
Hon Wai Leong, NUS
(UIT2201 Notes) Page 1

© Leong Hon Wai, 2003--

Algorithms (Introduction)

Readings: [SG] Ch. 2

q  Chapter Outline:
1.  Chapter Goals
2.  What are Algorithms
3.  Pseudo-Code to Express Algorithms
4.  Some Simple Algorithms
5.  Examples of Algorithmic Problem Solving [Ch. 2.3]

1. Searching Example,
2. Finding Maximum/Largest
3. Modular Program Design
4. Pattern Matching Last Revised: 31 August 2016.

Hon Wai Leong, NUS
(UIT2201 Notes) Page 2

© Leong Hon Wai, 2003--

Recurring Principles in CS & IT

RP1: Multiple Levels
of Abstraction

(very high to very low)

RP2: One Data,
Multiple Views

(thru diff interfaces)

RP3: Define a (small) set
of basic primitives
(building blocks)

RP4: Divide & Conquer
aka

(Decomposition)

RP5: “The Power of Iteration”
(aka Recursion)

Hon Wai Leong, NUS
(UIT2201 Notes) Page 3

© Leong Hon Wai, 2003--

 Next…

Enhancing your
Computational

Toolkit

Hon Wai Leong, NUS
(UIT2201 Notes) Page 4

© Leong Hon Wai, 2003--

Algorithmic Problem Solving

q  Examples of algorithmic problem solving

1.  Sequential search: find a particular value in an
unordered collection

2.  Find maximum: find the largest value in a collection
of data

3.  Pattern matching: determine if and where a particular
pattern occurs in a piece of text

Hon Wai Leong, NUS
(UIT2201 Notes) Page 5

© Leong Hon Wai, 2003--

Re-using the Array-Sum template…

Array-Sum is a classic linear-scan algorithm;

Use it as template for similar problem.

v Counting how many positive numbers
Keeping Scores in games
Embedded counting (apps & games)

v Finding Maximum, Minimum, Rank
v Computing Histograms
v Computing Fibonacci Numbers
v Computing Sum of series
v … and many, many others

Hon Wai Leong, NUS
(UIT2201 Notes) Page 6

© Leong Hon Wai, 2003--

Re-using the Array-Sum template…

Count-Pos

Find-Max

Modify it to solve
similar linear-scan

type computational problems

Find-Min

Array-Sum
as template

Fibonacci

etc, etc

Hon Wai Leong, NUS
(UIT2201 Notes) Page 7

© Leong Hon Wai, 2003--

Template Linear-Scan Algorithm

Algorithm Array-Sum(A, n);
(* Find the sum of A1, A2,…,An. *)
begin
 Sum_SF ß 0;
 k ß 1;
 while (k <= n) do
 Sum_SF ß Sum_SF + A[k];
 k ß k + 1;
 endwhile
 Sum ß Sum_SF;
 return Sum
end;

Initialization block

Iteration block;
 the key step where
 most of the work is done

Post-Processing block

Hon Wai Leong, NUS
(UIT2201 Notes) Page 8

© Leong Hon Wai, 2003--

Algorithm
Problem Solving:

Count-Pos

Hon Wai Leong, NUS
(UIT2201 Notes) Page 9

© Leong Hon Wai, 2003--

Counting Positive Numbers

Count-Pos
A
n

Count

Definition: Count-Pos (A, n)
The high-level primitive Count-Pos takes as input a variable n
and an array A[1..n], then it computes & returns variable Count
that represents the number of positive numbers in A[1..n]

Task: Count the number of positive numbers
 in a list A[1..n] of numbers

Hon Wai Leong, NUS
(UIT2201 Notes) Page 10

© Leong Hon Wai, 2003--

Counting Positive Numbers

PQ: Reuse the algorithm for Array-Sum(A, n)

THINK:

Task: Count the number of positive numbers
 in a list A[1..n] of numbers

IDEA: Use variable Count-SF to count the number
 of positive numbers encountered “so far”

 What to do with Count-SF during
Initialize Iteration Post-processing

Hon Wai Leong, NUS
(UIT2201 Notes) Page 11

© Leong Hon Wai, 2003--

Algorithm Count-Pos

Count-Pos(A,n);
begin
 Count-SF ß 0;
 k ß 1;

 while (k <= n) do
 if (A[k] > 0) then
 Count-SF ß Count-SF + 1;
 k ß k + 1
 endwhile

 Count ß Count-SF;
 return Count
end;

Preconditions: The variable n and the arrays A [1..n] has been read in.

Initialization block

Iteration block;
 the key step where
 most of the work
 is done

Post-Processing
block

Hon Wai Leong, NUS
(UIT2201 Notes) Page 12

© Leong Hon Wai, 2003--

Algorithm
Problem Solving:

Find-Max

Hon Wai Leong, NUS
(UIT2201 Notes) Page 13

© Leong Hon Wai, 2003--

Finding the Maximum

Find-Max
A
n

Max

Loc

Definition: Find-Max (A, n)
The high-level primitive Find-Max takes in as input any array
A, a variable n, and it finds and returns variable Max, the
maximum element in the array A[1..n], found in location Loc.

Task: Finding a maximum number
 in a list A[1..n] of numbers

Hon Wai Leong, NUS
(UIT2201 Notes) Page 14

© Leong Hon Wai, 2003--

Finding Max: Big, Bigger, Biggest

PQ: Reuse the algorithm for Array-Sum(A, n)

THINK: What to do with Max-sf, Loc during
Initialize Iteration Post-processing

Task: Finding a maximum number
 in a list A[1..n] of numbers

IDEA: Use variable Max-SF to remember the
 maximum encountered “so far”.
 And variable Loc to remember location of Max-SF.

Hon Wai Leong, NUS
(UIT2201 Notes) Page 15

© Leong Hon Wai, 2003--

Algorithm Find-Max

Find-Max(A,n); (* find max of A[1..n] *)
begin
 Max-SF ß A[1]; Location ß 1;
 i ß 2; (* why 2, not 1? *)

 while (i <= n) do
 if (A[i] > Max-SF) then
 Max-SF ß A[i];
 Location ß i;
 endif
 i ß i + 1
 endwhile

 Max ß Max-SF;
 return Max, Location
end;

Preconditions: The variable n and the arrays A [1..n] has been read in.

Initialization block

Iteration block;
 the key step where
 most of the work
 is done

Post-Processing
block

Hon Wai Leong, NUS
(UIT2201 Notes) Page 16

© Leong Hon Wai, 2003--

Algorithm: Finding the Largest [SG3]

Figure 2.10: Algorithm to Find the Largest Value in a List

Initialization block

Iteration block;
 the key step where
 most of the work
 is done

Post-Processing
block

Hon Wai Leong, NUS
(UIT2201 Notes) Page 17

© Leong Hon Wai, 2003--

Algorithm
Problem Solving:

A Lookup Problem

Hon Wai Leong, NUS
(UIT2201 Notes) Page 18

© Leong Hon Wai, 2003--

A Lookup Problem

N T
1 RICHARD Son 6666-8989
2 HENZ Marvin 7575-7575
3 TEO Alfred 1212-4343
… … …

5001 LEONG Hon Wai 8888-8888
5002 HOU Manuel 7555-7555
… … …
… … …
… … …
… … …

10000 ZZZ Zorro 4545-6767

An unordered
telephone Directory with

10,000 names and phone numbers

TASK:

Look up the telephone number
of a particular person.

ALGORITHMIC TASK:

Give an algorithm to
Look up the telephone number

of a particular person.

Hon Wai Leong, NUS
(UIT2201 Notes) Page 19

© Leong Hon Wai, 2003--

Task: A Lookup Problem

Given: An unordered phone directory of subscribers,
 names stored in N[1..10,000] and
 telephone numbers stored in T[1..10,000]

Task: Lookup (search for) the telephone number
 of a given person.

PQ: Reuse the algorithm for Array-Sum(A, n)

IDEA: Use Linear-Scan algorithm,
 Test name entries in N, one-by-one

Hon Wai Leong, NUS
(UIT2201 Notes) Page 20

© Leong Hon Wai, 2003--

Task: A Lookup Problem

Use a Linear-Search Algorithm:
v Use a “pointer” i to seach name N[i]
v Use a variable called Found (set to true when the

given name is found, and terminate search asap)

PQ: Reuse the algorithm for Array-Sum(A, n)

THINK: What to do with Found during
Initialize Iteration Post-processing

Hon Wai Leong, NUS
(UIT2201 Notes) Page 21

© Leong Hon Wai, 2003--

Task 1: Linear Search Algorithm

Initialization block

Iteration block;
 the key step where
 most of the work
 is done

Post-Processing
block

Hon Wai Leong, NUS
(UIT2201 Notes) Page 22

© Leong Hon Wai, 2003--

Algorithm Linear Search (revised)

Algorithm Seq-Search (N, T, m, NAME);
begin
 i ß 1;
 Found ß No;
 while (Found = No) and (i <= m) do
 if (NAME = N[i])
 then Print T[i]; Found ß Yes;
 else i ß i + 1;
 endif
 endwhile
 if (Found=No) then
 Print NAME “is not found” endif
 return Found, i;
end;

q  Preconditions: The variables NAME, m, and the arrays N[1..m]
and T[1..m] have been read into memory.

Initialization block

Iteration block;
 the key step where
 most of the work
 is done

Post-Processing
block

Hon Wai Leong, NUS
(UIT2201 Notes) Page 23

© Leong Hon Wai, 2003--

Abstraction: Define new primitive

q  Then Seq-Search becomes a high- level primitive
defined as Seq-Search (N, T, m, Name)

Definition: Seq-Search (N, T, m, Name)
The high-level primitive Seq-Search takes in two input arrays
N (storing name), and T (storing telephone #s), m the size of
the arrays, and Name, the name to search; and return the
variables Found and Loc.

These are the inputs to
Array-Sum; namely
 Array A,
 variable n.

Inputs Outputs
(more than one)

Seq-Search
N, T

m
NAME

Found
Loc

Hon Wai Leong, NUS
(UIT2201 Notes) Page 24

© Leong Hon Wai, 2003--

Using a High-level Primitive

To use the high-level primitive (or just primitive, in short)
 we just issue a call to that high-level primitive

Example 1: Seq-Search (N, T, 100, “John Olson”)
call the Seq-Search to find “John Olson” in array N[1 .. 100].

Example 2: Top ß Array-Sum (B, 8)
“compute the sum of B[1 .. 8], and store that in variable Top

Definition: Seq-Search (N, T, m, Name)
The high-level primitive Seq-Search takes in two input arrays
N (storing name), and T (storing telephone #s), m the size of
the arrays, and Name, the name to search; and return the
variable Found and Loc.

Hon Wai Leong, NUS
(UIT2201 Notes) Page 25

© Leong Hon Wai, 2003--

More linear-scan algorithms

Linear-scan is a powerful algorithm

Can solve many other problems:
v  Searching for a telephone number
v  Reversing an Array
v  Partitioning an Array
v  Removing Duplicates
v  Reversing digits of an integer
v  Converting the base
v  Character ßà number conversion;

Hon Wai Leong, NUS
(UIT2201 Notes) Page 26

© Leong Hon Wai, 2003--

Problem Solving
by

Decomposition

Hon Wai Leong, NUS
(UIT2201 Notes) Page 27

© Leong Hon Wai, 2003--

Problem Decomposition

q  Software are Complex
v Huge (Millions of lines of code):

 Linux, Powerpoint, Firefox, Outlook
v Complex: Flight-simulator, Wolfram-Alpha

q  How to manage this Complexity?

RP4: Decomposition

Hon Wai Leong, NUS
(UIT2201 Notes) Page 28

© Leong Hon Wai, 2003--

Modular Software Design

q  Divide large software into small modules
v Each module solve a sub-task,
v Modules are design, built & tested separately
v Combined to give solution to overall problem
v Achieves good division of labour
v Reduces complexity of the software dev.

RP4:
Decomposition

Hon Wai Leong, NUS
(UIT2201 Notes) Page 29

© Leong Hon Wai, 2003--

Algorithm
Problem Solving:
Pattern Matching

Hon Wai Leong, NUS
(UIT2201 Notes) Page 30

© Leong Hon Wai, 2003--

Task 3: Pattern Matching

q  Algorithm search for a pattern in a source text
Given: A source text S[1..n] and a pattern P[1..m]
Question: Find all occurrence of pattern P in text S?

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

A T A P
1 2 3

Output of Pattern Matching Algorithm:

There is a match at position 2
There is a match at position 7

Hon Wai Leong, NUS
(UIT2201 Notes) Page 31

© Leong Hon Wai, 2003--

Example of Pattern Matching 1

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 1;
•  Check for match (between S[1..3] and P[1..3])
•  Result – no match

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Hon Wai Leong, NUS
(UIT2201 Notes) Page 32

© Leong Hon Wai, 2003--

Example of Pattern Matching 2

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 2;
•  Check for match (between S[2..4] and P[1..3])
•  Result – match!
 Output: There is a match at position 2

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Hon Wai Leong, NUS
(UIT2201 Notes) Page 33

© Leong Hon Wai, 2003--

Example of Pattern Matching 3

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 3;
•  Check for match (between S[3..5] and P[1..3])
•  Result – No match.

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Hon Wai Leong, NUS
(UIT2201 Notes) Page 34

© Leong Hon Wai, 2003--

Example of Pattern Matching 4

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 4;
•  Check for match (between S[4..6] and P[1..3])
•  Result – No match.

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Hon Wai Leong, NUS
(UIT2201 Notes) Page 35

© Leong Hon Wai, 2003--

Example of Pattern Matching 5

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 5;
•  Check for match (between S[5..7] and P[1..3])
•  Result – No match.

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Hon Wai Leong, NUS
(UIT2201 Notes) Page 36

© Leong Hon Wai, 2003--

Example of Pattern Matching 6

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 6;
•  Check for match (between S[6..8] and P[1..3])
•  Result – No match.

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Align S[k..(k+m–1)]
with P[1..m]

Hon Wai Leong, NUS
(UIT2201 Notes) Page 37

© Leong Hon Wai, 2003--

Example of Pattern Matching 7

A T A P
1 2 3

k

•  Align pattern P with text S starting at pos k = 7;
•  Check for match (between S[7..9] and P[1..3])
•  Result – match!
 Output: There is a match at position 7

C A T A T C A T A S
1 2 3 4 5 6 7 8 9 Note:

k = 7 is the last position to test;
After that S is “too short”.
In general, it is k = n–m+1

Hon Wai Leong, NUS
(UIT2201 Notes) Page 38

© Leong Hon Wai, 2003--

Pattern Matching: Decomposition

Task: Find all occurrences of the pattern P in text S;

q  Algorithm Design: Top Down Decomposition
v  Modify from basic-iterative-algorithm (index k)

q  At each iterative step (for each k)
v  Align pattern P with S at position k and
v  Test for match between P[1..m] and S[k .. k+m –1]

q  Define an abstraction (“high level operation”)

Match(S, k, P, m) =
Yes if S[k..k+m–1] = P[1..m]

No otherwise

Hon Wai Leong, NUS
(UIT2201 Notes) Page 39

© Leong Hon Wai, 2003--

Pattern Matching: Pat-Match

Pat-Match(S,n,P,m);
(* Finds all occurrences of P in S *)
begin
 k ß 1;
 while (k <= n-m+1) do
 if Match(S,k,P,m) = Yes
 then Print “Match at pos ”, k;
 endif
 k ß k+1;
 endwhile
end;

q  Preconditions: The variables n, m, and the arrays S and P have
been read into memory.

Use the “high level operation”
Match(S,k,P,m)
which can be refined later.

Hon Wai Leong, NUS
(UIT2201 Notes) Page 40

© Leong Hon Wai, 2003--

Match of S[k..k+m-1] and P[1..m]

Align S[k..k+m–1]
with P[1..m]
(Here, k = 4)

Match(S,k,P,m);
begin
 i ß 1; MisMatch ß No;
 while (i <= m) and (MisMatch=No) do
 if (S[k+i-1] not equal to P[i])
 then MisMatch=Yes
 else i ß i + 1
 endif
 endwhile
 Match ß not(MisMatch); return Match
end;

A T A P
1 2 3

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

i

Hon Wai Leong, NUS
(UIT2201 Notes) Page 41

© Leong Hon Wai, 2003--

Example: Match of S[4..6] and P[1..3]

i

Align S[k..k+m–1]
with P[1..m]
(Here, k = 4)

•  [k = 4] With i = 1, MisMatch = No
•  Compare S[4] and P[1] (S[k+i-1] and P[i])
•  They are equal, so increment i

A T A P
1 2 3

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

Hon Wai Leong, NUS
(UIT2201 Notes) Page 42

© Leong Hon Wai, 2003--

Example: Match of S[4..6] and P[1..3]

Align S[k..k+m–1]
with P[1..m]
(Here, k = 4)

•  [k = 4] With i = 2, MisMatch = No
•  Compare S[5] and P[2] (S[k+i-1] and P[i])
•  They are equal, so increment i

A T A P
1 2 3

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

i

Hon Wai Leong, NUS
(UIT2201 Notes) Page 43

© Leong Hon Wai, 2003--

Example: Match of S[4..6] and P[1..3]

Align S[k..k+m–1]
with P[1..m]
(Here, k = 4)

•  [k = 4] With i = 3, MisMatch = No
•  Compare S[6] and P[3] (S[k+i-1] and P[i])
•  They are not equal, so set MisMatch=Yes

A T A P
1 2 3

C A T A T C A T A S
1 2 3 4 5 6 7 8 9

i

Hon Wai Leong, NUS
(UIT2201 Notes) Page 44

© Leong Hon Wai, 2003--

Our Top-Down Design

v Achieves good division-of-labour

q Made use of top-down design and abstraction
v  Separate “high-level” view from “low-level” details
v Make difficult problems more manageable
v Allows piece-by-piece development of algorithms
v Key concept in computer science

Pat-Match(S,n,P,m)

Match(S,k,P,m)

“higher-level” view

“high-level” primitive

v Our pattern matching alg. consists of two modules

Hon Wai Leong, NUS
(UIT2201 Notes) Page 45

© Leong Hon Wai, 2003--

Pattern Matching: Pat-Match (1st draft)

Pat-Match(S,n,P,m);
(* Finds all occurrences of P in S *)
begin
 k ß 1;
 while (k <= n-m+1) do
 if Match(S,k,P,m) = Yes
 then Print “Match at pos ”, k;
 endif
 k ß k+1;
 endwhile
end;

q  Preconditions: The variables n, m, and the arrays S and P have
been read into memory.

Use the “high level primitive operation”
Match(S,k,P,m)
which can be de/refined later.

Hon Wai Leong, NUS
(UIT2201 Notes) Page 46

© Leong Hon Wai, 2003--

Figure 2.12: Final Draft of the Pattern-Matching Algorithm

Pattern Matching Algorithm of [SG]

This part compute
Match(T,k,P,m)

THINK:: How can
Mismatch=NO here?

Hon Wai Leong, NUS
(UIT2201 Notes) Page 47

© Leong Hon Wai, 2003--

Pattern Matching Algorithm of [SG]

q Pattern-matching algorithm

v Contains a loop within a loop

◆ External loop iterates through possible locations of
matches to pattern

◆ Internal loop iterates through corresponding characters
of pattern and string to evaluate match

Hon Wai Leong, NUS
(UIT2201 Notes) Page 48

© Leong Hon Wai, 2003--

Summary of Chapter 2 [SG3]

q  Specify algorithms using pseudo-code
v Unambiguous, readable, analyzable

q  Algorithm specified by three types of operations
v  Sequential, conditional, and repetitive operations

q  Seen several examples of algorithm design
v Designing algorithm is not so hard
v Re-use, Modify/Adapt, Abstract your algorithms

q  Algorithm design is also a creative process
v Top-down design helps manage complexity
v  Process-oriented thinking helps too

Hon Wai Leong, NUS
(UIT2201 Notes) Page 49

© Leong Hon Wai, 2003--

Summary

q  Importance of “doing it”
v Test out each algorithm to find out

 “what is really happening”
v Run some of the animations in the lecture notes

q  If you are new to algorithms
v  read the textbook
v  try out the algorithms
v  do the exercises

… The End …

Hon Wai Leong, NUS
(UIT2201 Notes) Page 50

© Leong Hon Wai, 2003--

Thank you!

