| "SOC InfoComm Camps" |
| :--- | :--- |
| Computational Problem Solving |
| $\left.\begin{array}{l}\text { Leong Hon Wai } \\ \begin{array}{l}\text { Department of Computer Science } \\ \text { School of Computing, } \\ \text { NUS } \\ \text { leonghw@comp.nus.edu.sg } \\ \text { http://www.comp.nus.edu.sg/~leonghw/ }\end{array} \\ \begin{array}{ll}\text { (19 December 2007) }\end{array} \\ \hline\end{array}\right]$ |

The Tourist Problem (Entities)

- Good to know the entities we are dealing with...
* The Tourists:
$T=\{A, B, C, D, E, F, G, H\}$
* The Attractions (Places):
$P=\{B G, C G, J B, J G, O R, S I, V C, S Z G\}$

Hon Wai Leong, SoC, NUS Copyright © 2007 by Leong Hon Wai
(The Tourist Problem) Page 5

The Tourist Problem (Analysis...)

Che (Reduced) Tourist Problem...
Given: A list of tourist, each with his/her list of places to visit. To do: Schedule bus rides for them so that each tourist visits all the places in his/her list. $\begin{aligned} & T=\{A, B, C, D, E\} \\ & P=\{B G, C G, J B, J G, O R, S I, V C, S Z G\} \end{aligned}$

The Tourist Problem - v0		
Given: A list of tourist, each with his/her list of places to visit. To do: Schedule bus rides for them so that each tourist visits all the places in his/her list.		
An Instance of Tourist Problem		
Solution: (Singapore 1-Day Tour)	Tourist	Places of Interest
	Aaron	SZG, BG, JB
Put all the tourists on one bus. Visit all eight places in 1 day.	Betty	CG, JG, BG
	Cathy	JG, CG, OR
	Evans	CG, JG, SZG

The Graph Model

-What is a graph?
\& eg: $y=\sin (b x)$

\square No. Not this type of graph.

Moral of the Story

- The Tourist Problem:

* Some problems are EASY. (don't complicate them)
* Get a simple solution first.
then analyze it, improve it, refine it.
* Solution depend on the questions asked
* It is important to ASK QUESTIONS.
* Theoretical modelling and analysis are beneficial
․ Modelling
* Abstract modeling simplifies problem and solution!
* Abstract model is transferable.
* Models don't answer everything.

		(The Tourist Problem) Page 28
	Hon Wai Leong, SoC, NUS	Copyright © 2007 by Leong Hon Wai

Summary of Problem Modelling				
Nates	${ }_{\text {paxs }}$	Comats	${ }^{\text {mata }}$	
	come		comem	
Coous	come	coma	Satat	
Oness	गxemats			

Summary of Problem Modelling				
Tourist Problem Fish in a tank Frequency Assignment Map Coloring Nodes places fishes radio stations Countries Edges / Conflicts tourist want to visit both places cannot be placed in same tank interference if placed too near share a common border Colors bus trips to places fish tanks signal frequencies color Others The tourists --				
Hon Wai Leong soc, Nus				

