “array” A[1], A[2], … , A[100]
◆ we treat each of them as a variable,
◆ each is assigned a storage “box”

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 6 © Leong Hon Wai, 2003-2008

Algorithms

Ø Three types of operations
❏  Sequential Operations…
❏  Conditional Operations…
❏  Iterative Operations….

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 7 © Leong Hon Wai, 2003-2008

Examples of Sequential Operations/Statements

Ø  Assignment statements
❏  Set count to 0;
❏  Assign X the value of (A+B)/2;
❏  Let Interest be rate*Principle*Duration;
❏  Let A[3] be 3;
❏  Let Smallest be A[i+3];

Ø  Another way to express these…
❏  Count ß 0;
❏  X ß (A+B)/2;
❏  Interest ß rate*Principle*Duration;
❏  A[3] ß 3;
❏  Smallest ß A[i+3];

Ø  Note: These statements are executed one-by-one

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 8 © Leong Hon Wai, 2003-2008

More Sequential Operations/Statements
Ø  Input / Output Statements;

❏  Get the value of N;
❏  Read in the value of A[1], A[2], A[3], A[4];
❏  Print the string “Welcome to my Intelligent Agent”;
❏  Print “Your IQ is”, A, “ but your EQ is”, A/3;

Ø  Another way of expressing them…
❏  Read (N);
❏  Read (A[1], A[2], A[3], A[4]);
❏  Print “Welcome to my Intelligent Agent”;

Ø  Note: These statements are executed one-by-one

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 9 © Leong Hon Wai, 2003-2008

Tracing (exercising) an algorithm…

Ø  Given an algorithm (above left), to exercise it means
❏  to “trace” the algorithm step-by-step; and
❏  observe the value of each variable after each step;
❏  Good to organize as a “table” as shown above (right)

Sample Algorithm

1. J ß 3;
2. X ß 14;
3. J ß X + 2*J;

 J X
 ? ?
 3 ?
 3 14
 20 14

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 10 © Leong Hon Wai, 2003-2008

Algorithms (using sequential stmts)
Ø  Problem

❏  Given: Starting mileage, ending mileage, amount of gas
used for a trip;

❏  Calculate average “km per litre” for the trip

Ø  Example:
❏  StartMiles = 12345; EndMiles = 12745; Petrol = 40 litre
❏  Average = (12745 – 12345) / 40 = 400/40 = 10 (km/litre)

ALGORITHM
1. Get values for StartMiles, EndMiles, GasUsed
2. Let Distance be (EndMiles – StartMiles);
3. Let Average be Distance / GasUsed;
4. Print the value of Average
5. Stop
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 11 © Leong Hon Wai, 2003-2008

Algorithms (using sequential stmts)
Ø  Remarks…

❏  Algorithm below must work for all valid values of
StartMiles, EndMiles, and GasUsed;

❏  Do not need to change the algorithm for different data

Ø  Can also express algorithm (more concisely) as…

ALGORITHM
1. Read (StartMiles, EndMiles, GasUsed);
2. Distance ß (EndMiles – StartMiles);
3. Average ß Distance / GasUsed;
4. Print Average;
5. Stop
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 12 © Leong Hon Wai, 2003-2008

Algorithms (with better output)
Ø  To obtain a better report, use more print statements;

❏  Print out Details in nice report format;

ALGORITHM
1. Read (StartMiles, EndMiles, GasUsed);
2. Distance ß (EndMiles – StartMiles);
3. Average ß Distance / GasUsed;
4. Print “Trip Report”
5. Print “ Your StartMiles =“, StartMiles;
6. Print “ Your EndMiles =“, EndMiles;
7. Print “ Gas Used =“, GasUsed;
8. Print “ Average km/litre=“, Average;
9. Print “End of Trip Report”;
5. Stop
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 13 © Leong Hon Wai, 2003-2008

To exchange the value of two variables
Ø  Given two values stored in A and B;
Ø  Wanted: An algorithm to exchange the values stored;
Ø  Example:

❏  Input: A = 15; B = 24;
❏  Required Output: A = 24; B = 15;

Ø  Two Incorrect Algorithms

ALG 1:

1. A ß B;
2. B ß A;

Ø  Error: One of the values was over-written;
Ø  HW: What is a correct algorithm to swap A & B?

 A B
 15 24

ALG 2:

1. B ß A;
2. A ß B;

 A B
 15 24

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 14 © Leong Hon Wai, 2003-2008

Conditional Operations (statements)
Ø  if statement

❏  to take different actions based on condition

Ø Syntax
if (condition)
 then (Step A)
 else (Step B)
endif

if (condition)
 then (Step A)
endif

Ø Semantics

condition?

Step B

true false

Step A

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 15 © Leong Hon Wai, 2003-2008

Conditional (an example…)
Ø  Problem (continue from AverageMileage Problem)

❏  Suppose we consider good petrol consumption to be
Average that is >= 12 km / litre

❏  Determine if petrol consumption for trip is Good!
Ø  Example:

❏  Average = 10.0, then “Not good petrol consumption”
❏  Average = 13.6, then “Good petrol consumption”

ALGORITHM
1. Get Average;
2. if (Average >= 12)
3. then Print “Good Petrol Consumption”;
4. else Print “Not good petrol comsumption”;
5. Endif
6. Stop
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 16 © Leong Hon Wai, 2003-2008

AverageMileage Problem

Ø Can combine the two parts into one algorithm

ALGORITHM
1. Read (StartMiles, EndMiles, GasUsed);
2. Distance ß (EndMiles – StartMiles);
3. Average ß Distance / GasUsed;
4. Print “Average Mileage is”, Average;
5. if (Average >= 12)
6. then Print “Good Petrol Consumption”;
7. else Print “Not good petrol comsumption”;
8. Endif
9. Stop
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 17 © Leong Hon Wai, 2003-2008

If Statement (example…)
Ø  Alg to read in a mark and print out if student pass.

❏  Let’s say that the passing mark is 40;

Ø  Examples:
❏  mark = 25; Expected Output is “Student fail”
❏  mark = 45; Expected Output is “Student pass”
❏  mark = 99; Expected Output is “Student pass”

Algorithm:
1. Read (mark); (*get value of mark*)
2. if (mark < 40)
3. then (print “Student fail”)
4. else (print “Student pass”)
5. endif
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 18 © Leong Hon Wai, 2003-2008

If Statement (another example…)

Ø  Try some cases:
❏  When mark = 30; Output is “Student fail”
❏  When mark = 42; Output is “Student pass”
❏  When mark = 95; Output is “Student pass”

Ø  Note: in the above,
❏  either 3 or 4 is executed; not both

Ø  Q: What about the different grades of passes?

Algorithm:
1. Read (mark); (* Get value of mark *)
2. if (mark < 40)
3. then (print “Student fail”)
4. else (print “Student pass”)
5. endif
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 19 © Leong Hon Wai, 2003-2008

Two If Statements (one after another)…

Ø  Try some cases:
❏  When mark = 30; Output is “Student fail”
❏  When mark = 42; Output is “Grade D”
❏  When mark = 95; What is output?

Ø  Where is the “error”?

1. Read (mark); (* Get value of mark *)
2. if (mark < 40)
3.   then (print “Student fail”)
4.   endif;
5. if (mark >= 40) and (mark < 50)
6. then (print “Grade D”)
7. endif;
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 20 © Leong Hon Wai, 2003-2008

“Nested” If Statements (one inside another)…

Ø  Try some cases:
❏  When mark = 30; Output is “Student fail”
❏  When mark = 42; Output is “Grade D”
❏  When mark = 95; Output is “Grade C or better”

1. Read (mark); (* Get value of mark *)
2. if (mark < 40)
3.   then (print “Student fail”)
4.   else if (mark < 50)
5. then (print “Grade D”)
6. else (print “Grade C or better”)
7. endif
7. endif;
…

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 21 © Leong Hon Wai, 2003-2008

Complicated If Statement

Ø  This is a complicated if statement;
❏  Study it carefully to make sure you understand it;
❏  Can you come up with this algorithm yourself?

read in mark (*from the terminal*)
if (mark < 40) then (Grade ß “F”)
 else if (mark < 50) then (Grade ß “D”) endif
 else if (mark < 60) then (Grade ß “C”) endif
 else if (mark < 70) then (Grade ß “B”) endif
 else if (mark < 80) then (Grade ß “A”) endif
 else (Grade ß “A+”)
endif
print “Student grade is”, Grade

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 22 © Leong Hon Wai, 2003-2008

Ø  the while-loop
❏  loop a “variable”

number of times

Ø  Syntax
while (condition) do
 (some sequence
 of statements)
endwhile

Ø  Semantics…

Looping Operations – while-loop

condition?

Some sequence
of statements;

true

false

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 23 © Leong Hon Wai, 2003-2008

“Exercising a while loop”

j ß 1;
while (j <= 3) do
 print j;
 j ß j + 1;
endwhile
print “--- Done ---”

Output:
 1
 2
 3
--- Done ---

(* General Loop *)
Read(n);
j ß 1;
while (j <= n) do
 print j, A[j];
 j ß j + 1;
endwhile
print “--- Done ---”

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 24 © Leong Hon Wai, 2003-2008

Ø  First, the for-loop
❏  loop a “fixed” or

(pre-determined)
number of times

Ø  Syntax
for j ← a to b do
 (some sequence
 of statements)
endfor

Ø  Semantics…

Looping Primitive – for-loop

j ß a;

(j <= b)?

Some sequence
of statements;

j ß j+1;

false

true

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 25 © Leong Hon Wai, 2003-2008

“Exercising the alg”: for

for j ß 1 to 3 do
 print j;
endfor
print “--- Done ---”

Output:
 1
 2
 3
--- Done ---

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 26 © Leong Hon Wai, 2003-2008

“Exercising the alg”: for and while

for j ß 1 to 4 do
 print 2*j;
endfor
print “--- Done ---”

Output:
 2
 4
 6
 8
--- Done ---

j ß 1;
while (j <= 4) do
 print 2*j;
 j ß j + 1;
endwhile
print “--- Done ---”

Output:
 2
 4
 6
 8
--- Done ---

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 27 © Leong Hon Wai, 2003-2008

Simple iterative algorithm: Sum
Ø  Given: List of numbers: A1, A2, A3, …., An
Ø  Output: To compute the sum of the numbers
Note: Store numbers in array A[1], A[2], … , A[n]

Sum(A, n);
begin
 Sum_sf ß 0;
 k ß 1;
 while (k <= n) do
 Sum_sf ß Sum_sf + A[k];
 k ß k + 1;
 endwhile
 Sum ß Sum_sf;
 Print “Sum is”, Sum
end;

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 28 © Leong Hon Wai, 2003-2008

Exercising Algorithm Sum:
A[1] A[2] A[3] A[4] A[5] A[6] n=6
 2 5 10 3 12 24

 k Sum-sf Sum
 ? 0 ?
 1 2 ?
 2 7 ?
 3 17 ?
 4 20 ?
 5 32 ?
 6 56 ?
 6 56 56

Sum is 56

Input:

Processing:

Output:

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 29 © Leong Hon Wai, 2003-2008

Remarks about the iterative algorithm…

Ø  Note the three stages:
1.  Initialization

◆  Set some values at the beginning
2.  Iteration

◆  This is the KEY STEP
◆  Where most of work is done

3.  Post-Processing or Cleanup

Ø  Can use this setup for other problems
❏  Calculating average, sum-of-squares
❏  Finding max, min; Searching for a number,

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 30 © Leong Hon Wai, 2003-2008

Another Example of Algorithm (with loops)

PROBLEM:
Start with a collection of names N1, N2,…, N10000, and
corresponding telephone numbers T1, T2, ..., T10000.

Given a name, aName, find a telephone number Tk for that name
if it matches with Nk occurs; otherwise, print "Not Found".

Note the use of subscripts: N1, N2, N3, N10000, Nk, etc.

Given a problem, there are often many ways to provide an
algorithm for solving the problem.

Note: You must first know how to solve the problem by hand
in order to write an algorithm for the solution!!!

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 31 © Leong Hon Wai, 2003-2008

A FIRST Attempt at a Solution
to the Telephone Search Problem

1. Get values for N1, N2, ..., N10000, T1, T2, ,,,, T10000, and Name.
2. if Name is N1, then print T1 ; Stop endif;
3. if Name is N2, then print T2; Stop; endif;
4. If Name is N3 then print T3; Stop; endif;

 {a lot of tedious writing here that is being skipped}

10001. If Name is N10000, then print T10000 ; Stop; endif
10002. Print "Not found"
10003. Stop.

Method works!
But… Will you do it?

But is extremely tedious.
Can ONLY be used if we have 10000 names!

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 32 © Leong Hon Wai, 2003-2008

1. Get values for N1, N2, ..., N10000, T1, T2, … , T10000, and Name.

2. Set the value of k to 1 and the value of Found to NO.

3. Repeat steps 4 through 8 until (Found is Yes)

4. If Name is equal to Nk, then

5. Print the telephone number Tk

6. Set the value of Found to Yes

 Else

7. Add 1 to the value of k

8. Endif

9. Stop.

A SECOND Attempt at a Solution
to the Telephone Search Problem

Better Method
Uses a Loop (repeat loop), more general

ALMOST works.
WHY almost?

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 33 © Leong Hon Wai, 2003-2008

ANOTHER ATTEMPT AT A SOLUTION TO THE TELEPHONE SEARCH
PROBLEM

1. Get values for N1, N2, ..., N10000, T1, T2, ,,,, T10000, and Name.
2. Set the value of k to 1 and the value of Found to NO.
3. Repeat steps 4 through 8 until (Found is Yes) or (k > 10000)
4. If Name is equal to Nk, then
5. Print the telephone number Tk
6. Set the value of Found to Yes
 Else
7. Add 1 to the value of k
8. endif;
9. end-Repeat
8. If (Found is No) then
9. Print "Not found"
10. Stop.

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 34 © Leong Hon Wai, 2003-2008

Solution to Telephone Search Problem
(Using a while loop)

Get values for N1, N2, ..., N10000, T1, T2, ,…, T10000, and Name.
Set the value of i to 1;
Set the value of Found to “NO”;
While (Found = “No”) and (i <= 10000) do

 If (Name = Ni) then
 Print the telephone number Ti ;
 Set the value of Found to “Yes”;

 Else
 Add 1 to the value of i;

Endwhile
If (Found = “No”) then

 Print "Not found";

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 35 © Leong Hon Wai, 2003-2008

FIND LARGEST ALGORITHM

PROBLEM: Given n, the size of a list, and a list of n numbers, find the
largest number in the list.

Get a value for n and values A1, A2, ..., An for the list items.
Set the value of Largest-so-far to A1.
Set the Location to 1.
Set the value of i to 2.
While (i <= n) do

 If Ai > Largest-so-far then
 Set Largest-so-far to Ai
 Set Location to i
 Add 1 to the value of i.

Endwhile
Print the values of Largest-so-far and Location.

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 36 © Leong Hon Wai, 2003-2008

Finally…

Ø  If you are new to algorithms
❏  read the textbook
❏  try out the algorithms
❏  do the exercises

… The End …

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 37 © Leong Hon Wai, 2003-2008

LeongHW, SoC, NUS
(UIT2201: Algorithms) Page 38 © Leong Hon Wai, 2003-2008

Algorithm: A = B + C (in pseudo-code)

We can re-write the C=A+B algorithm as follows:

Alg. to Compute C = A + B:
(*sum two big numbers*)
carry ß 0;
for i ß 1 to m do

x[i] ß a[i] + b[i] + carry ;
if (x[i] < 10)
 then (c[i] ß x[i]; carry ß 0;)
 else (c[i] ß x[i] – 10; carry ß 1;)

endfor;
c[m+1] ß carry;
Print c[m+1], c[m], …., c[1]

