
CS2109S Tutorial 2

Informed Search

(AY 24/25 Semester 2)

February 7, 2025

(Prepared by Benson)

1 / 27

Contents

Informed Search
Recap
Q1. Pacman
Q2. Euclidean Route-Finding
Q3. Consistent ⇒ Admissible
Q4. Fagaras to Craiova
Q5. Inconsistent Heuristic
Bonus. A* Search vs Dijkstra

2 / 27

Recap: Informed Search

Uninformed search:

S

1

2

3

G1

G2

G3

??

??

??

Informed search:

S

1

2

3

G1

G2

G3

Est. cost 5

Est. cost 2

Est. cost 8

Adversarial search:

▲

▼ ▲
▲

▼ ▲
▼

▼
▼ ▲

▲

MAX MIN MAX MIN
Local search:

SS’ S’
Score: 7Score: 5Score: 3

You’re here

G

3 / 27

Recap: Informed Search

Searching with a heuristic (estimates the cost to the goal).

S

1

2

3

G1

G2

G3

Est. cost 0

Est. cost 0

Est. cost 0

Degrades to uninformed search

S

1

2

3

G1

G2

G3

Est. cost 5

Est. cost 2

Est. cost 8

A good one?

Qn: Why would we prefer informed search over uninformed search?

4 / 27

Recap: Informed Search

Admissible

h(v) ≤ h∗(v)

⇒ Never overestimates the true cost of the path

True cost Admissible heuristic
(Relaxed problem: We can go through walls.)

5 / 27

Recap: Informed Search

Consistent

h(v) ≤ c(v , a, u) + h(u) i.e. h(v)− h(u) ≤ c(v , a, u)

⇒ Never overestimates the cost of an action

5 4

OK

5 5

OK

5 3

Inconsistent

6 / 27

Recap: Informed Search

Admissible

h(v) ≤ h∗(v)

⇒ Never overestimate cost of path

Consistent

h(v) ≤ c(v , a, u) + h(u)

⇒ Never overestimate cost of action

Intuitive: Consistent ⇒ Admissible

v1 v2 v3 v4 G
≤ ≤ ≤ ≤ h(G) = 0

not an
overestimate

7 / 27

Q1. Pacman

Pacman has to eat all the pellets in the maze while executing the least amount of
(4-directional) moves. Devise a non-trivial admissible heuristic for this problem.

8 / 27

Q1. Pacman

} h1(n) = The number of pellets left.

Admissible

h(v) ≤ h∗(v)

Relaxed problem: Pacman can
jump to any cell in one move.

Consistent

h(v) ≤ c(v , a, u) + h(u)

∆h(n) = −1 ∆h(n) = 0

In both cases, the cost of the
action (1) is not overestimated.

9 / 27

Q1. Pacman

} h2(n) = The sum of distances to all pellets.

Admissible

h(v) ≤ h∗(v)

Counterexample:

▶ h(v) = 1 + 2 + 3 + 4 = 10

▶ h∗(v) = 4

Consistent

h(v) ≤ c(v , a, u) + h(u)

Since Consistent ⇒ Admissible,
we have Not Admissible ⇒ Not
Consistent.

CS1231/S Refresher: X ⇒ Y is equivalent
to ∼ X ⇒ ∼ Y (contrapositive).

10 / 27

Q1. Pacman

} h3(n) = The maximum distance to any pellet.

Admissible

h(v) ≤ h∗(v)

Relaxed problem: Pacman only
needs to eat the farthest pellet.

Consistent

h(v) ≤ c(v , a, u) + h(u)

The maximum distance decreases
by at most 1 after a move.

11 / 27

Q1. Pacman
} h4(n) = The distance to the closest pellet + number of pellets adjacent to that
pellet. (If there are multiple closest pellets, take one with the most adjacent pellets.)

Admissible

h(v) ≤ h∗(v)

Relaxed problem: Pacman only
needs to eat any pellet and its
neighbours (by “jumping”).

Consistent

h(v) ≤ c(v , a, u) + h(u)

Counterexample:

▶ h(v) = 1 + 2 = 3

▶ h(u) = 1 + 0 = 1
12 / 27

Q2. Euclidean Route-Finding

Given a graph G = (V ,E) where each node vn having coordinates (xn, yn), each edge
(vi , vj) having weight equals to the distance between vi and vj , and a unique goal node
vg .

hSLD(n) =
√

(xn − xg)2 + (yn − yg)2

h1(n) = max{|xn − xg |, |yn − yg |}

h2(n) = |xn − xg |+ |yn − yg |

(a) Is h1(n) an admissible and consistent heuristic?

(b) Is h2(n) an admissible heuristic?

(c) Which heuristic function would you choose for A* search?

13 / 27

Q2. Euclidean Route-Finding

1 2 3 4 5

2

4

v1

v2

vg

h S
LDh1

h2

x

y

▶ h∗(v1) =
√
5 +

√
10 = 5.39

▶ hSLD(v1) =
√
32 + 42 = 5

▶ h1(v1) = max{3, 4} = 4

▶ h2(v1) = 3 + 4 = 7

14 / 27

Q2. Euclidean Route-Finding

hSLD(n) =
√

(xn − xg)2 + (yn − yg)2

h1(n) = max{|xn − xg |, |yn − yg |}
h2(n) = |xn − xg |+ |yn − yg |

▶ Want to show: h1(n) ≤ hSLD(n) and hence h1 is admissible.
▶ We have √

(xn − xg)2 + (yn − yg)2 ≥
√
(xn − xg)2 = |xn − xg |

and similarly √
(xn − xg)2 + (yn − yg)2 ≥

√
(yn − yg)2 = |yn − yg |

Therefore,

max{|xn − xg |, |yn − yg |} ≤
√

(xn − xg)2 + (yn − yg)2 ≤ h∗(n)

15 / 27

Q2. Euclidean Route-Finding

hSLD(n) =
√

(xn − xg)2 + (yn − yg)2

h1(n) = max{|xn − xg |, |yn − yg |}

h2(n) = |xn − xg |+ |yn − yg |

▶ Want to show: h1 is consistent, i.e. h1(n)− h1(n
′) ≤ c(n, a, n′).

h1(n)− h1(n
′) = max{|xn − xg |, |yn − yg |} −max{|xn′ − xg |, |yn′ − yg |}
≤ max{|xn − xg | − |xn′ − xg |, |yn − yg | − |yn′ − yg |}
≤ max{|xn − xn′ |, |yn − yn′ |}

≤
√
(xn − xn′)2 + (yn − yn′)2 ◀ by the previous slide

16 / 27

Q2. Euclidean Route-Finding

hSLD(n) =
√

(xn − xg)2 + (yn − yg)2

h1(n) = max{|xn − xg |, |yn − yg |}

h2(n) = |xn − xg |+ |yn − yg |

1 2

1

2

v1

vg

h S
LD
=
h
∗

h2

x

y

▶ h∗(v1) =
√
2 = 1.41

▶ h2(v1) = 1 + 1 = 2

▶ ∴ h2 overestimates the cost
to the goal, not admissible.

17 / 27

Q2. Euclidean Route-Finding

hSLD(n) =
√

(xn − xg)2 + (yn − yg)2

h1(n) = max{|xn − xg |, |yn − yg |}

h2(n) = |xn − xg |+ |yn − yg |

Which heuristic function would you choose for A* search?

▶ h2 is not admissible ⇒ cannot be used.
▶ hSLD dominates h1 ⇒ better choice.

▶ hSLD(n) ≥ h1(n) for all states n.

18 / 27

Q3. Consistent ⇒ Admissible
(a) Given that a heuristic h is such that h(G) = 0, where G is any goal state, prove

that if h is consistent, then it must be admissible.

v1 v2 v3 v4 G
≤ ≤ ≤ ≤ h(G) = 0

not an
overestimate

▶ Let v1 → v2 → · · · → vn be the optimal path from v1 to G (with minimum cost).
▶ We have h(vi−1)− h(vi) ≤ c(vi−1, ai−1, vi) by consistency of h.
▶ Summing up over all i , we have

(h(v1)− h(v2)) + (h(v2)− h(v3)) + · · ·+ (h(vn−1)− h(vn)) ≤
∑

c(vi−1, ai−1, vi)

h(v1)− h(vn) ≤ h∗(v1)

▶ Since h(G) = 0, we have h(v1) ≤ h∗(v1) ⇒ h is admissible.

cancels out sum of all costs

19 / 27

Q3. Consistent ⇒ Admissible

(b) Give an example of an admissible heurstic function that is not consistent.

v u G
1 2

h∗(n) 3 2 0

h(n) 3 1 0
2

overestimate!

20 / 27

Q4. Fagaras to Craiova

(a) Trace A* search with SEARCH using the heuristic
h(n) = |hSLD(Craiov)− hSLD(n)|.

Fagaras
0 + 16 = 16

Sibiu
99 + 93 = 192

Bucharest
211+160 = 371

Fagaras
198 + 16 = 214

Arud
239+206 = 445

Oradea
250+220 = 470

Rimmicu Vilcea
179 + 33 = 212

Craiova
325 + 0 = 325

Pitesti
276 + 60 = 336

Sibiu
259 + 13 = 352

Sibiu
297 + 93 = 390

Bucharest
409+160 = 569

21 / 27

Q4. Fagaras to Craiova

(b) Prove that h(n) = |hSLD(Craiov)− hSLD(n)| is an admissible heuristic.

n

Craiov

Bucharest

hSLD(Craiov)

hSLD(n)

h∗(n) D

▶ Intuition: h(n) ≤ D ≤ h∗(n).

▶ We want to show D ≥ hSLD(Craiov)− hSLD(n) and D ≥ hSLD(n)− hSLD(Craiov).

▶ Changing terms: D + hSLD(n) ≥ hSLD(Craiov) and D + hSLD(Craiov) ≥ hSLD(n).
Triangle inequality!

22 / 27

Q4. Fagaras to Craiova
Proof:

n

Craiov

Bucharest

hSLD(Craiov)

hSLD(n)

Dh∗(n)

▶ By triangle inequality, D + hSLD(n) ≥ hSLD(Craiov) and
D + hSLD(Craiov) ≥ hSLD(n).

▶ Therefore, D ≥ hSLD(Craiov)− hSLD(n) and D ≥ hSLD(n)− hSLD(Craiov),
i.e. D ≥ |hSLD(Craiov)− hSLD(n)|.

▶ Since D ≤ h∗(n), we have h(n) ≤ D ≤ h∗(n).

23 / 27

Q5. Inconsistent Heuristic

Show that A* using SEARCH WITH VISITED MEMORY returns a nonoptimal solution
path when using an admissible but inconsistent h(n). Then, show that SEARCH will
return the optimal solution with the same heuristic.

S

A

B G

2 1

4 4

▶ The optimal solution path is S → A → B → G .

▶ We want to trick A* to pick S → B → G instead (i.e. B expanded before A).
⇒ Make h(A) large but h(B) small.

24 / 27

Q5. Inconsistent Heuristic
SEARCH WITH VISITED MEMORY:

▶ S expanded, (A, 2 + 5 = 7) and (B, 4 + 0 = 4) pushed
into frontier.

▶ B expanded, (A, 5+ 5 = 10) and (G , 8+ 0 = 8) pushed.

▶ A expanded, (S , 4 + 7 = 9) and (B, 3 + 0 = 3) pushed.

▶ We do not revisit B (even though the cost is just 3).
We reached G with cost 8. Boom!

SEARCH:
S (0 + 7 = 7)

A (2 + 5 = 7) B (4 + 0 = 4)

A (5 + 5 = 10) G (8 + 0 = 8)S (4 + 7 = 11) B (3 + 0 = 3)

A (4 + 5 = 9) G (7 + 0 = 7)

S

A

B G

2 1

4 4

5

7 0 0

25 / 27

Extra SlideBonus. A* Search vs Dijkstra

Give a test case where Dijkstra algorithm fails to find the optimal path while A* search
always finds the optimal path. Explain why that happens.

26 / 27

Extra SlideBonus. A* Search vs Dijkstra

▶ Dijkstra algorithm prioritizes the nodes by distance from
source. Therefore, it visits G (distance 1) before A
(distance 2).

▶ For A* search, any admissible heuristic must satisfy
h(A) ≤ −2. (This is “additional information” that A
might lead a shorter path to G .) We always explore A
first since f (A) ≤ 0 < 1 = f (G).

This is why A* search works even when there are negative
edge weights.

S

A

G

2 -2

1

27 / 27

	Informed Search
	Recap
	Q1. Pacman
	Q2. Euclidean Route-Finding
	Q3. Consistent Admissible
	Q4. Fagaras to Craiova
	Q5. Inconsistent Heuristic
	Bonus. A* Search vs Dijkstra

