Algorithms (Introduction)

Readings: [SG] Ch. 2

0 Chapter Outline:

Chapter Goals

What are Algorithms

Pseudo-Code to Express Algorithms

Some Simple Algorithms

Examples of Algorithmic Problem Solving [Ch. 2.3] N
1.Searching Example,

S =

2.Finding Maximum/Largest

3.Modular Program Design

k 4. Pattern Matching Last Revised: 31 August 2016.

_

4' I (UIT2201 Notes) Page1
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Recurring Principles in CS & IT

RP1: Multiple Levels

of Absiraction
(very high to very low)

RP2: One Dataq,
Multiple Views
(thru diff interfaces)

RP3: Define a (small) set
of basic primitives
(building blocks)

RP4: Divide & Conquer
aka
(Decomposition)

4' Hon Wai Leong, NUS =

RP5: “The Power of Iteration”
(aka Recursion)

(UIT2201 Notes) Page 2

© Leong Hon Wai, 2003--

Next...

Enhancing your
Computational
Tool4it

NGO

O

4' | (UIT2201 Notes) Page 3
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Algorithmic Problem Solving

d Examples of algorithmic problem solving

1. Sequential search: find a particular value in an
unordered collection

2. Find maximum: find the largest value 1n a collection
of data

3. Pattern matching: determine 1f and where a particular
pattern occurs in a piece of text

) (UIT2201 Notes) Page 4

4[Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Re-using the Array-Sum template...

Array-Sum is a classic linear-scan algorithm;

Use it as tfemplate for similar problem.

% Counting how many positive numbers
Keeping Scores in games
Embedded counting (apps & games)

% Finding Maximum, Minimum, Rank

% Computing Histograms

% Computing Fibonacci Numbers

% Computing Sum of series

e and many, many others

Re-using the Array-Sum template...

Modify it to solve
similar linear-scan
type computational problems

Array-Sum
as template

Count-Pos Find-Min elc, etc
Find-Max Fibonacci
4' Hon Wai Leong, NUS I (UIT2201 Notes) Page 6

© Leong Hon Wai, 2003--

Template Linear-Scan Algorithm

Algorithm Array-Sum(A, n);
(* Find the sum of Al, A2,..,An. *)

begin
Prvvrrs R R,
Sum_SF € 0; : Initialization block
k e 1; % eccccepeccccsccccccccssscccccccogocccccccccse®

While (k <= n) do §.I. : l.).i.....l.(..........................g
Sum SF € Sum SF + A[k]; i ‘leranionblock; :
n € Ko+ 1- — : the key step where

] ’ : most of the work is done :
endwhile I [

Sum é Sum SF; R 1 R S .

— : Post-Processing block

return Sum S R ;

end; I
| (UIT2201 Notes) Page 7
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

National University

School of Computing

Algorithm
Problem Solving:
Count-Pos

O

o)

4' | (UIT2201 Notes) Page 8
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Counting Positive Numbers

Task: Count the number of positive numbers
in a list A[1..n] of numbers

A — —
Count-Pos [—— Count
n—

Definition: Count-Pos (A4, n)
The high-level primitive Count-Pos takes as input a variable »
and an array A[1..n], then 1t computes & returns variable Count

that represents the number of positive numbers in A[1..7]

(UIT2201 Notes) Page 9

_ |
4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Counting Positive Numbers

Task: Count the number of positive numbers
in a list A[1..n] of numbers

PQ: Reuse the algorithm for Array-Sum(A, n)

IDEA: Use variable Count-SF to count the number
of positive numbers encountered “so far”

What to do with Count-SF during

THINK: Initialize [teration Post-processing

(UIT2201 Notes) Page 10

Hon Wai Leong, NUS =

© Leong Hon Wai, 2003--

Algorithm Count-Pos

Preconditions: The variable n and the arrays 4 [1..n] has been read in.

Count-Pos (4, n) ;
begin
Count-SF é 0; J...
k € 1; s.ff?l’.’ff.‘f.’.’.?.‘.’.’f.‘?.”...l.’.l.‘.’..c.!?
ceeereenens | USRI SRR
while (k <= n) do : Iteration block; ;
if (A[k] > 0) then . the key step where :
Count-SF €& Count-SF + 1; : most of the work
k € k +1 . is done ;
endwhile “eccccccces -l ooooooooooooo \ oooooooooooooo
feenreenes ST SRR
Count € Count-SF; :)
: Post-Processing
return Count ‘block
end; eteeencesettecnternaanns |
| (UIT2201 Notes) Page 11
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

B &

National University
of Singapore

School of Computing

Algorithm
Problem Solving:
FiInd-Max

O

o)

4| I (UIT2201 Notes) Page 12
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Finding the Maximum

Task: Finding a maximum number
in a list A[1..n] of numbers

A —> —> Max
Find-Max

n——s —> Loc

Definition: Find-Max (A, n)

The high-level primitive Find-Max takes in as input any array
A, a variable n, and 1t finds and returns variable Max, the
maximum element in the array A[1..n], found 1n location Loc.

(UIT2201 Notes) Page 13

4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Finding Max: Big, Bigger, Biggest

Task: Finding a maximum number
in a list A[1..n] of numbers

PQ: Reuse the algorithm for Array-Sum(A, n)

IDEA: Use variable Max-SF to remember the
maximum encountered “so far”.
And variable Loc to remember location of Max-SF.

What to do with Max-sf, Loc during

THINK: Initialize [teration Post-processing

(UIT2201 Notes) Page 14

Hon Wai Leong, NUS =

© Leong Hon Wai, 2003--

Algorithm Find-Max

Preconditions: The variable n and the arrays 4 [1..n] has been read in.

Find-Max (A, n) ; (* find max of A[l..n] *)

begin
Max-SF & A[l]; Location € 1;]
i € 2; (* why 2, not 1? *) gInitialization block :

while (i <= n) do
if (A[i] > Max-SF) then
Max-SF €& A[i];
Location € 1i;

glteration block; :
. the key step where :
: most of the work :

_ . is done s
endif
i€ i+ 1

endwhile

geccccecee I oooooooooooooooooooooooooooooo
.
.
.
.

Max € Max-SF; : Post-Processing

return Max, Location :
. :block :
(CIT2201INotTs) 5
| Hon Wai Leong, NUS

© Leong Hon Wai, 2003--

Algorithm: Finding the Largest [SG3]

Find Largest Algorithm

Get a value for n, the size of the list
Get values for A,, sz ..., A, the list to be searched

Set the value of /argest so farto A, e I
Set the value of Jocation to 1 : Initialization block :
Set the value of ito 2 [
While (i< n) do S S
If A.> Jargest so far then [teration block;
Set largest so farto A, : the key step where :
Set location to i : most of the work
Add 1 to the value of e
End of the loop]
Print out the values of /argest so far and Jocation ol :
: Post-Processing :
Stop :
:block ;
Figure 2.10: Algorithm to Find the Largest Value in a List
| (UIT2201 Notes) Page 16
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

National University
of Singapore

School of Computing

Algorithm
Problem Solving:
A Lookup Problem

O

| (UIT2201 Notes) Page 17
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

A Lookup Problem

1 RICHARD Son
2 HENZ Marvin
3 TEO Alfred

5001 LEONG Hon Wai
5002 HOU Manuel

10000 ZZZ Zorro

4' Hon Wai Leong, NUS =

6666-8989
7575-7575
1212-4343

8888-8888
7555-7555

4545-6767

An unordered
telephone Directory with
10,000 names and phone numbers

TASK:

Look up the telephone number
of a particular person.

ALGORITHMIC TASK:

Give an algorithm to
Look up the telephone number
of a particular person.

(UIT2201 Notes) Page 18

© Leong Hon Wai, 2003--

Task: A Lookup Problem

Given: An unordered phone directory of subscribers,
names stored in N[1..10,000] and

telephone numbers stored in T[1..10,000]

Task: Lookup (search for) the telephone number
of a given person.

PQ: Reuse the algorithm for Array-Sum(A, n)

IDEA: Use Linear-Scan algorithm,
Test name entries in N, one-by-one

4' I (UIT2201 Notes) Page 19
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Task: A Lookup Problem

PQ: Reuse the algorithm for Array-Sum(A, n)

— | Hon Wai Leong, NUS =

Use a Linear-Search Algorithm:
< Use a “pointer’” 1 to seach name N[1]

< Use a variable called Found (set to true when the
given name 1s found, and terminate search asap)

What to do with Found during

THINK: Initialize [teration Post-processing

(UIT2201 Notes) Page 20

© Leong Hon Wai, 2003--

Task 1: Linear Search Algorithm

Sequential Search Algorithm

STEP

1

(o)L 6) RS “ AR €L I\)

© 0

10

ooo

OPERATION

Getvalues for NAME, N, ..., Njyop@and T, .o, Tioonn / """""""""" :

Set the value of i to 1 and set the value of Foundto NO

While both (Found = NO) and (/ < 10,000) do steps 4 through 7 I

If NAME is equal to the ith name on the list Njthen i

gIteration block;
Print the telephone number of that person, T, '

Set the value of Foundto YES

_ : most of the work
Else (NAME is not equal to N) ’

: is done

Add 1 to me value of i feeerennes I

If (Found = NO) then
Print the message ‘Sorry, this name is not in the directory’

Stop
: Post-Processing

.

:block

.

the key step where

.

.
ooo

| (UIT2201 Notes) Page 21

4| Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Algorithm Linear Search (revised)

Q Preconditions: The variables NAME, m, and the arrays N[1..m|]
and T[1..m] have been read into memory.

Algorithm Seq-Search (N, T, m, NAME) ;

begin
- P RO O
i€ 1; Initialization block
Found é No; %cccccces l oooooooooooooooooooooooooooooo °

oooooooooooooooooooooooooooooooooo

i1f (NAME = N[1]) glteration block; :

else i € i + 1; : most of the work
endif : is done 3
endwhile e [
...... Lo

if (Found=No) then : s
Print NAME “is not found” endif fost-Processing

- :block :

return Found, 1i; eeveeereeeqrnesseesseseensensd
end;

4' Hon Wai Leong, NUS © Leong Hon Wai, 2003--

Abstraction: Define new primitive

d Then Seq-Search becomes a high- level primitive
defined as Seq-Search (N, T, m, Name)

NNT ——>
m—>
NAME ——

Inputs

Seq-Search

———> Found

———> Loc

Outputs
(more than one)

Definition: Seq-Search (W, 7, m, Name)

The high-level primitive Seq-Search takes in two 1nput arrays
N (storing name), and T (storing telephone #s), m the size of
the arrays, and Name, the name to search; and return the

variables Found and Loc.

(UIT2201 Notes) Page 23

4' Hon Wai Leong, NUS =

© Leong Hon Wai, 2003--

Using a High-level Primitive

Definition: Seq-Search (N, T, m, Name)

The high-level primitive Seq-Search takes in two input arrays
N (storing name), and T (storing telephone #s), m the size of
the arrays, and Name, the name to search; and return the

variable Found and Loc.

To use the high-level primitive (or just primitive, in short)
we just 1ssue a call to that high-level primitive

Example 1: Seqg-Search (I, 7, 100, “John Olson™)
call the Seq-Search to find “John Olson™ 1n array N[1 .. 100].

Example 2: Top € Array-Sum (B, 8)
“compute the sum of B[1 .. 8], and store that in variable Top

| (UIT2201 Notes) Page 24

4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

More linear-scan algorithms

Linear-scan is a powerful algorithm

Can solve many other problems:

% Searching for a telephone number
Reversing an Array

Partitioning an Array

Removing Duplicates

Reversing digifs of an integer
Converting the base

Character €-> number conversion;

o0

e

*

S

*

e

*

R/
‘0

L)

e

*

e

*

| (UIT2201 Notes) Page 25

4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

B &

National University
of Singapore

School of Computing

Problem Solving
by
Decomposition

O

4' I (UIT2201 Notes) Page 26
H iL
on Wai Leong, NUS © Leong Hon Wai, 2003--

Problem Decomposition

O Software are Complex

<» Huge (Millions of lines of code):
Linux, Powerpoint, Firefox, Outlook

< Complex: Flight-simulator, Wolfram-Alpha

1 How to manage this Complexity?

RP4: Decomposition

4| I (UIT2201 Notes) Page 27
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Modular Software Design RP4:
Decomposition

4 Divide large software into small modules
% Each module solve a sub-task,
“» Modules are design, built & tested separately
<+ Combined to give solution to overall problem
“ Achieves good division of labour
“» Reduces complexity of the software dev.

4[_ | (UIT2201 Notes) Page 28
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

National University
of Singapore

School of Computing

Algorithm
Problem Solving:
Pattern Matching

O

4' I (UIT2201 Notes) Page 29
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Task 3: Pattern Matching

O Algorithm search for a pattern in a source text
Given: A source text S[1..n] and a pattern P[1..m]

Question: Find all occurrence of pattern P 1n text S?

P T|A
1 2 3
Output of Pattern Matching Algorithm:
There is a match at position 2
There is a match at position 7
| (UIT2201 Notes) Page 30
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

Example of Pattern Matching 1

Q
>N
H
>
H
Q
>
H
>

-» Align pattern P with text § starting at pos &k = 1;
¢ Check for match (between S[1..3] and P[1..3])
-» Result — no match

..

4' I (UIT2201 Notes) Page 31
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example of Pattern Matching 2

T
2
A

1

S |c

w
18
8]
(o))}
<
(00}
o

» Align pattern P with text § starting at pos k = 2;
- Check for match (between S[2..4] and P[1..3])
- Result — match!

. Output: There is a match at position 2

..

4' I (UIT2201 Notes) Page 32
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example of Pattern Matching 3

=
H W <@

1 2 4 5 6 7 8 9
S |c|a AlT|clalT|Aa
Pla|T|Aa

-» Align pattern P with text § starting at pos & = 3;
¢ Check for match (between S[3..5] and P[1..3])
-» Result — No match.

..

4' | (UIT2201 Notes) Page 33
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example of Pattern Matching 4

7
1 2 3 45 6 7 8 9
S |cla|T|a|T|cla|T|Aa
Pla|T|Aa

-» Align pattern P with text S starting at pos &k = 4;
-» Check for match (between S[4..6] and P[1..3])
-» Result — No match.

..

4' I (UIT2201 Notes) Page 34
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example of Pattern Matching 5

v
5
T

1 2 3 4 6 7 8 9
S |clalT|a clalT|a
Pla|T|Aa

1 2 3

-» Align pattern P with text § starting at pos k = 5;
¢ Check for match (between S[5..7] and P[1..3])

' Result — No match.

..

4' | (UIT2201 Notes) Page 35
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example of Pattern Matching 6

Align S[k..(ktm—1)]
k g
I A/’ with P[1..m]
1 2 3 4 5 6 7 8 9
S |clalT|a|lT|c|la|T|Aa
Pla|T|A
1 2 3

-» Align pattern P with text § starting at pos k = 6;
¢ Check for match (between S[6..8] and P[1..3])
-» Result — No match.

..

4' | (UIT2201 Notes) Page 36
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example of Pattern Matching 7

!
\
1 2 3 45 6 7 8 9 lljgt?'thlt't'ttt.
S lclalrlalTlclalr!|a =7 is the last position to test,
After that S 1s “too short™.
PlalT|a In general, it 1s kK = n—m+1
1 2 J

» Align pattern P with text § starting at pos k = 7;
- Check for match (between S[7..9] and P[1..3])
- Result — match!

. Output: There is a match at position 7

.
..

(UIT2201 Notes) Page 37

_ |
4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Pattern Matching: Decomposition

Task: Find all occurrences of the pattern P in text S;

O Algorithm Design: Top Down Decomposition

< Modify from basic-iterative-algorithm (index k)

O At each iterative step (for each k)
< Align pattern P with S at position k and
% Test for match between P[1..m] and S[k .. k+m —1]

O Define an abstraction (“high level operation”)

4)

(Yes if S[k.ktm—1]=P[1..m]
Match(S, k, P, m) = <

\No otherwise
_ J

| (UIT2201 Notes) Page 38

4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Pattern Matching: Pat-Match

Q Preconditions: The variables n, m, and the arrays .S and P have

been read into memory.

Pat-Match(S,n,P,m) ;
(* Finds all occurrences of P in S ¥*)
begin

k € 1;

while = n- do
i1f [Match(S,k,P,m)| = Yes

then PrintWatch at pos ”, k;

endif

k k+1; (. . :
en dwlii. le Use the “high level operation”
ond : Match (S, k, P, m)
. \WhiCh can be refined later.
| (UIT2201 Notes) Page 39
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

Match of S[k..k+m-1] and P[1..m]

-
S |c|lajT|a|T|c|Aa|T|A Align S[k..k+m—1]
plalzla with P[1..m]
TR \(Here,k=4)

Match (S, k,P,m) ;
begin
i € 1; MisMatch €& No;
while (1 <= m) and (MisMatch=No) do
if (S[k+i-1] not equal to P[i])
then MisMatch=Yes
else i € i + 1
endif
endwhile
Match € not (MisMatch); return Match
end;

& LEOIlg oIl vvdl, ZUUS--

Example: Match of S[4..6] and P[1..3]

1 2 3 4 5 6 7 8 9

-
S |cla|T|a|lT|c|a|T|A Align S[k..ktm—1]
with P[1..m]

Pia|T|A
1 2 3 ((Here, k= 4) y
4
*[k=4] Withi=1, MisMatch=No
-+ Compare S[4] and P[1] (S[k+i-1] and P[i])
-+ They are equal, so increment i
| (UIT2201 Notes) Page 41

4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example: Match of S[4..6] and P[1..3]

1 2 3 4 5 6 7 8 9

-
S |cla|T|a|lT|c|a|T|A Align S[k..ktm—1]
with P[1..m]

Pia|T|A
1 2 3 ((Here, k= 4) y
4
- [k=4] Withi=2, MisMatch = No
-+ Compare S[5] and P[2] (S[k+i-1] and P[i])
-+ They are equal, so increment i
| (UIT2201 Notes) Page 42

4' Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Example: Match of S[4..6] and P[1..3]

1 2 3 4 5 6 7 8 9

-
S |cla|T|a|lT|c|a|T|A Align S[k..ktm—1]
plalzla with P[1..m]
TR \(Here,k=4)

...

+ [k=4] With /=3, MisMatch=No
-+ Compare S[6] and P[3] (S[k+i-1] and P[i])
- They are not equal, so set MisMatch=Yes

..

| (UIT2201 Notes) Page 43
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

Our Top-Down Design

“*Our pattern matching alg. consists of two modules

Pat-Match(S,n,P,m) “higher-level” view

Match(S,k,P,m) “high-level” primitive

< Achieves good division-of-labour

1 Made use of top-down design and abstraction
< Separate “high-level” view from “low-level” details
< Make difficult problems more manageable
“ Allows piece-by-piece development of algorithms

< Key concept in computer science

4| | (UIT2201 Notes) Page 44
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Pattern Matching: Pat-Match (1% draft)

Q Preconditions: The variables n, m, and the arrays .S and P have
been read into memory.

Pat-Match(S,n,P,m) ;
(* Finds all occurrences of P in S ¥*)
begin
k € 1;
while (k <= n-m+l1l) do
if[Match(S,k,P,m)] = Yes
then PrintNQTatch at pos ”, k;

endif
k k+1; @ . . e .)
en dwl'ii. le Use the “high level primitive operation”
ond - Match (S, k, P, m)
! \WhiCh can be de/refined later.)
| (UIT2201 Notes) Page 45
4' Hon Wai Leong, NUS |

© Leong Hon Wai, 2003--

Pattern Matching Algorithm of [SG]

Pattern-Matching Algorithm

Get values for n and m, the size of the text and the pattern, respectively
Get values forboth thetext 7, 7, ... 7, and the pattern P, P, ... P
Set k, the starting location for the attempted match, to 1
While (k<(n- m+1)) do
Set the value of ito 1
Set the value of Mismatch to NO
While both (i < m) and (Mismatch = NO) do
If P,# Tipqy then o
Set Mismatch to YES
Else
Increment i by 1 (to move to the t character) |«—
End of the loop
If Mismatch = NO then
Print the message ‘There is a match at position’
Print the value of k
Increment k by 1
End of the loop
Stop, we are finished

THINK:: How can
Mismatch=NO here?

This part compute
Match(7,k,P,m)

Figure 2.12: Final Draft of the Pattern-Matching Algorithm

4' | (UIT2201 Notes) Page 46
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Pattern Matching Algorithm of [SG]

O Pattern-matching algorithm

< Contains a loop within a loop

& External loop iterates through possible locations of
matches to pattern

® Internal loop iterates through corresponding characters
of pattern and string to evaluate match

4| I (UIT2201 Notes) Page 47
Hon Wai Leong, NUS | © Leong Hon Wai, 2003--

Summary of Chapter 2 [SG3]

d Specify algorithms using pseudo-code

< Unambiguous, readable, analyzable

O Algorithm specified by three types of operations

< Sequential, conditional, and repetitive operations

d Seen several examples of algorithm design
< Designing algorithm 1s not so hard
% Re-use, Modify/Adapt, Abstract your algorithms

O Algorithm design is also a creative process
< Top-down design helps manage complexity
“ Process-oriented thinking helps too

4' _ I (UIT2201 Notes) Page 48
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Summary

O Importance of “doing it”

% Test out each algorithm to find out
“what 1s really happening”

«» Run some of the animations in the lecture notes

d If you are new to algorithms
% read the textbook
% try out the algorithms

% do the exercises

... The End ...

4' | (UIT2201 Notes) Page 49
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

Thank you!

National University
of Singapore

N US
95

School 0f Computing

4' | (UIT2201 Notes) Page 50
Hon Wai Leong, NUS] © Leong Hon Wai, 2003--

