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ABSTRACT

The Iterative Closest Point (ICP) algorithm that uses the point-to-
plane error metric has been shown to converge much faster than
one that uses the point-to-point error metric. At each iteration of
the ICP algorithm, the change of relative pose that gives the
minimal point-to-plane error is usually solved using standard
nonlinear least-squares methods, which are often very slow.
Fortunately, when the relative orientation between the two input
surfaces is small, we can approximate the nonlinear optimization
problem with a linear least-squares one that can be solved more
efficiently. We detail the derivation of a linear system whose
least-squares solution is a good approximation to that obtained
from a nonlinear optimization.

1 INTRODUCTION

3D shape alignment is an important part of many applications. It
is used for object recognition in which newly acquired shapes in
the environment are fitted to model shapes in the database. For
reverse engineering and building real-world models for virtual
reality, it is used to align multiple partial range scans to form
models that are more complete. For autonomous range
acquisition, 3D registration is used to accurately localize the range
scanner, and to align data from multiple scans for view-planning
computation.

Since its introduction by Besl and McKay [Besl92], the ICP
(Iterative Closest Point) algorithm has become the most widely
used method for aligning three-dimensional shapes (a similar
algorithm was also introduced by Chen and Medioni [Chen92]).
Rusinkiewicz and Levoy [RusinkiewiczO1l] provide a recent
survey of the many ICP variants based on the original ICP
concept.

In the ICP algorithm described by Besl and McKay [Besl92], each
point in one data set is paired with the closest point in the other
data set to form correspondence pairs. Then a point-to-point error
metric is used in which the sum of the squared distance between
points in each correspondence pair is minimized. The process is
iterated until the error becomes smaller than a threshold or it stops
changing. On the other hand, Chen and Medioni [Chen92] used a
point-to-plane error metric in which the object of minimization is
the sum of the squared distance between a point and the tangent
plane at its correspondence point. Unlike the point-to-point
metric, which has a closed-form solution, the point-to-plane
metric is usually solved using standard nonlinear least squares
methods, such as the Levenberg-Marquardt method [Press92].
Although each iteration of the point-to-plane ICP algorithm is
generally slower than the point-to-point version, researchers have
observed significantly better convergence rates in the former
[RusinkiewiczO1]. A more theoretical explanation of the
convergence of the point-to-plane metric is described by Pottmann
et al [Pottmann02].

In [Rusinkiewicz01], it was suggested that when the relative
orientation (rotation) between the two input surfaces is small, one
can approximate the nonlinear least-squares optimization problem
with a linear one, so as to speed up the computation. This
approximation is simply done by replacing sin &by & and cos &by
1 in the rotation matrix.

In this technical report, we describe in detail the derivation of a
system of linear equations to approximate the original nonlinear
system, and demonstrate how the least-squares solution to the
linear system can be obtained using SVD (singular value
decomposition). A 3D rigid-body transformation matrix is then
constructed from the linear least-squares solution.

2 POINT-TO-PLANE ICP ALGORITHM

Given a source surface and a destination surface, each iteration of
the ICP algorithm first establishes a set of pair-correspondences
between points in the source surface and points in the destination
surfaces. For example, for each point on the source surface, the
nearest point on the destination surface is chosen as its
correspondence [Besl92] (see [RusinkiewiczO1] for other
approaches to find point correspondences). The output of an ICP
iteration is a 3D rigid-body transformation M that transforms the
source points such that the total error between the corresponding
points, under a certain chosen error metric, is minimal.

When the point-to-plane error metric is used, the object of
minimization is the sum of the squared distance between each
source point and the tangent plane at its corresponding destination
point (see Figure 1). More specifically, if s; = (s;y, Sy, Siz 1)T isa
source point, d; = (d;y, djy, d;., 1)T is the corresponding destination
point, and n; = (n;y, 1y, 1y, 0)T is the unit normal vector at d;, then
the goal of each ICP iteration is to find M, such that

Moy = argming (M-s, ~d,)om,)’ 0

where M and M, are 4x4 3D rigid-body transformation matrices.
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Figure 1: Point-to-plane error between two surfaces.



A 3D rigid-body transformation M is composed of a rotation
matrix R(¢, £3, 7) and a translation matrix T(z,, ., ,), i.e.

M=T(,,z,.t,) R, fB,7) )
where
1 0 0 ¢,
T(t,,t,,t.)= 0 101, 3
xotystz /)™ 00 1 tz ( )
00 0 1
and
R(a, 8,7)=R_(»)-R (p) R (@)
ny o nz O
_ Ty Ty Iy O 4
B Fp 0
0 0 0 1
with

r;; =cos ycos S,

r;, =—sinycos & + cos ¥sin Bsina,
r;; =sin ysina + cos ysin S cos &,
1y =sinycos S,

Iy, =CO0S ycos & + sin ysin fSsina,
Fy; =—C0s ¥sin & +sin ysin S cos &,
ry =—sin f,

ry, =cos fsina,

ry; =cos fBcos a.

R.(a), Ry(p) and R(p are rotations of ¢, B, and yradians about
the x-axis, y-axis and z-axis, respectively.

Equation (1) is essentially a least-squares optimization problem,
and solving it requires the determination of only the values of the
six parameters ¢, f3, ¥ t,, t,, and t,. However, since ¢, 3, and yare
arguments of nonlinear trigonometric functions in the rotation
matrix R, efficient linear least-squares techniques cannot be
applied to obtain the solution. In the next section, we present how
this nonlinear least-squares problem can be approximated by a
linear one, so that a linear least-squares technique can be applied.

3 LINEAR APPROXIMATION

When an angle 8= 0, we can use the approximations sin = & and
cos &= 1. Therefore, when ¢, 5, y= 0,
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Then, M is approximated by

M=T(,.t,.t) R@pB.7)
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We can now rewrite Equation (1) as
N . . 2
M, =argminy Z((M~si—di)°ni) . 7)

Each (1\7[ -s; —d,; )o n; in (7) can be written as a linear expression

of the six parameters &, 3, ¥ t,, t,, and z.:
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Given N pairs of point correspondences, we can arrange all
(NI-s, —d.)en,, 1<i<N, into a matrix expression

Ax—b
where
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Therefore, we can obtain M ot by first solving for
. 2
X, =argming |Ax—b|", (12)




which is a standard linear least-squares problem, and can be
solved using SVD (singular value decomposition) [Press92]. Let
A =UZV" be the SVD of A. The pseudo-inverse of A is defined
as the matrix A*=VX'U", where T* is the matrix formed by
taking the inverse of the non-zero elements of X (and leaving the
zero elements unchanged). Then, the solution to the least-squares
problem (12) is

Xop=A'b. (13)

Suppose the solution Xop[= (aop[, ﬂopl’ %pt, txopt, tyopt, tzopt)- Note

that since R(e, pto B, ot Yopt) Ay not be a valid rotation matrix,

we should not use the result T(t,q.7 op>Loopt) - R(aopl, Bopts Vopt) -
Instead, we should use (7,2 yonsLoopt) - R(gpi> Bopis Yop) » EVEN

though it is not equal to NI, ot 35 defined in (7).

t

4 DISCUSSION

In practice, the linear approximation method can be used even
when the relative orientation between the two input surfaces is
quite large, sometimes as large as 30°, which we have observed.
However, this is very dependent on the geometry and the amount
of overlap between the two input surfaces. As the relative
orientation decreases after each ICP iteration, the linear
approximation becomes more accurate in the next.

To improve the numerical stability of the computation, it is
important to use a unit of distance that is comparable in
magnitude with the rotation angles. The simplest way is to rescale
and move the two input surfaces so that they are bounded within a
unit sphere or cube centered at the origin.
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