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Abstract—Video content providers such as Douyin implement
Peer-to-Peer Content Delivery Networks (PCDNs) to reduce the
costs associated with Content Delivery Networks (CDNs) while
still maintaining optimal user-perceived quality of experience
(QoE). PCDNs rely on the remaining resources of edge devices,
such as edge access devices and hosts, to store and distribute data
with a Multiple-Server-to-One-Client (MS20C) communication
pattern. MS20C parallel transmission pattern suffers from
severe data out-of-order issues. However, direct applying existing
schedulers designed for MPTCP to PCDN fails to meet the two
goals of high aggregate bandwidth and low end-to-end delivery
latency.

To address this, we present the comprehensive detail of the
Douyin self-developed PCDN video transmission system and
propose the first QoE-enhanced packet-level scheduler for PCDN
systems, called Pscheduler. Pscheduler estimates path quality
using a congestion-control-decoupled algorithm and distributes
data by the proposed path-pick-packet method to ensure smooth
video playback. Additionally, a redundant transmission algorithm
is proposed to improve the task download speed for segmented
video transmission. Our large-scale online A/B tests, comprising
100,000 Douyin users that generate tens of millions of videos
data, show that Pscheduler achieves an average improvement of
60% in goodput, 20% reduction in data delivery waiting time,
and 30% reduction in rebuffering rate.

Index Terms—Peer-to-Peer CDNSs, Video Transmission, Sched-
uler, QoE-enhanced, Large-scale A/B Test

I. INTRODUCTION

Video applications have become a vital means of global
information exchange, offering a wide range of content and
effective communication capabilities. Their numerous advan-
tages have contributed to their significance in today’s digital
landscape [1]. As one of the world’s leading video providers,
Douyin [2] serves hundreds of millions of daily users, and the
annual content delivery traffic cost exceeds 600 million yuan.
Therefore, saving CDN traffic costs while maintaining user
QoE has become a vital issue for short video platforms [3].

PCDN is an attractive solution to reduce content deliv-
ery cost. Unlike traditional CDNs that rely on large-scale
deployment of dedicated servers, PCDNs leverage under-
utilized resources on edge devices, such as edge access
devices and hosts, to store and distribute data, resulting in

*Corresponding author: Jiao Zhang

Packet Arrival Time

Packet Arrival Time

thus Lous

i Packet
i Sequence

Packet
Sequence

Buffer size Buffer size

MPTCP: Buffer-Level Arrival Order PCDN: Packet-Level Arrival Order

Fig. 1: Difference in order goals between MPTCP and PCDN.

a lower unit traffic price. However, these devices are more
resource constrained and offer less stable performance than
their CDN counterparts. To provide similar user experiences,
PCDN uses multiple edge devices to serve a single user
through parallel transmission. Such an architecture leads to a
Multiple-Server-to-One-Client (MS20C) pattern, a significant
deviation from traditional multipath transmission schemes,
such as MPTCP and MPQUIC, which follow a One-Server-
to-One-Client (OS20C) pattern.

The PCDN architecture brings new challenges in video
content serving. Firstly, a majority (80%) of paths in PCDNs
do not individually meet users’ video streaming demands with
satisfactory quality. PCDNs therefore require aggregating the
bandwidth of multiple paths during a single transmission for
fast video download rate. Secondly, video data received out-of-
order cannot be delivered for playback, leading to rebufferring
and poor video quality. PCDN needs to ensure ordered data
arrival even in the presence of path diversity and a multi-source
transmission scheme (MS20C).

A naive solution is to apply existing schedulers designed for
MPTCP, such as BLEST and ECF, to PCDNs. We, however,
observe that they fail to meet the above PCDNs objectives due
to the fundamental differences in design goals:

o Low aggregate data download rate: MPTCP is de-
signed to achieve an aggregate transmission bandwidth no
less than that of the fastest path (in terms of bandwidth).
In the presence of path speed diversity, MPTCP suffers
from Head-of-Line (HOL) blocking where a slow path
prevents packet acknowledgment on the fast path. HOL
can lead to buffer filling and stalling of the fast path
[4]. The aggregate bandwidth is therefore limited by the
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receive rate of the slowest path R,,,;,. MPTCP schedulers
address this issue by applying an aggressive penalty
to the slower paths when HOL occurs, suspending it
from sending data and improving the rate of the faster
paths. As a result, the aggregate receive rate in MPTCP
typically approaches the bandwidth of the fastest path,
ie., Rugg = Rpaz. This, however, does not meet the
goal of a PCDN, where R,4, ~ > R.

« High end-to-end data delivery latency: MPTCP sched-
ulers optimize for buffer-level ordering, i.e., the latency
of receiving all packets in the buffer from both slow and
fast paths. As shown in Fig.1, such designs tolerate the
unordered arrival of individual packets within the buffer.
However, out-of-order packets arrival delays the average
data delivery latency, which in the worst case approaches
the longest Round-Trip Time (RTT) among all the paths.
This is in direct conflict with PCDN’s goal of low end-
to-end data delivery latency.

We believe that PCDN’s new deployment model and per-
formance goals fundamentally necessitate a new transmission
scheduling mechanism. However, proposing an efficient sched-
uler for PCDN faces many challenges. 1) MS20C results in
a pull-based transmission pattern where the client schedules
individual video data requests to the set of source servers.
Each data response therefore only opens a single flow con-
trol window in omne source server connection. Such a flow
control scheme differs significantly from MPTCP (or OS20C
in general), where one ACK can release multiple windows
due to accumulated acknowledgments. It severely restricts the
possible flow selection decisions the client can make. Without
pausing the transmission after a data response, the scheduler
will converge to a round-robin policy. 2) Existing multi-path
schedulers heavily rely on path information provided by the
Congestion Control (CC) algorithms. However, CCs can lead
to large cumulative errors in path condition prediction due to
phase fluctuations, particularly in the PCDN targeted unsta-
ble network environment. Real-world deployment experiences
reveal that a single user requires up to 10 upload servers
to fulfill its viewing demand, which further amplifies error
accumulation. 3) The need for a larger number of paths per
client increases the impact of network heterogeneity.

To address the above challenges, we propose Pscheduler,
a packet-level scheduler for PCDN systems. Pscheduler
consists of three components: a CC-decoupled path quality
estimator, a Queue-Direct-Access data distribution algorithm,
and a redundancy algorithm. Concretely, 1) Pscheduler takes
a “zero-dependency” path status estimation approach, decou-
pling the scheduler from the congestion control algorithms.
Consequently, path information can be predicted more ac-
curately without the impact of CC iterations. 2) Pscheduler
leverages the estimated path information to schedule the packet
sequence numbers for each path. This path-aware packet
scheduling maximizes the chance of in-order reception at
the receiver. In particular, Pscheduler adopts a Queue-Direct-
Access approach to retrieve packets from the global request
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Fig. 2: The high traffic cost is driving the transition from CDN
to PCDN.

queue, effectively addressing the dynamic network issue in
PCDNSs. 3) Pscheduler features a redundancy algorithm to
enhance transmission reliability without wasting bandwidth.
The algorithm determines if there is remaining space at the
end of each short flow to accelerate the download process.

We implement Pscheduler in Douyin’s PCDN system and
conduct large-scale online A/B testing with approximately
100,000 Douyin users whose APP updated to Pscheduler
to participate in the test, generating tens of millions of
video data. We observed that Pscheduler achieved an average
improvement of 60% in goodput, a 20% reduction in data
delivery waiting time, and a 30% reduction in rebuffering rate.
Furthermore, controlled experiments show that Pscheduler out-
performs other state-of-the-art schedulers, making it a better
scheduling candidate for PCDN systems.

Contributions: In summary, the key contributions of this
work are:

e We provide the comprehensive detail of a new video
delivery network — PCDN and analyze the challenges it
poses in multipath data packet scheduling.

o We propose the first MS20C scheduling mechanism for
PCDN, Pscheduler, to ensure smooth video playback.

o We implement Pscheduler in the PCDN video system
of Douyin.

o We conduct large-scale online tests of Pscheduler
through the Douyin App. The evaluation results with
tens of millions of video data samples provide strong
evidence that Pscheduler is effective in improving video
QoE metrics.

In what follows, we first detail Douyin’s PCDN including
the architecture, the protocol, and advantages in §II. We
present the key aspects of motivation in §III. We propose
Pscheduler — the first MS20C scheduling mechanism in PCDN
in §IV. In §V, we implement PScheduler in Douyin’s PCDN
system and present the evaluation results through both simu-
lations and practical large-scale online tests. § VI describes the
related work. Finally, we draw the main conclusions in §VIIL.

II. BACKGROUND

A. PCDN-Multipath Video Distribution Network

This section focuses on introducing the network architec-
ture and transmission protocol of the Douyin self-developed
PCDN, which has been operating on Douyin for four years.
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Fig. 3: Data likes rotating on conveyor belts of different lengths. Out-of-order data can cause hole flooding.

PCDN Network Architecture: To combat the high costs
associated with traditional CDNs, video content providers like
Douyin have turned to PCDNs in their underlying networks, as
illustrated in Fig.2. CDNs rely on a tree-like interconnected
server network to provide high-speed and stable bandwidth
services [5]. The core idea of CDN is to load balance the
original content to the user’s nearest edge server to reduce
data transmission delay. However, deploying CDN requires
significant investment in infrastructure such as Internet data
centers (IDCs) and dedicated edge servers, leading to high traf-
fic rent fees [6]. In contrast, PCDNSs utilize massive amounts
of fragmented under-utilized computing storage and network
resources available on the edge devices to distribute data.
This approach enables the building of a low-cost, high-quality
content distribution network that helps Douyin effectively
manage its content delivery and maintain a competitive edge
in the market.

The Douyin self-developed PCDN consists of three key
components: 1) A distributed network of edge devices with
under-utilized resources. 2) A client-side library, integrated
in users’ mobile devices. 3) A centralized tracker cluster
operating on public network. Each device within PCDN serves
as an uploader, caching a range of videos, typically storing
entire video segments for efficiency. The system of devices is
designed for simplicity: the tracker makes decisions regarding
file distribution, while the client library manages data transmis-
sion. Trackers serves as a control plane in PCDN, collecting
data on video popularity from client requests and operational
states from devices to execute fine-grained video pre-allocation
across devices. Consequently, the tracker maintains a detailed
mapping table, linking each video ID to a list of devices
that store the corresponding video. When the client requests
a video, it first consults the tracker to locate the devices
containing the video file. Following this, the client establishes
connections with these devices to commence data transmis-
sion. Due to the limited and fluctuating available bandwidth
of individual devices in PCDN, it adopts a multipath parallel
transmission approach from multiple dispersed devices to en-
sure video service quality. The protocol’s specifics are detailed
below.

Pull-based Multipath Transmission Protocol: In PCDN,
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devices are invisible from each other, necessitating the client
to manages the control across flows from these devices by
a pull-based transmission protocol. This process involves the
client establishing individual connections with a set of devices
and sends request packets to each. Each request packet asks
for a corresponding data packet, as shown on the right of the
Fig. 3. In the context of video transmission, each device opens
a flow control window. The client library strategically decides
which request to send through which connection, based on
the availability of free windows for effective flow control and
scheduling. Upon receiving a request, a device responds with
the requested data packet. If these packets arrive in the correct
sequence, they are promptly forwarded to the player for decod-
ing and playback. As a result, the client side needs to schedule
data packets across different connections to ensure that the
data arrives in the correct order, preserving the integrity and
continuity of the video stream. Based on real deployment
experience, a user’s viewing demand typically requires support
from 2 to 10 devices, as 80% of the devices have limited
individual remaining resources, but the combined amount is
substantial. This inevitably increases the heterogeneity among
paths, posing a greater difficulty in designing the scheduling
mechanism [7]. To facilitate updates, the entire transmission
protocol is implemented in user space based on UDP.

B. Typical Multipath Scheduling Mechanisms

Douyin deployed the default scheduler in the Linux system,
minRTT, that distributes packets to the path with the smallest
RTT, which cannot solve the above problems. Some advanced
multipath scheduling mechanisms have been proposed in re-
cent years, such as BLEST [8], ECF [9], XLINK [10]. BLEST
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and ECF will pause the slow path packet transmission when
they predict that a HOL blocking will occur. XLINK uses the
QoE feedback to calculate the remaining playback time and
combines the data packet transmission time for re-injection
operation, which reduces the request completion time and
video rebuffer rate. They both sacrifice aggregate bandwidth
to achieve improvements in other metrics.

III. MOTIVATION

In this section, we discuss the limitations of existing mul-
tipath schedulers when applied to a PCDN deployment.

A. Aggregate Bandwidth and End-to-End Latency Trade-Offs

MPTCP schedulers fail to guarantee high throughput while
minimizing end-to-end latency required by PCDN systems.
MPTCP, similar to TCP, provides in-order and reliable data de-
livery to applications, which means that the receive buffer must
temporarily store out-of-order data packets. Let’s consider a
scenario with one fast path and one slow path, where their
respective bandwidths and RTTs are denoted as By and B,
RTTy and RTT;. To avoid sacrificing aggregate throughput,
the default minimum scheduler buffer size is [11]:

Bufagy = (By + Bs) x RTT, (1)

At this point, even though the fast path is not blocked for
sending, it needs to wait for the arrival of packets from the
slow path before delivery. During this period, the number of
window rounds N that the fast path has to wait for is as
shown in Eq.(2). The end-to-end delivery latency of packets
in each round decreases by RTT; compared to the previous
round. So the sum of end-to-end delivery latency is computed
as Eq.(3). Therefore, the average end-to-end delivery latency
at this buffer size is given by Eq.(4). It can be observed that
when RTTy, By and B, remain constant, the larger RTT,
the higher the average end-to-end delivery latency.

Nrounda = RTTs/RTTy (2)
Leum = RTTs x CWND,+
N-1
‘ 3)
> (RTTs — i x RTTy)) x CWN Dy
1=0
L(wg :Lsum/Bufagg
1
=RTT, x (1—
x( 2 x RTTy x (By + Bs)) (C))

1
Yo X (B + By

Then how about decreasing the buffer size to less than
Bufagq? If so, MPTCP schedulers cannot fully utilize the
aggregate bandwidth. They will tend to block the slow path to
fully utilize the fast path. At this point, the minimum achiev-
able end-to-end delivery latency is RTTy, but the aggregate
bandwidth is also approximately equal to By [12]. Therefore,
MPTCP schedulers can only achieve a trade-off between high
aggregate bandwidth and low end-to-end latency, but cannot
simultaneously achieve both.

We conducted experiments to demonstrate this phenomenon.
Specifically, we replicated the representative BLEST and ECF

4

mechanisms in mininet [13] and integrated the PCDN trans-
mission protocol into the mininet. The experimental topology,
as shown in Fig.4, consists of a client connected to two servers
via a router, with a bottleneck having a bandwidth of 30Mbps
and a loss rate of 0.1%. The RTTs of Path 1 and Path 2
are 30ms and 90ms, respectively. In Fig.6, we present the
results showing the average waiting time between a packet
received and delivered per packet and throughput for different
mechanisms with varying receiving buffer sizes. Notably, we
observed a direct proportionality between the waiting time
and the buffer size, while the throughput displayed an inverse
proportionality to it. Indeed, Pscheduler (Ps) can perform
well in both aspects. It effectively manages waiting time and
optimizes throughput, achieving a good balance between the
two objectives.

B. Challenges in Aggregating Bandwidth Using Complete
CWND

To avoid wasting any bandwidth, it is imperative to leverage
the complete CWND without impeding the progress of slower
paths. However, achieving this objective poses a notable
challenge—maintaining the sequential arrival of packets when
utilizing the entire CWND. In PCDN, the client adopts a
request-reply pull-based transmission mode that each data
response only opens a single flow control window in one
source server connection. When a user downloads data from
different devices, data is like rotating on conveyor belts (paths)
of different lengths as shown in Fig.3. The longer the conveyor
belt, the longer the path RTT. When the transmission is in
a steady state, the data rotation speed is equal to the path
bandwidth. For the path ¢, a data packet is received at each
intervals of %t;;zif As the packet size is fixed, the arrival
times of data packets will vary for each path if the path
bandwidths are different. With the PCDN transmission feature,
the client observes only one available transmission window
across all paths each time it receives a data packet. Schedulers
are triggered after receiving the packet, determining the path
for sending subsequent packets. Without blocking the trans-
mission, the next packet is sent to the path with an available
window. Consequently, the client will distribute requests to
different paths almost randomly, causing data request packets
to be sent in order and data packets to be received out-of-order,
can’t be delivered.

For example, taking Fig.3 left, at a certain moment, the
receive queue is queue a). At this time, packets 2 and 7 arrive
in the queue, which can only deliver ordered data packets 1~3
to the player. Packets after 3 are unordered and incomplete,
and cannot be played even if packet 7 arrives because there
are holes between packets 3 and 7. With the increase in
the number of paths, the heterogeneity among paths grows,
and the correlation between packets arriving becomes smaller.
The presence of holes between packets also becomes more
frequent, which is referred to as “hole flooding”. Out-of-order
data in receive buffer of transport layer cannot be delivered
to the upper layer, increasing end-to-end latency and jitter,
and video playback may rebuffer (§V). Fig. 5 records the
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delivery of data over a period of time without Pscheduler
in PCDN, highlighting the ladder-like delivery pattern caused
by the hole flooding problem. In summary, to ensure smooth
video playback under PCDN, the scheduler must effectively
manage strict packet-level arrival ordering.

C. Coupled with CC Algorithms Cause Imprecise Path Infor-
mation.

To achieve strict packet arrival ordering, schedulers need
accurate prediction of the packet arrival time on different
paths. However, existing multipath schedulers rely heavily on
CC algorithms to estimate the transmission time of each path
and often perform very differently under different CC algo-
rithms. To investigate this issue, we conducted experiments
in the same environment as before, with a receiving buffer
size of 0.5KB. And we choose to use some representative CC
algorithms like Copa [14], BBRv2 [15], and PCC [16], to
transmit files. The results are shown in Fig.7. We take BLEST
using the BBRv2 [17] algorithm as an example. During
probing, BBRv2 deliberately increases the congestion window
(CWND), which can mislead the scheduling algorithm into
believing that the path is improving, resulting in more packets
being sent on the slow path. Conversely, during the emptying
phase, BBRv2 intentionally reduces the CWND, causing the
scheduling algorithm to send fewer packets on the slow path.
Different CC algorithms have varying behaviors in network
bandwidth detection and emptying, causing the scheduler
performance to fluctuate. Such a scheduling mechanism is
not CC-agnostic. When the transport protocol migrates to the
user state, the CC algorithm can evolve quickly. Continually
adapting the scheduling algorithm with different CCs would
be labor-intensive and affect the advantages of the scheduling
mechanism [18], [19].

IV. DESIGN

The design of Pscheduler is centered around ensuring
smooth video playback and cost-saving under PCDN. To meet
these requirements, Pscheduler needs to achieve strict packet-
level ordering while efficiently utilizing the throughput of all
available paths.
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A. Framework

As illustrated in Fig. 8, Pscheduler comprises three key
components:

1) Path Quality Estimation (§1V-B) that is independent of
CC algorithms to assess the quality of paths.

2) Data Distribution (§IV-C) to guarantee sequential data
reception and adapt to dynamic networks.

3) Redundancy Transmission (§IV-D) algorithm for
smooth video playback, which will be activated in exceptional
situations to enhance user QoE.

Pscheduler calculates the packet sequence number that
should be sent for the current path based on accurate path
estimation information. Then, it adopts the “Queue-Direct-
Access” approach to retrieve packets from the overall request
queue and send them out. Video transmission is always
segmented to avoid waste, and each segment is downloaded
as a range. The redundancy algorithm determines if there is
remaining space at the end of each range to accelerate the
download process.

B. CC-Decoupled Path Quality Estimation

To achieve packet-level arrival ordering in packets distribu-
tion of Pscheduler, two variables of the network transmission
paths are required to be obtained: the transmission rate and the
end-to-end transmission time of sending a data packet along
different paths.

Transmission Rate Estimation. Previous mechanisms cal-
culate the transmission rate by dividing CWND by RTT, which
is obtained from CC algorithm decisions. However, the CC
algorithms are often in an exploration state and may not
accurately represent the actual transmission rate (§11I-C). To
decouple from CC algorithms, Pscheduler employs a transmis-
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sion rate calculation method that is independent of the CWND,
as shown in Eq.(5):

datasize

" endtime — starttime

(5

Where datasize stands for the size of the received data,
starttime represents the time when the first packet is received
in each interval, and endtime is the time when the last packet
is received in each interval. We calculate the rate at intervals
of every received CWND packet, although CWND is not a pa-
rameter in the rate calculation equation. This approach avoids
the impact of transient behavior in CC algorithms, ensuring a

more precise estimation of the connection’s transmission rate.

Transmission Time Estimation. Pscheduler avoids directly
using RTT to estimate the transmission time of packets.
Instead, it calculates the average transmission time required
by a path to successfully complete a data packet transmission
as Eq.(6), including the parameter of packet loss ratio (loss).
This approach prevents the unnecessary sending of packets on
the paths with small RTT but high packet loss. The probability
that a packet is successfully transmitted after being lost n — 1
times is loss" ! x (1 — loss), and the transmission time is
((n—1) xrto+rtt), n € N+. Thus, the average transmission
time of the data packet is:

E= Z(loss"71 x (1 —loss) X ((n — 1) X rto + rtt))) ©
n=1
loss

= rtt to X ——
rit+rto 1 —loss

Where rto is the timeout retransmission time and [oss stands
for the current packet loss rate. We use TFRC [20] to calculate
the loss rate, store flight data packets in a queue, and use this
queue to calculate the current packet loss rate.

In addition, due to the pull-based transmission mode of
PCDN, both the sending of data request packets and receiving
of data packets are on the client side. The transmission time
of a data packet will change from OWD (one-way delay,
the server sends data to the client) to RTT (round-trip delay,
client requests data and the server replies), which means that
the clock synchronization problem between the sender and
receiver will be eliminated in the path quality estimation
of Pscheduler. Therefore, using a transmission time-based
scheduling algorithm in PCDN will be more accurate.

C. Queue-Direct-Access Data Distribution

To achieve packet-level data scheduling instead of
connection-level scheduling, Pscheduler requires greater flex-
ibility. We consider two data distribution methods: “packets
pick paths” and “paths pick packets”. Ultimately, to enable
the mechanism to flexibly combat network fluctuations and
achieve strict arrival ordering, we choose the “paths pick
packets” method.

Packets distribution based on sub-buffers (Packets pick
Paths): To efficiently schedule request packets on demand, one
approach is to employ individual pending task queue buffers
for each path, as depicted in Fig.9a). Request packets are pre-
allocated to the sub-buffer to rearrange their sending order and
achieve the desired arrival order of data packets. However, this
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method lacks flexibility when the network experiences fluctu-
ations, as the request packets in the sub-buffer may be out of
order based on their pre-allocated sequence. Consequently, the
pre-allocated packets cannot achieve strict packet-level arrival
ordering, leading to a loss of flexibility.

Queue-Direct-Access packets distribution (Paths pick
Packets): Pscheduler introduces a scheduling mode, path-
pick-packet (Fig.9b), to enhance the flexibility of request
packet transmission order. Unlike pre-allocation, this method
dynamically selects request packets based on network quality,
directly choosing packets from the overall queue for available
path space. This process is akin to a rotating conveyor belt,
where the queue learns which request packet to pick after
each delivery, avoiding the need for a worker to pre-move
packets in a fixed order. Despite only deciding one path’s
window per slot, Pscheduler accurately selects the specific
packet, achieving strict packet-level arrival order.

Algorithml1 is the detailed design of the Queue-Direct-
Access Packets Distribution algorithm. Whenever a path i
has an available window, Pscheduler calculates the average
transmission time [; of the path according to Eq.(6) (line
3). Then traverse all connections and calculate their average
transmission time E; (lines 4-5). The smaller £ means that
the connection can complete the transmission of a data packet
faster. Suppose the E of the first path is T, and the throughput
is D; the E of the second path is 27", and the size of the
data packet is S, then the arrival time of the data packet is
sendtime + E. In (Es — Ey) time, the first path can send
% packets. The second path directly sends the packet whose
position is L2 + 1 in the task queue which can ensure that
the data arrives in an orderly manner. At this time, the arrival
time of the packets at positions 252 and T£2 41 in the task
queue is both curtime+2x%T'. Therefore, Pscheduler calculates
offset according to Eq.(7) (lines 7-8). Then the second path
sends the packet whose pos is Of fset in the total task
queue. It can be observed that throughout the entire calculation
process, the buffer size variable is not utilized. Therefore,
Pscheduler is buffer-size agnostic and remains unaffected by
buffer inflation.

n

Offset ="

J#i

(EZ — EJ) X Rj

packetsize ( i)

@)
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Algorithm 1: Packet Distribution Algorithm

Input: connection 4, connection set C
Output: of fset

1 begin
2 offset = 0
3 calculate average packet transmission time of

connection ¢ F; via Eq.(6)
for j € C and j # i do
Ej :Tttj +Tt0j X

if Ej < F; then
calculate R; via Eq.(5)
Of fset+ = (BimB;) xRy
| return Of fset

loss;
1—loss;

@ N s

packetsize

o

D. Redundancy Transmission

Pscheduler features a distinct redundancy algorithm, strate-
gically triggered to enhance transmission reliability that
doesn’t waste the bandwidth. It considers data packet urgency,
redundancy percentage, and task tail redundancy. In particular,
tail redundancy is important as sporadic packets at the end of
each range can limit the transmission of the next task segment.

Mark Packets Urgency. If the packet cannot arrive in
time for its playback deadline, it will be marked as urgent,
calculated as Eq.(8). Where playtime,cmaqin 1S the remaining
time until the certain packet is played, and sendtime is the
time required to transmit it estimated as Eq.(6). The threshold
is the dangerous water level of the playback buffer. Once the
remaining playback time is lower than the threshold, it is
very likely to cause rebuffering. Considering that packets may
be lost, Pscheduler adds a maximum path RTT above this
threshold, so that even if packets are lost, there is a chance
for retransmission.

sendtime < threshold + RT Tz  (8)

Percentage of Redundancy. The second step is to ensure
that redundant packets will not reduce user QoE by limiting
the percentage between the number of redundant packets and
the task download speed. We set a cap on the percentage of
redundancy used. This approach guarantees that redundancy
will not be activated when the bandwidth is insufficient to
sustain the client’s throughput requirements. Additionally, it
ensures that the download speed of non-redundant data re-
mains equal to or greater than the playback speed. Assuming
the client’s playback bitrate is F, the average download
speed is Vg = Y. R;, redundant_data_size the size of
redundant data currently being transferred, flight_data_size
is the total data size being transmitted in the current network.
Redundancy can be triggered only when F' < V.4, and the
redundant data size should meet the following conditions:

Varg — F
Varg

By satisfying these two criteria, a packet will only activate
the redundancy algorithm if it is lost multiple times and the
buffer data is depleted, striking a balance between redundancy
and performance. Each redundant packet is vital in ensuring

playtimeremain —

redundant_data_size
flight_data_size

©)

7

the minimum requirement, significantly decreasing the risk of
stuttering.

Task Tail Redundancy. For segmented task transmission,
Pscheduler designed a tail redundancy method. At the end
of each range, there will be a situation where the number
of remaining data packets is less than the total CWND. If
the tail data packet is lost or does not reach the receiving
end as expected due to network fluctuations, the link will
appear in an idle waiting phase. In addition, if the previous
task is not completed, the next range cannot transfer. But
it is surprising that no existing works have addressed this
critical problem. Therefore, once a connection ¢ is detected
to of fset > task_size, and of fset < 2 % task_size, which
to used for redundant transmission. Each tail packet will only
be redundant once.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement Pscheduler in the PCDN of Douyin. The
scheduler will be triggered when the client needs to send a
new ‘“data request packet” by DataTimer(), Addnewtask(), or
receiving a packet. DataTimer() is triggered every 100ms and
will query the tracker for available nodes. Addnewtask() is
called every time a new task is created. When the scheduling
algorithm is triggered, the multipath scheduler will allocate
request packets on the connections that have idle CWND and
are still in the connection state.

B. Evaluation Setup

We verity the performance of Pscheduler by large-scale A/B
tests from Douyin real users as well as simulations.

Online Large-scale A/B test: We select approximately
100,000 Douyin users to participate in the Pscheduler experi-
ment. Our analysis cover over 10 million video plays per day.
To conduct this large-scale online test, we employ the A/B
testing methodology, wherein two user groups simultaneously
used Pscheduler and basic minRTT for one months. Our
A/B tests show the benefits of Pscheduler in terms of both
continuous and discontinuous speed improvements, as well
as the reduction of data packet out-of-order, which directly
impacts QoE. From a QoE perspective, we focus on reducing
rebuffering rates and improving the upward delivery speed of
data. Additionally, we also pay attention to the wastage rate of
the mechanism. To test the impact of redundancy algorithms
on the results, we evaluated two variants of Pscheduler:
Pscheduler (the full version of Pscheduler) and Pscheduler-
NR (Pscheduler without redundancy).

Simulation Evaluation: We integrate PCDN’s transmis-
sion protocol into Mininet. Additionally, we incorporate other
MPTCP schedulers, such as ECF and BLEST, into the simula-
tor. These schedulers are implemented in PCDN based on their
algorithm descriptions outlined in papers. The utilization of
Mininet allows us to establish diverse network scenarios, vary-
ing path numbers, and introducing heterogeneous RTT. This
setup facilitates a comparative analysis of different schedulers
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Fig. 10: [A/B test] The reduction in  Fig. 11: [A/B test] Goodput vs.

out-of-order data average size. time.

under varying conditions. Unless otherwise specified, the CC
algorithm defaults to BBR.

C. Large-scale A/B Test

Out-of-order Data Size: The metric of out-of-order data
size is the most straightforward indicator of the impact of
scheduling mechanisms. After receiving each packet, we mea-
sured the current size of out-of-order data and calculated
the average. Fig.10 demonstrates that Pscheduler effectively
reduces the average amount of out-of-order data by approxi-
mately 8% compared to the baseline mechanism.

Goodput and Data Waiting Time: Fig.11 presents
the goodput improvement and data waiting time reduction
achieved by Pscheduler at different percentiles compared to
the minRTT mechanism. Goodput is defined as the speed of
data delivered for playback. In other words, it is calculated as
the data in order divided by the duration between the beginning
of range downloading and receiving half the size of the range.
The data waiting time metric measures the time between a
packet being received and its delivery upward for playback.
Goodput and data waiting time are interrelated. If data remains
in the buffer for a prolonged period but cannot be played due to
out-of-order issues, the goodput will decrease, increasing the
likelihood of buffering and stuttering occurrences. Pscheduler
efficiently arranges data in order, resulting in a 20%~80%
increase in goodput and 15%~25% reduction in waiting time,
which effectively prevents rebuffering.

Video Download Speed: We measure video download
speeds for each range being downloaded. Fig.12 shows the
speed improvement of Pscheduler and Pscheduler-NR com-
pared to the original algorithm (minRTT) at different per-
centiles. Pscheduler-NR shows an average improvement of
6% in video download speed, while Pscheduler achieves an
average improvement of 10%. At the 95th percentile, Psched-
uler still exhibits a 6% enhancement. As video downloads
are often segmented based on ranges, with short flows being
predominant, the selection of data packet transmission paths
becomes crucial, making Pscheduler effective in boosting
video download speeds. However, compared to continuous
video download speeds (Goodput), the improvement in down-
load speeds may not appear as significant. This is because
the primary role of the scheduler is to enhance data ordering,
which has already been demonstrated through the increase in

8

25th  50th  75th
Percentile(%)

Data waiting Fig. 12: [A/B test] The improve-
ment in video download speed.
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Fig. 13: [A/B test] The reduction in the rate of videos that
jump out to the CDN network due to rebuffering.
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Fig. 14: [A/B test] The waste rate of Pscheduler and minRTT
within a day.

continuous download speed and the reduction in rebuffering
rates, validating the effectiveness of the algorithm.

Video Jump Rate: The rebuffer rate is a crucial metric
influencing video Quality of Experience (QoE) and video
smoothness. In Douyin’s PCDN, rebuffering triggers a switch
from PCDN to CDN as a backup. We use the online jump
rate as a measure of PCDN transmission failures leading
to CDN transition, calculated by dividing jump duration by
total playback time. Fig.13 displays the average jump rate
throughout the day, comparing Pscheduler to the minRTT
mechanism. Pscheduler effectively reduces the jump rate by
up to 30%.

Data Waste Rate: In Fig.14, the data waste rate for a
specific day is presented. This rate is calculated by taking the
difference between the number of requests sent and the total
number of packets in a task, divided by the total number of
packets in the task. The waste rate accounts for both packet
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loss and redundancy. Pscheduler exhibits a slightly higher
waste rate than minRTT due to its redundancy algorithm.
However, the increase is only 0.74%, while achieving a 10%
improvement in video download speed. This suggests that
Pscheduler’s redundancy strategy employs a minimal amount
of redundant data but plays a crucial role.

D. Simulation Evaluation

To compare Pscheduler with other schedulers, we conduct
controlled experiments in a mininet simulation environment.

Different Path Number Scenario: A client downloads
video content from a varying number of devices. The min-
imum RTT of paths is set to 30ms, and with each additional
path, the RTT increases by 10ms. Each path is considered
a bottleneck with a bandwidth of 3Mbps, and the buffer
size is sufficiently large. In each scenario, every scheduler
is tested through 10 experiments, and the average results are
calculated. Fig.15 and Fig.16 display the outcomes in terms of
throughput and waiting time. Remarkably, these figures show
similar trends to the results obtained from online experiments.
Pscheduler demonstrates a superior ability to enhance aggre-
gate throughput and reduce waiting time compared to other
schedulers.

Jittered RTT Scenario: Fig.17 and 18 present the simu-
lation results. The x-axis represents the upper bound of RTT
jitter for two paths, while the bandwidth for both paths is set
at SMbps. It is evident that even in scenarios with significant
jitter, Pscheduler outperforms other mechanisms in terms of
performance.

VI. RELATED WORK

Multipath Transmission Protocols: Multipath transmis-
sion protocols have evolved as the number of device network
interfaces increases [21]-[23]. MPTCP [21] and MPQUIC
[24] respectively expand the single-path transmission protocol
based on TCP [25], UDP to an end-to-end multipath transmis-
sion protocol to increase the transmission rate and robustness.
PCDN is a multiple-server-to-one-client transmission protocol
that makes up for the lack of single-path transmission perfor-
mance.

Multipath Scheduling Algorithms: Several MPTCP
scheduling algorithms exist, including RoundRobin [26],
which traverses all subflows and sends data as long as the
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Fig. 17: [Simu] Waiting time
before a packet delivered.

subflow has a free CWND and the default minRTT algorithm
in the Linux kernel. Other algorithms like Otias [27], ECF
[9], and BLEST [8] prioritize fast paths, potentially caus-
ing the slow path to idle and reducing overall throughput.
Redundancy-based approaches like TWC [28] and XLINK
[10] have been explored to ensure orderly data transmis-
sion, which also compromise the aggregate throughput. These
mechanisms are mostly designed for MPTCP and MPQUIC
scenarios and their focus is primarily on solving the HOL
issue.

Network Architecture: CDN, content distribution network,
caches video data on servers closer to users. With the in-
crease in bandwidth demand, the construction cost of servers,
switches, etc. has also risen sharply. P2P [29], [30] is a
peer-to-peer transmission network architecture, which can be
divided into tree-based, grid-based, and hybrid tree-grid-based
systems. Although P2P networks have higher scalability and
lower deployment costs, dynamic nodes also cause instability
and low performance due to insufficient participating nodes.
PCDN combines the two to build a high-quality and low-cost
video distribution network.

VII. CONCLUSION

With the increasing costs of traffic, the demand for more
cost-efficient video distribution has led to the transition from
traditional CCDNs to PCDNs. In this paper, we present
Pscheduler, a novel MS20C scheduling mechanism tailored
specifically for PCDNs. Pscheduler adopts a fine-grained
packet-level scheduling approach, with the primary goal of
optimizing the aggregate bandwidth while simultaneously
minimizing end-to-end latency, thus enhancing the overall
video QoE. Through extensive large-scale online A/B tests
conducted on the popular platform Douyin, our results demon-
strate that Pscheduler effectively reduces data disorder in the
MS20C scenario and significantly improves video goodput.
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