
Maintaining Schemata Consistency for Interoperable 
Database Systems 

Illarralnendi A., Blanc0 J.M., Mena E., Goiii A., Pkrez J.M. 
F’acultad de Informitica, Universidad de1 Pals Vasco. Apdo. 649 (20.080) San Sebastibn. SPAIN 

e-mail: jipilecaOsi.ehu.es 

Abstract 

Many interoperable database systems offer the possibility 
of defining integrated schemata on top of heterogeneous 
databases. A very important challenge for these interop- 
erable database systems is to maintain the autonomy of 
the component databases while preserving the correct se- 
mantics of the integrated schemata. This paper presents a 
mechanism that responds automatically to design changes 
made in component databases which are relevant to one or 
more integrated schemata. Further, this mechanism pro- 
vides each component that decides to participate in the 
interoperable system with the opportunity to choose be- 
tween assuming the default monitoring provided by the 
system or customizing it by defining the system responses. 

1 Introduction 

It is widely recognized that many organizations pos- 

sess their data stored in distributed, heterogeneous, 
autonomous data repositories. In order to support co- 
ordinated access to this data, interoperable systems 
have been defined. In the literature we can find many 
proposals for interoperable systems, and in particu- 
lar interoperable database systems. In the latter case, 
there is not a consensus in the number of integrated 
schemata that they should provide -while some pro- 
vide a global unique integrated schema of the compo- 
nent schemata (e.g., [l]), others do not provide any 
global integrated schema. at all (e.g., [2]). An interme- 
diate position is supported by those that offer several 
integrated schemata customized to the specific needs 
of different applications (e.g., [3] and 141). Neverthe- 
less, when an integrated schema (global or partial) is 
provided, the task of maintaining the autonomy of the 
component database systems, while preserving the cor- 
rect semantics of the integrated schema, is very rele- 
vant . 

Proceedings of the Fourth International Conference on 
Database Systems for Advanced Applications (DASFAA’95) 
Ed. Tok Wang Ling and Yoshifumi Masunaga 

Singapore, April 10-13. 1995 
@ World Scientific Publishing Co. Pte Ltd 

Component autonomy can be addressed from dif- 
ferent points of view such as: design, communication 
and execution autonomy [5]. Design autonomy refers 
to the ability of component database administrators 
to choose their own designs with respect to the con- 
ceptualization and representation of the data, used 
constraints, etc. Communication autonomy refers to 
the ability of a component database to decide whether 
to communicate with other component databases and 
lastly, execution autonomy refers to the ability of a 
component database to execute local operations with- 
out interference from external operations and to decide 
on the order in which to execute them. 

In this paper we concentrate on the component’s 
design autonomy. We present a system that responds 
automatically to design changes made in a component 
database which are relevant to one or more integrated 
schemata. The types of design changes that the sys- 
tem monitors are: addition, deletion or modification 
of data elements that appear in the structural defi- 
nition of the databases which take part in the inter- 
operation. The three main processors that constitute 
the system are the Modifications Detector, the Modi- 
fications Manager and the Consistency Re-establisher. 
The joint goal of the two first is to detect and iden- 
tify, automatically, relevant design changes in compo- 
nent databases, while the goal of the third one is to 
re-establish automatically the consistency of the inte- 
grated schemata whether it is possible or to generate 
the appropriate warnings to the users. 

Among the scarce works that can be found in the 
literature related to the consistency problems for inter- 
operable database systems we can point out [6], [7] and 
[8]. The two first are concerned with consistency prob- 
lems at the instance level, i.e., among data stored in 
different databases. In f6] a mechanism is presented for 
specifying mutual consistency requirements -flexible 
limits within which related data must remain consis- 
tent. In [7] a proposal is presented for automatically 
generating active database rules that maintain consis- 
tency in the presence of semantic heterogeneity. Our 

36 



system, in contrast, monitors the consistency at the 
definition level, that is, among the integrated’schemata 
and the autonomous schemata definitions [9]. There- 
fore, we deal with the important problem of meta data 
consistency. In [S] , a method is proposed that moni- 
tors at the definition level too. It sustains the struc- 
tural semantic integrity of integrated schemata (de- 
fined with an object-oriented data model) regardless 
of the dynamic nature of component schemata. They 
do not, however, explain how and when the component 
database modifications will be detected. 

Many databases from legacy that can be incor- 
porated into an interoperable database system do 
not provide facilities for production rules, e.g. pre- 
relational databases. In database systems with such 
facilities (also known as active database systems [lo], 
[ll]) the production rules can be used to monitor the 
consistency problems. Others provide them but with 
some constraints, e.g. RDBTM supports only a con- 
crete type of system response. For this reason, it is 
necessary to define a new mechanism for interopera- 
ble database systems, independent of the component 
systems, to solve the problem of maintaining the con- 
sistency. 

Another feature of our approach is that, when a new 
database becomes part of the interoperable database 
system, it allows one to select the default monitoring 
provided by the system or to customize the monitoring 
defining the system responses. Moreover, notice that 
our system exempts the component database adminis- 
trators from the responsibility of informing the inter- 
operable system every time a design change is made. 

Finally, in the implementation of the system the 
Client/Server approach and object-oriented techniques 
have been used. The Client/Server approach allows us 
a parallel processing of different design changes. Fur- 
thermore, object-oriented techniques permit the en- 
capsulation of the peculiarities of the data structures 
provided by the catalogs used by the different com- 
ponent database management systems, and so the ac- 
cess is made to the different catalogs by an interface. 
Notice that the previous techniques facilitate the ex- 
tensibility of the system to other types of interoper- 
able system. In the remainder of this paper, first we 
present briefly the global interoperable database sys- 
tem architecture, then we explain the details of each 
component that is concerned with the mechanism to 
maintain schemata consistency, and last we introduce 
a motivating example. 

2 System Architecture 

In general, an integrated schema is generated through 
a process in which first of all, correspondences among 

37 

different objects’ of distinct databases are expressed 
and then some integration rules are applied. Usually, 
the databases that must be integrated are heteroge- 
neous so a previous step is needed where the hetero- 
geneity due to the use of different data models is elim- 
inated. Notice that not all objects of the components 
databases must belong to the integrated schema. Each 
component database system has the autonomy to de- 
cide which objects will be exported to the interopera- 
ble system. Nevertheless, when a change occurs in a 
component database, for example an object is deleted, 
that is relevant to an integrated schema, that change 
must be propagated to the corresponding integrated 
schema definition, because otherwise this definition 
would remain inconsistent. In general, more than one 
integrated schema could be affected by a change in a 
component database. 

Our proposal of an architecture for an interoperable 
database system contains four main modules, Trans- 
lator, Integrator, Query-Processor, and Monitor. We 
first present briefly the three first and then we explain 
in more detail the last one, which is concerned with 
the mechanism to maintain schemata consistency. 

Translator Module. This produces, with the help 
of the Person Responsible for the Integration 
(PRI), a new semantically richer schema defini- 
tion from a conceptual schema of a component 
database. 

Integrator Module. This produces an integrated 
schema by integrating a set of schemata previ- 
ously obtained by the Translator Module. 

Query-Processor Module. This obtains the an- 
swer to the user queries over the integrated 
schema by accessing the component databases. 
The Query-Processor Module has two kinds of 
components, the Global Query Processor and the 
Local Query Processor. 

Monitor Module. This responds automatically 
to design changes made in component databases 
which are relevant to one or more integrated 
schemata. 

Concentrating in the last module it constains four 
main components, three processors, the Modifications 
Detector, the Modifications Manager and the Consis- 
tency Re-establisher, and a new catalog, the System 
Consistency Catalog, that contains the relevant cata- 
log information (see figure 1). What we mean by rele- 
vant is that part of the database(s) catalog information 

1 Object here refers to data elements that appear in the strut- 
tural definition of the databases, relations and attributes for the 
relational model; data items, records and sets for the network, 
integrity constraints, etc. 



which the Modifications Manager needs to discover the 
modifications. 

Figure 1: Operational System Architecture 

Three main steps are followed by the Monitor Mod- 
ule to achieve its goal: 

1. 

2. 

3. 

When a design change is made in a component 
database, the Modifications Detector processor 
detects the situation and sends a message to the 
Modifications Manager. 

Then, the Modifications Manager analyses the 
message and discovers if the modification is rel- 
evant, in such cases, it generates one or more 
events. During the discovery process, the Mod- 
ifications Manager uses the information stored in 
the System Consistency Catalog. 

The Consistency Re-establisher detects the events 
and tries to re-establish the integrated schemata 
consistency by using a set of rules. 

From an operational point of view, a Client/Server 
architecture has been used. There is a Client appli- 
cation, the Modifications Manager, and one (or more) 
Modifications Detector processor (one for each DBMS) 
at each node to monitor the schemata modifications of 
the databases defined in that node that belong to the 
interoperable system. There also exists a Consistency 
Re-establisher application, for each node where inte- 
grated schemata are defined, that behaves as a server 
application of the Modifications Managers. This type 
of architecture allows us to define the parallel process- 
ing of different design changes, that is, different Modi- 
fications Managers (probably, in different nodes) could 
invoke at the same time the Consistency Reestab- 
lisher; the Client/Server approach guarantees the con- 
currency in the answer to the clients, duplicating the 

server if it is necessary. Alternatively, it could be pos- 
sible to have only one Modifications Manager for the 
whole system and so one Consistency Re-establisher. 
The best organization could be chosen according to 
the requirements of the organization. 

3 The Modifications Detector 

The goal of the Modifications Detector is to detect 
changes that occur in a database catalog. To detect 
if a database design modification has occurred from 
outside the DBMS (DataBase Management System) 
is not a simple task. To do it, three different solutions 
are possible: 

l To associate actions with the definition of objects 
that must be monitored, for example to attributes 
and tables in a relational database. 

a To define an interface on top of the DBMS and 
to force the component database administrator 
to use this interface every time that a database 
design modification is to be made. 

l To detect the modification with the help of the 
Operating System. DBMSs store the catalog in- 
formation in files. Therefore, every time that the 
database administrator makes a design change, 
the corresponding catalog file is modified. Using 
the operating system functions, modifications of 
files can be detected. Note that it is not neces- 
sary to access the files, but only to the directory 
information to obtain the date of their last mod- 
ification. For each DBMS it is necessary to know 
the name of its catalog files and their addresses. 

The first solution is only applicable to systems that 
provide production rules and this is not always the 
case for the databases that must be integrated, e.g 
hierarchical databases. The second one, although gen- 
eral, would go against the maintaining of component 
database autonomy. The third solution eliminates the 
limitations of the two first, it does not require the com- 
ponent database system to be active, neither interfere 
in its autonomy, therefore, we apply the third solution. 
For that we have defined a demon, that is, a process 
that monitors catalog file updates. A demon can be 
activated with a certain time granularity. A different 
demon exists for each different DBMS. However, two 
databases defined using the same type of DBMS are 
monitored by two instances of the same type of demon 
(see figure 2). 

Depending on the DBMS catalog files can be up- 
dated every time that the modification occurs only in 
the intensional part, or every time that a modification 

38 



ORACLS 061 IDMS DB2 ORACLE DB3 IMS DB4 

Figure 2: Monitoring different databases 

occurs in the intensional part as well as in the exten- 
sional part of a database (i.e., when the extensional 
and the intensional parts are stored in the same file). 
For the last case, the time granularity associated with 
the demons will be greater because in this way the 
detection of many irrelevant changes is avoided. 

In general, the time granularity will be decided by 
the PRI (although a default one is provided by the sys- 
tem), for example one day, taking into account that 
design changes do not occur very often, Moreover, 
notice that in this case the off-line process of detect- 
ing changes could be executed when the system is not 
overloaded. Nevertheless, this type of behaviour could 
admit, during a period of time, some inconsistencies 
among component and integrated schemata. Further- 
more, observe that changes that occur while the demon 
is not active are treated together. This has the benefit 
of avoiding useless actions in situations such as when 
an object is deleted from a database and then it is 
again created. 

The abstract specifications of all types of demons 
are equivalent, they only differ in the catalog files as- 
sociated with each type of DBMS that they must mon- 
itor. The algorithm for the demon that watches over 
IDMSTM databases is shown in figure 3. 

4 The Modifications Manager 

The Modifications Manager’s goal is to identify the 
design changes made in a component database which 
is relevant to integrated schemata definitions. Four 
steps are followed by this processor (see figure 4): 

1. It receives a message from the Modifications De- 
tector with the identification of the concrete com- 
ponent database where a change has been de- 
tected. 

2. Then, it sends a request to the database in which 
the modification has been detected, asking about 
the catalog information associated with it that is 
relevant for the integrated schemata. 

Input Arguments : Dbname Dbpath Dbowner Dbuser Dates 

(* The four first arguments are used to identify the database part 
that must be monitored. The last argument contains the dates 
associated with the database files that must be monitored *) 

obtain_names,of-databasefiles(“IDMS”); 
flag = 0; 
for each database file do 

obtainnewfilename(Dbpath); 
obtain-date; 
if newdate J! old-date then 

flag = i; flag = i; - - 
updatedate(Dates,newdate); updatedate(Dates,newdate); 

If flag then (* a modification has happened *) If flag then (* a modification has happened *) 
warningmodsnanager(Dbname,Dbpath,IDMS,owner,user); warningmodsnanager(Dbname,Dbpath,IDMS,owner,user); 
update-dates(Dates); update-dates(Dates); 

Figure 3: 1DMS TM demon algorithm 
Later, it compares the information returned by 
the database with the information associated with 
the same database in the System Consistency Cat- 
alog, and discovers if the modification is relevant 
and, in such cases, the type of modification. 

Finally, it generates an event (or events) for the 
relevant modification which the Consistency Re- 
establisher can detect and handle. 

Figure 4: The Modifications Manager Processor 

Concerning the first step, there is no problem with 
various simultaneous calls of the Modifications Detec- 
tors, because the use in the implementation of the 
Client/Server architecture allows that the Modifica- 
tions Manager will be duplicated for attending each 
call. This feature permits a parallel process whenever 
it is necessary. 

With respect to the second step, in order to de- 
fine a solution that could permit access to the differ- 
ent catalogs in a uniform way, object-oriented tech- 
niques have been used to provide a view of each com- 
ponent database catalog. This view permits us to en- 
capsulate the peculiarities of the data structures pro- 
vided by the catalogs used by the different compo- 
nent database management systems. Since the view 
is represented in an object-oriented data model, its 
implementation requires the writing of a set of oper- 
ations (methods), which implement the interfaces of 
the classes in the view in terms of the primitives pro- 
vided over the component catalogs. For example, the 
object-oriented view of a catalog supported by a rela- 

39 



tional database management system is constituted by 
the following class2: 

class 7tlationaLdatabase 

inherit database 

features 

obtain-tables is deferred 

obtain-attributes is deferred 

end - end class relational-database 

The operations obtain-tables and obtain-attributes are 
primitive operations defined in terms of the specific 
languages provided by the component database man- 
agement systems. The implementation of primitive op- 
eration obtain-tables when dealing with an OracleTM 
relational database management system is shown in 
figure 5. 

class oraclerelational,database 
inherit relational-database 
features 
obtain-tables is 

EXEC SQL CONNECT :username IDENTIFIED BY :password; 
result = create-tableo; /* the resultant table is created */ 
result = addrolumn(result, “CHAR”, “NAME”); 
result = addrolumn(result, “CHAR”, “TYPE”); 
EXEC SQL 
DECLARE tables CURSOR FOR 

SELECT TABLEJi’AME,TABLE,TYPE 
FROM ACCESSIBLE-TABLES 
WHERE OWNER <> ‘SYSTEM’ AND OWNER <> ‘SYS’; 

EXEC SQL OPEN tables; 
do 
{ EXEC SQL FETCH tables INTO nam-tab, typ-tab; 

if (sqlca.sqlcode == 0) 

1 tuple = createtuple(); 
tuple = add,value(tuple, nam-tab); 
tuple = add-value(tuple, typ-tab); 
result = add-tuple(result, tuple);}} 

while (sqlca.sqlcode == 0); 
EXEC SQL CLOSE tables; 
EXEC SQL COMMIT WORK RELEASE 
return(result); 

Figure 5: Obtain-tables operation for OracleTM 

In the third step, a comparison is made between 
the information stored in the catalog of the modified 
database that is relevant for an integrated schema and 
the information stored for that database in the System 
Consistency Catalog. This comparation permits the 
identification of relevant changes. 

The System Consistency Catalog contains the rele- 
vant catalog information before the last change. For 
each component database of the interoperable system, 
this catalog contains the names of the nodes where 
exist integrated schemata to which it is related and 
the design informatiou that must be monitored (see 
figure 6). 

This information is created during the process of 
generating integrated schemata and is updated by the 

2The used notation is taken from Eiffel. 

View ldentlfier 
(DBname, DBpath, Dbl, /soft/db/dbl, IDMS 

DBMS, DBnode, FD, root, pri 
owner, access-user) 

Nodes sunsys 
Sets Can-be-manufactured 

(owner, member) (Product, Employee) 
Records Product Employee 

P# integer 8 E# integer 8 
Data Items Name char 20 E-name char 18 

Price integer 10 Address char 30 
Tax integer 6 

Vww ldentlfier 
(DBname, DBpath, Db2, jusrjoracle, ORACLE 

DBMS, DBnode, DD, root, pri 
owner, access-user) 

Nodes 
Tables 

Columns 

Indexes 

sunsys, vax2 
R-products Orders 

P# Integer 10 0# mteger 9 
Namep char 15 P# integer 10 
Descr char 50 Items integer 3 

uniaue unmue 

Figure 6: Part of the System Consistency Catalog 

CHA-ES Ol3mCTS 
Addltlon/deletlon ADD-TABLE table 

of tables DROP-TABLE table 
Addrtron/deletlon ADD-COL column, table 

of columns DROP-COL columi table 

Figure 7: Types of changes in relational databases 
Modifications Manager when a relevant change has 
been identified. Although some of this information 
is redundant (it appears in the catalogs of the com- 
ponent databases) it is necessary to store it, in order 
to have a partial image of the situation before a new 
change takes place. 

Finally, in the fourth step, the generated events for 
the relevant changes are of the following type: 

schema modified on schema-name (list of changes) 

e.g. schema modified on schema-two 

(DROP-TABLE R-PRODUCTS) 

A list of relevant changes is associated as parameter 
with each event3. These changes in the case of moni- 
toring relational databases are shown in the figure 7. 

Notice, that the enumerated changes correspond to 
effects observed in the database catalog and not to the 
real operations. For example, the change DROP-COL 
does not necessarily mean that the sentence DROP- 
COL has been used, however the effect of deleting a 
column can occur when the view that is exported to 

3Events can be parameterized such that information can be 
passed to the condition or action parts, if necessary [12]. 

40 



the interoperable system is redefined. 

5 The Consistency Re-establisher 

The Consistency Re-establisher’s goal is to try to re- 
establish ‘integrated schemata consistency according to 
the relevant changes made in a component database. 
It manages a set of rules defined in terms of ECA rules 
[13]. An ECA 1 h ru e as an event that triggers the rule, 

a condition describing a given situation, and an ac- 
tion to be performed if the condition is met [14]. The 
general format of an ECA rule in our context is 

When schema modified on DB-name 

If condition 

Do action 

As can be seen, the type of event considered 
is schema modified on DB-name, that is, a rele- 
vant schema modification has occurred in a concrete 
database. Having only one type of event can seem pre- 
tentious to deal with event condition action rules. The 
reason for our selection is the following: our global 
idea is to incorporate a mechanism to interoperable 
database systems that monitors consistency at differ- 
ent levels. At the schema level, that is among com- 
ponent databases schemata definitions and the inte- 
grated schemata definitions, at the instance level, that 
is among the properties about the extension of the 
component databases that have been used for gener- 
ating the integrated schemata and even at the appli- 
cation level when the applications can be also inte- 
grated. Therefore, three different types of events could 
be treated that could have associated distinct set of 
rules. Moreover, these event types could be specialized 
in future refinements of the mechanism, if necessary. 

Example of schema level ECA rule: 

When schema modified on DB-name 

If length-mod table,colunzn,old,new 

Do modify affected roles 

Example of instance-level ECA rule: 

When extension property modified on DB,name 

If functional property does not hold 

Do group objects 

In figure 8 a triggering of this instance-level ECA 
rule is shown. 

Example of application-level ECA rule: 

When application modified over DB,name 

If change on preconditions of x 

Do check depending-applications(x,newprecond) 

4Functional dependencies can be used by the Tmnslator 
Module to obtain a semantically richer schema. 

Figure 8: Triggering an instance-level ECA rule 
In general, rules are generated automatically when 

the integrated schemata are created and so links 
among the integrated schemata and the underlying 
databases are established. However, rules can also be 
defined or customized by the PRI. 

5.1 Schema-level rules 

Now, we only concentrate on schema-level ECA rules. 
The condition part of schema level type of rules can 
be classified into three families: addition, deletion, or 
modification. Inside each family, two different types 
of conditions are considered, one that corresponds to 
generic formulations such as ADD X where X can be a 
table, a record, an attribute, an index and so on; and 
other that corresponds to concrete formulations such 
as ADD Table Product. Furthermore, the action part 
can also be classified into three different groups: 

l Pre-defined operations that permit the automatic 
re-establishment of the consistency of the inte- 
grated schema. 

l Warnings to the users of the integrated schema. 
Warnings are generated in the case that an auto- 
matic re-establishment is not possible. The warn- 
ings will appear every time that a new user wants 
to work with an inconsistent integrated schema 
and only will disappear if the PRI eliminates them 
explicitly. 

l Calls to specific procedures defined by the PRI. 
These specific procedures allow the PRI to cus- 
tomize the behaviour of the Consistency Re- 
establisher. 

In the following we present the different types of 
rules. 

Addition rules 

The addition rules usually will have warnings in 
their action part. When a new object is defined in 

41 



a component database that must be incorporated into 
the integrated schema, this requires then that first it 
is represented using a canonical model provided by the 
interoperable system, and second, that the right place 
in the integrated schema for it can be identified. Many 
times both steps cannot be performed automatically. 

When schema modified on DBl 

If ADD record 

Do Warning (‘Call to th,e Integrator Processor’) 

Rules with calls to specific procedures will he de- 
fined by the PRI in certain sit,uations. 

Deletion rules 

The deletion rules can have any kind of action part. 
A pre-defined DELETE operation for removing an ob- 
ject that belongs to an integrated schema when its 
support is eliminated from the component database. 

When schema modified on DBi 

If delete record Product 

Do DELETE PRODUCT from th,e Integrated Schema 

A warning when the deletion of an object from the 
integrated schema could produce the elimiuations of 
other relevant objects (cascades delete). Last, call to 
a specific procedure when it is required a concrete es- 
tablished behaviour. 

Modification rules 

The modification rules will allow automatic re- 
establishments and hence will have pre-defined op- 
erations in their action part. Nevertheless, particu- 
lar modifications will require to send warnings to the 
users. 

When schema modified on DBl 

If type-mod table,column,number,char 

Do assign a transformation function 

5.2 Some Implementation Features 

From an operational point of view, when an event 
arises (in our context a relevant component database 
modification has occurred) the Consistency Re- 
establisher detects it and triggers a set of rules. How- 
ever, in many situations it could happen that this set 
is large and so, in order to improve the performance, 
we have incorporated indexes. The first index corre- 
sponds to the type of modification and the second one 
to the name of the basic elements (see figure 9). 

6 Motivating Example 

We present a situation where two different databases 
(actually simplified versions of them), one defined for 

ACnONS 

Figure 9: Defined Indexes 
the financial department (FD) of a company using a 
network DBMS and another one defined for the design 
department (DD) of the same company using a rela- 
tional DBMS, take part of an interoperable system (see 
figure 10). 

hbnet d Rulem 

DATAMSB 2 (00 rrodd 

R.PR0DUCl-S IPcl. Nmep, Dcsaiptlml 
ORDERS 10”. PX. RetI@ 

EO 

E-name 

Mdress 

Figure 10: Example of an interoperable DB system 
Three different situations are shown: 

l Suppose that products are classified into fami- 
lies in the design department and so a new at- 
tribute family in the table R-PRODUCTS of 
DATABASE2 is introduced. This modification 
would be first detected by the Modifications De- 
tector, and then sent to the Modifications Man- 
ager which would generate an event. The Consis- 
tency Re-establisher would detect the event and 
as a result the R4 rule would be activated. The 
warning will appear to the PRI who can decide 
if the new attribute is relevant for the integrated 
schema and if so, what steps are needed to inte- 
grate it. 

l The attribute Namep of the table R-PRODUCTS 
in DATABASE2 is deleted because in the de- 
sign department decide that they are not useful 
any more. This time the Modifications Detec- 
tor would detect the modification. However, the 

42 



Modification Manager would classify it as irrele- 
vant because it has not an image in the integrated 
schema. Notice that the attribute Namep is not 
exported to the integrated schema. 

l The exported schema from the DATABASE1 is 
redefined eliminating the data item tax of the 
record PRODUCT because, for example, a new 
law eliminates taxes for all the products that 
the company manufactures. This time, the mod- 
ification would be detected, identified as rele- 
vant, and generated an event that the Consis- 
tency Re-establisher would detect and the R5 rule 
would be activated that permits an automatic re- 
establisment . 

7 Conclusions 

In this paper, a system that responds automatically to 
design changes made in component databases, that are 
relevant to one or more integrated schemata has been 
discussed. To our knowledge, this work is the first 
to address in detail a method to maintain schemata 
consistency for interoperable database systems. The 
system described here solves a real problem and gets 
to enlarge the autonomy concept in the interoperable 
database system context. 

The system allows one to choose between accepting 
a default monitoring, or customizing the monitoring 
by defining the system responses. It relies on the use 
of event condition action rules. These type of rules use 
event driven invocation of actions. 

Furthermore, the system is applicable not only to 
interoperable database systems, but its funtionalities 
can be easily extended to other types of interoperable 
systems. This last property is due to the actual use of 
object oriented techniques for the system implemen- 
tation that permit encapsulation of the peculiarities 
of the local systems that belong to the interoperable 
system. 

Acknowledgements 

We like to thank N. Paton, and 0. Diaz for their valu- 

able comments. 

References 

[l] C. Collet, M. N. Huhns, and W. Shen. Re- 
source integration using a large knowledge base 
in CARNOT. IEEE Computer, December 1991. 

[2] W. Litwin. An overview of the multidatabase sys- 
tem MRDSM. In Proceedings ACM National Con- 
ference, 1985. 

L31 

PI 

151 

k31 

[71 

PI 

PI 

PO1 

1111 

[121 

1131 

1141 

E. Bertino, M. Negri, G. Pelagatti, and 
L. Sbatella. Integration of heterogeneous database 
applications through an object-oriented interface. 
Information Systems, 14(5), 1989. 

J.M. Blanco, A. Illarramendi, and A. Goiii. Build- 
ing a federated database system: an approach us- 
ing a knowledge based system. To appear in the 
Int. Journal on Intelligent and Cooperative Infor- 
mation Systems., 1995. 

J. Veijalainen and . Popescu-Zeletin. Multi- 
database systems in ISO/OSI environment. In 
Standards in Information Technology and Indus- 
trial Control. Malagardis N. and Williams T. Eds. 
North Holland, 1988. 

M. Rusinkiewicz, A. Sheth, and G. Karabatis. 
Specifying interdatabase dependencies in a mul- 
tidatabase environment. Computer. December, 
24(12), 1991. 

S. Ceri and J. Widom. Managing semantic het- 
erogeneity with production rules and persistent 
queues. In Proc. of the VLDB 93., 1993. 

W. Sull and R. L. Kashyap. A self-organizing 
knowledge representation scheme for extensible 
heterogeneous information environment. IEEE 
Transactions on Knowledge and Data Engineer- 
ing, 4(2), April 1992. 

J. M. Blanco, A. Illarramendi, J. M. Perez, and 
A. Go%. Making a federated database system 
active. In Database and Expert Systems Applica- 
tions. Springer-Verlag, 1992. 

U. Dayal. Active database management systems. 
In Proc. of the 3rd Int. Conf. on Data and Knowl- 
edge Bases, November 1988. 

U. Dayal, A. Buchmann, and D.R. Mc.Carthy. 
Rules are objects too: A knowledge model for 
an active object-oriented database system; dit- 
trich k.r.(ed.). In Proc. 2nd Int. Workshop on 
Object-Oriented Database Systems, Lecture Notes 
in Computer Science. Springer, 1988. 

S. Gatziu and K.R. Dittrich. Events in an active 
object-oriented database system. In Proc. of the 
1st International Workshop on Rules in Database 
Systems. Edimburg, U.K., 1993. 

K.R. . Dittrich and U. Dayal. Active database 
systems. In Proc. of the VLDB 91. Tutorial Notes, 
1991. 

0. Diaz, P.M.D Gray, and N.W. Paton. Rule 
management in object-oriented databases: A uni- 
form approach. In Proc. of the VLDB 91., 1991. 

43 


