
CS2109S

School of Computing

MIDTERM ASSESSMENT SOLUTIONS
Semester II, 2021/2022

CS2109S— Introduction to AI and Machine Learning

28 Feb 2022 Time Allowed: 90 minutes

Instructions (please read care-
fully):

1. This is an OPEN-SHEET assessment. You
are allowed to have 1 × A4 cheatsheet with
you.

2. You are not allowed to communicate with
anyone during the exam.

3. Write down your student number on the
right and using ink or pencil, shade the cor-
responding circle in the grid for each digit or
letter. DO NOT WRITE YOUR NAME!

4. The assessment paper contains SIX (6) ques-
tions and comprises TWENTY-THREE
(23) pages including this cover page.

5. The total number of marks for this assess-
ment is 100.

6. All questions must be answered in the space
provided; no extra sheets will be accepted as
answers. You may use the extra page behind
this cover page if you need more space for
your answers.

7. You are allowed to use pencils, ball-pens or
fountain pens, as you like as long as it is leg-
ible (no red color, please).

8. For questions where shading is required,
please shade the correct circle fully and with
a pen or dark pencil.

9. Marks may be deducted for i) unrecognis-
able handwriting, and/or ii) poor shading.

STUDENT NUMBER

A
U
A

HT
NT

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 6 6 6 6 6 6

7 7 7 7 7 7 7

8 8 8 8 8 8 8

9 9 9 9 9 9 9

A

B

E

H

J

L

M

N

R

U

W

X

Y

Question Marks

Q1

Q2

Q3

Q4

Q5

Q6

Total

1

CS2109S

This page is intentionally left blank.

It may be used as scratch paper.

2

CS2109S

Question 1: Water Filling Problem [25 marks]

You currently have 3 pitchers P1, P2, and P3 with capacities c1, c2, and c3 respectively, such that
0 < c1 < c2 < c3 where ci ∈ Z+. You also have access to a well (unlimited supply of water).
Your job is to determine a sequence of steps to measure out an amount of water a in any of the
pitchers, where 0 < a≤ c3,a ∈ R+.

In each step, you can do one of three things:

1. You can fill a pitcher Pi to the brim; or

2. You can empty a pitcher Pi; or

3. You can pour water from pitcher Pi to pitcher Pj.

In the third case, we will try to pour enough water from Pi to Pj to fill Pj but not more. For
example, if Pj is already full, then nothing happens. If the total amount of water in Pi and Pj is
less than or equal to c j, then all the water gets poured into Pj and Pi is emptied.

A. [Warm Up] To make sure that you understand the problem setup, describe the (opti-
mal) steps to measure out 1 litre using only two pitchers: a 3-litre pitcher and a 5-litre pitcher.
[3 marks]

The steps are as follows:
1. initial (0, 0)
2. fill up 3, (3, 0)
3. pour 3 into 5, (0, 3)
4. fill up 3, (3, 3)
5. pour 3 into 5 (1, 5)

3

CS2109S

B. Propose a representation for the state of this problem if we want to formulate it as a
search problem and define the corresponding actions. [4 marks]

We can represent the state of the problem as the tuple (c1,c2,c3,v1,v2,v3), where c1, c2, and c3
are the capacities of pitchers P1, P2, and P3 respectively and v1, v2, and v3 are the amounts of
water contained in the pitchers respectively.

The following are the state changes corresponding to the 3 actions:
1. vi := ci
2. vi := 0
3. vi := max(0,vi + v j− c j), v j := min(vi + v j,c j)

2 marks for the correct state representation.

2 marks for stating the correct actions with corresponding state transitions.

C. What is the invariant for your state representation in Part (B) above? In other words, what
are the condition(s) that the state representation must satisfy, in order to be valid? [3 marks]

0≤ vi ≤ ci, vi ∈ Z+ for all i.

D. What are the initial and goal states for the problem under your proposed representation in
Part (B)? [2 marks]

Initial state: (c1,c2,c3,0,0,0)

Goal state: vi = a, for some i

4

CS2109S

E. Which of the following statement(s) is/are true given your definition of the search problem
in Parts (B) to (D)? Shade all that is/are true. [4 marks]

The search tree is finite.

There are possibly many repeated states.

There are possibly many goal states.

An optimal solution (minimum number of steps) can always be found if we employ the
right search algorithm.

None of the above.

F. Suppose we want to reliably determine the optimal solution(minimum number of steps), or
determine that there is no solution, by applying TREE-SEARCH (See Appendix) using one of the
following uninformed techniques:

1. Depth-first search (DFS)

2. Breath-first search (BFS)

3. Depth-limited search (DLS)

4. Iterative-deepening search (IDS)

Which of the above search algorithms should we use? Explain. [4 marks]

None of these will work because the search tree is infinite and we do not have a terminating
condition that is guaranteed to allow us to determine if there is no solution, for example, if
a /∈ Z+.

2 marks for stating that none of them will work.

2 marks for explaining why correctly.

5

CS2109S

G. Ben Bitdiddle tells you that you can find a solution (or determine that the solution does
not exist if one does not exist) with certainty with DFS by applying GRAPH-SEARCH. Do you
agree with Ben? Why? If you agree with Ben, will the solution be optimal (minimum number of
steps)? Explain. [5 marks]

Yes, the search space will now be finite since ci ∈ Z+. Not optimal since DFS cannot guarantee
optimality.

1 mark for agreeing with Ben.

2 marks for explaining why correctly.

1 mark for stating that the solution might not be optimal. 1 mark for correctly explaining why
not optimal.

6

CS2109S

Question 2: Pacman Revisited [22 marks]

Recall the simplified Pacman problem covered in the tutorial, where Pacman begins at some
location with pellets are scattered around the maze. At each time-interval, available actions are
the 4-directional movement, unless blocked by walls, and if Pacman moves to a square with a
pellet, he will automatically eat it with no additional cost (each time-step has a cost of 1).

In this problem, we now introduce a final finishing position (represented by a flag). The goal
state is when Pacman has eaten all the pellets and reaches the flag.

A. [Warm Up] Your colleague Ben Bitdiddle immediately suggests using the heuristic hcount
that counts the remaining number of pellets in the maze as the cost. He claims that since this
heuristic is admissible for the original tutorial problem without the final finishing position, then
this heuristic must also be admissible for the current problem. Explain why Ben’s claim must be
true. [2 marks]

This question tests that the student understands if a heuristic that is admissible for a relaxed
problem must also be admissible for a more contrained problem.

[2m] state that the original problem discussed in tutorial is a relaxed problem w.r.t the new
problem with the extra finishing position.
[2m] demonstrate by comparing cost estimates that the heuristic is admissible in current context.

7

CS2109S

B. You feel that the heuristic hcount provided in part (A) is too simplistic as it does not account
for the final finishing position. Describe a new heuristic that is both admissible and dominant
over hcount . Show that it is both admissible and dominant. [4 marks]

h : |O|+min
o∈O
{MD(o,g)}

where MD(o,g) be the Manhattan distance between a pellet o and the location of the final finish-
ing position/goal g, and min{}= 0
h is admissible because Pacman will minimally require |O| steps to eat all pellets, and subse-
quently minimally travel to the final finishing position from the pellet closest to it, hence no
overestimate. This is dominant because the additional travel to the final finishing position always
provides a better estimate to the true cost.

h : max{hcount ,MD(p,g)}

MD(p,g) is the optimal solution to the relaxed problem where Pacman only needs to move to
the final finishing position (without eating pellets, without walls), hence is admissible for the
current problem. The max of two admissible heuristics is itself admissible, and is dominant
since it takes the max of both heuristics.

Another valid and simple answer is hcount +1 if flag is not on a pellet, otherwise hcount .

[+2] come up with a dominant and admissible heuristic
[+2] correctly explain why it is both dominant and admissible

C. Consider a modified version of the problem where there are now k Pacmans in the maze,
where k > 1. Each Pacman starts at its own unique start location. In each turn, every Pacman
takes one step. The goal of this modified version is for all the Pacmans to reach the finishing
position (where they would disappear), and between them, they will need to eat all the pellets
in the maze before the last Pacman reaches the flag. It is illegal for more than one Pacman to
occupy the same position, and for multiple Pacman to move into the finishing position in the
same turn.

What is the maximum branching factor for this modified version with k Pacmans? [2 marks]

4k, since each of the k Pacman can move in a maximum of 4 directions.

[2m] state 4k

[1m] correct observations but incorrect final answer
[0m] incorrect answers without explanation

8

CS2109S

D. Ben Bitdiddle has come up with the following possible heuristics to be used in this new
k-Pacman problem. For each heuristic, shade the appropriate circle to indicate if the heuristic is
admissible/consistent or not, then justify your answer in the boxes provided. [12 marks]

Let MD(a,b) be the Manhattan distance between locations a and b
and pi be the current location of Pacman i
and O be the set of all locations of remaining pellets
and g be the location of the final finishing position/goal.

hA :
1
k

k

∑
i=1

MD(pi,g)

Admissible Not admissible

hA is admissible because the total distance of all Pacmans to the final finishing position can be
reduced by at most k at each time step (i.e. average will only reduce by at most 1), which means
hA will not overestimate the cost (Consistency implies admissibility), or
observe that average MD ≤ max MD ≤ h∗, or that hA is an admissible solution to the relaxed
problem of where Pacmans do not need to consider walls, pellets, and can overlap.

No marks for stating hA is the average MD of Pacmans to goal (proof absent) or that hA is less
than the true cost/or that it never overestimates (tautology)

Consistent Not consistent

hA is consistent because the heuristic decreases by no more than 1 (the actual cost) with each
time step.

The key insight for this question is that the cost is always 1 for each step. As long as the it is
not possible for the heuristic to increase or decrease by more than 1 in each step, then triangle
equality will not be violated.
0 marks for simply stating the triangle equality without supporting context.

hB : max
1≤i≤k

{max
o∈O
{MD(pi,o)}}, max

o∈O
{MD(pi,o)}= 0 if O = {}

Admissible Not admissible

hB is inadmissible because this looks at the distance of each Pacman to its most distant pellet;
but the optimal solution might require a different Pacman eating that pellet instead.

9

CS2109S

Consistent Not consistent

hB is not consistent because if a Pacman’s farthest pellet in one state is eaten by a different
Pacman in the next state, then it is possible for the heuristic to decrease by some value > 1.

hC : min
1≤i≤k

{min
o∈O
{MD(pi,o)}}, min

o∈O
{MD(pi,o)}= 0 if O = {}

Admissible Not admissible

hC is admissible because some Pacman will have to travel at least this far to eat one pellet, before
proceeding with the rest of the goal conditions. This means there is no overestimate of cost to
reach goal state.

Consistent Not consistent

hC is consistent because if no pellets are eaten, the heuristic may only decrease by at most 1. If a
pellet is eaten, then the heuristic may increase. This means that hC never overestimates the true
step cost of 1.

10

CS2109S

hA :
1
k

k

∑
i=1

MD(pi,g)

hB : max
1≤i≤k

{max
o∈O
{MD(pi,o)}}, max

o∈O
{MD(pi,o)}= 0 if O = {}

hC : min
1≤i≤k

{min
o∈O
{MD(pi,o)}}, min

o∈O
{MD(pi,o)}= 0 if O = {}

E. [Dominance] Among the 3 proposed heuristics in part (D), find a pair where one heuristic
is dominant over the other. Explain. [2 marks]

Note that we cannot compare hA with either hB or hC since there is no dominance relationship.
This leaves us only hB and hC available for comparison. Students who include hA for comparison
are immediately incorrect.

hB is dominant over hC.

For one heuristic to dominate another, all of its values must be greater than or equal to the
corresponding values of the other heuristic. Since hB always selects the maximum distance of all
Pacmans to their furthest pellet, while hC always selects the minimum distance of all Pacmans
to their closest pellet, then hB ≥ hC for all states.

[+1] identify the correct pair
[+1] correct reasoning
[0m] incorrectly assuming admissibility is requirement for dominance

11

CS2109S

Question 3: Timetable Scheduling [20 marks]

You managed to secure a summer internship at the Ministry of Education (MOE). Knowing that
you are now well-trained by CS2109S, your boss assigns you to develop a timetable scheduling
system for MOE schools. You are asked to work on the following (simplified) requirements for
a Primary school:

• A school consists of j classes. We will specify these classes as ci, for 1≤ i≤ j.

• A timetable consists of timeslots (periods). There are 8 periods each day for each week
days. Timetables are repeated weekly, so the required output is a timetable of 40 periods
(8 periods × 5 days) for a week.

• Each class ci has a fixed set of subjects {s1, · · · ,s j} that it must take and the number of
periods for subject s j for class ci is given by ni j.

• The total number of periods for each class each week is exactly 40. We will specify these
periods as pi, for 1≤ i≤ 40.

• There are h teachers in the school, and each is assigned to teach exactly one subject. Each
teacher should teach no more than m periods in a week. Furthermore, only one teacher
should be allocated to teach all the classes for the same subject to each class. Clearly, a
teacher cannot be teaching 2 different classes in the same period.

We assume that there are enough teachers to teach all the subjects required by the school. If this
condition is not true, that the problem clearly has no solution.

A. Your colleague Ben Bitdiddle suggests that you should try to solve this problem using
informed search. You don’t agree. Give 2 possible reasons why informed search might be a bad
idea. [4 marks]

First, it is quite possible that there is no solution, i.e. the constraints are actually unsatisfiable
and what we want is a configuration that has the minimum number of constraint violations. It
turns out that this is actually true in practice (at least for MOE, Singapore).

Second, even if there is a valid solution, the search space is very huge and informed search could
take a very long time.

2 marks for each correct reason.

12

CS2109S

You decide to formulate the solution as a local search problem, which involves 3 steps:

1. Define a candidate solution

2. Define a transition function to generate new candidate solutions

3. Define a heuristic to evaluate the “goodness” of a candidate solution.

All 3 need to be designed in tandem because they have an impact on each other.

B. Based on the description of the timetabling problem above, define an initial candidate
solution. [4 marks]

1. For each class ci, generate a list of subject-periods for the class. There should be exactly
40 subject-periods.

2. Compute the total number of subject-periods for each subject. Divide this by the number of
subject teachers for each subject. This will provide us with the average number of periods
that each teacher needs to teach. Because we know that there are enough teachers, this
number ≤ m.

3. Associate teachers with the list of subject-periods for each class, with the constraint that
all the subject-periods for a class should be allocated to the same teacher.

4. Define a j×40 matrix. Each row records the timetable for a class ci, column k stores the
subject for period k, for 1≤ k ≤ 40.

5. Randomly assign the subject-periods for class ci, into the entries in row i, for 1≤ i≤ j.

C. Define a reasonable heuristic function to evaluate the “goodness” of a candidate solution.
Explain how this heuristic can also be used as a goal test to determine that we have a solution to
the problem. [4 marks]

Based on the description of the problem, the following constraints need to be satisfied:
1. Each class ci has a fixed set of subjects {s1, · · · ,s j} that it must take and the number of

periods for subject s j for class ci is given by ni j.
2. The total number of periods for each class each week is exactly 40.
3. Each teacher should teach no more than m periods in a week.
4. Only one teacher should be allocated to teach all the classes for the same subject to each

class.
5. A teacher cannot be teaching 2 different classes in the same period.

It turns out that the first 4 constraints are satisfied by design, leaving only the final constraint to
be met. This suggests that a natural heuristic is the number of instances where constraint #5 is
violated and we want to minimize this number. If there are constraint violations, then we have a
valid timetable and the problem is solved.

13

CS2109S

D. Define a reasonable transition function to generate new candidate solutions. [4 marks]

1. Find a pair of conflicting constraints. This means that the same teacher is assigned to teach
2 classes at the same time.

2. Pick one of the periods and swap it with another period in the same row (i.e. same class)
There are many possible solutions for Parts (C), (D) and (E), but they need to be coordinated.

E. In addition to the constraints described above, you suddenly discover that that there is yet
another constraint. There are also constraints on the maximum number of periods for a subject
each day. For example, if there are 5 periods of English in a Week, we probably don’t want to
have all 5 periods on Monday. Explain how you would modify your answers in Parts (B), (C)
and (D) to incorporate this new requirement. [4 marks]

The most straightforward approach is to modify the heuristic in Part (D). Now there are 2 con-
straints that could be violated:

1. A teacher cannot be teaching 2 different classes in the same period.
2. Some class has more than the upper limit for a subject on one day.

Let the number of violations for each of these constraints be x1 and x2 respectively. Then, we
can adopt a linear combination of the 2, i.e. ax1 +bx2 as the heuristic. a and b will trade off the
relative “importance” of the 2 constraints. Generally, these constants can only be determined
empirically.

Also possible to modify the initial state to meet this new constraint. Check that transition function
does not generate states that will violate this constraint.

14

CS2109S

Question 4: Yet Another Game of Nim! [20 marks]

In lecture, we discussed the Game of Nim. In this problem, we consider yet another variant of
the game with the same five sticks in 3 piles that has the following rules:

• Each player may take only either one or two sticks from an existing pile during his turn.

• There is a specified target number of sticks that each player will try to collect during the
game. A player loses one point for each stick that either falls short or exceeds the target
number of sticks; a player gains one point for each stick that the opponent either falls short
or exceeds the target number of sticks. For example, if the target number is 3 and at the
end of the game, player A has 3 sticks and player B has 2, player A’s score is +1 and player
B’s score will be -1. The goal of the game is to maximize one’s score by trying to have a
number of sticks as close to the target number as possible.

A. Suppose the target number of sticks is 4 sticks. Would you opt to move first or second?
Justify your answer by assigning a value to each node in the game tree below. [5 marks]

We represent the game state as a tuple (p,q,r,s1,s2), p≤ q≤ r, where p, q and r are the number
of sticks in the three piles and s1 and s2 are the number of sticks picked by the player A and
player B respectively. The following is the game tree for the game:

15

CS2109S

This is a standard question to test that the student understands how to compute minimax for a
standard game tree.

4 marks for correct values for the nodes.

1 marks for stating we should start first, thereby demonstrating that the student can interpret the
results correctly. Marks only awarded if the correct values are obtained for the game tree above
(otherwise student might just be guessing and no marks should be awarded for random guesses).

B. Ben Bitdiddle looks at your tree in Part(A) and claims that you are not doing it right. There
are many repeated states. He thinks that the following tree is better because it is more compact:

Do you agree with Ben? Explain. [3 marks]

No, it is not correct to try to make the tree smaller this way. We cannot collapse nodes across
levels since the state of the game also includes whose turn it is.

16

CS2109S

C. Suppose instead the target number of sticks is 2 sticks. Would you now opt to move first or
second? Justify your answer by assigning a value to each node in the game tree below. [5 marks]

4 marks for correct values for the nodes.

1 mark for stating that no, we do not want to start first.

17

CS2109S

D. [Alpha-Beta Pruning] Suppose that the target number of sticks is 2 sticks and assume that
we will be evaluating the game tree below from left to right. Cross out the links that would be
pruned away by alpha-beta. Circle the nodes that would not be explored. [7 marks]

-2 marks for not marking the pruned link.

-2 marks for marking each wrong link or node.

18

CS2109S

Question 5: Modified Loss Function [10 marks]

In class, we discussed linear regression:

hθ(x) = θ
T x (1)

using the following loss function:

J(θ) =
1

2m

m

∑
i=1

(hθ(x(i))− y(i))2 (2)

We also discussed the following update rule for Gradient Descent:

θ j := θ j−α
∂J(θ)
∂θ j

(3)

In this problem, we will investigate the following slightly modified loss function:

J(θ) =
1

2m

[m

∑
i=1

(hθ(x(i))− y(i))2 +λ

n

∑
j=1

θ
2
j
]

(4)

A. Derive the update rule for Gradient Descent for the loss function specified in Equation (4).
[4 marks]

Repeat {

θ0 := θ0−α
1
m

m

∑
i=1

(hθ(x(i))− y(i))x0 (5)

θ j := θ j−α
1

2m

[m

∑
i=1

2(hθ(x(i))− y(i))x j +2λθ j
]

for j = 1, · · · ,n (6)

:= θ j(1−α
λ

m
)−α

1
m

m

∑
i=1

(hθ(x(i))− y(i))x j for j = 1, · · · ,n (7)

}

This is just a check that the student can do simple partial differentiation, and really understands
how the update rule is derived.

19

CS2109S

B. What is the likely impact on θ j, for j = 1, · · · ,n, if λ is large? Explain. [4 marks]

What we are trying to do in linear regression is to minimize J(θ). If λ is large, then if θ j is large,
J(θ) will also be large. Hence to minimize J(θ), we will need to keep θ j small. This means that
θ j will end up becoming smaller and the bias (θ0) will tend to dominate. The net result is to make
the curve more smooth, which can help to mitigate overfitting. This is also called regularization.

C. What is the impact if λ were small? Explain. [2 marks]

The loss function would then be very similar to the original MSE loss function and we would be
doing “regular” linear regression!

20

CS2109S

Question 6: What have you learnt? [3 marks]

What are the 3 most important lessons that you think you learnt in CS2109S thus far? Explain.
[3 marks]

There are no right answers here. Students will get credit for 3 well-explained learning points that
are reasonable and justified. Student needs to put in *some* effort. Clearly if the student makes
a patently false statement, marks will be deducted.

— E N D O F P A P E R —

21

CS2109S

Scratch Paper

22

CS2109S

Appendix
The following are some algorithms that were introduced in class. They are reproduced here for
your reference.

function TREE-SEARCH(problem, frontier) returns a solution, or failure
frontier← INSERT(MAKE-NODE(INITIAL-STATE[problem]), frontier)
loop do

if frontier is empty then return failure
node←REMOVE-FRONT(frontier)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
frontier← INSERTALL(EXPAND(node, problem), frontier)

function GRAPH-SEARCH(problem, frontier) returns a solution, or failure

closed←an empty set
frontier← INSERT(MAKE-NODE(INITIAL-STATE[problem]), frontier)
loop do

if frontier is empty then return failure
node←REMOVE-FRONT(frontier)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
frontier← INSERTALL(EXPAND(node, problem), frontier)

end

23

