
Server Ranking for Distributed Text
Retrieval Systems on the Internet

Budi Yuwono Dik L. Lee

Department of Computer
and Information Science

The Ohio State University
Columbus, Ohio, U.S.A.

yuwono-b@cis.ohio-state.edu

Department of Computer Science
Hong Kong University of
Science and Technology

Clear Water Bay, Hong Kong

dlee@cs.ust.hk

Abstract

Keyword-based search services have become neces-
sary tools for finding information resources on the
Internet today. The rapid growth of information
on the Internet renders centralized keyword index
services incapable of collecting comprehensive re-
source meta-data in a timely manner. We argue
that delegating the task of meta-data collection do
local index servers is a more scalable approach. We
propose a mechanism for integrating distributed au-
tonomous index servers into a cooperative resource
discovery system. Focusing on the retrieval effec-
tiveness of the system, we propose a set of meth-
ods, called CVV-based methods, for ranking and
selecting index servers with respect to a query, and
merging the results returned by the index servers.
Through experiments, we evaluate the effectiveness
of the CVV-based methods, and compare OUT server
ranking method with methods proposed by other re-
searchers.

integrating distributed autonomous index servers
into a large virtual index server. This scheme is
known as the collection fusion problem [13]. Our
scheme is designed to work in an environment where
index servers are heterogeneous in terms of imple-
mentation and search algorithms employed. This
work is part of our continuing research project called
the Distributed WWW Index Servers and Search
Engine (D-WISE) which is aimed at designing a
scalable Internet resource discovery system. D-
WISE is a logicalextension to WISE [14], our stand-
alone WWW index server.’

Keywords information retrieval, internet data-
bases.

Section 2 discusses the issues involved in inte-
grating the existing index services on the Internet
into a cooperative system and our approaches to
them. Section 3 provides an overview on the basics
of text retrieval methods. Section 4 discusses our
index server ranking and result merging methods.
In Section 5 we provide a brief survey of relevant
work and compare our method with their methods
through experiments. Section 6 closes this paper
with conclusions.

2 Distributed Index Servers
1 Introduction

With the rapid growth of the amount of informa-
tion on the Internet today, keyword-based search
engines are gaining popularity among Internet users.
Most online search engines use meta-information
or index databases which map keywords to docu-
ments or, in a more general term, to information re-
sources. We refer to such systems as index servers.

It is impractical for a single index server to main-
tain a comprehensive and uptodate index of the
entire Internet. The scalability of such an approach
is questionable considering the high volatility of
data on the Internet. We believe that a distributed
architecture consisting of cooperating autonomous
index servers is a viable solution to this scalability
problem. In this paper we discuss a framework for

Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Appli-
cations, Melbourne, Australia, April l-4, 1997.

The major issues involved in building a cooperative
distributed index servets are: (1) interoperability
among servers, (2) scalability, and (3) effective-
ness. In this paper, we focus mainly on the is-
sue of effectiveness which is concerned with how
well such a system identifies and locates resources
carrying information relevant to user queries. As
for the rest of the issues, our approach to the in-
teroperability problem is to use data sets which
can be provided by typical index servers. Also,
we consider our general approach that relies on
autonomous collection servers for maintaining the
index data to be a positive step toward solving
data scalability problem. Other important issues
which are of concern in a commercial setting such
as access control and charging are beyond the scope
of this paper. In this paper, we assume that all

1 WISE accessible
(http://www.cs.ust.~~~~e~Servervwl).

at:

41

networked resources are publicly accessible for free,
or index servers carrying resources for restricted
accesses and/or accessible for fee do not participate
in the the system.

The basic architecture of our cooperative text
retrieval system is a two-level architecture with bro-
ker servers on top of index servers. In order to alle-
viate performance bottleneck at the broker servers,
broker servers can be replicated, created and re-
moved as needed. In the rest of the paper, we refer
to the index servers as collection servers, as each of
them can be viewed as a database carrying a col-
lection of documents, where the documents are de-
scriptive texts representing networked information
resources. The discussion on the communication
protocol for meta-data exchange between collection
servers and broker server is beyond the scope of this
paper.

3 Text Retrieval Models

The most widely used text-based information re-
trieval models are the Boolean and the vector space
retrieval models. The Boolean model employs Boo-
lean logic constructs to specify the criterion for a
hit. A document either satisfies the criterion (hit)
or doesn’t (miss).

In the vector space retrieval model, documents
and queries are represented by term vectors in a
multi-dimensional space. The relevance score of a
document to a query is measured by the similarity
between the respective vectors, which is computed
as the inner product between the vectors. More
formally, the similarity between query q and docu-
ment dot;:

I”1

Sing = C Wq,j * Wi,j (1)
j=l

where V is the set of all keywords (vocabulary),
Wq,j and Wi,j is the term weights of term qj as-
signed to q and doci respectively. In TFxIDF, the
most well known algorithm of the vector space model
[lo], a term weight is a function of the occurrence
frequency of a term in the text, or term frequency
(TF), and the inverse of the number of documents
containing the term in the collection, or inverse
document frequency (IDF). Such a weighting for-
mula gives higher weights to terms which occur
frequently in a small set of the documents. Among
the most commonly used term weighting formula is
the so-called ate which uses vector-length normal-
ization to give all texts an equal chance of being
retrieved regardless of their lengths. More formally,
the weight of term qj assigned to text (document
or query) i is,

Wi,j(UtC) =

(2)
where TFij is the term frequency of qj in text‘ i,

TF; ,moz is the maximum term frequency in text i,
N is the number of texts in the database, and DFj
is the number of texts containing qj, or the docu-
ment frequency of qj, in the database. The term-
frequency component (0.5 + 0.5TFi,j/TFi,,,,) of
the above term weighting formula is known as the
augmented normalized term frequency [9] which is
normalized by the maximum TF in the text and
further normalized to lie between 0.5 and 1.0.

According to [8], in comparing the similarity
between short text excerpts (e.g., a few sentences
long), better results can be obtained using the so
called atn term weight:

Wi,j(at?l) = (0.5 + 0.5TF, +) . log(&)
3

which equals to ate without the vector-length nor-
malization component. For retrieval of Internet
resource descriptors, the result of our experiment
comparing the performance of the formula with
vector-length normalization and the formula with-
out the normalization supports this conclusion. This
point is elaborated later in this chapter.

In our previous study [14], we observed that
most queries submitted by users to index services
on the Internet are short so that a query term
appears in the query at most once. Therefore, we
simplify the similarity formula by using a binary
term vector to represent a query, i.e., if a term is
present in the query then the corresponding vector
component has a value of one, otherwise its value
is zero. Modifying Eq. 1, the relevance score of
document doci with respect to query q:

Si,q = C (0.5 + 0.5Ty” ym.l) . M&) (3)
QiE9

The final step of TFxIDF algorithm is to retrieve
the top H documents or to retrieve documents hav-
ing relevance scores greater than or equal to a speci-
fied threshold value 8, from the ranking result. The
values of H and 8 are user-specified. Top-H or the
maximum number of hits is more commonly used
than thresholding because the user does not know
the range of the document scores before hand. On
the other hand, top H has a problem with deciding
the cut-off point when there are more documents
having the same relevance score as the H-th docu-
ment such that including all of them would exceed
the limit H. A reasonable compromise between the
two is what we call the top H+ criterion which
accepts all documents having scores greater than
or equal to the H-th document in the ranking re-
sult. In this paper, we use the top H+ criterion
exclusively.

42

4 Multiple Collection Search

Conceptually, a set of centrally administered doc-
ument collections can be treated as a single large
document collection, where a query can be broad-
cast to all collection servers and the results are
then merged together. However, such a scheme
is a waste of network bandwidth and processing
time at the collection servers since not all of the
servers contain information relevant to the query.
The problem is how to optimize the resource uti-
lization by selecting servers which potentially carry
the relevant documents and forwarding the query
only to those servers.

4.1 Collection Fusion

Let us now consider the situation where the cost
of sending queries and results across the network
is negligible. Employing the vector space model
in Eq. 3, the only component of the term weight
formula which needs to be computed at the global
level is the DF component, i.e., the document fre-
quency across all collections combined. Therefore,
the DF data must be kept track of at a centralized
server. This can be achieved by requiring every
collection server to report any update on its DF
data to the central server. In our architecture, this
centralized server is the broker server.

Given a query, the broker server computes the
IDF values of the query terms, and then broadcasts
the query along with the IDFs to the collection
servers’. Upon receiving the query, every collection
server then performs the TFxIDF ranking algo-
rithm and sends the lop H+ documents, back to
the broker server, where the value of Hcan be user-
specified. If no documents in a collection server
contains any of the query terms, an empty result
message is returned. The results from the collection
servers are then merged and sorted at the broker
server, and the top H+ documents of the merged
result is presented to the user.

4.2 Collection Ranking

In reality, the cost, including the user’s time, of
broadcasting queries to all collection servers over
a wide area network such as the Internet is not
negligible. Moreover, if the number of collection
servers and the frequency of queries are high, net-
work congestion could ensue, which would further
degrade the system’s response time. The selection
of collection server or servers to which the query
should be sent becomes important. Intuitively, the
DF data available at the broker server as in the
architecture mentioned earlier can provide a good
indication as to whether a collection carries any
documents containing a given query term or not.

*It is also possible to use the term weights specified by
the user in place of the IDFs.

We propose a method for ranking the collec-
tion servers baaed on their estimated suitability for
answering a given query, called the Cue- Validity
Variance or CVV ranking method. CVV method
solely relies on DF data. Given a set of collections
C, the CVV method assigns a goodness score Gi,,
to collection ci E C with respect to query q as
follows:

lu

Gin, = c CVVj * DFi,j
j=l

where DFi,j is the DFj of collection ci, and CVVj
is the variance of CVj, the cue validity of term j,
across all collections.

The concept of cue validity is used in the same
sense as in [4]. The cue validity of term j for ci,

CK,j, measures the degree to which term j distin-
guishes documents in collection c; from those in the
other collections, and is defined as follows.

where Ni is the number of documents in ci, and
]C] is the number of collections in the system. The
population variance CVVj of CVi,j measures the
skewness of the distribution of term j across the
collections, which can be used to estimate the use-
fulness of term j for distinguishing one collection
from another. The larger the variance is the more
useful the term. CVVj is computed as follows.

cv~ = C\",',(Cvi,j -cvj)'

ICI

where m is the population mean of CVi,j over all
collections, and is defined as follows.

q = Cl2 cE,j

ICI
The goodness score Gi,, gives neither a definite

indication of how many relevant documents that
collection ci contains, nor, if such documents exist,
how relevant they are to query q. Gi,, is only an
indicator as to where, among the ICI collections,
the query terms are concentrated at.

4.3 Query Forwarding

Given the goodness scores of the collections with
respect to a given query, the broker server then
decides the collection servers to which the query
should be sent. One of the following two schemes
can be used, (1) single-cast the query to at most
one collection server, i.e., the best server, and (2)
multicast the query to at most u collection servers
where c > 1 for some pm-determined value of u.

43

The first scheme significantly simplifies the im-
plementation of the system because it does not
require the broker to perform result merging and
sorting; in fact, the collection server can directly
send the results to the user, bypassing the broker.
The disadvantage of the single-cast scheme is that
the user may miss some relevant documents at col-
lections other than the selected one.

The second scheme, the multicast scheme, alle-
viates the above problem by selecting a number of
collection servers whose goodness scores are above
some threshold value or, simpler yet, by select-
ing the best u servers, and forwarding the query
to them. As a tradeoff, this scheme is obviously
more resource intensive than the first scheme as it
produces multiple folds more network traffic and
consumes more computing power.

Finally, there are two main requirements for a
collection server to join the cooperative system.
The first requirement is that the server must be
able to compute its own DF data. This require-
ment should be easy to meet by any keyword-based
search engines. The worst case is only to count the
number of documents containing each word in a
given keyword set. The second requirement is that
the server must be able to store the DF data and
serve the data to the broker server. A server which
runs on a WWW server (HTTPD), as many servers
do, can take advantage of the GET, PUT and CGI
scripting capabilities of HTTP for handling server-
to-server data storing and fetching.

4.4 Result Merging

The multicast scheme requires a mechanism to com-
bine the results returned by the selected servers.
We propose a method for merging search results
obtained from a set of semi-heterogeneous index
servers. By semi-heterogeneous we mean that there
is no requirement as to what search and ranking
algorithm each of the servers must use except that
(i) it has to be based on word occurrence, so that
the CVV-based methods can be applied, and (ii)
it has to assign a relevance rank to each document
returned. In the case of Boolean search engines, the
ordering of the returned documents can be used to
imply the relevant ranks of the documents. Since
any higher degree of homogeneity requirement is
impossible to impose on, we have no choice but to
assume that the document ranking algorithms are
comparable with one another.

Our result merging method, which is an ex-
tension to the CVV collection ranking method, is
basically a function that maps local document ranks
obtained from a collection server into global doc-
ument scores which can then be merged together
with document scores from other collection servers.
The local document ranks are the ranks of the doc-
uments at a collection server resulted from rele-

vance scoring computed locally by the server. The
global document scores are the new scores of the
documents after being merged.

To better explain the method, suppose a set of
collections C = {cl,. . . , ~1~1) with goodness scores

Gl,q, ..a, Gl~l,~ has been selected for query q. Each
of the collections returns a set of documents, called
result set, ranked by their relevance scores with the
document or documents having the highest score
ranks first. r<,j denotes the rank of document j in
collection ci. In the final stage, H top documents
are to be retrieved. Next, we make the following
assumptions:

Assumption 1: The best document in
collection Ci is equally relevant to query
q (has the same global score) as the best
document in collection ck for any k # i
and Gi,q, Gk,P > 0.

Assumption 1 is necessary because, in an environ-
ment involving different search algorithms, we can
not always compare relevance scores computed at
one server from another. This assumption allows
a collection containing a few but highly relevant
documents to contribute to the final result. To
make sure that every collection contains at least
one relevant document, only collections with high
goodness scores, say, not less that half of the high-
est score are selected.

Assumption 2: The distance, in terms
of absolute relevance score difference, be-
tween two consecutive document ranks in
the result set of a collection is inversely
proportional to the goodness score of the
collection.

Assumption 2 is an approximation of the distribu-
tion of document scores in each collection’s result
set. This assumption is based on the result of our
previous experiment [15] which shows that the rel-
ative goodness score of a collection is roughly pro-
portional to the number of documents contributed
by the collection to the final result.

Based on the above assumptions, we define the
following local document rank to globaI document
score mapping.

Si,j = 1 - (r;,j - l)Oi

where si,j is the global relevance score of the j-
th document in collection c;. Note that the first
rank document or documents in a collection has a
global relevance score si,j = 1. Oi is the estimated
relevance score distance between two consecutive
document ranks in collection ci’s result set, and is
defined as follows.

44

where Gmi,,,(is the smallest goodness score among
the]G] collections. Notice that collection ck E G
whose goodness score is Gk,g = Gmin,r has the
largest rank to rank distance, i.e., Dk = l/H. No-
tice also that if there is no tied rank among docu-
ments within each of the collections then the num-
ber of documents contributed by collection ci to

the final result is H . G; e/ Ct.! Gj,q, i.e propor-
tional to its goodness shore. ‘Tie resultiig global
document scores are then sorted in a non-increasing
score order, and the best H or top H+ documents
are returned.

This document score mapping is somewhat sim-
ilar to the document interleaving algorithm pro-
posed in [13] where a rank position is filled by a
document selected by rolling a ICI-faced dice bi-
ased by the number of documents still to be picked
from each of the ICI collections. The difference is
that our algorithm is a deterministic process which
guarantees that each of the selected collections con-
tributes to the first few top ranked documents. Also,
our algorithm takes into account the distribution of
document ranks within each of the collections.

5 Comparison

5.1 Related Work

Research on keyword-baaed collection ranking is
gaining some attention from the information re-
trieval community in the last few years. Some re-
searchers have proposed the use of standard subject
classification systems such as the U.S. Library of
Congress subject numbering [2], Dewey Decimal
Coding, and the ACM Computing Review Classifi-
cation system, to categorize document collections.
The main problem with this method is that it is not
always easy to find which category or categories a
user query falls into, unless a large and ever ex-
panding online concept-categorization table is pro-
vided. Even if that is available, keyword distribu-
tion data would still be needed to rank the candi-
date collections. Another scheme, which shares the
same problem with the above scheme, is one which
uses manually-written short descriptions to repre-
sent collections such as in ALIWEB [7]. Still an-
other scheme is one which requires every collection
server to report on the first occurrence of a word to
the broker server as in WHOIS+S~ [3]. While this
scheme does not have the problem faced by the two
earlier schemes, it does not provide enough infor-
mation to select the best server or servers among
those carrying a given set of search words.

Voorhees [13] proposed a collection fusion method
which can also be used for collection ranking and
selection (i.e., by excluding servers which are not
likely to carry any relevant documents). Unlike

3The term server ceniroid in WHOIS++ is not the same
as the vector-based collection cenfroid used in this paper.

other collection fusion methods presented in this
paper, her method employs the so called isolated
merging strategies where the broker has no access
to meta-information on the individual collection
servers. In this method, collections are scored based
on their past responses to training queries which
are the most similar to the current query. This
method is very cost efficient in terms of resource
utilization and implementation effort. On the other
hand, it is not clear how to generate a set of training
queries which can anticipate all possible queries
for a large number of collections carrying a wide
variety of topics. In addition, as more training
queries are used, the cost of conducting the training
process would increase dramatically because the
process involves accesses to all of the collection
servers in the system and requires relevance assess-
ment for each query-collection pair.

Collection Centroid

One method which is based on vector-space r&
trieval model that is often alluded to in many infor-
mation retrieval literature is the use of centroid vec-
tors to represent clusters of documents. A centroid
vector is defined as a vector whose components
are the average term weights across all documents
belonging to a cluster. In other words, a clus-
ter of documents or a collection is viewed as a
large virtual document represented by its centroid
vector. Employing the TFxIDF term weighting
formula, the +th component of centroid vector Vf:
of collection ci corresponds to the average weight
of query term qj in the collection, which is defined
as follows.

where $ and dFj are the system-wide total num-
ber of documents and the system-wide DFj. Ni is
the number of documents in Ci. TFk,j and TFk,,,,
are as defined in Eq. 2. Using the vector space
document scoring as an analogy, the goodness score
of ci with respect to query q, Gi,,, is computed as

Gi,q = C K,j
j=l

where Mis the number of query terms. This method
works best when the documents within each col-
lection are relatively homogeneous, i.e., discussing
similar or closely related topics. It remains to be
seen whether this method can also be used for col-
lection ranking with arbitrary topic distributions.

CORI

One of the most recent work is the Collection FI,e-
trieval Inference Network [l] (CORI) which uses

45

the TFxIDF document ranking method as an anal-
ogy for collection ranking. CORI modifies a variant
of TFxIDF document scoring formula by replacing
TF with DF, and IDF with ICF (inverse collection
frequency), the inverse of CF. CF” is defined as the
number of collections carrying at least one docu-
ment which contains query term qj. The goodness
score of collection ci is computed as the combined
belief or probability P(qjIci), that ci contains the
relevant documents due to observing terms qj, for
j=l,..., M. P(qj jci) is defined as follows.

P(qjICi) = fi(h + (1 - db)ri,j li,j)

j=l

Tij = dt + (1 _ d,) ‘og’DFj + o’5)
log(DFi,?m + 1.0)

log(+y)
Ii3 = log(Ni +)1.0)

where Ni, DFj and CFj are as defined previously.

DFi,mm is the maximum DF of a term in collection
ci. dt and db are the default values of the term
frequency component and the belief component,
respectively, when a term occurs in a collection [ll].
Both values are set to 0.4 [l]. Finally, the goodness
score of collection ci, G;,(, with respect to query q
of M terms is obtained by combining P(wj jci) for
1 5 j 5 M. It is assumed that all of the query
terms are of equal importance.

DFxICF

For the sake of completeness, we introduce a method,
called the DFxICF method, which is based on the
same TFxIDF analogy as CORI and is similar in
form as CVV, i.e., taking the sum of DF multiplied
by ICF (the inverse of CF) in place of CV vari-
ance. AS with CVVj in CVV method, ICFj can
be viewed as the collection-discriminating power of
term qj as IDFj to documents in TFxIDF. In this
method, the goodness score Gi,, of collection i with
respect to query q is computed as follows.

Gi,q = 5 DFi,j * log(m) ICI
j=l J

where ICI, DFi,j and CFj are as defined previously.

gGlOSS

Another collection ranking method comparable to
CVV is the one used in the generalized Glossary
of Servers Server (gGIOSS) [5], a keyword-based
distributed database broker system. One of the
main differences between gGlOSS and CVV rank-
ing method is that in addition to DF data, gGlOSS
also relies on the weight-sum of every term in a
collection. The main assumption of gGlOSS is that

a term in a collection is distributed evenly among
all documents containing the term in a collection.
The general form of the gGlOSS collection scoring
formula, i.e., the goodness score of collection ci
with respect to query q, is as follows.

Gi,q = 5 Wi,j
j=l

where Wi,j is the sum of document weights con-
tributed by term qj in collection ci. The above
generalized formula is obtained by setting the value
of the threshold 1, which disqualifies term qj if
Wi,j/DFi,j (the average document weight contributed
by qi) falls below 1 [5], to zero. We opted to use
the generalized formula because it is not clear how
to obtain the optimal value of 1 which applies to all
queries.

The main problem with gGlOSS method is that
the document weight Wi,j may be computed differ-
ently from one collection to another, unless all of
the participating collection servers employ exactly
the same document scoring formula with global
parameters such as a system-wide DF data set. In
comparing gGlOSS with other methods, we assume
that there is a centralized mechanism which enables
the servers to share a global DF data set and the
total number of documents. Wi,j is computed as
the sum of the weights obtained using the modified
atn formula as follows.

Wi,j = C (0.5 + 0.5T71tz) f lOg(4&)

dOC*ECi 3

where fi and D^Fj are the global N and the global
DFj, respectively. TFkf and TFk,,,, are the TF
of qj in document dock in c; and the maximumTF
in document dock in ci, respectively.

GlOSS

Considering the current state of the technology of
the existing index servers on the Internet today,
it is not uncommon to find many search engines
which use simple Boolean search methods. Later
in section 5.3, we empirically show that our collec-
tion ranking method also works well for Boolean
retrievals, or at least is comparable to the method
used in GlOSS [6]. In GlOSS [6], the goodness
score of collection ci with respect to Boolean query

9, Gi,g> is measured as the probability of finding
a document containing all of the query terms in
the document. More formally, given query q of M
terms, Gi,, is defined as:

Gi p = ,.nj”=~ DFi,j
t N,Y

46

5.2 Evaluation

As in [13], the effectiveness of a collection fusion
method is typically measured by comparing its re-
sult with the result of a single collection run (i.e.,
retrieval using all collections combined into a single
collection). In this paper, we measure the accu-
racy of a collection ranking method by comparing
the collection goodness scores estimated using the
method with the actual goodness scores with re-
spect to the same query. We use a vector r9 of]C]
components to represent the actual goodness score
of]C] collections with respect to query 4, where
each component yiyi,q represents the goodness score
of collection ci and is computed as follows.

First, we identify the top H+ documents using
the TFxIDF algorithm with the document scor-
ing formula as defined by Eq. 3 on single collec-
tion runs. It is worth noting that the retrieval
recall/precision of the algorithm is irrelevant to this
evaluation. We simply treat the relevance scores
assigned by the algorithm with respect to a query
as the actual relevance scores. Among the H+
documents, we then take the sum of the scores of
documents belonging to collection ci as the value of
7i,c. The accuracy of a collection ranking method
is measured as the cosine of the angle between yc
and G,, where G, is the estimated goodness vector
of the collections. Each of Gg’s components, Gi,q,
represents the goodness score of collection ci for
1 5 i 5 ICI. More formally, the ranking accuracy
is defined as:

where the value of accuracy ranges from 0 to 1.
For Boolean retrieval models, since there are

no document scores, the number of documents in
collection ci which satisfy the Boolean query Q is
taken to be the value of yi,q.

To evaluate the effectiveness of our result merg-
ing method, we use an effectiveness metric which is
the ratio between the sum of scores of the top H+
documents resulted from using the merging method
and the sum of scores of the top H+ documents
resulted from a single collection run. All document
scores used in this metric are absolute scores com-
puted using TFxIDF algorithm on the combined
collection. Basically, this metric measures the per-
centage of total relevance score obtained/lost due
to the similarity/difference between the document
ranks resulted from using the merging algorithm
and the ideal document ranks.

5.3 Experiments

We conducted experiments comparing the average
accuracies of CVV collection ranking method and

five other methods, namely the centroid vector meth-
ods, gGlOSS, CORI, DFxICF, and GlOSS. We in-
cluded the original GlOSS method to see how well
it performs in vector-space retrieval. In the ex-
periments, we use the text collections that come
with the Smart System,4 a text retrieval system
developed at Cornell University. Four collections,
known by the acronyms of their sources, namely,
CACM, CISI, CRAN and MED, were used. The
queries that come with each collection were used as
the test queries. In total, there are 7097 documents
and 431 test queries. The standard word-stemming
and stop-word removal algorithms, similar to those
provided in the Smart system, were applied to the
documents and the queries.

We tested each of the ranking methods in 5
different collection setups each of which uses a dif-
ferent document afinity probability [12]. Document
affinity probability, P,, is defined as the probability
that a document is stored in a collection, called
the home collection, assigned for documents similar
to or related with the document. If P,, is zero
then documents are randomly distributed. If P,
is one then the documents in each collection are
homogeneous. If 0 < PO < 1 then the probability
that a document is stored in its home collection
is P, + &(l - Pa), where ICI is the number of

collections. To simplify the experiments, we as-
sume that all documents belonging to the same
Smart collection to be topically related with one
another, where the documents which are relevant to
a query taken from the collection’s query set are all
in that collection. Of course, this assumption is not
entirely true as there are many cases where some
documents not in the collection are also relevant to
queries designed for that collection. Nonetheless,
the assumption is reasonable enough for system-
atically creating widely varying test environments
or collection setups in which the ranking methods
are to evaluate. Based on the assumption, we des-
ignated one collection as the home collection for
CACM documents, another for CISI documents,
and so forth. The document affinity probabilities
used in the setups were 1, 0.75, 0.5, 0.25 and 0.
Five values of H for the top H+ selection criterion,
namely, 20, 40, 60, 80 and 100, were used. We
took the average ranking accuracies among these
five values of H.

Fig. 1 shows the average accuracies of each rank-
ing method among the 431 test queries plotted against
document affinity probability. The figure shows
that the CVV method out performed the other
collection ranking methods. As was expected, the
original GlOSS did not perform well for vector-
space retrieval. The CORI and DFxICF methods,
which are based on the same TFxIDF analogy ap-

‘Smart system is available at: (ftp://ftp.cs.comell.edu/
pub/smart/).

47

0.65

0.6

0.55

0.5 -
0 0.2 0.4

document affinity p%ability
0.8 1

Figure 1: The average accuracies of the collection
ranking methods against document affinity proba-
bility for the vector-space retrieval experiments.

$j 0.6

0.75

0.7

0.65

0.6

0.55

GIOSS +

&F =

0 0.2 0.4
document affinity ~%abllity

0.8 1

Figure 2: The average accuracies of the collection
ranking methods against document affinity proba-
bility for the Boolean retrieval experiments.

preach, showed approximately similar average ac-
curacies. All of the ranking methods showed good
accuracies at lower document affinity probabilities,
i.e., where the relevant documents are distributed
evenly across the collections such that, for most of
the queries, any collection is as good as another.

Next, we conducted experiments to compare the
accuracy of the CVV method with those of the
GlOSS and the CORI methods for Boolean retrievals
We included the CORI method because, as with
CVV and GlOSS methods, it uses only DF data,
which is the only data obtainable from a typical
Boolean retrieval system. We used the same col-
lections, test queries, and document affinity prob-
abilities as in the previous experiments. Queries
with zero hits are excluded from the computation
of the accuracies. Fig. 2 shows the average accu-
racies of CVV, GlOSS and CORI methods plotted
against document affinity probability. As shown in
the figure, the performance of CVV method closely
followed that of GlOSS.

.g
I! 0.9

0.88

0.86

0.84 0.84

0.62 0.62

0.6 ’ I
10 20 30 40 50 60 70 80 so 100

l-l

Figure 3: The average ratio between the sum of
scores of the top H+ documents obtained using
the merging method and the sum of scores of H+
documents for a single collection run, for the five
values of document affinity probability Pa.

To evaluate the effectiveness of our result merg-
ing method, we tested the method for each of the
five different collection setups mentioned previously.
For each collection setup, we used 10 different val-
ues of Hfor the iop H+ document selection crite-
rion, namely, 10, 20, 100. Taking the average
ratio between the sum of absolute scores of the top
H+ documents resulted from using the merging
algorithm and the sum of absolute scores of the
top H+ documents resulted from a single collection
run, we obtained results as shown in Fig. 3. As
can be seen in the figure, the merging algorithm is
highly effective across different document affinity
probabilities.

The results show that the effectiveness ratio de-
creases as Pa increases. This is because the good-
ness score differences among collections widen as Pa
increases such that collections with very low good-
ness scores have only irrelevant documents to con-
tribute to the final result. As mentioned in Section
4.4, the merging method is based on the assump-
tion that the first rank document in a collection is
as relevant as the first rank document in another
collection, granted that the goodness scores of the
two collections are close to one another. In this
experiment, we included all collections regardless
of their goodness scores.

6 Conclusion

We presented a framework for integrating distributed,
autonomous, and heterogeneous text retrieval sys-
tems into a large index server. Our framework
is designed with interoperability, scalability, and
effectiveness in mind. Through experiments we
showed that our collection ranking and merging
methods, the CVV-based methods, worked well for
virtually arbitrary document-topics distributions,

48

for both vector space and Boolean retrieval models.
Overall, the CVV-based methods require a small
amount of meta-data interchange between broker
servers and collection servers, simple computations,
and a low storage requirement. We believe that
these characteristics make the framework relatively
easy to incorporate into existing text retrieval sys-
tems on the Internet.

References
[l] J. Callan, Z. Lu and W. Croft. Searching

distributed collections with inference networks.
In Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 21-
2a, 1995.

[2] P. Danzig, J. Ahn, J. No11 and K. Obraczka.
Distributed indexing: a scalable mechanism for
distributed information retrieval. In Proceed-
ings of 14th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 220-229, 1991.

(31 P. Deutsch, P. Faltstrom, R. Schoultz and C.
Weider. Architecture of the WHOIS++ service.
Internet Proposed Standard RFC-1835, 1995.

[4] J. Goldberg. CDM: an approach to learning in
text categorization. In Proceedings of the 7th
IEEE International Conference on Tools with
Artificial Intelligence, 1995.

(51 L. Gravano and H. Garcia-Molina. Generalizing
GlOSS to vector-space databases and broker
hierarchies. Technical Report STAN-CS-TN-
95-010, Stanford University, 1995.

[6] L. Gravano, H. Garcia-Molina and A. Toma-
sic. The effectiveness of GlOSS for the text
database discovery problem. In Proceedings of
the 1994 ACM SIGMOD Conference, 1994.

[7] M. Koster. ALIWEB: archie-like indexing in the
Web. In Proceedings of the First International
Conference on the World Wide Web, 1994.

[8] G. Salton and C. Buckley. Flexible text match-
ing in information retrieval. Technical Report
90-1158, Dept. of Computer Science, Cornell
University, 1990.

(91 G. Salton and C. Buckley. Term-weighting ap-
proaches in automatic text retrieval. Informa-
tion Processing & Management, Volume 24,
Number 5, pages 513-523, 1988.

[lo] G. Salton and M. McGill. Introduction to
Modern Information Retrieval, McGraw-Hill,
1983.

[ll] H. Turtle and W. Croft. Efficient probabilistic
inference for text retrieval. In Proceedings of
RIAO ‘91: A Conference on Intelligent Text
and Image Handling, pages 644-661, 1991.

[12] C. Viles and J. French. Dissemination of
collection wide information in a distributed
information retrieval system. In Proceedings of
the 18th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 12-20, 1995.

[13] E. Voorhees. Siemens TREC-4 report: further
experiments with database merging. In Proceed-
ings of the Fourth Text Retrieval Conference
(TREC-4). National Institute of Standards and
Technology Special Publication, 1996.

[14] B. Yuwono, S. Lam, J. Ying and D. Lee. A
world wide web resource discovery system. In
Proceedings of the Fourth International World
Wide Web Conference, 1995.

[15] B. Yuwono. A distributed cooperative Internet
resource discovery system. Ph.D. Dissertation.
In preparation.

49

