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Abstract— Video content providers such as Douyin implement
Peer-to-Peer Content Delivery Networks (PCDNs) to reduce the
costs associated with Content Delivery Networks (CDNs) while
still maintaining optimal user-perceived quality of experience
(QoE). PCDNs rely on the remaining resources of edge devices,
such as edge access devices and hosts, to store and distribute
data with a Multiple-Server-to-One-Client (MS2OC) commu-
nication pattern. MS2OC parallel transmission pattern suffers
from severe data out-of-order issues. PCDNs offer significant
cost savings by using multiple low-cost edge devices. However,
due to its unique characteristics, including pull-based streaming
transmission, many heterogeneous paths, and large receiving
buffers, directly applying existing schedulers designed for Mul-
tipath TCP (MPTCP) to PCDN fails to meet the two goals of
high aggregate bandwidth and low end-to-end delivery latency.
To tackle this issue, we provide a detailed overview of Douyin’s
self-developed PCDN video transmission system and introduce
the first QoE-enhanced packet-level scheduler for PCDN systems,
named Pscheduler. Pscheduler evaluates path quality with a
congestion-control-decoupled algorithm and employs our pro-
posed path-pick-packet method for data distribution, ensuring
a smooth video playback experience. Additionally, we propose
a redundant transmission algorithm to enhance task download
speeds for segmented video transmission. Our extensive online
A/B tests, involving 100,000 Douyin users generating tens of mil-
lions of video data points, demonstrate that Pscheduler achieves
an average improvement of 60% in goodput, a 20% reduction in
data delivery waiting time, and a 30% reduction in rebuffering
rates. Furthermore, we conducted simulation experiments that
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further validate the effectiveness of Pscheduler, confirming its
improvements in performance metrics under various network
conditions.

Index Terms— Large-scale A/B test, peer-to-peer CDNs, QoE-
enhanced, scheduling and forwarding, video transmission.

I. INTRODUCTION

VIDEO applications have emerged as an essential medium
for global information exchange due to their numerous

advantages, such as diverse content and effective communi-
cation capabilities [1]. As one of the world’s leading video
providers, Douyin serves hundreds of millions of daily users,
and the annual traffic cost exceeds 600 million yuan. There-
fore, saving CDN traffic costs while maintaining user QoE has
become a vital issue for short video platforms [2].

Video content providers such as Douyin [3], [4] implement
PCDNs [5], [6], [7], [8], [9] to reduce costs associated with
CDNs [10], [11] without compromising the high-quality data
transmission of massive video services. These applications are
placing increasingly sophisticated demands on the network to
transfer data for greater reliability on PCDN. Unlike traditional
CDNs that rely on large-scale deployment of dedicated servers,
PCDNs leverage under-utilized resources on edge devices,
such as edge access devices and hosts, to store and distribute
data, resulting in a lower unit traffic price. However, these
devices are more resource constrained and offer less stable
performance than their CDN counterparts. Therefore, PCDNs
have a low unit price of traffic but have the disadvantage of
insufficient remaining bandwidth of a single device. Hence,
PCDNs use multiple devices for parallel transmission with
a pull-based streaming multipath transmission protocol to
support the viewing needs of a single user. Therefore, it is
critical to efficiently distribute video data to the paths between
different low-cost devices and the client to satisfy the quality
requirements of video data transmission.

To provide similar user experiences, PCDN uses multi-
ple edge devices to serve a single user through parallel
transmission [12], [13]. Such an architecture leads to a
Multiple-Server-to-One-Client (MS2OC) pattern, a significant
deviation from traditional multipath transmission schemes,
such as CMT-SCTP [14], MPTCP [15] and multipath-enabled
QUIC (MPQUIC) [16], which follow a One-Server-to-One-
Client (OS2OC) pattern, targeting the scenario of using
multipath (usually two paths) in One-Server-to-One-Client.

The PCDN architecture brings new requirements in video
content serving. Firstly, a majority (80%) of paths in PCDNs
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Fig. 1. Difference in order goals between MPTCP and PCDN.

do not individually meet users’ video streaming demands with
satisfactory quality. PCDNs therefore require aggregating the
bandwidth of multiple paths during a single transmission for a
fast video download rate. Secondly, video data received out-of-
order cannot be delivered for playback, leading to rebufferring
and poor video quality. PCDN needs to ensure ordered data
arrival [17] for time-variance of availability even in the pres-
ence of path diversity and a multi-source transmission scheme
(MS2OC).

A naive solution is to apply existing schedulers designed
for MPTCP, such as BLEST [18] and ECF [19], to PCDNs.
We, however, observe that they fail to meet the above PCDNs
objectives due to the fundamental differences in design goals:
• Low aggregate data download rate: MPTCP is

designed to achieve an aggregate transmission bandwidth
no less than that of the fastest path (in terms of band-
width). In the presence of path speed diversity, MPTCP
suffers from Head-of-Line (HOL) blocking where a
slow path prevents packet acknowledgment on the fast
path.HOL can lead to buffer filling and stalling of the
fast path [20], [21]. The aggregate bandwidth is therefore
limited by the receive rate of the slowest path Rmin.
MPTCP schedulers address this issue by applying an
aggressive penalty to the slower paths when HOL occurs,
suspending it from sending data and improving the rate of
the faster paths. As a result, the aggregate receive rate in
MPTCP typically approaches the bandwidth of the fastest
path, i.e., Ragg ≈ Rmax. This, however, does not meet
the goal of a PCDN, where Ragg ≈

∑
R.

• High end-to-end data delivery latency: MPTCP sched-
ulers optimize for buffer-level ordering, i.e., the latency
of receiving all packets in the buffer from both slow and
fast paths. As shown in Fig.1, such designs tolerate the
unordered arrival of individual packets within the buffer.
However, out-of-order packet arrival delays the average
data delivery latency, which in the worst case approaches
the longest Round-Trip Time (RTT) among all the paths.
This is in direct conflict with PCDN’s goal of low end-
to-end data delivery latency.

We believe that PCDN’s new deployment model and per-
formance goals fundamentally necessitate a new transmission
scheduling mechanism for the data routing on multiple opti-
mality criteria. However, proposing an efficient scheduler
for PCDN faces many challenges. 1) MS2OC results in a
pull-based transmission pattern where the client schedules
individual video data requests to the set of source servers.
Each data response therefore only opens a single flow con-
trol window in one source server connection. Such a flow

control scheme differs significantly from MPTCP (or OS2OC
in general), where one ACK can release multiple windows
due to accumulated acknowledgments. It severely restricts
the possible flow selection decisions the client can make.
Without pausing the transmission after a data response, the
scheduler will converge to a round-robin policy and also
thereby eliminate the clock asynchronous problem between
the sender and receiver [22]; 2) Existing multi-path schedulers
heavily rely on path information provided by the Congestion
Control (CC) algorithms. However, CCs can lead to large
cumulative errors in path condition prediction due to phase
fluctuations, particularly in the PCDN targeted unstable net-
work environment. Real-world deployment experiences reveal
that a single user requires up to 10 upload servers to fulfill its
viewing demand, which further amplifies error accumulation
and increases the latency for the forwarding; 3) The need for
a larger number of paths per client increases the impact of
network heterogeneity.

To address the above challenges, we propose Pscheduler,
a packet-level scheduler for PCDN systems. Pscheduler
consists of three components: a CC-decoupled path quality
estimator, a Queue-Direct-Access data distribution algorithm,
and a redundancy algorithm. Concretely, 1) Pscheduler takes
a “zero-dependency” path status estimation approach, decou-
pling the scheduler from the congestion control algorithms.
Consequently, path information can be predicted more accu-
rately without the impact of CC iterations. 2) Pscheduler
leverages the estimated path information to schedule the
packet sequence numbers for each path. This path-aware
packet scheduling maximizes the chance of in-order reception
at the receiver. In particular, Pscheduler adopts a Queue-
Direct-Access approach to forward and retrieve packets from
the global request queue, effectively addressing the dynamic
network issue in PCDNs. 3) Pscheduler features a redundancy
algorithm to enhance transmission reliability without wasting
bandwidth. The algorithm determines if there is remaining
space at the end of each short flow to accelerate the download
process.

We implement Pscheduler in Douyin’s PCDN system and
conduct large-scale online A/B testing with approximately
100,000 Douyin users whose APP updated to Pscheduler
to participate in the test, generating tens of millions of
video data. We observed that Pscheduler achieved an average
improvement of 60% in goodput, a 20% reduction in data
delivery waiting time, and a 30% reduction in rebuffering rate.
Furthermore, controlled experiments show that Pscheduler out-
performs other state-of-the-art schedulers, making it a better
scheduling candidate for PCDN systems.

Contributions: In summary, the key contributions of this
work are:
• We provide the comprehensive detail of a new video

delivery network – PCDN and analyze the challenges it
poses in multipath data packet scheduling.

• We propose the first compute-aware MS2OC schedul-
ing mechanism for PCDN, Pscheduler, to route the data
and ensure smooth video playback.

• We implement Pscheduler in the PCDN video system
of Douyin.
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Fig. 2. The high traffic cost is driving the transition from CDN to PCDN.

• We conduct large-scale online tests of Pscheduler
through the Douyin App. The evaluation results with
tens of millions of video data samples provide strong
evidence that Pscheduler is effective in improving video
QoE metrics.

Our prior work [23] presented a practical large-scale online
A/B test. Based on the work [23], we make the following new
contributions: 1) we re-organized §I, §II and §VI to highlight
the motivation, challenges and insights to cope with multi-
source transmission scheme scenarios. We reviewed more
related work to present a detailed background; 2) we add
new diagrams, redraw some of the diagrams and improve the
presentation of several sections to make the paper clearer,
especially for the design of our method in §IV; 3) we add
more detailed simulations in §V-D to study how Pscheduler
may affect the system’s performance considering the metrics.

In what follows, we first detail Douyin’s PCDN includ-
ing the architecture, the protocol, and advantages in §II.
We present the key aspects of motivation in §III. We pro-
pose Pscheduler – the first MS2OC scheduling mechanism in
PCDN in §IV. In §V and §V-D, we implement PScheduler
in Douyin’s PCDN system and present the evaluation results
through both practical large-scale online and simulation tests.
§VI describes the related work. Finally, we draw the main
conclusions in §VII.

II. BACKGROUND

A. PCDN-Multipath Video Distribution Network

This section focuses on introducing the network architec-
ture and transmission protocol of the Douyin self-developed
PCDN, which has been operating on Douyin for four years.

1) PCDN Network Architecture: To combat the high costs
associated with traditional CDNs, video content providers like
Douyin have turned to PCDNs in their underlying networks,
as illustrated in Fig.2. CDNs rely on a tree-like interconnected
server network to provide high-speed and stable bandwidth
services [24]. The core idea of CDN is to load balance the
original content to the user’s nearest edge server to reduce
data transmission delay. The external CDN stores all videos.
As this paper focuses on the design of our PCDN system,
we treat the external CDN as a black-box; readers interested
in a centralized CDN design may refer to prior literature [25].

However, deploying CDN requires significant investment
in infrastructure such as Internet data centers (IDCs) and
dedicated edge servers, leading to high traffic rent fees [26].
In contrast, PCDNs utilize massive amounts of fragmented

under-utilized computing storage and network resources avail-
able on the edge devices to distribute data. This approach
enables the building of a low-cost, high-quality content dis-
tribution network that helps Douyin effectively manage its
content delivery and maintain a competitive edge in the
market.

The Douyin self-developed PCDN consists of three key
components: 1) A distributed network of edge devices with
under-utilized resources. 2) A client-side library integrated
into users’ mobile devices. 3) A centralized tracker cluster
operating on public network to help the computation and
time-variable routing. Each device within PCDN serves as
an uploader, caching a range of videos, typically storing
entire video segments for efficiency. The system of devices is
designed for simplicity: the tracker makes decisions regarding
file distribution, while the client library manages data trans-
mission. Trackers serve as a control plane in PCDN, collecting
data on video popularity from client requests and operational
states from devices to execute fine-grained video pre-allocation
across devices. Consequently, the tracker maintains a detailed
mapping table, linking each video ID to a list of devices
that store the corresponding video. When the client requests
a video, it first consults the tracker to locate the devices
containing the video file. We partition each video into equal-
length (in duration) segments. The default segment length is
10 seconds. Following this, the client establishes connections
with these devices to commence data transmission. Due to
the limited and fluctuating available bandwidth of individual
devices in PCDN, it adopts a multipath parallel transmission
approach from multiple dispersed devices to ensure video
service quality. The protocol’s specifics are detailed below.

2) Pull-based Multipath Transmission Protocol: In PCDN,
devices are invisible from each other, necessitating the client
to manage the control across flows from these devices by a
pull-based transmission protocol to help do the routing. This
process involves the client establishing individual connections
with a set of devices and sending request packets to each.
Each request packet asks for a corresponding data packet and
transfers one segment, as shown on the right of Fig.3. In the
context of video transmission, each device opens a flow control
window. The client library strategically decides which request
to send through which connection, based on the availability of
free windows for effective flow control and scheduling. Upon
receiving a request, a device responds with the requested data
packet. If these packets arrive in the correct sequence, they are
promptly forwarded to the player for decoding and playback.
As a result, the client side needs to schedule data packets
across different connections to ensure that the data arrives in
the correct order, preserving the integrity and continuity of the
video stream to meet the demands on the network for better
quality.

B. Scheduling in PCDN

The heterogeneity of paths in multipath transmission (such
as different RTTs and different packet loss rates), brings
significant challenges to the orderly transmission of forwarded
data [27]. Most existing scheduling algorithms focus on the
HoL problem in MPTCP. This refers to the situation where
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Fig. 3. Data likes rotating on conveyor belts of different lengths. Out-of-order data can cause hole flooding.

packets with lower sequence numbers on the slower path
arrive later at the receiving end than packets with higher
sequence numbers on the faster path. Although the fast path
data packets are already in the receive buffer, the receiving
end cannot confirm them because, in TCP/MPTCP, the ACK
sequence number is usually determined by the highest data
packet sequence number that arrives at the receiving end in
turn [21]. This leads to the fast path being idle. When PCDN
transmits data, it adopts the method of sending request packets
and replying to data packets. The late arrival of data packets
transmitted by the slow path to the client will not cause
blockage of the fast path, but the out-of-order data packets
cannot be delivered to the player for playback, causing delay
jitter affects user experience. In addition, compared to MPTCP
which usually uses two paths for transmission, based on real
deployment experience, a user’s viewing demand typically
requires support from 2 to 10 devices in PCDN. This inevitably
increases the heterogeneity among paths, posing a greater diffi-
culty in designing the scheduling mechanism [28]. To facilitate
updates, the entire transmission protocol is implemented in
user space based on UDP.

C. Typical Multipath Scheduling Mechanisms

Douyin deployed the default scheduler in the Linux system,
minRTT, that distributes packets to the path with the smallest
RTT, which cannot solve the above problems. Some advanced
multipath scheduling mechanisms have been proposed in
recent years, such as BLEST [18], ECF [19], XLINK [29].
BLEST and ECF will pause the slow path packet transmission
when they predict that a HOL blocking will occur. XLINK
uses the QoE feedback to calculate the remaining playback
time and combines the data packet transmission time for
re-injection operation, which reduces the request completion
time and video rebuffer rate. They both sacrifice aggregate
bandwidth to achieve improvements in other metrics.

III. MOTIVATION

In this section, we discuss the limitations of existing mul-
tipath schedulers when applied to a PCDN deployment.

A. Aggregate Bandwidth and End-to-End Latency Trade-Offs

MPTCP schedulers fail to guarantee high throughput while
minimizing end-to-end latency required by PCDN systems.

MPTCP, similar to TCP, provides in-order and reliable data
delivery to applications, which means that the receive buffer
must temporarily store out-of-order data packets. Let’s con-
sider a scenario with one fast path and one slow path, where
their respective bandwidths and RTTs are denoted as Bf

and Bs, RTTf and RTTs. To avoid sacrificing aggregate
throughput, the default minimum scheduler buffer size is [30]:

Bufagg = (Bf + Bs)×RTTs (1)

At this point, even though the fast path is not blocked for
sending, it needs to wait for the arrival of packets from the
slow path before delivery. During this period, the number of
window rounds N that the fast path has to wait for is as shown
in Eq.(2). The end-to-end delivery latency of packets in each
round decreases by RTTf compared to the previous round.
So the sum of end-to-end delivery latency is computed as
Eq.(4), CWND is short for the Congestion Window. Therefore,
the average end-to-end delivery latency at this buffer size is
given by Eq.(3). It can be observed that when RTTf , Bf and
Bs remain constant, the larger RTTs, the higher the average
end-to-end delivery latency.

Nround = RTTs/RTTf (2)
Lsum = RTTs × CWNDs

+
N−1∑
i=0

(RTTs−i×RTTf ))× CWNDf (3)

Lavg = Lsum/Bufagg

= RTTs × (1− 1
2×RTTf × (Bf + Bs)

)

+
1

2× (Bf + Bs)
(4)

Then how about decreasing the buffer size to less than
Bufagg? If so, MPTCP schedulers cannot fully utilize the
aggregate bandwidth. They will tend to block the slow path to
fully utilize the fast path. At this point, the minimum achiev-
able end-to-end delivery latency is RTTf , but the aggregate
bandwidth is also approximately equal to Bf [31]. Therefore,
MPTCP schedulers can only achieve a trade-off between high
aggregate bandwidth and low end-to-end latency, but cannot
simultaneously achieve both.

We conducted experiments to demonstrate this phenomenon.
Specifically, we replicated the representative BLEST and
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Fig. 4. Topology.

Fig. 5. Trade-off between aggregate bandwidth and latency of different
schedulers under different receive buffer sizes.

ECF mechanisms in mininet [32] and integrated the PCDN
transmission protocol environment into the mininet. The exper-
imental topology, as shown in Fig.4, consists of a client
connected to two servers via a router, with a bottleneck having
a bandwidth of 30Mbps and a loss rate of 0.1%. The RTTs
of Path 1 and Path 2 are 30ms and 90ms, respectively. In
Fig.5, we present the results showing the average waiting
time between a packet received and delivered per packet and
throughput for different mechanisms with varying receiving
buffer sizes. Notably, we observed a direct proportionality
between the waiting time and the buffer size, while the
throughput displayed an inverse proportionality to it. Indeed,
Pscheduler (Ps) can perform well in both aspects. It effectively
manages waiting time and optimizes throughput, achieving a
good balance between the two objectives.

B. Challenges in Aggregating Bandwidth Using Complete
CWND

To avoid wasting any bandwidth, it is imperative to leverage
the complete CWND without impeding the progress of slower
paths. However, achieving this objective poses a notable
challenge—maintaining the sequential arrival of packets when
utilizing the entire CWND. In PCDN, the client adopts a
request-reply pull-based transmission mode that each data
response only opens a single flow control window in one
source server connection, which is commonly integrated in
the client apps (e.g., Douyin and Xigua [4]). When a user
downloads data from different devices, data is like rotating
on conveyor belts (paths) of different lengths as shown in
Fig.3. The longer the conveyor belt, the longer the path RTT.
When the transmission is in a steady state, the data rotation
speed is equal to the path bandwidth. For the path i, a data
packet is received at each interval of packet_size

bandwidthi
. As the packet

size is fixed, the arrival times of data packets will vary for each
path if the path bandwidths are different. With the PCDN

Fig. 6. The data shows a stepped delivery.

transmission feature, the client observes only one available
transmission window across all paths each time it receives
a data packet. Schedulers are triggered after receiving the
packet, determining the path for sending subsequent packets.
Without blocking the transmission, the next packet is sent to
the path with an available window. Consequently, the client
will distribute requests to different paths almost randomly,
causing data request packets to be sent in order and data
packets to be received out-of-order [27], can’t be delivered.

For example, taking Fig.3 left, at a certain moment, the
receive queue is queue a). At this time, packets 2 and 7 arrive
in the queue, which can only deliver ordered data packets 1∼3
to the player. Packets after 3 are unordered and incomplete
and cannot be played even if packet 7 arrives because there
are holes between packets 3 and 7 (packet 3 is received from
the path not shown in Fig.3, e. g., Path 4). With the increase
in the number of paths, the heterogeneity among paths grows,
and the correlation between packets arriving becomes smaller.
The presence of holes between packets also becomes more
frequent, which is referred to as “hole flooding”. Out-of-order
data in the receive buffer of the transport layer cannot be
delivered to the upper layer, increasing end-to-end latency and
jitter, and video playback may rebuffer (§ V). Fig.6 records
the delivery of data over a period of time without Pscheduler
in PCDN, highlighting the ladder-like delivery pattern caused
by the hole flooding problem. In summary, to ensure smooth
video playback under PCDN, the scheduler must effectively
manage strict packet-level arrival ordering.

C. Coupled With CC Algorithms Cause Imprecise Path
Information

To achieve strict packet arrival ordering, schedulers need
to accurately predict the packet arrival time on different
paths. However, existing multipath schedulers rely heavily
on CC algorithms to estimate the transmission time of each
path and often perform very differently under different CC
algorithms. To investigate this issue, we conducted experi-
ments in the same environment as before, with a receiving
buffer size of 0.5KB. We choose to use some representative
CC algorithms [33], [34], [35] like Copa [36], BBRv2 [37],
and PCC [38], to transmit files. The results are shown in
Fig.7. We take BLEST using the BBRv2 [39] algorithm as
an example. During probing, BBRv2 deliberately increases
the congestion window, which can mislead the scheduling
algorithm into believing that the path is improving, resulting in
more packets being sent on the slow path. Conversely, during
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Fig. 7. The performances of different schedulers under different congestion
control algorithms.

the emptying phase, BBRv2 intentionally reduces the CWND,
causing the scheduling algorithm to send fewer packets on the
slow path. Different CC algorithms have varying behaviors in
network bandwidth detection and emptying, causing the sched-
uler performance to fluctuate with time. Such a scheduling
mechanism is not CC-agnostic. When the transport protocol
migrates to the user state, the CC algorithm can evolve quickly.
Continually adapting the scheduling algorithm with different
CCs would be labor-intensive and affect the advantages of the
scheduling mechanism [40], [41].

IV. DESIGN

The primary design concept of Pscheduler is to ensure
smooth video playback by enabling data to arrive in an
orderly manner in MS2OC heterogeneous scenarios. However,
achieving this goal faces three main challenges. First, path
quality is difficult to assess. Many heterogeneous paths make
the network situation faced by the scheduler more complex
and changeable. Furthermore, since a larger receiving buffer
can solve the problem of holes, the orderly arrival of data is
important. Evaluating network quality based solely on RTT
and bandwidth is insufficient to guarantee accuracy. Continu-
ous packet loss or packet loss on a large RTT path will cause
the data to fail to arrive for a long time, or even miss the data
delivery time when the bandwidth is sufficient. Second, the
CC algorithm is challenging to decouple. Existing scheduling
algorithms rely on the CWND or sending rate provided by the
CC algorithm to estimate the data transmission time. However,
the CC algorithm has a periodic dynamic balance process and
a delay in path state perception. As a result, different CC
algorithms can have varying impacts on the same scheduling
algorithm. Thirdly, it is challenging to respond quickly to path
fluctuations due to the time drifting. Path quality in PCDN
is fluctuating. If the data request packets are distributed in
advance to the corresponding path waiting to be sent out,
sending packets in the original order may cause more serious
disorder when the network fluctuates. However, the redundant
transmission of data to deal with network fluctuations can
result in the waste of bandwidth and make the insufficient
PCDN transmission rate even worse.

The design of Pscheduler is centered around ensuring
smooth video playback and cost-saving under PCDN. To meet
these requirements, Pscheduler needs to achieve strict packet-
level ordering while efficiently utilizing the throughput of all
available paths.

Fig. 8. The Overview of Pscheduler.

A. Framework

As illustrated in Fig.8, Pscheduler comprises three key
components to address the above challenges:

1) Path Quality Estimation (§IV-B) that is independent of
CC algorithms to assess the quality of paths.

2) Data Distribution (§IV-C) to guarantee sequential data
reception and adapt to dynamic networks.

3) Redundancy Transmission (§IV-D) algorithm for
smooth video playback, which will be activated in exceptional
situations to enhance user QoE.

Pscheduler calculates the packet sequence number that
should be sent for the current path based on accurate path
estimation information. Then, it adopts the “Queue-Direct-
Access” approach to retrieve packets from the overall request
queue and send them out. Video transmission is always
segmented to avoid waste, and each segment is downloaded
as a range. The redundancy algorithm determines if there is
remaining space at the end of each range to accelerate the
download process. In contrast to previous approaches, Psched-
uler features a unique compute-aware forwarding redundancy
mechanism that is only triggered in exceptional circumstances.
In contrast to previous approaches, Pscheduler features a
unique redundancy mechanism that is only triggered in excep-
tional circumstances but plays a critical role in guaranteeing
smooth video playback.

B. CC-Decoupled Path Quality Estimation

To achieve packet-level arrival ordering in the packet
distribution of Pscheduler, two variables of the network trans-
mission paths are required to be obtained: the transmission
rate and the end-to-end transmission time of sending a data
packet along different paths.

1) Transmission Rate Estimation: Previous mechanisms
calculate the transmission rate by dividing CWND by RTT,
which is obtained from CC algorithm decisions. However,
the CC algorithms are often in an exploration state and may
not accurately represent the actual transmission rate (§III-C).
To decouple from CC algorithms, Pscheduler employs a trans-
mission rate calculation method that is independent of the
CWND, as shown in Eq.(5):

R =
datasize

endtime− starttime
(5)

where datasize stands for the size of the received data,
starttime represents the time when the first packet is received
in each interval, and endtime is the time when the last packet
is received in each interval. We calculate the rate at intervals
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of every received CWND packet, although CWND is not
a parameter in the rate calculation equation. This approach
avoids the impact of transient behavior in CC algorithms,
ensuring a more precise estimation of the connection’s trans-
mission rate.

2) Transmission Time Estimation: Pscheduler avoids
directly using RTT to estimate the transmission time of
packets. Instead, it calculates the average transmission time
required by a path to successfully complete a data packet
transmission as Eq.(6), including the parameter of packet loss
ratio (loss). This approach prevents the unnecessary sending of
packets on the paths with small RTT but high packet loss. The
probability that a packet is successfully transmitted after being
lost n− 1 times is lossn−1× (1− loss), and the transmission
time is ((n − 1) × rto + rtt), n ∈ N+. Thus, the average
transmission time of the data packet is:

E =
∞∑

n=1

(lossn−1 × (1− loss)× ((n− 1)× rto + rtt)))

= rtt + rto× loss

1− loss
(6)

where rto is the timeout retransmission time and loss stands
for the current packet loss rate. We use TFRC [42] to calculate
the loss rate, store flight data packets in a queue, and use this
queue to calculate the current packet loss rate.

In addition, due to the pull-based transmission mode of
PCDN, both the sending of data request packets and the
receiving of data packets are on the client side. The transmis-
sion time of a data packet will change from OWD (one-way
delay, the server sends data to the client) to RTT (round-
trip delay, client requests data and the server replies), which
means that the clock synchronization problem between the
sender and receiver will be eliminated in the path quality
estimation of Pscheduler. Therefore, using a transmission time-
based scheduling algorithm in PCDN to forward the packet
will be more accurate.

C. Queue-Direct-Access Data Distribution

To achieve packet-level data scheduling instead of
connection-level scheduling, Pscheduler requires greater flex-
ibility. We consider two data distribution methods: “packets
pick paths” and “paths pick packets”. Ultimately, to enable
the mechanism to flexibly combat network fluctuations and
achieve strict arrival ordering, we choose the “paths pick
packets” method.

1) Packets Distribution Based on Sub-Buffers (Packets pick
Paths): To efficiently schedule request packets on demand, one
approach is to employ individual pending task queue buffers
for each path, as depicted in Fig.9a). Request packets are pre-
allocated to the sub-buffer to rearrange their sending order and
achieve the desired arrival order of data packets. However, this
method lacks flexibility when the network experiences fluctu-
ations, as the request packets in the sub-buffer may be out of
order based on their pre-allocated sequence. Consequently, the
pre-allocated packets cannot achieve strict packet-level arrival
ordering, leading to a loss of flexibility.

Fig. 9. Two packet distribution modes.

2) Queue-Direct-Access Packets Distribution (Paths Pick
Packets): Pscheduler introduces a scheduling mode, path-
pick-packet (Fig.9b), to enhance the flexibility of request
packet transmission order. Unlike pre-allocation, this method
dynamically selects request packets based on network quality,
directly choosing packets from the overall queue for available
path space. This process is akin to a rotating conveyor belt,
where the queue learns which request packet to pick after
each delivery, avoiding the need for a worker to pre-move
packets in a fixed order. Despite only deciding one path’s
window per slot, Pscheduler accurately selects the specific
packet, achieving strict packet-level arrival order.

Algorithm1 is the detailed design of the Queue-Direct-
Access Packets Distribution algorithm. Whenever a path i
has an available window, Pscheduler calculates the average
transmission time Ei of the path according to Eq.(6) (line 3).
Then traverse all connections and calculate their average
transmission time Ej (lines 4-5). The smaller E means that
the connection can complete the transmission of a data packet
faster. Suppose the Ef of the first path is T , and the throughput
is D; the Es of the second path is 2T , and the size of the
data packet is S, then the arrival time of the data packet is
sendtime + E. In (Es − Ef ) time, the first path can send
T∗D

S packets. The second path directly sends the packet whose
position is T∗D

S +1 in the task queue which can ensure that the
data arrives in an orderly manner. At this time, the arrival time
of the packets at positions T∗D

S and T∗D
S +1 in the task queue

is both curtime+2∗T . Therefore, Pscheduler calculates offset
according to Eq.(7) (lines 7-8). Then the second path sends
the packet whose pos is Offset in the total task queue. It can
be observed that throughout the entire calculation process,
the buffer size variable is not utilized. Therefore, Psched-
uler is buffer-size agnostic and remains unaffected by buffer
inflation.

Offset =
n∑

j ̸=i

(Ei − Ej)×Rj

packetsize
(Ei > Ej) (7)
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Algorithm 1 Packet Distribution Algorithm
Input: connection i, connection set C
Output: offset

1 begin
2 offset = 0
3 calculate average packet transmission time of

connection i Ei via Eq.(6)
4 for j ∈ C and j ̸= i do
5 Ej = rttj + rtoj × lossj

1−lossj

6 if Ej < Ei then
7 calculate Rj via Eq.(5)
8 Offset+ = (Ei−Ej)×Rj

packetsize

9 return Offset

D. Redundancy Transmission

Pscheduler features a distinct redundancy algorithm, strate-
gically triggered to enhance transmission reliability that
doesn’t waste the bandwidth. It considers data packet urgency,
redundancy percentage, and task tail redundancy. In particular,
tail redundancy is important as sporadic packets at the end of
each range can limit the transmission of the next task segment.

1) Mark Packets Urgency: If the packet cannot arrive in
time for its playback deadline, it will be marked as urgent,
calculated as Eq.(8). Where playtimeremain is the remaining
time until the certain packet is played, and sendtime is
the time required to forward, as estimated as Eq.(6). The
threshold is the dangerous water level of the playback
buffer. Once the remaining playback time is lower than the
threshold, it is very likely to cause rebuffering. Considering
that packets may be lost, Pscheduler adds a maximum path
RTT above this threshold, so that even if packets are lost,
there is a chance for retransmission.

playtimeremain − sendtime < threshold + RTTmax (8)

2) Percentage of Redundancy: The second step is to ensure
that redundant packets will not reduce user QoE by limiting the
percentage between the number of redundant packets and the
task download speed. We set a cap on the percentage of redun-
dancy used. This approach guarantees that redundancy will
not be activated when the bandwidth is insufficient to sustain
the client’s throughput requirements. Additionally, it ensures
that the download speed of non-redundant data remains equal
to or greater than the playback speed. Assuming the client’s
playback bitrate is F , the average download speed is Varg =∑n

i Ri, redundant_data_size the size of redundant data
currently being transferred, flight_data_size is the total data
size being transmitted in the current network. Redundancy can
be triggered only when F < Varg, and the redundant data size
should meet the following conditions:

redundant_data_size

flight_data_size
≤ Varg − F

Varg
(9)

By satisfying these two criteria, a packet will only activate
the redundancy algorithm if it is lost multiple times and the
buffer data is depleted, striking a balance between redundancy

and performance. Each redundant packet is vital in ensuring
the minimum requirement, significantly decreasing the risk of
stuttering.

3) Task Tail Redundancy: For segmented task transmission,
Pscheduler designed a tail redundancy method. At the end
of each range, there will be a situation where the number
of remaining data packets is less than the total CWND.
If the tail data packet is lost or does not reach the receiving
end as expected due to network fluctuations, the link will
appear in an idle waiting phase. In addition, if the previous
task is not completed, the next range cannot transfer. But
it is surprising that no existing works have addressed this
critical problem. Therefore, once a connection i is detected
to offset > task_size, and offset < 2 ∗ task_size, which
is used for redundant transmission. Each tail packet will only
be redundant once.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement Pscheduler in the PCDN of Douyin. The
scheduler will be triggered when the client needs to send
a new “data request packet” by DataTimer(), Addnewtask(),
or receiving a packet. DataTimer() is triggered every 100ms
and will query the tracker for available nodes. Addnewtask() is
called every time a new task is created. When the scheduling
algorithm is triggered, the multipath scheduler will allocate
request packets on the connections that have idle CWND and
are still in the connection state.

B. Evaluation Setup

We verify the performance of Pscheduler by large-scale A/B
tests from Douyin real users as well as simulations.

1) Online Large-Scale A/B test (§ V-C): We select approx-
imately 100,000 Douyin users to participate in the Pscheduler
experiment. Our analysis covers over 10 million video plays
per day. To conduct this large-scale online test, we employ the
A/B testing methodology, wherein two user groups simultane-
ously used Pscheduler and basic minRTT for one month. The
basic minRTT is the method used in Douyin before Pscheduler.
Our A/B tests show the benefits of Pscheduler in terms of both
continuous and discontinuous speed improvements, as well
as the reduction of data packet out-of-order, which directly
impacts QoE. From a QoE perspective, we focus on reducing
rebuffering rates and improving the upward delivery speed
of data. Additionally, we pay attention to the mechanism’s
wastage rate. These metrics are the most important indicators
to ensure Douyin’s QoE, as users use their phones to play the
packet (segment) from the PCDN, and processing the packets
on their edge devices (phones) is fast. To test the impact of
redundancy algorithms on the results, we evaluated two vari-
ants of Pscheduler: Pscheduler (the full version of Pscheduler)
and Pscheduler-NR (Pscheduler without redundancy).

2) Simulator (§ V-D): Given the challenges associated
with conducting detailed experiments in large-scale real-world
environments, we implemented part of PCDN’s transmission
protocol in Mininet. This simulation platform allows us to
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Fig. 10. [A/B test] The reduction in out-of-order data average size.

replicate various network environments and perform con-
trolled experiments across different scenarios. By utilizing
Mininet, we can manipulate network variables and analyze
how different algorithms perform under conditions such as
heterogeneous round-trip times (RTTs) and varying congestion
control (CC) algorithms.

3) Choices of Baseline: Due to three reasons: 1) Pull
streaming; 2) More paths; 3) Larger send/receive buffer
(details in §I), most of the previous scheduling algorithms are
not very good in MS2OC good run. For example, BLEST
suspends the transmission of the slow path to avoid the situa-
tion that the fast path cannot send packets due to insufficient
receiving buffer space. So the huge receiving buffer makes
BLEST degenerate into minRTT. ECF distributes a certain
amount of data packets (newly delivered tasks in the send
buffer) to a path each time. In PCDN, a large number of
data will be delivered at one time, which is equivalent to
having a huge send buffer, resulting in the effect of ECF
even worse than minRTT [31]. The results in Fig.5 are in
line with our expectations, showing that the performance of
traditional algorithms is similar to that of minRTT. In addition,
XLINK was originally designed for two paths scenarios, and
there will be ambiguity when expanding to more than two
paths scenarios. Therefore, we choose the original algorithm
minRTT as the comparison algorithm. At the same time,
we tested two variants of Pscheduler: Ps (Pscheduler full
version) and Ps-nr (Pscheduler without redundancy).

C. Large-Scale A/B Test

1) Out-of-order Data Size: The metric of out-of-order data
size is the most straightforward indicator of the impact of
scheduling mechanisms. After receiving each packet, we mea-
sured the current size of out-of-order data and calculated
the average. Fig.10 demonstrates that Pscheduler effectively
reduces the average amount of out-of-order data by more than
20% compared to the baseline mechanism.

2) Goodput and Data Waiting Time: Fig.11 presents
the goodput improvement and data waiting time reduction
achieved by Pscheduler at different percentiles compared to
the minRTT mechanism. Goodput is defined as the speed of
data delivered for playback. In other words, it is calculated as
the data in order divided by the duration between the beginning
of the range downloading and receiving half the size of the
range. The data waiting time metric measures the time between
a packet being received and its delivery upward for playback.

Fig. 11. [A/B test] Goodput vs. Data waiting time.

Fig. 12. [A/B test] The improvement in video download speed.

Goodput and data waiting time are interrelated. If data remains
in the buffer for a prolonged period but cannot be played due to
out-of-order issues, the goodput will decrease, increasing the
likelihood of buffering and stuttering occurrences. Pscheduler
efficiently arranges data in order, resulting in a 20%∼80%
increase in goodput and 15%∼25% reduction in waiting time,
which effectively prevents rebuffering.

3) Video Download Speed: We measure video download
speeds for each range being downloaded. Fig.12 shows
the speed improvement of Pscheduler and Pscheduler-NR
compared to the original algorithm (minRTT) at different
percentiles. Pscheduler-NR shows an average improvement of
6% in video download speed, while Pscheduler achieves an
average improvement of 10%. At the 95th percentile, Psched-
uler still exhibits a 6% enhancement. As video downloads
are often segmented based on ranges, with short flows being
predominant, the selection of data packet transmission paths
becomes crucial, making Pscheduler effective in boosting
video download speeds. However, compared to continuous
video download speeds (Goodput), the improvement in down-
load speeds may not appear as significant. This is because
the primary role of the scheduler is to enhance data ordering,
which has already been demonstrated through the increase in
continuous download speed and the reduction in rebuffering
rates, validating the effectiveness of the algorithm.

4) Video Jump Rate: The rebuffer rate is a crucial metric
influencing video Quality of Experience (QoE) and video
smoothness. In Douyin’s PCDN, rebuffering triggers a switch
from PCDN to CDN as a backup. We use the online jump
rate as a measure of PCDN transmission failures leading
to CDN transition, calculated by dividing jump duration by
total playback time. Fig.13 displays the average jump rate
throughout the day, comparing Pscheduler to the minRTT
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Fig. 13. [A/B test] The reduction in the rate of videos that jump out to the
CDN network due to rebuffering.

Fig. 14. [A/B test] The waste rate of Pscheduler and minRTT within a day.

mechanism. Pscheduler effectively reduces the jump rate by
up to 30%.

5) Data Waste Rate: In Fig.14, the data waste rate for a
specific day is presented. This rate is calculated by taking the
difference between the number of requests sent and the total
number of packets in a task, divided by the total number of
packets in the task. The waste rate accounts for both packet
loss and redundancy. Pscheduler exhibits a slightly higher
waste rate than minRTT due to its redundancy algorithm.
However, the increase is only 0.74%, while achieving a 10%
improvement in video download speed. This suggests that
Pscheduler’s redundancy strategy employs a minimal amount
of redundant data but plays a crucial role.

D. Simulation Evaluation

1) Simulation Setup: We implement Pscheduler and base-
line into the PCDN system. In simulation experiments, we use
Mininet to simulate different network environments to conduct
controlled experiments. The utilization of Mininet allows us
to establish diverse network scenarios, varying path numbers,
and introducing heterogeneous RTT. This setup facilitates a
comparative analysis of different schedulers under varying
conditions. Pscheduler demonstrate superior results, achieving
higher aggregate throughput and lower packet waiting time
across different path numbers. Unless otherwise specified, the
CC algorithm defaults to BBR.

2) Experiment Results: We provide simulation results in
this section.

a) Scenario 1: RTT heterogeneity of paths: We first
tested the robustness of the Pscheduler on heterogeneous paths.
The RTT heterogeneity of the path is one of the main reasons
for the disorder. For the convenience of illustration, we first
do the scenario of using two paths for transmission. From

Fig. 15a and Fig. 15b, it can be seen that as the RTT of
the second path increases, the heterogeneity between the two
paths increases, and the degree of disorder of the minRTT
algorithm also increases almost linearly. Pscheduler estimates
the order of data arrival based on transmission time and
bandwidth, making the degree of data disorder always kept
at a low level. Compared with minRTT, OFO size is reduced
by 23.6-61.0%, and wait time is reduced by 21.7-43.3%. Since
the client downloads multiple small tasks serially, as the RTT
of Path2 increases, it becomes more and more difficult for the
throughput to reach the network’s upper limit in a short period
of time. Hence, the average task completion time gradually
increases. Fig. 15c shows that in the overall increasing trend
of task completion time, Pscheduler-nr and Pscheduler are
always much lower than minRTT, reducing the completion
time by 4.3-7.1%. However, since this scenario does not have
a loss rate, there is no need to send redundant packets. Sending
redundant packets unnecessarily lengthens the FCT slightly.

b) Scenario 2: Dynamic RTT with loss rate: This section
examines the algorithm’s performance in a dynamic RTT
environment. The x-axis in the figure represents the maximum
RTT jitter of the two paths. Fig.16 shows that the jitter of the
smaller RTT path does not cause minRTT to generate more
out-of-order packets, while the jitter of the larger RTT path
causes the degree of out-of-order packets to increase rapidly.
This is because the generation of out-of-order data packets is
mainly caused by the fact that the data packets on the large
RTT path arrive at the receiving end late. The jitter of the
small RTT path actually causes the OFO data packets to be
OFO and has no effect on out-of-order indicators. Only when
the data packets on the large RTT path arrive in order, the
data in the receive buffer can be delivered in order, and the
degree of disorder will increase inevitably once the jitter is
messed up. Pscheduler’s “paths pick packets” algorithm more
flexibly adjusts the packet transmission order, maintaining
good performance even in the presence of RTT jitter in the
path.

c) Scenario 3: Adaptability to different CC algorithms:
Fig.17 records the performance of different scheduling algo-
rithms under different CC algorithms. We reproduce three
typical CC algorithms BBR, COPA [36] and PCC [43] in
PCDN’s multipath transmission protocol, and run minRTT,
Ps and Ps-nr scheduling algorithms on these three algorithms
respectively. Congestion packet loss caused by different CC
algorithms’ mechanisms and different queuing delays leads
to different degrees of out-of-order transmission. From the
motivation experiments, it can be seen that the performance of
traditional scheduling algorithms varies greatly under different
CC algorithms, even worse than minRTT. But the independent
bandwidth estimation mechanism makes Pscheduler perform
well under different CC algorithms. Compared with minRTT,
the OFO size of Pscheduler is reduced by more than 10%, the
waiting time is reduced by more than 30%, and the completion
time is reduced by about 10%.

d) Scenario 4: Different number of parallel transfer
paths: It can be known from motivation 2.2.1 that the more
paths there are, the more serious the hole flooding problem
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Fig. 15. [Simu] RTT heterogeneity of Paths. The bottleneck bandwidth of the two paths is 10Mbps without loss rate. The delay of the first path is fixed at
30ms, and the delay of the second path is gradually increased from 40ms to 100ms with a change interval of 10ms.

Fig. 16. [Simu] Dynamic RTT with loss rate. The bottleneck bandwidth of the two paths is 10Mbps with 0.1% loss rate. The delay of two paths is 30ms
and 90ms. The delay of the path is jittered according to the x-axis.

Fig. 17. [Simu] Adaptability to different CC algorithms. The bottleneck bandwidth of the two paths is 10Mbps without loss rate, the delay of two paths are
30ms and 90ms.

will be. Fig.18 records the out-of-order degree and completion
time of different scheduling algorithms tested under 2-5 paths.
With an increase in the number of heterogeneous paths,
the degree of out-of-order transmission and the completion
time show a linear increasing trend due to the more severe
problem of hole flooding, when using minRTT. However,
it can be seen from the figure that as the number of paths
increases, the degree of confusion of Pscheduler only increases
slightly. Moreover, as the number of paths increases, the total
bandwidth of the connection increases, so the task completion
time decreases gradually. Compared to minRTT, Pscheduler
reduces completion time by an average of 2%.

VI. RELATED WORK

A. Multipath Transmission Protocols

Multipath transmission protocols have evolved as the num-
ber of device network interfaces increases [13], [15], [44].
MPTCP [15] and MPQUIC [16] respectively expand the
single-path transmission protocol based on TCP [45], UDP to

an end-to-end multipath transmission protocol to increase the
transmission rate and robustness. PCDN is a multiple-server-
to-one-client transmission protocol that makes up for the lack
of single-path transmission performance.

B. Multipath Data Forwarding Algorithms

There are currently scheduling algorithms designed for
MPTCP. MPTCP initially uses the RoundRobin [46]
algorithm, which traverses all subflows and sends data as long
as the sub-flow has a free CWND. Currently, in the Linux
kernel, the default scheduling algorithm of MPTCP is the
minRTT algorithm, which prioritizes data scheduling to paths
with small RTTs so that subflows with good path quality can
send more data. Otias [47], ECF [19], and BLEST [18] will
maximize the utilization on the fast path and block the slow
path to prevent HoL. In order to improve the utilization of
the fast path, they will cause the slow path to idle, reducing
the aggregation throughput to a certain extent. In addition,
some works ensure the orderly transmission of data through
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Fig. 18. [Simu] The different number of parallel transmission paths. The path bottleneck bandwidth is 5Mbps without loss rate, the minimum path delay is
30ms, and the delay of each additional path increases by 10ms.

redundancy [48]. Redundant selects a path with the small-
est RTT as the main path to transmit data and transmits
repeated data packets on other subflows. TWC [49] restricts
the sending of redundant packets by estimating the arrival
time range of data packets. Nevertheless, TWC’s bandwidth
waste is still serious. XLINK [29] further limits the number
of redundant packets through double thresholds. However,
the above algorithms all work on MPTCP and MPQUIC,
which have only two paths in most cases, and focus on
solving the HoL problem. Pscheduler takes into account the
unique challenges of streaming multipath parallel transmission
in PCDN, ensures smooth video playback through precise
compute-aware scheduling at the packet level and meets the
sophisticated demands on the network for better quality of
application users.

C. Network Architecture

CDN, content distribution network, caches video data on
servers closer to users. With the increase in bandwidth
demand, the construction cost of servers, switches, etc. has
also risen sharply. P2P [50], [51] is a peer-to-peer transmission
network architecture, which can be divided into tree-based,
grid-based, and hybrid tree-grid-based data-forwarding sys-
tems. Although P2P networks have higher scalability and
lower deployment costs, dynamic nodes also cause instability
and low performance due to insufficient participating nodes.
PCDN combines the two to build a high-quality and low-cost
video distribution network.

VII. CONCLUSION

With the increasing costs of traffic, the demand for more
cost-efficient video distribution has led to the transition from
traditional CCDNs to PCDNs. In this paper, we present
Pscheduler, a novel MS2OC scheduling mechanism tailored
specifically for PCDNs. Pscheduler adopts a fine-grained
packet-level scheduling approach, with the primary goal of
optimizing the aggregate bandwidth while simultaneously min-
imizing end-to-end latency, thus enhancing the overall video
QoE. Our evaluation demonstrate that Pscheduler effectively
reduces data disorder in the MS2OC scenario and significantly
improves video goodput.
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