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Abstract : Fast join methods implemented in a relational 
database processor, RINDA, are described. RINDA per- 
forms complex queries including sorts and joins with spe- 
cialized hardware. Join operations by RINDA are exe- 
cuted in three phases: filtering phase, sorting phase and 
merge-join phase. In the filtering phase, unjoinable tuples 
are removed with hashed-bit-arrays. Remaining tuples 
are sorted in the sorting phase. Sorted tuples are merged 
and connected together in the merge-join phase. Iterating 
operations in the filtering and sorting phases are rapidly 
executed by RINDA’s specialized hardware. Especially in 
the filtering phase, a new multiplication-folding method is 
used as a hashing function to set and refer hashed-bit- 
arrays. It strongly reduces collisions for any type and 
length of keys. Three kinds of join algorithms, nested- 
loop, single-table filtering and dual-table filtering algo- 
rithms, are dynamically selected according to the number 
of tuples to be joined. Performance evaluation shows 
RINDA accelerates join operations about ten times com- 
pared with conventional software systems. 

1. Introduction 

In recent relational database systems, high speed 
query execution are required for retrieving over 1-Giga 
byte databases. However, non-indexed queries which 
access all data objects stored in disks take a lot of time 
when they are executed by general purpose computers 
because these computers aim to achieve high performance 
for complex operations with a few data objects. Database 
machines have been studied and developed to realize 
high-speed execution of database operations based on 
many iterative data comparisons and replacements. 

Database machines can be classified into two types. 
The first is designed to solve the I/O bottleneck between 
CPUs and DISKS and the second type solves the CPU 
neck caused by sorts and joins. CAFSl is in the first 
category and uses special purpose processors attached to 
disk controllers. Each processor executes tuple selections 
and restrictions within tuple read out time from disks. 
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GRE02 with a special hardware sorter and the IDP3 
expanded vector processor which executes database opera- 
tions are of the second type. The Server/80004 series 
database processor is a hybrid for solving both the I/O 
and CPU necks. It consists of many micro-processors for 
I/O operations and a specialized RISC processor designed 
for database operations. 

RINDA is a new relational database processor com- 
posed of CSPs and ROPs. The CSP, Content Search Pro- 
cessor, executes tuple selections and restrictions within 
tuple transfer time from disks. The ROP, Relational 
Operation accelerating Processor, mainly executes sorting 
and accelerates join operations by using specialized 
hardware. Thus RINDA executes non-indexed queries 100 
times faster than conventional software database manage- 
ment systems since both I/O and CPU bottle necks are 
solved. 

This paper presents fast join algorithms based on the 
three-phase join method6 applied in RINDA. The three- 
phase join method consists of filtering, sorting and 
merge-join phases. In the filtering phase, unjoinable tuples 
are removed from joining tables. Remaining tuples, that 
is the candidate tuples of the join, are sorted in the sort- 
ing phase. After sorting tuples of joining tables, those 
tuples are merged and connected together in the merge- 
join phase. Operations in the filtering and sorting phase 
are rapidly done by specialized hardware in the ROP. The 
merge-join phase is done by software in a host computer 
because the condition of tuple connection depends on the 
user’s requirement. The work load of the merge-join 
phase can be almost entirely eliminated by filtering 
unjoinable tuples and sorting the two tables. 

Hashing functions for filtering unjoinable tuples are 
very important. To filter all unjoinable tuples, the hash- 
ing function used to set and refer hashed-bit-arrays must 
not collide in any key data types and length. If a collision 
occurs, unjoinable tuples remain by mistake. Therefore, a 
new multiplication-folding method based on the rotation- 
folding7 and multiplication8 methods was implemented. 

In section 2, we discuss the problems of conventional 
relational database management systems and solutions 
offered by the RINDA system. A fast join algorithm based 
on the three-phase-join method is discussed in section 3. 
In section 4, the multiplication-folding method for filtering 
functions is proposed and evaluated using a large number 
of actual keys. In section 5, RINDA architecture for 
accelerating join operations is described. The performance 
enhancement of join operations by RINDA is also 
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evaluated. 3. Accelerating Methods for Join Operations 

2. Problems of Conventional Systems and Solutions 
offered by RINDA 

3.1. Design Consideration 

The performance of relational database systems has 
been improved by the effective use of indexes. However, 
some types of queries, i.e. selection by non-indexed 
columns, sorting after selections and aggregation for sta- 
tistical analyses, cannot take advantage of them. These 
queries are basically evaluated by iterative comparisons 
for a large number of tuples read out of disks. Therefore, 
they consume a great amount of CPU and IO time.g The 
amount of CPU and IO time increases according to the 
number of tuples in a table. Unfortunately, queries includ- 
ing join and sort operations need much more CPU time. 
For instance, sorting operations for n records need at least 
n*log(n) times of comparisons each of which is a very sim- 
ple operation. However, the conventional general purpose 
computer is designed to rapidly execute complex numeric 
operations. 

RINDA achieves high-speed executions of database 
operations by using specialized hardware. It aims to 
decrease both CPU and IO time. A typical RINDA sys- 
tem organization is shown in Figure 1. RINDA is com- 
posed of CSPs and ROPs each of which is connected to a 
host computer by a channel interface. The CSP directly 
searches tables stored in disk volumes, selects tuples and 
columns requested by a query, and then transfers the 
results to the host computer as a temporary table. The 
ROP sorts tuples in a temporary table transferred from 
the CSP via the host, and then returns a sorted tem- 
porary table back to the host. Unjoinable tuples are 
removed within sorting term. 

Conventional join algorithms mainly comprise three 
groups: nested-loop join algorithmslo , sort-merge join 
algorithmslo and hash-join algorithms.ll In nested-loop 
join algorithms, each tuple in the first table is repeatedly 
compared with all tuples in the second table. Thus, this 
algorithm can be used only if both tables are small 
because, although it is easier to control than the others, it 
requires very large number of comparisons. In hash-join 
algorithms, both joining tables are split into many packets 
by a hashing mechanism. Actual join operations are exe- 
cuted between split packets in which every tuple has the 
same hashing value. Therefore, hash-join algorithm is suit- 
able for parallel execution. In sort-merge algorithms, the 
amount of merge-join computations decreases to a linear 
order by separating sort operations for both tables. We 
selected sort-merge algorithm for join operations in the 
RINDA system because sort operations are rapidly exe- 
cuted by using specialized hardware. 

As mentioned above, the three-phase join method 
based on the sort-merge algorithm is implemented in 
RINDA. It consists of filtering, sorting and merge-join 
phases. Unjoinable tuples are removed in the filtering 
phase. Remaining tuples each of which is a candidate 
tuple of join in both tables are sorted in the sorting phase. 
After that, sorted tuples are merged and matched tuples 
are connected together in merge-join phase. 

The concepts behind how the filtering and sorting 
phases are realized by hardware are described below. 

The RINDA system has increased the cost- 
performance ratio about an order of magnitude compared 
with conventional software database management systems 
on a general purpose computer. 

In the first filtering phase, unjoinable tuples are 
removed by a filtering method with hashed-bit-arrays.12 
Remaining tuples after the filtering phase are sorted and 
then merged. Thus, if all unjoinable tuples are removed 
in the filtering phase, useless sorting and merging opera- 
tions for unjoinable tuples can be eliminated. However, a 
few unjoinable tuples inevitably remain because of colli- 
sions of hashed results. Therefore, a refined hashing func- 
tion is required because the number, data type and distri- 
bution of the key are unknown before the hashing opera- 
tion. Moreover, operations in this filtering phase are done 
on the largest amount of tuples in the three phases. 
Therefore, we decided the filtering operations should be 
executed by specialized hardware. 

Host Computer 
Channel I/F 

;.‘~-~-.‘ _ R 1 N D Am ____ V-M..; 
r I 
CSP DKC 

.___ __-_- _._______._.~___________._. 
II 

I II t= 

CSP: Content Search Processor 
ROP: Relational Operation 

Accelerating Processor 
DKC: Disk Controller 

Fig.1 RINDA system organization 

Sorting operations are well known to consume much 
computing power. We also decided sorting operations 
should be executed by specialized hardware. The number 
of keys and its data type are generally changed dynami- 
cally. Thus, we implemented a multiway merge sorter13 
that easily handles any number and types of keys. The 
multiway merge sorter realizes a compact large-capacity 
hardware sorter. 

In the merge-join phase, the number of input tuples 
are decreased by filtering operations and they are already 
sorted. Therefore, merge-join operations are executed 
with little computation. Tuple connection based on merg- 
ing is assigned many variations by users. That is the rea- 
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son why merge-join operations are execute by software on 
the host computer. 

3.2. Three-Phase Join Methods 
Three-phase join can be attained through single table 

filtering and dual-table filtering methods. These methods, 
shown in Figure 2, are described below. 

(a) Single-table Filtering Method: 

Temporary tables for join operations, R’ and S’, are 
made by the CSP from the base tables, R and S, respec- 
tively. Tuples in the first table R’ are input into the ROP 
to set a hashed-bit-array and to be sorted. Sorted tuples 
are output from the ROP as a sorted table R”. After 
that, tuples in the second table S’ are input into the ROP 
to refer the hashed-bit-array and to be sorted. Unjoinable 
tuples in S’ are removed by this set and refer operations 
to the hashed-bit-array. Sorted tuples are also output as a 
sorted table S”. Finally, each tuple of both sorted tables, 
R” and S”, is merged and connected in host computer. 
Thus, unjoinable tuples in the second table S’ are 
removed in the single-table filtering method. 

(b) Dual-table Filtering Method: 

Tuples in the first table R’ are input to the ROP 
only for setting a hashed-bit-array. Tuples in the second 
table S’ are then input for filtering unjoinable tuples. 
Remaining tuples in the S’ set another hashed-bit-array 
and are sorted as a sorted table S”. Tuples in the R’ are 
then input again for filtering using the second hashed-bit- 
array set by remaining tuples in the S’. Remaining tuples 
in the R’ are sorted as a sorted table R”. Finally, each 
tuple of both sorted tables, R” and S”, is merged and con- 
nected in the host computer. Thus, unjoinable tuples in 
both tables are removed in the dual-table filtering 
method. 

Join operations based on either method can be done 
when the number of remaining tuples after filtering is 
below the capacity of the sorter. Therefore, tables whose 
tuples are over the capacity of the sorter can be handled 
if the number of tuples in the filtered table is below the 
capacity. Moreover, both the time of tuple transferring 
and join operations in the host is decreased by filtering 
unjoinable tuples. 

4. Hashing Function 
Collisions of hashed results generally occur when 

unknown keys are hashed. Especially, in the join opera- 
tions, keys may be composed of several columns, each of 
which has a different data type and non-uniform distribu- 
tion by the former selection operations. In this case, the 
probability of collisions will be increased. Unjoinable 
tuples cannot removed when collisions of hashed results 
occur. Therefore, a sophisticated hashing function is 
necessary for decreasing the number of hashing collisions. 

An ideal hashing function can distribute all keys ran- 
domly in the addressing space of a hashed-bit-array. In 
papers (7) and (8), conventional hashing functions were 

compared from the view point of collisions using fixed- 
length short keys. The hashing functions compared 
included division, multiplication, folding and other 
methods. The division method exhibited a good result 
with fewer collisions for the unknown set of keys. How- 
ever, in the filtering phase of join operations, the division 
method cannot be used directly because keys may be long 
and of variable-length. The requirements of hashing 
functions for filtering operations are as follows: 

b) 

cl 

d) 

The hashing table can be composed of a bit array. 
Loading factor, i.e. the number of hashing keys over 
the size of a bit array, is slightly small. 

It is important to decrease the collisions, but the 
operation for overflow is not necessary. 

Any keys having various data types can be hashed by 
the same hashing function. 

Any keys with long and variable-length can be hashed. 

For hashing long and variable-length keys, the 
exclusive-or method is available. Keys are divided into 
some fixed-length fragments. These fragments are folded 
by exclusive-or logic. However, in character strings, espe- 
cially in Japanese kanji strings, the probability of ‘1’ 
occurrence in each bit is not even. Thus hashed results 
have biases by the simple folding method with one or 
two-byte fragments. To solve this problem, fragments 
should be folded after shift or bit-order reversed opera- 
tions. 

A new multiplication-folding method for key hashing 
was developed for RINDA. This method, which we call 
the RINDA method, is composed of a folding method with 
bit shift operation and a multiplication method for fixed- 
length fragments. The multiplication method is applied to 
randomize the character code, and the folding method is 
applied to handle variable-length keys. The RINDA 
method is achieved by compact specialized hardware such 
as exclusive-or and simple multiplication circuits. 

The RINDA method was evaluated by the large 
number of actual keys. The hashing effect of the RINDA 
method is compared with an ordinal bit-shift folding 
method in Figure 3. The horizontal axis is the number of 
collision keys, which means the number of different keys 
having the same hashing result. The vertical axis is the 
number of keys in which collisions occur. The ordinal fold- 
ing method is only shown in the six-bit shift case which is 
the best one within zero to seven-bit shift cases. Figure 
3(a) shows the result for random numeric keys with 16- 
byte fixed length. Figure 3(b) is for variable length keys, 
each of which is a headword of an English dictionary. 
Both are evaluated using 235k keys. 

The results of evaluations indicate the RINDA 
method achieves better effects than the ordinal method in 
all cases. Especially, for headword keys which have key 
distribution bias, over 80% of the keys were hashed 
without collisions by the RINDA method. On the other 
hand, hashing with the ordinal method was below 60%. 
Moreover, compared with the number of collisions, the 
RINDA method gets similar hashing results in both cases, 
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Fig.3 Hashing Effect on RINDA method (235k keys/lM-bit cells) 
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while the ordinal method is influenced by the distribution 
of keys. In the worst collision case, five or more head- 
words, which is over 10% of all keys, have the same 
hashed result by using the ordinal method. In the 
RINDA method, however, collisions occurring between 
three or more keys were rare. 

(a) Internal Key 
Tuples are generally composed of several columns 

each of which has a different data type such as an integer 
or a decimal number with or without sign or character 
string. Null value, which means the value of that column 
is undefined, may appear. 

Now, we discuss the relationship between loading fac- 
tor and collisions. The probability of collision occurrence 
was evaluated using several sizes of bit-arrays with the 
same number of keys. In Figure 4, the loading factor, 
that is key numbers over the bit-array size, is covered 
from 1 to l/8. Wheu the loading factor is 1, that means 
the number of keys equals the number of cells of the bit- 
array, about 40% of the keys were hashed without colli- 
sions. The remaining 60% of the keys caused collisions. 
When the loading factor reaches to l/4, the probability of 
collisions decreases to 20% and the number of collision 
keys, if collision occurs, is only two in most cases. The 
probability of collisions is decreased according to loading 
factor decrease. Therefore, in the filtering operation with 
hashed-bit-arrays, key collisions can be reduced by 
increasing the size of the bit-array. This means increasing 
the size of the bit-array is necessary when the number of 
keys increases. 

The ROP has key-extract hardware which composes 
internal keys from tuples. This hardware translates from 
the tuple having several kinds of data types to a compar- 
able key and makes it fuced-length from variable-length or 
the null value. Therefore, filtering and sorting operations 
for fuced-length keys are rapidly executed in simple 
hardware. 

(b) Working Memory Storage: 

5. Implementation and Performance Evaluation 

The internal key is used in the ROP for realizing 
small sized and easy controlled hardware. Original tuples 
must be stored to make an output temporary table. Thus, 
each key has a pointer assigned to the tuple stored posi- 
tion. After filtering and sorting operations, appropriate 
tuples are read out by the pointer attached to the key, 
and then transferred to the host as a temporary table. 
Incidentally, hashed-bit-arrays need some amount of capa- 
city as discussed in section 4. Therefore, three types of 
memory storage for storing keys, tuples and bit-arrays 
must be prepared in the ROP. 

5.1. Join Implementation in RINDA 

Dynamic optimization of join methods are imple- 
mented in the RINDA system. The optimal join method, 
in single-table filtering, dual-table filtering or nested-loop 
join methods, is selected by the number of tuples counted 
by the CSP. The nested-loop join method is performed 
when both temporary tables read out by CSP are small 
and can be joined without extra-IO operations. The 
single-table filtering method is performed when the tem- 
porary table is small enough compared with the other. In 
other cases, the dual-table filering method is performed. 

A block diagram of the ROP, which performs filter- 
ing and sorting operations, is shown in figure 5. ROP 
characteristics for join execution are as follows: 

Single working memory storage is implemented in the 
ROP for storing keys, tuples and bit-arrays. This storage 
unit is compact because it is composed of large capacity 
RAM chips. The boundaries between key area, tuple area 
and bit-array area are dynamically moved for storing any 
length keys and tuples. The size of the bit-array is 
assigned by the constant ratio of the working storage 
capacity to keep loading factor low. If the capacity of the 
storage is increased, so is the size of bit-arrays. Keys and 
tuples are stored in the remaining area of the working 
storage. The boundary between keys and tuples moves 
dynamically because the length of each tuple is variable. 

---------_-_.__._-..____________________- 

Load fatter 

prom/To HOST 
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Collision [Times] 

ROP Memory 

Channel I/F Tuple Transfer Tuple Area 
fi 

__-.._-----.__._. 

+ Sorter Key Area 

Key Extractor _..___.-.-..._... 
B1t Array 

Fig.4 Hashing Effect for Load Fatter Fig.5 ROP Block Diagram 
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Fig.6 Performance Improvement of Join operation 
( Normalized by time with RINDA ) 

5.2. Performance Evaluations 
The performance of a two table join operation by the 

RINDA system was evaluated using the Wisconsin Bench- 
mark.14 Elapsed time of the join for 10,000 and 100,000 
tuples are shown in Figure 6. The time is measured in the 
host computer from the start of execution of the query to 
the complete storing of the join results into a temporal 
table. The RINDA system was composed of a small-sized 
DIPS-VJOE host computer, two CSPs and an ROP. 

RINDA accelerates join operations about 10 times 
independent of the size of tables. The CPU time of the 
host was dramatically decreased by using RINDA. The 
reasons of this acceleration with RINDA are as follows. 

Join operations of these queries are performed by the 
single-table filtering method after 10% selection by CSPs. 
In the case of 100,000 tuples, the selected 10,000 tuples 
are input in the ROP. They set the hashed-bit-array and 
are sorted. Then, the other 100,000 tuples are input to 
the ROP and filtered by referring to the hashed-bit-array, 
In the Wisconsin Benchmark, the number of tuples after 
filtering is 10,000 by a collision-free filtering operation 
because the join column is a unique attribute. Thus, the 
time of tuple transferring from the ROP to the host and 
storing as a sorted temporary table is decreased substan- 
tially. Moreover, tuple comparing time in the host is 
dramatically decreased because most unjoinable tuples 
have already been removed by the ROP. 

6. Conclusions 
Join accelerating methods have been described. 

These methods are implemented in the relational database 
processor, RINDA. 
(1) The three-phase join method was implemented for 

accelerating join operations. It consists of the filter- 
ing phase which removes unjoinable tuples, the sort- 
ing phase for remaining tuples and the merge-join 
phase for connecting appropriate tuples. In RINDA, 

the filtering and sorting phases are directly performed 
by specialized hardware. 

(2) A multiplication-folding method for the hashing func- 
tion of filtering operations is used for hashing any 
type and length of keys. 

(3) According to the performance measurements, RINDA 
accelerates join operations 10 times compared with a 
conventional software system. 
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