
Encapsulating Classification in an OODBMS for Data Mining Applications

Lina Al-Jadir
American University of Beirut

Department of Mathematics and Computer Science
P.O. Box 11-0236, Beirut, Lebanon

1ina.al-jadir @ aub.edu.lb

Abstract

Classijication is an important task in data mining. En-
capsulating classijication in an object-oriented database
system requires additional features: we propose multiob-
jects and schema evolution. Our approach allows us to
store classification functions, and to store instances of each
group in order to retrieve them later: Since the database is
operational, it allows us also to perform dynamic classiji-
cation, i.e. adaYremove instances to/ fom groups over time.
Moreover; it allows us to update classification functions (i f
we choose another population sample or apply another
classijier) and have the instances of groups consequently
reclassified. We illustrate our approach with a target mail-
ing application.

1. Introduction

Data mining [9] consists in finding interesting trends in
large databases in order to guide decisions about future ac-
tivities. Classification is one of the tasks of data mining and
is defined in [11 as follows. We are given a large population
database. The population is known to comprise of m
groups, but the population instances are not labeled with
the group identification. Also given is a population sample
in which the group labels of the instances are known. A
classijier generates a classification function for each group
that can be used to retrieve all instances of a specified group
from the population database. Classification has numerous
applications including target mailing, credit approval, and
medical diagnosis.

In a target mailing application, a history of responses to
various promotions is maintained. Based on this response
history, classification functions are developed for identify-
ing new candidates for future promotions. For example, a
car company stores information about all its customers
(population database): name, address, profession, gender,

birthdate, civil status, number of children (attributes). This
year, new car models are available on market with a catalog
for each. Each model belongs to one of the following cate-
gories: sport cars, family cars, and city cars. The company
sends a questionnaire to its customers who bought a car last
year (population sample, a subset of the population data-
base) asking them about their expectations and the car cat-
egories they are or may be interested in (additional attribute
interest which is multivalued). Based on the customer re-
sponses, the company identifies the profile for the custom-
ers of each car category (classijication function for each
group). For instance, the customer profile for sport cars is
found to be: gender is male, and age is between 25 and 35,
and address is in Champel (a luxurious area). Instead of
sending all the catalogs to all its customers, the company
sends a catalog only to the potential buyers of the corre-
sponding category.

Several classifiers have been proposed in the literature
based on neural nets or decision trees 113 [13] [19] [l l]
[21]. The authors in [l] argue that “classification should be
encapsulated as part of future database systems”. This issue
is not addressed in the mentioned classification papers
which present classifier algorithms. In this paper we ad-
dress this issue. We assume that we already have a classifier
and are interested in the following tasks:

We would like to store the classification functions (gen-
erated by the classifier) in the database, as well as the in-
stances of each group in order to be able to retrieve them
fast later. How and where to store the classification func-
tions ? How and where to store all instances of each group ?

Since the database is operational and is being used, we
would like to classify new customers according to the
stored classification functions. We would like also to re-
classify existing customers because they may become/
cease to be candidates of a car category. How to perform
dynamic classification ? How to handle the fact that the set
of instances of a group may have new members or lose
members over time ?

100
0-7695-0996-7/01 $10.00 0 2001 IEEE

We would like to be able to take another classifier (with
the same population sample) or another population sample
(with the same classifier), get new classification functions
and apply them to the database. How to take into account
the new classification functions ? How will this affect the
database ?
Encapsulating classification in an object-oriented database
system (OODBMS) requires additional features of that sys-
tem: we propose multiobjects and schema evolution.

The remainder of the paper is organized as follows. We
start by illustrating our approach with an example in Sec-
tion 2. Then we present our approach in sections 3 and 4.
Section 3 describes multiobjects in the F2 object-oriented
database system and shows its use for classification. Sec-
tion 4 describes schema evolution in F2 and shows its use
for classification. Section 5 concludes the paper. F2 is a
general purpose database system developed at C.U.I. (Uni-
versity of Geneva) and used to experiment several features
such as: updatable views, information system design meth-
ods, knowledge databases, database integration, schema
evolution. It is written in Ada and runs under SunOS, DEC/
ALPHA, MacOS and Windows 95/98.

2. Illustrative example

Our approach to encapsulate classification in an OOD-
BMS is based on multiobjects and schema evolution. We il-
lustrate it with the example introduced in section l . The
initial database schema of the car company contains the
classes Category, Model, Cal; Customer (see fig. 1). Car
has the following attributes: car-nb, model (of domain
Model), color, options, manufacture-date, sale-date. Cus-
tomer has the following attributes: customer-nb, name, ad-
dress, profession, gender, birthdate, civil-status,
number-children, car-bought (multivalued attribute of do-
main Car). It contains objects representing all customers.
For example, the customer number 2030 (named Laurent
Bonjour) bought the car number 1 1 198 1 which is a Peugeot
205 on November 10, 1995. The model Peugeot 205 be-
longs to the city cars (category).

next to C are its attributes)

customer-nb
name

birthdate
civil-status

model

color
options

\pb-children sale-date

Figure 1. Initial schema.

Situation I: In order to have a population sample, the
database (DB) administrator adds to the schema the class
Buyer-1999 as a subclass of Customer with a specializa-
tion constraint on it: car-bought containsAnObjectOf {e in
Car s.t. year(c.sale-date) = 1999}. This subclass will be
automatically populated by objects of Customer satisfying
its specialization constraint. Consequently, a customer who
bought a car in 1999 will be implemented by a multiobject
(set of objects) composed of two objects, bCustomer in Cus-
tomer and bBuyer-1999 in Buyer-1999, sharing the same in-
stance identifier. In order to store the interests of those
buyers according to the questionnaire responses, the ad-
ministrator adds an attribute interest to the class
Buyer-1999, which is multivalued and whose domain is
Category. The database with the updated schema is shown
in figure 2.

Car Model \

C

-+ : attribute

0 : object

Figure 2. Database with updated schema.

As we see, the administrator needs a DBMS which sup-
ports schema evolution, i.e. allows to update the schema of
a populated database, and offers among its schema chang-
es: add a subclass with specialization constraints, and add
an attribute to a class. Moreover the DBMS should support
multiobjects, and object classification when adding a sub-
class.

Situation 2: The DB administrator applies the classifier
(which may be implemented as a method) on the class
Buyer-1999 and gets for each group a classification func-
tion. For each group, helshe adds to the schema a subclass
of Customer (Candidate-sport, Candidate family, and
Candidate-city) with specialization constraints corre-
sponding to its classification function. Each of these sub-
classes will be automatically populated by objects of
Customer satisfying its specialization constraints. For ex-
ample, a customer who is a candidate for family cars and
city cars will be implemented by a multiobject composed
of three objects, C C ~ , ~ ~ ~ ~ ~ in Customer, CCand,dare famrly in
Candidatefhmily and CCandrdate crty in Candidate-city,
sharing the same instance identifier. The database after
classification is shown in figure 3.

10 1

Here again, the administrator needs a DBMS supporting
schema evolution and multiobjects.

Customer

\....e/ A I

Figure 3. Database after classification.

Situation 3: In January 2000, the company sends cata-
logs to the candidates of the corresponding categories. In
June 2000, the company offers a promotion and wants to
send the catalogs again. During the last six months, the
company may have attracted new customers and they
should have been classified as candidates in order to send
them catalogs. During that period, the database continued
to be used, queried and manipulated. When the administra-
tor added a multiobject to Customer, it was automatically
classified in Candidate-sport, Candidatefhmily,
Candidate-city, according to its values and to the speciali-
zation constraints of these subclasses.
As we see, the administrator needs a DBMS which sup-
ports automatic classification when creating a multiobject.

Situation 4: Let the customer profile for sport cars be:
gender is male, and age is between 25 and 35, and address
is in Champel. Marc Dupont used to live in Champel, and
was found a candidate when the classification was applied
in December 1999. Two months later, Dupont moves to Sa-
connex (another area) and sends the car company his new
address. He ceases to be a candidate for sport cars for the
next promotion. The database administrator updates the ad-
dress of the multiobject representing Dupont. Consequent-
ly, it is automatically removed from Candidate-sport since
it does not satisfy anymore the specialization constraints of
this subclass.
The DB administrator needs a DBMS which supports ob-
ject migration when updating a multiobject’s attribute val-
ue (since it may satisfy or cease to satisfy some
specialization constraints).

Situation 5: In December 2000, the car company sends
questionnaires to customers who bought a car in 2000 in or-
der to identify the candidates in 2001. The DB administra-
tor takes another population sample (buyers in 2000), gets
the questionnaire responses, and applies the classifier
again. He/she may get three other classification functions.
For example, in 2000 older customers tended to buy sport

cars (age is between 27 and 37 instead of being between 25
and 35). The administrator replaces the specialization con-
straints of Candidate-sport, Candidatefhmily and
Candidate-city by new ones corresponding to the newly
obtained classification functions. The Customer objects are
automatically reclassified.
The administrator needs a DBMS which supports among
its schema changes: add and delete a specialization con-
straint of a subclass with object reclassification.

Situation 6: Two months later, the car company stops
selling city cars. The DB administrator deletes the
Candidate-city subclass without losing the customers who
were city cars candidates.
The administrator needs a DBMS which supports deleting
a subclass while retaining its objects in its superclass.

3. Multiobjects

We describe in this section the multiobject mechanism
(introduced in [4]) which is implemented in the F2 data-
base system, and show how it allows on-line classification
in our car company application.

3.1. Defining a multiobject

In the F2 model [6] an object oc is an instance of class
C and has the oid <idc, id,> where idc is the class identifier
and i d , the instance identifier within C. Objects structure is
defined by class attributes. Objects behaviour is defined by
primitive methods and triggered methods. A class, called
subclass, can be declared as a specialization of another
class called superclass. The class hierarchy is a forest, i.e.
a set of specialization trees: a subclass has only one super-
class (single inheritance), and there is not a root system-de-
fined class. On a subclass may be defined specialization
constraints. An object belongs to a subclass if and only if i t
satisfies the specialization constraints of the subclass. The
ancestors of a class are its direct and indirect superclasses.
The descendants of a class are its direct and indirect sub-
classes.

We assume that the reality consists of entities. Entities
have several facets. For example, a human being may be
seen as a person, an employee, a tennis player, a student,
etc. An entity is implemented in the multiobject mechanism
by a set of objects in distinct classes of a specialization tree,
MO = (oc,, oc2, ..., ocn), called multiobject. Each object
ocl denotes a facet of the entity and carries data specific to
its corresponding class C,. All the objects of M, have the
same instance identifier. A multiobject M , satisfies the fol-
lowing constraint: if OC!, 1 I i I n, belongs to M , and C, is
a subclass of C’ then there must be an object oc-, 1 I j I n
and j # i, which belongs to MO. In other words, if an entity

102

possesses an object in class C, then the entity must also
possess objects for all the ancestors of C. For example (see
fig. 4), the class Candidate-sport is a subclass of Customer.
A candidate for sport cars is implemented by a multiobject
containing two objects OCand;dare - sport in Candidate-sport
and ocustomer in Customer:

Subclasses can be inclusive, i.e. a multiobject may con-
tain two objects oci and OC, where Ci and Cj are sibling
classes. For example (see fig. 4), the class Customer has an-
other subclass Candidatefhmily. A customer who is a can-
didate for sport cars and family cars is implemented by a
multiobject containing three objects: oCustomer in Custom-

in Candidatefamily.
In the multiobject mechanism, attributes are not inherit-

ed in the classical sense of inheritance; they are reached by
navigating in a specialization tree. For the objects of a sub-
class C, only the values on attributes locally defined at C
are stored. The values on attributes defined at the superclass
S of C are not stored with C objects but with their related S
objects (i.e. of the same multiobject). For example (see fig.
4), name is a local attribute of class Customer. If the name
of oCUstomer is “Marc Dupont” and OCandidate-sport in
Candidate-sport is related to O C ~ ~ ~ ~ ~ ~ ~ ~ then OCand;dare-sport
is named Marc Dupont. The name values are stored with
Customer objects.

In the multiobject mechanism, specialization constraints
are evaluated when: (i) a multiobject is created or updated
(§3.2.), (ii) a specialization constraint is added to or re-
moved from a subclass ($4.2.).

er, OCandidate-sport in Candidate-sport and OCandidate f u m i l y

3.2. Manipulating a multiobject

A multiobject can be created, deleted, and updated. The
detailed algorithms of these primitive methods can be
found in [4].

Creating a multiobject. The create(C, [a l :v l , a2:v2, ...,
up.vp]) primitive method creates a multiobject including an
object in class C. The create algorithm searches the classes
of the multiobject in the specialization tree of C (beginning
from the root), SC = [C,, C2, ..., C n] , according to the at-
tribute values [al:vI , a2:v2, ..., ap:vp] and to the classes’
specialization constraints. If C does not belong to SC or if
the origin class of one of the attributes a, does not belong
to SC, an error is returned. Otherwise, an object oci is add-
ed to each class Ci of SC and all these objects carry the
same instance identifier. Each attribute value is stored with
the object oci which belongs to the origin class of the at-
tribute.

For example, in situation 3 of $2., the class Customer
has the subclasses Candidate-sport, Candidate jamily,
and Candidate-city with specialization constraints on each

(see fig. 4.a). The DB administrator adds a new customer
Marc Dupont to the database. The following expression (in
F2-DML) creates a multiobject containing three objects:
oCustomer in Customer (root class of the specialization tree),
OCand;dare-,vport in Candidate-sport (the constraints gender
= “m” and age > 25 and age c 35 and area = “Champel”
are satisfied’), OCandidatefumily in Candidatefbmily (the
constraints civil-status = “married” and age > 30 and age
< 55 are satisfied) (see fig. 4.b).

oCustomer := create Customer’ [customer-nb: 2222,
name: “Marc Dupont”, address: “12 rue Miremont,
Champel”, profession: “liberal”, gender: “m”, birthdate: “01 -
JAN-1 968, civil-status: “married, nb-children: 11;

customer-nb
name
address
profession
gender
birthdate
civil-status
nb-children

/---

(Cand-family)

customer-nb: 2222
name: M. Dupont
address: 12 rue M., Champel
profession: liberal
gender: m
birthdate: 1-1-1968
civil-stat. : married
nb-children: I

Customer

Cand-famil y
I
I
I

\ (a) classes (b) instances
~

Figure 4. Creating a multiobject.

Deleting a multiobject. The deletefoc) primitive meth-
od deletes the multiobject containing the object OC, i.e. it
removes oc and all its related objects. The delete algorithm
searches the classes of the multiobject in the specialization
tree of C (beginning from the root), SC = (C , , C,, ..., C , l] ,
and removes its object oci from each class Ci of SC.

Updating a multiobject. The updute(oc, [att:val])
primitive method sets the value of the multiobject contain-
ing the object OC on the attribute att to Val. Since the at-
tribute att could be used in specialization constraints on the
descendants SD of its origin class Orig, the multiobject
may gain new objects orland lose existing objects in SD be-

’ We assume that there is a method computing the age of a customer
according to hislher birthdate, and a method returning the area according
to the customer’s address.

103

cause i t may now (with the new value V a l) validate or inval-
idate those specialization constraints. This is referred to as
object migration. The update algorithm searches in the spe-
cialization tree of C, beginning from Orig : (i) the set of
gained classes and adds an object (carrying the same in-
stance identifier as oc) to each of them; (ii) the set of lost
classes and removes the related object to oc from each of
them.

For example, in situation 4 of 42., Dupont moves from
Champel to Saconnex. The following expression (in F2-
DML) expresses that he has a new address. As a result (see
fig. 5) , (i) OCundidure-rport is automatically removed from
Candidate-sport, (ii) OCundrdute-clty is automatically added
to Candidate-city (the constraint area # “Champel” is sat-
isfied). The multiobject contains now the objects { O C ~ ~ ~ ~ ~ -

update oCustomer address: “24 ch. Coudriers,
e r oCundidurefumrly oCundidure-ciry 1.

S aco n nex”;

/ \

customer-tzb: 2222 Customer gender: m
name: M. Dupont
address: 24 ch. (7) OCustomer civil-status: married

birthdate: I - I - I968

, Cand-sport Cand-family Cand-cit y

Figure 5. Updating a multiobject (address
attribute).

4. Schema evolution

We give in this section the framework of schema evolu-
tion in the F2 OODBMS and then describe four schema
changes that are used in our car company application.

4.1. Framework of schema evolution in F2

Set of schema changes in F2. An important feature of
the F2 DBMS is the uniformity of its objects described in
[6] [5] . We consider objects of three levels: database ob-
jects, schema objects and meta-schema objects. Uniformity
of objects in F2 includes:
- uniformity of representation. The same structures are
used in F2 to represent database objects, schema objects
and meta-schema objects;
- uniformity of access and manipulation. The same prim-
itive methods are used in F2 to access and manipulate data-
base objects, schema objects and meta-schema objects.

Thanks to the uniformity of the F2 DBMS, we built the set
of schema changes in F2 as follows [6] [5]: for each class
of the F2 meta-schema we apply the primitive methods cre-
a te , delete and update on its objects (see fig. 6).

~ ~~

1) Create a new class
(1.1) Create an atomic class
(1.2) Create a tuple class
(1.3) Create a tuple subclass

2) Delete an existing class
3) Update an existing class

(3.1) Change its name
(3.2) Change its interval if atomic class
(3.3) Change its maximal length if atomic string class
(3.4) Change its superclass
(3.5) Make it a subclass, i.e. attach it to a spec. tree
(3.6) Make it a non-subclass, i.e. detach it from a spec.

tree
4) Create a new attribute of a class
5) Delete an existing attribute
6) Update an existing attribute

(6.1) Change its name
(6 .2) Change its maximal cardinality
(6.3) Change its minimal cardinality
(6.4) Change its domain class
(6.5) Change its origin class

7) Create a new key of a class
8) Delete an existing key
9) Update an existing key

(9.1) Change the class on which it is defined
(9.2) Change its attributes
(9.3) Enable / disable i t

10) Create a new specialization constraint
11) Delete an existing spec. constraint
12) Update an existing spec. constraint

(12.1)Change its name
(1 2.2)Change the list of subclasses on which it is defined

13) Create a new trigger
14) Delete an existing trigger
15) Update an existing trigger

(15.1)Change the event for which it is defined
(15.2)Change the list of methods it triggers

16) Create a new event
17) Delete an existing event
18) Update an existing event

(18.1)Change the class on which it is defined
(18.2)Change its kind
(18.3)Change its attribute

19) Create a new triggered method
20) Delete an existing triggered method
21) Update an existing triggered method

(21.1)Change its name

Figure 6. F2 schema changes.

Semantics of schema changes. We defined the seman-
tics of each schema change in F2 with pre-conditions and

104

post-actions [6] [SI such that the F2 model invariants are
preserved. Pre-conditions must be satisfied to allow a sche-
ma change to occur; otherwise it is rejected. Post-actions
are repercussions to be executed on schema objects and da-
tabase objects in order to keep the database structurally
consistent. We implemented pre-conditions and post-ac-
tions by triggered methods [61 [5].

Propagation of schema changes. In F2 schema chang-
es are propagated immediately [51 [3], i.e. the repercus-
sions of a schema change are executed as soon as the
schema change is performed.

4.2. Examples of schema changes

Create a subclass. In situation 2 of $2., the schema con-
tains the class Customer which has several attributes in-
cluding address. Customer has five objects (aCustomer

which take the value Champel, Meyrin, Servette, Champel,
Champel, respectively on the address attribute. After ap-
plying the classifier on the population sample, the DB ad-
ministrator creates the class Candidate-city as a subclass of
Customer and adds the specialization constraint area f
“Champel” (according to the obtained classification func-
tion) on it. As a result of this schema change, the objects
bcundidare-ei,,, and CCund;dure-ciry are automatically added to
the Candidate-city subclass because they satisfy its spe-
cialization constraint (see fig. 7.b). Each of the multiobjects
b and c contain now two objects. The address values (and
other Customer attribute values) remain stored within the
objects bCusromer and C C ~ ~ ~ , ~ ~ ~ ~ ~ ; they are not copied but
reached by the objects bCundidute-ciry and CCundrdute-city

bcustonrer Ccustomer dcustumer 7 ecustomer (see fig. 7.a)3

Z 3 : class C
(underlined items next to C are its specialization constraints)

Customer ’ Customer

area # “Champel’

(a) before I (b) after
\ 1

Figure 7. Adding the Candidate-city
subclass and a specialization constraint on
it.

Buyer-I999 as a subclass of Customer and adds a special-
ization constraint on it, in order to have a population sam-
ple. Consequently, this subclass is populated by objects
representing customers who bought a car in 1999. In addi-
tion, the administrator adds the attribute interest to this sub-
class. As a consequence, all objects of Buyer-1999 take the
null value on it. Then the administrator updates their value
on interest according to the questionnaire responses.

Delete a class. In situation 6 of $2., the class
Candidate-city is a subclass of Customer: It has two objects

and C C , ~ ~ ~ ~ ~ ~ respectively in Customer (see fig. 7.b).
The DB administrator deletes this class because the car
company stops selling city cars. As a result of this schema
change, the Objects bCandidate-ci/y CCandidate-city) are re-
moved while their related objects { bCustumer C C ~ ~ ~ ~ ~ ~ ~) re-
main in Customer (see fig. 7.a). This means that the
company does not lose its customers who were city cars
candidates.

bCandidate-city and CCandidate-city which are to bCus-

Create/delete a specialization constraint. In situation
5 of $2., the DB administrator applies the classifier on an-
other population sample and gets other classification func-
tions. He/she replaces (delete followed by create) the
specialization constraints of the Candidate-sport subclass
by gender = “m” and age > 27 and age < 37 and area =
“Champel”. As a result of this schema change, the object
eCand;date-spurt (age: 36, male, lives in Champel) is auto-
matically added to the class Candidate-sport while the ob-
ject aCundidure-spurt (age: 26, male, lives in Champel) is
removed from it (see fig. 8.b). The object dCandidare
(age: 31, male, lives in Champel) remains- in
Candidate-sport.

I (Customer I Customer

gender = “m” and

age < 35 and
area = “Chamuel”

gender = “m” and

age < 37 and
area = “Chamoel”

I (a) before (b) after 1

Figure 8. Replacing the specialization
constraints of the Candidate-sport
subclass.

Create an attribute. Situation 1 of $2. is similar to sit-
uation 2. The DB administrator creates the class

105

5. Conclusion

Classification is an important task in data mining. Ap-
plying a classifier on a database is not enough. We need to
store the result of the classification process and to continue
to use the classified database. We proposed to use schema
evolution and multiobjects in order to encapsulate classifi-
cation in an OODBMS. We showed that our approach al-
lows us to store classification functions as specialization
constraints. It allows us to store all instances of a group as
objects of a subclass. It allows us to add and remove in-
stances of a group over time by creating or updating multi-
objects. It allows us to modify the stored classification
functions by creating/deleting specialization constraints
and have the group instances accordingly reclassified. We
illustrated our approach with a target mailing application.

Multiobjects and schema evolution are implemented in
the F2 database system. F2 supports a non-classical trans-
posed storage [3]. We ran the 0 0 7 benchmark on F2 as
well as a benchmark for schema evolution and obtained in-
teresting results in [3].

Future work consists of keeping a history of classifica-
tions, i.e. keeping track of which classifier was used, when
it was used, on which population sample it was used, and
its resulting classification functions.

References

1 . Agrawal R., Ghosh S. , Imielinski T., Iyer B., Swami A., An
Interval Classifier for Database Mining Applications, Proc.
Int. Conf on Very Large Data Bases, VLDB, Vancouver 1992.

2. Albano A., Bergamini R., Ghelli G., Orsini R., An Object Data
Model with Roles, Proc. Int. Con6 on Very Large Data Bases,
VLDB, Dublin 1993.

3. AI-Jadir L., LConard M., Transposed Storage of an Object
Database to Reduce the Cost of Schema Changes, Proc. ER’99
Int. Workshop on Evolution and Change in Data Management,
ECDM, Paris 1999.

4. AI-Jadir L., Leonard M., Multiobjects to Ease Schema
Evolution in an OODBMS, Proc. Int. Conf on Conceptual
Modeling, ER, Singapore 1998.

5. AI-Jadir L., Evolution-Oriented Database Systems, Ph.D.
thesis, Faculty of Sciences, University of Geneva, 1997.

6. AI-Jadir L., Estier T., Falquet G., Leonard M., Evolution
Features of the F2 OODBMS, Proc. Inf. Cant on Database
Systems for Advanced Applications, DASFAA, Singapore
1995.

7. Andany J., LConard M., Palisser C., Management of Evolution
in Databases, Proc. Int. Conf on Very Large Data Bases,
VLDB, Barcelona 1991.

8. Banerjee J. , Kim W., Kim H-J., Korth H.F., Semantics and
Implementation of Schema Evolution in Object-Oriented
Databases, Proc. Int. Conf on Management Of Data, ACM
SIGMOD, San Francisco 1987.

9. Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R.
(eds), Advances in Knowledge Discovery and Data Mining,
AAA1 Press/MIT Press, 1996.

10.Ferrandina F., Meyer T., Zicari R., Ferran G., Madec J.,
Schema and Database Evolution in the 0 2 Object Database
System, Proc. Int. Con$ on Very Large Data Bases, VLDB,
Zurich 1995.

11.Kamber M., Winstone L., Gong W., Cheng S., Han J.,
Generalization and Decision Tree Induction: Efficient
Classification in Data Mining, Proc. Int. Workshop on
Research Issues on Data Engineering, RIDE, Birmingham
1997.

12. Kuno H.A., Ra Y-G., Rundensteiner E.A., The Object-Slicing
Technique: A Flexible Object Representation and Its
Evaluation, Technical Report, CSE-TR-241-95, University of
Michigan, 1995.

13.Mehta M., Agrawal R., Rissanen J., SLIQ: A fast scalable
classifier for data mining, Proc. Int. Con$ on Extending
Database Technology, EDBT, Avignon 1996.

14.Morsi M.M.A., Navathe S.B., Kim H-J., A Schema
Management and Prototyping Interface for an Object-
Oriented Database Environment, in: Object Oriented
Approach in I S . , F. Van Assche & B. Moulin & C. Rolland
(eds), IFIP, North-Holland, 1991.

15.0dberg E., Category Classes: Flexible Classification and
Evolution in Object-Oriented Databases, Proc. Int. Cot$ on
Advanced Injormation Systems Engineering, CAISE, Utrecht
1994.

16.Penney D.J., Stein J., Class Modification in the Gemstone
Object-Oriented DBMS, Proc. Con$ on Object-Oriented
Programming Systems, Languages and Applications,
OOPSLA, Orlando 1987.

17.Peters R.J., Ozsu M.T., An Axiomatic Model of Dynamic
Schema Evolution in Objectbase Systems, ACM Transactions
on Database Systems, vol. 22, no I , march 1997.

18. Sciore E., Object Specialization, ACM Transactions on
Information Systems, vol. 7, no 2, april 1989.

19.Shafer J., Agrawal R., Mehta M., SPRINT: a scalable parallel
classifier for data mining, Proc. Int. Cotif: on Very Large Data
Bases, VLDB, Bombay 1996.

20.Skarra A.H., Zdonik S.B., Type Evolution in an Object-
Oriented Database, in: Research Directions in 00
Programming, B. Shriver & P. Wegner (eds), MIT Press, 1987.

21.Zaki M., Ho C-T., Agrawal R., Parallel Classification for Data
Mining on Shared-Memory Multiprocessors, Proc. h i . Con$
on Data Engineering, ICDE, Sydney 1999.

106

