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Abstract 

Keyword-based search services have become neces- 
sary tools for finding information resources on the 
Internet today. The rapid growth of information 
on the Internet renders centralized keyword index 
services incapable of collecting comprehensive re- 
source meta-data in a timely manner. We argue 
that delegating the task of meta-data collection do 
local index servers is a more scalable approach. We 
propose a mechanism for integrating distributed au- 
tonomous index servers into a cooperative resource 
discovery system. Focusing on the retrieval effec- 
tiveness of the system, we propose a set of meth- 
ods, called CVV-based methods, for ranking and 
selecting index servers with respect to a query, and 
merging the results returned by the index servers. 
Through experiments, we evaluate the effectiveness 
of the CVV-based methods, and compare OUT server 
ranking method with methods proposed by other re- 
searchers. 

integrating distributed autonomous index servers 
into a large virtual index server. This scheme is 
known as the collection fusion problem [13]. Our 
scheme is designed to work in an environment where 
index servers are heterogeneous in terms of imple- 
mentation and search algorithms employed. This 
work is part of our continuing research project called 
the Distributed WWW Index Servers and Search 
Engine (D-WISE) which is aimed at designing a 
scalable Internet resource discovery system. D- 
WISE is a logicalextension to WISE [14], our stand- 
alone WWW index server.’ 

Keywords information retrieval, internet data- 
bases. 

Section 2 discusses the issues involved in inte- 
grating the existing index services on the Internet 
into a cooperative system and our approaches to 
them. Section 3 provides an overview on the basics 
of text retrieval methods. Section 4 discusses our 
index server ranking and result merging methods. 
In Section 5 we provide a brief survey of relevant 
work and compare our method with their methods 
through experiments. Section 6 closes this paper 
with conclusions. 

2 Distributed Index Servers 
1 Introduction 

With the rapid growth of the amount of informa- 
tion on the Internet today, keyword-based search 
engines are gaining popularity among Internet users. 
Most online search engines use meta-information 
or index databases which map keywords to docu- 
ments or, in a more general term, to information re- 
sources. We refer to such systems as index servers. 

It is impractical for a single index server to main- 
tain a comprehensive and uptodate index of the 
entire Internet. The scalability of such an approach 
is questionable considering the high volatility of 
data on the Internet. We believe that a distributed 
architecture consisting of cooperating autonomous 
index servers is a viable solution to this scalability 
problem. In this paper we discuss a framework for 

Proceedings of the Fifth International Confer- 
ence on Database Systems for Advanced Appli- 
cations, Melbourne, Australia, April l-4, 1997. 

The major issues involved in building a cooperative 
distributed index servets are: (1) interoperability 
among servers, (2) scalability, and (3) effective- 
ness. In this paper, we focus mainly on the is- 
sue of effectiveness which is concerned with how 
well such a system identifies and locates resources 
carrying information relevant to user queries. As 
for the rest of the issues, our approach to the in- 
teroperability problem is to use data sets which 
can be provided by typical index servers. Also, 
we consider our general approach that relies on 
autonomous collection servers for maintaining the 
index data to be a positive step toward solving 
data scalability problem. Other important issues 
which are of concern in a commercial setting such 
as access control and charging are beyond the scope 
of this paper. In this paper, we assume that all 

1 WISE accessible 
(http://www.cs.ust.~~~~e~Servervwl). 

at: 
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networked resources are publicly accessible for free, 
or index servers carrying resources for restricted 
accesses and/or accessible for fee do not participate 
in the the system. 

The basic architecture of our cooperative text 
retrieval system is a two-level architecture with bro- 
ker servers on top of index servers. In order to alle- 
viate performance bottleneck at the broker servers, 
broker servers can be replicated, created and re- 
moved as needed. In the rest of the paper, we refer 
to the index servers as collection servers, as each of 
them can be viewed as a database carrying a col- 
lection of documents, where the documents are de- 
scriptive texts representing networked information 
resources. The discussion on the communication 
protocol for meta-data exchange between collection 
servers and broker server is beyond the scope of this 
paper. 

3 Text Retrieval Models 

The most widely used text-based information re- 
trieval models are the Boolean and the vector space 
retrieval models. The Boolean model employs Boo- 
lean logic constructs to specify the criterion for a 
hit. A document either satisfies the criterion (hit) 
or doesn’t (miss). 

In the vector space retrieval model, documents 
and queries are represented by term vectors in a 
multi-dimensional space. The relevance score of a 
document to a query is measured by the similarity 
between the respective vectors, which is computed 
as the inner product between the vectors. More 
formally, the similarity between query q and docu- 
ment dot;: 

I”1 

Sing = C Wq,j * Wi,j (1) 
j=l 

where V is the set of all keywords (vocabulary), 
Wq,j and Wi,j is the term weights of term qj as- 
signed to q and doci respectively. In TFxIDF, the 
most well known algorithm of the vector space model 
[lo], a term weight is a function of the occurrence 
frequency of a term in the text, or term frequency 
(TF), and the inverse of the number of documents 
containing the term in the collection, or inverse 
document frequency (IDF). Such a weighting for- 
mula gives higher weights to terms which occur 
frequently in a small set of the documents. Among 
the most commonly used term weighting formula is 
the so-called ate which uses vector-length normal- 
ization to give all texts an equal chance of being 
retrieved regardless of their lengths. More formally, 
the weight of term qj assigned to text (document 
or query) i is, 

Wi,j(UtC) = 

(2) 
where TFij is the term frequency of qj in text‘ i, 

TF; ,moz is the maximum term frequency in text i, 
N is the number of texts in the database, and DFj 
is the number of texts containing qj, or the docu- 
ment frequency of qj, in the database. The term- 
frequency component (0.5 + 0.5TFi,j/TFi,,,,) of 
the above term weighting formula is known as the 
augmented normalized term frequency [9] which is 
normalized by the maximum TF in the text and 
further normalized to lie between 0.5 and 1.0. 

According to [8], in comparing the similarity 
between short text excerpts (e.g., a few sentences 
long), better results can be obtained using the so 
called atn term weight: 

Wi,j(at?l) = (0.5 + 0.5TF, +) . log(&) 
3 

which equals to ate without the vector-length nor- 
malization component. For retrieval of Internet 
resource descriptors, the result of our experiment 
comparing the performance of the formula with 
vector-length normalization and the formula with- 
out the normalization supports this conclusion. This 
point is elaborated later in this chapter. 

In our previous study [14], we observed that 
most queries submitted by users to index services 
on the Internet are short so that a query term 
appears in the query at most once. Therefore, we 
simplify the similarity formula by using a binary 
term vector to represent a query, i.e., if a term is 
present in the query then the corresponding vector 
component has a value of one, otherwise its value 
is zero. Modifying Eq. 1, the relevance score of 
document doci with respect to query q: 

Si,q = C (0.5 + 0.5Ty” ym.l) . M&) (3) 
QiE9 

The final step of TFxIDF algorithm is to retrieve 
the top H documents or to retrieve documents hav- 
ing relevance scores greater than or equal to a speci- 
fied threshold value 8, from the ranking result. The 
values of H and 8 are user-specified. Top-H or the 
maximum number of hits is more commonly used 
than thresholding because the user does not know 
the range of the document scores before hand. On 
the other hand, top H has a problem with deciding 
the cut-off point when there are more documents 
having the same relevance score as the H-th docu- 
ment such that including all of them would exceed 
the limit H. A reasonable compromise between the 
two is what we call the top H+ criterion which 
accepts all documents having scores greater than 
or equal to the H-th document in the ranking re- 
sult. In this paper, we use the top H+ criterion 
exclusively. 
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4 Multiple Collection Search 

Conceptually, a set of centrally administered doc- 
ument collections can be treated as a single large 
document collection, where a query can be broad- 
cast to all collection servers and the results are 
then merged together. However, such a scheme 
is a waste of network bandwidth and processing 
time at the collection servers since not all of the 
servers contain information relevant to the query. 
The problem is how to optimize the resource uti- 
lization by selecting servers which potentially carry 
the relevant documents and forwarding the query 
only to those servers. 

4.1 Collection Fusion 

Let us now consider the situation where the cost 
of sending queries and results across the network 
is negligible. Employing the vector space model 
in Eq. 3, the only component of the term weight 
formula which needs to be computed at the global 
level is the DF component, i.e., the document fre- 
quency across all collections combined. Therefore, 
the DF data must be kept track of at a centralized 
server. This can be achieved by requiring every 
collection server to report any update on its DF 
data to the central server. In our architecture, this 
centralized server is the broker server. 

Given a query, the broker server computes the 
IDF values of the query terms, and then broadcasts 
the query along with the IDFs to the collection 
servers’. Upon receiving the query, every collection 
server then performs the TFxIDF ranking algo- 
rithm and sends the lop H+ documents, back to 
the broker server, where the value of Hcan be user- 
specified. If no documents in a collection server 
contains any of the query terms, an empty result 
message is returned. The results from the collection 
servers are then merged and sorted at the broker 
server, and the top H+ documents of the merged 
result is presented to the user. 

4.2 Collection Ranking 

In reality, the cost, including the user’s time, of 
broadcasting queries to all collection servers over 
a wide area network such as the Internet is not 
negligible. Moreover, if the number of collection 
servers and the frequency of queries are high, net- 
work congestion could ensue, which would further 
degrade the system’s response time. The selection 
of collection server or servers to which the query 
should be sent becomes important. Intuitively, the 
DF data available at the broker server as in the 
architecture mentioned earlier can provide a good 
indication as to whether a collection carries any 
documents containing a given query term or not. 

*It is also possible to use the term weights specified by 
the user in place of the IDFs. 

We propose a method for ranking the collec- 
tion servers baaed on their estimated suitability for 
answering a given query, called the Cue- Validity 
Variance or CVV ranking method. CVV method 
solely relies on DF data. Given a set of collections 
C, the CVV method assigns a goodness score Gi,, 
to collection ci E C with respect to query q as 
follows: 

lu 

Gin, = c CVVj * DFi,j 
j=l 

where DFi,j is the DFj of collection ci, and CVVj 
is the variance of CVj, the cue validity of term j, 
across all collections. 

The concept of cue validity is used in the same 
sense as in [4]. The cue validity of term j for ci, 

CK,j, measures the degree to which term j distin- 
guishes documents in collection c; from those in the 
other collections, and is defined as follows. 

where Ni is the number of documents in ci, and 
]C] is the number of collections in the system. The 
population variance CVVj of CVi,j measures the 
skewness of the distribution of term j across the 
collections, which can be used to estimate the use- 
fulness of term j for distinguishing one collection 
from another. The larger the variance is the more 
useful the term. CVVj is computed as follows. 

cv~ = C\",',(Cvi,j -cvj)' 

ICI 

where m is the population mean of CVi,j over all 
collections, and is defined as follows. 

q = Cl2 cE,j 

ICI 
The goodness score Gi,, gives neither a definite 

indication of how many relevant documents that 
collection ci contains, nor, if such documents exist, 
how relevant they are to query q. Gi,, is only an 
indicator as to where, among the ICI collections, 
the query terms are concentrated at. 

4.3 Query Forwarding 

Given the goodness scores of the collections with 
respect to a given query, the broker server then 
decides the collection servers to which the query 
should be sent. One of the following two schemes 
can be used, (1) single-cast the query to at most 
one collection server, i.e., the best server, and (2) 
multicast the query to at most u collection servers 
where c > 1 for some pm-determined value of u. 
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The first scheme significantly simplifies the im- 
plementation of the system because it does not 
require the broker to perform result merging and 
sorting; in fact, the collection server can directly 
send the results to the user, bypassing the broker. 
The disadvantage of the single-cast scheme is that 
the user may miss some relevant documents at col- 
lections other than the selected one. 

The second scheme, the multicast scheme, alle- 
viates the above problem by selecting a number of 
collection servers whose goodness scores are above 
some threshold value or, simpler yet, by select- 
ing the best u servers, and forwarding the query 
to them. As a tradeoff, this scheme is obviously 
more resource intensive than the first scheme as it 
produces multiple folds more network traffic and 
consumes more computing power. 

Finally, there are two main requirements for a 
collection server to join the cooperative system. 
The first requirement is that the server must be 
able to compute its own DF data. This require- 
ment should be easy to meet by any keyword-based 
search engines. The worst case is only to count the 
number of documents containing each word in a 
given keyword set. The second requirement is that 
the server must be able to store the DF data and 
serve the data to the broker server. A server which 
runs on a WWW server (HTTPD), as many servers 
do, can take advantage of the GET, PUT and CGI 
scripting capabilities of HTTP for handling server- 
to-server data storing and fetching. 

4.4 Result Merging 

The multicast scheme requires a mechanism to com- 
bine the results returned by the selected servers. 
We propose a method for merging search results 
obtained from a set of semi-heterogeneous index 
servers. By semi-heterogeneous we mean that there 
is no requirement as to what search and ranking 
algorithm each of the servers must use except that 
(i) it has to be based on word occurrence, so that 
the CVV-based methods can be applied, and (ii) 
it has to assign a relevance rank to each document 
returned. In the case of Boolean search engines, the 
ordering of the returned documents can be used to 
imply the relevant ranks of the documents. Since 
any higher degree of homogeneity requirement is 
impossible to impose on, we have no choice but to 
assume that the document ranking algorithms are 
comparable with one another. 

Our result merging method, which is an ex- 
tension to the CVV collection ranking method, is 
basically a function that maps local document ranks 
obtained from a collection server into global doc- 
ument scores which can then be merged together 
with document scores from other collection servers. 
The local document ranks are the ranks of the doc- 
uments at a collection server resulted from rele- 

vance scoring computed locally by the server. The 
global document scores are the new scores of the 
documents after being merged. 

To better explain the method, suppose a set of 
collections C = {cl,. . . , ~1~1) with goodness scores 

Gl,q, ..a, Gl~l,~ has been selected for query q. Each 
of the collections returns a set of documents, called 
result set, ranked by their relevance scores with the 
document or documents having the highest score 
ranks first. r<,j denotes the rank of document j in 
collection ci. In the final stage, H top documents 
are to be retrieved. Next, we make the following 
assumptions: 

Assumption 1: The best document in 
collection Ci is equally relevant to query 
q (has the same global score) as the best 
document in collection ck for any k # i 
and Gi,q, Gk,P > 0. 

Assumption 1 is necessary because, in an environ- 
ment involving different search algorithms, we can 
not always compare relevance scores computed at 
one server from another. This assumption allows 
a collection containing a few but highly relevant 
documents to contribute to the final result. To 
make sure that every collection contains at least 
one relevant document, only collections with high 
goodness scores, say, not less that half of the high- 
est score are selected. 

Assumption 2: The distance, in terms 
of absolute relevance score difference, be- 
tween two consecutive document ranks in 
the result set of a collection is inversely 
proportional to the goodness score of the 
collection. 

Assumption 2 is an approximation of the distribu- 
tion of document scores in each collection’s result 
set. This assumption is based on the result of our 
previous experiment [15] which shows that the rel- 
ative goodness score of a collection is roughly pro- 
portional to the number of documents contributed 
by the collection to the final result. 

Based on the above assumptions, we define the 
following local document rank to globaI document 
score mapping. 

Si,j = 1 - (r;,j - l)Oi 

where si,j is the global relevance score of the j- 
th document in collection c;. Note that the first 
rank document or documents in a collection has a 
global relevance score si,j = 1. Oi is the estimated 
relevance score distance between two consecutive 
document ranks in collection ci’s result set, and is 
defined as follows. 
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where Gmi,,,( is the smallest goodness score among 
the ]G] collections. Notice that collection ck E G 
whose goodness score is Gk,g = Gmin,r has the 
largest rank to rank distance, i.e., Dk = l/H. No- 
tice also that if there is no tied rank among docu- 
ments within each of the collections then the num- 
ber of documents contributed by collection ci to 

the final result is H . G; e/ Ct.! Gj,q, i.e propor- 
tional to its goodness shore. ‘Tie resultiig global 
document scores are then sorted in a non-increasing 
score order, and the best H or top H+ documents 
are returned. 

This document score mapping is somewhat sim- 
ilar to the document interleaving algorithm pro- 
posed in [13] where a rank position is filled by a 
document selected by rolling a ICI-faced dice bi- 
ased by the number of documents still to be picked 
from each of the ICI collections. The difference is 
that our algorithm is a deterministic process which 
guarantees that each of the selected collections con- 
tributes to the first few top ranked documents. Also, 
our algorithm takes into account the distribution of 
document ranks within each of the collections. 

5 Comparison 

5.1 Related Work 

Research on keyword-baaed collection ranking is 
gaining some attention from the information re- 
trieval community in the last few years. Some re- 
searchers have proposed the use of standard subject 
classification systems such as the U.S. Library of 
Congress subject numbering [2], Dewey Decimal 
Coding, and the ACM Computing Review Classifi- 
cation system, to categorize document collections. 
The main problem with this method is that it is not 
always easy to find which category or categories a 
user query falls into, unless a large and ever ex- 
panding online concept-categorization table is pro- 
vided. Even if that is available, keyword distribu- 
tion data would still be needed to rank the candi- 
date collections. Another scheme, which shares the 
same problem with the above scheme, is one which 
uses manually-written short descriptions to repre- 
sent collections such as in ALIWEB [7]. Still an- 
other scheme is one which requires every collection 
server to report on the first occurrence of a word to 
the broker server as in WHOIS+S~ [3]. While this 
scheme does not have the problem faced by the two 
earlier schemes, it does not provide enough infor- 
mation to select the best server or servers among 
those carrying a given set of search words. 

Voorhees [13] proposed a collection fusion method 
which can also be used for collection ranking and 
selection (i.e., by excluding servers which are not 
likely to carry any relevant documents). Unlike 

3The term server ceniroid in WHOIS++ is not the same 
as the vector-based collection cenfroid used in this paper. 

other collection fusion methods presented in this 
paper, her method employs the so called isolated 
merging strategies where the broker has no access 
to meta-information on the individual collection 
servers. In this method, collections are scored based 
on their past responses to training queries which 
are the most similar to the current query. This 
method is very cost efficient in terms of resource 
utilization and implementation effort. On the other 
hand, it is not clear how to generate a set of training 
queries which can anticipate all possible queries 
for a large number of collections carrying a wide 
variety of topics. In addition, as more training 
queries are used, the cost of conducting the training 
process would increase dramatically because the 
process involves accesses to all of the collection 
servers in the system and requires relevance assess- 
ment for each query-collection pair. 

Collection Centroid 

One method which is based on vector-space r& 
trieval model that is often alluded to in many infor- 
mation retrieval literature is the use of centroid vec- 
tors to represent clusters of documents. A centroid 
vector is defined as a vector whose components 
are the average term weights across all documents 
belonging to a cluster. In other words, a clus- 
ter of documents or a collection is viewed as a 
large virtual document represented by its centroid 
vector. Employing the TFxIDF term weighting 
formula, the +th component of centroid vector Vf: 
of collection ci corresponds to the average weight 
of query term qj in the collection, which is defined 
as follows. 

where $ and dFj are the system-wide total num- 
ber of documents and the system-wide DFj. Ni is 
the number of documents in Ci. TFk,j and TFk,,,, 
are as defined in Eq. 2. Using the vector space 
document scoring as an analogy, the goodness score 
of ci with respect to query q, Gi,,, is computed as 

Gi,q = C K,j 
j=l 

where Mis the number of query terms. This method 
works best when the documents within each col- 
lection are relatively homogeneous, i.e., discussing 
similar or closely related topics. It remains to be 
seen whether this method can also be used for col- 
lection ranking with arbitrary topic distributions. 

CORI 

One of the most recent work is the Collection FI,e- 
trieval Inference Network [l] (CORI) which uses 
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the TFxIDF document ranking method as an anal- 
ogy for collection ranking. CORI modifies a variant 
of TFxIDF document scoring formula by replacing 
TF with DF, and IDF with ICF (inverse collection 
frequency), the inverse of CF. CF” is defined as the 
number of collections carrying at least one docu- 
ment which contains query term qj. The goodness 
score of collection ci is computed as the combined 
belief or probability P(qjIci), that ci contains the 
relevant documents due to observing terms qj, for 
j=l,..., M. P(qj jci) is defined as follows. 

P(qjICi) = fi(h + (1 - db)ri,j li,j) 

j=l 

Tij = dt + (1 _ d,) ‘og’DFj + o’5) 
log(DFi,?m + 1.0) 

log( +y) 
Ii3 = log(Ni +)1.0) 

where Ni, DFj and CFj are as defined previously. 

DFi,mm is the maximum DF of a term in collection 
ci. dt and db are the default values of the term 
frequency component and the belief component, 
respectively, when a term occurs in a collection [ll]. 
Both values are set to 0.4 [l]. Finally, the goodness 
score of collection ci, G;,(, with respect to query q 
of M terms is obtained by combining P(wj jci) for 
1 5 j 5 M. It is assumed that all of the query 
terms are of equal importance. 

DFxICF 

For the sake of completeness, we introduce a method, 
called the DFxICF method, which is based on the 
same TFxIDF analogy as CORI and is similar in 
form as CVV, i.e., taking the sum of DF multiplied 
by ICF (the inverse of CF) in place of CV vari- 
ance. AS with CVVj in CVV method, ICFj can 
be viewed as the collection-discriminating power of 
term qj as IDFj to documents in TFxIDF. In this 
method, the goodness score Gi,, of collection i with 
respect to query q is computed as follows. 

Gi,q = 5 DFi,j * log(m) ICI 
j=l J 

where ICI, DFi,j and CFj are as defined previously. 

gGlOSS 

Another collection ranking method comparable to 
CVV is the one used in the generalized Glossary 
of Servers Server (gGIOSS) [5], a keyword-based 
distributed database broker system. One of the 
main differences between gGlOSS and CVV rank- 
ing method is that in addition to DF data, gGlOSS 
also relies on the weight-sum of every term in a 
collection. The main assumption of gGlOSS is that 

a term in a collection is distributed evenly among 
all documents containing the term in a collection. 
The general form of the gGlOSS collection scoring 
formula, i.e., the goodness score of collection ci 
with respect to query q, is as follows. 

Gi,q = 5 Wi,j 
j=l 

where Wi,j is the sum of document weights con- 
tributed by term qj in collection ci. The above 
generalized formula is obtained by setting the value 
of the threshold 1, which disqualifies term qj if 
Wi,j/DFi,j (the average document weight contributed 
by qi) falls below 1 [5], to zero. We opted to use 
the generalized formula because it is not clear how 
to obtain the optimal value of 1 which applies to all 
queries. 

The main problem with gGlOSS method is that 
the document weight Wi,j may be computed differ- 
ently from one collection to another, unless all of 
the participating collection servers employ exactly 
the same document scoring formula with global 
parameters such as a system-wide DF data set. In 
comparing gGlOSS with other methods, we assume 
that there is a centralized mechanism which enables 
the servers to share a global DF data set and the 
total number of documents. Wi,j is computed as 
the sum of the weights obtained using the modified 
atn formula as follows. 

Wi,j = C (0.5 + 0.5T71tz) f lOg(4&) 

dOC*ECi 3 

where fi and D^Fj are the global N and the global 
DFj, respectively. TFkf and TFk,,,, are the TF 
of qj in document dock in c; and the maximumTF 
in document dock in ci, respectively. 

GlOSS 

Considering the current state of the technology of 
the existing index servers on the Internet today, 
it is not uncommon to find many search engines 
which use simple Boolean search methods. Later 
in section 5.3, we empirically show that our collec- 
tion ranking method also works well for Boolean 
retrievals, or at least is comparable to the method 
used in GlOSS [6]. In GlOSS [6], the goodness 
score of collection ci with respect to Boolean query 

9, Gi,g> is measured as the probability of finding 
a document containing all of the query terms in 
the document. More formally, given query q of M 
terms, Gi,, is defined as: 

Gi p = ,.nj”=~ DFi,j 
t N,Y 
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5.2 Evaluation 

As in [13], the effectiveness of a collection fusion 
method is typically measured by comparing its re- 
sult with the result of a single collection run (i.e., 
retrieval using all collections combined into a single 
collection). In this paper, we measure the accu- 
racy of a collection ranking method by comparing 
the collection goodness scores estimated using the 
method with the actual goodness scores with re- 
spect to the same query. We use a vector r9 of ]C] 
components to represent the actual goodness score 
of ]C] collections with respect to query 4, where 
each component yiyi,q represents the goodness score 
of collection ci and is computed as follows. 

First, we identify the top H+ documents using 
the TFxIDF algorithm with the document scor- 
ing formula as defined by Eq. 3 on single collec- 
tion runs. It is worth noting that the retrieval 
recall/precision of the algorithm is irrelevant to this 
evaluation. We simply treat the relevance scores 
assigned by the algorithm with respect to a query 
as the actual relevance scores. Among the H+ 
documents, we then take the sum of the scores of 
documents belonging to collection ci as the value of 
7i,c. The accuracy of a collection ranking method 
is measured as the cosine of the angle between yc 
and G,, where G, is the estimated goodness vector 
of the collections. Each of Gg’s components, Gi,q, 
represents the goodness score of collection ci for 
1 5 i 5 ICI. More formally, the ranking accuracy 
is defined as: 

where the value of accuracy ranges from 0 to 1. 
For Boolean retrieval models, since there are 

no document scores, the number of documents in 
collection ci which satisfy the Boolean query Q is 
taken to be the value of yi,q. 

To evaluate the effectiveness of our result merg- 
ing method, we use an effectiveness metric which is 
the ratio between the sum of scores of the top H+ 
documents resulted from using the merging method 
and the sum of scores of the top H+ documents 
resulted from a single collection run. All document 
scores used in this metric are absolute scores com- 
puted using TFxIDF algorithm on the combined 
collection. Basically, this metric measures the per- 
centage of total relevance score obtained/lost due 
to the similarity/difference between the document 
ranks resulted from using the merging algorithm 
and the ideal document ranks. 

5.3 Experiments 

We conducted experiments comparing the average 
accuracies of CVV collection ranking method and 

five other methods, namely the centroid vector meth- 
ods, gGlOSS, CORI, DFxICF, and GlOSS. We in- 
cluded the original GlOSS method to see how well 
it performs in vector-space retrieval. In the ex- 
periments, we use the text collections that come 
with the Smart System,4 a text retrieval system 
developed at Cornell University. Four collections, 
known by the acronyms of their sources, namely, 
CACM, CISI, CRAN and MED, were used. The 
queries that come with each collection were used as 
the test queries. In total, there are 7097 documents 
and 431 test queries. The standard word-stemming 
and stop-word removal algorithms, similar to those 
provided in the Smart system, were applied to the 
documents and the queries. 

We tested each of the ranking methods in 5 
different collection setups each of which uses a dif- 
ferent document afinity probability [12]. Document 
affinity probability, P,, is defined as the probability 
that a document is stored in a collection, called 
the home collection, assigned for documents similar 
to or related with the document. If P,, is zero 
then documents are randomly distributed. If P, 
is one then the documents in each collection are 
homogeneous. If 0 < PO < 1 then the probability 
that a document is stored in its home collection 
is P, + &(l - Pa), where ICI is the number of 

collections. To simplify the experiments, we as- 
sume that all documents belonging to the same 
Smart collection to be topically related with one 
another, where the documents which are relevant to 
a query taken from the collection’s query set are all 
in that collection. Of course, this assumption is not 
entirely true as there are many cases where some 
documents not in the collection are also relevant to 
queries designed for that collection. Nonetheless, 
the assumption is reasonable enough for system- 
atically creating widely varying test environments 
or collection setups in which the ranking methods 
are to evaluate. Based on the assumption, we des- 
ignated one collection as the home collection for 
CACM documents, another for CISI documents, 
and so forth. The document affinity probabilities 
used in the setups were 1, 0.75, 0.5, 0.25 and 0. 
Five values of H for the top H+ selection criterion, 
namely, 20, 40, 60, 80 and 100, were used. We 
took the average ranking accuracies among these 
five values of H. 

Fig. 1 shows the average accuracies of each rank- 
ing method among the 431 test queries plotted against 
document affinity probability. The figure shows 
that the CVV method out performed the other 
collection ranking methods. As was expected, the 
original GlOSS did not perform well for vector- 
space retrieval. The CORI and DFxICF methods, 
which are based on the same TFxIDF analogy ap- 

‘Smart system is available at: (ftp://ftp.cs.comell.edu/ 
pub/smart/). 
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Figure 1: The average accuracies of the collection 
ranking methods against document affinity proba- 
bility for the vector-space retrieval experiments. 
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Figure 2: The average accuracies of the collection 
ranking methods against document affinity proba- 
bility for the Boolean retrieval experiments. 

preach, showed approximately similar average ac- 
curacies. All of the ranking methods showed good 
accuracies at lower document affinity probabilities, 
i.e., where the relevant documents are distributed 
evenly across the collections such that, for most of 
the queries, any collection is as good as another. 

Next, we conducted experiments to compare the 
accuracy of the CVV method with those of the 
GlOSS and the CORI methods for Boolean retrievals 
We included the CORI method because, as with 
CVV and GlOSS methods, it uses only DF data, 
which is the only data obtainable from a typical 
Boolean retrieval system. We used the same col- 
lections, test queries, and document affinity prob- 
abilities as in the previous experiments. Queries 
with zero hits are excluded from the computation 
of the accuracies. Fig. 2 shows the average accu- 
racies of CVV, GlOSS and CORI methods plotted 
against document affinity probability. As shown in 
the figure, the performance of CVV method closely 
followed that of GlOSS. 
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Figure 3: The average ratio between the sum of 
scores of the top H+ documents obtained using 
the merging method and the sum of scores of H+ 
documents for a single collection run, for the five 
values of document affinity probability Pa. 

To evaluate the effectiveness of our result merg- 
ing method, we tested the method for each of the 
five different collection setups mentioned previously. 
For each collection setup, we used 10 different val- 
ues of Hfor the iop H+ document selection crite- 
rion, namely, 10, 20, . . . . 100. Taking the average 
ratio between the sum of absolute scores of the top 
H+ documents resulted from using the merging 
algorithm and the sum of absolute scores of the 
top H+ documents resulted from a single collection 
run, we obtained results as shown in Fig. 3. As 
can be seen in the figure, the merging algorithm is 
highly effective across different document affinity 
probabilities. 

The results show that the effectiveness ratio de- 
creases as Pa increases. This is because the good- 
ness score differences among collections widen as Pa 
increases such that collections with very low good- 
ness scores have only irrelevant documents to con- 
tribute to the final result. As mentioned in Section 
4.4, the merging method is based on the assump- 
tion that the first rank document in a collection is 
as relevant as the first rank document in another 
collection, granted that the goodness scores of the 
two collections are close to one another. In this 
experiment, we included all collections regardless 
of their goodness scores. 

6 Conclusion 

We presented a framework for integrating distributed, 
autonomous, and heterogeneous text retrieval sys- 
tems into a large index server. Our framework 
is designed with interoperability, scalability, and 
effectiveness in mind. Through experiments we 
showed that our collection ranking and merging 
methods, the CVV-based methods, worked well for 
virtually arbitrary document-topics distributions, 
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for both vector space and Boolean retrieval models. 
Overall, the CVV-based methods require a small 
amount of meta-data interchange between broker 
servers and collection servers, simple computations, 
and a low storage requirement. We believe that 
these characteristics make the framework relatively 
easy to incorporate into existing text retrieval sys- 
tems on the Internet. 
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