CS2109S Tutorial 2 Informed Search

(AY 24/25 Semester 2)

February 7, 2025

(Prepared by Benson)

Contents

Informed Search

Recap

- Q1. Pacman
- Q2. Euclidean Route-Finding
- Q3. Consistent \Rightarrow Admissible
- Q4. Fagaras to Craiova
- Q5. Inconsistent Heuristic
- Bonus. A* Search vs Dijkstra

Informed search:

Local search:

Searching with a **heuristic** (*estimates* the cost to the goal).

Qn: Why would we prefer informed search over uninformed search?

Admissible

 $h(v) \leq h^*(v)$

 \Rightarrow Never overestimates the true cost of the path

True cost

Admissible heuristic (Relaxed problem: We can go through walls.)

Consistent

$$h(v) \leq c(v, a, u) + h(u)$$

i.e.
$$h(v) - h(u) \le c(v, a, u)$$

 \Rightarrow Never overestimates the cost of an action

Inconsistent

Admissible

 $h(v) \leq h^*(v)$

 \Rightarrow Never overestimate cost of path

Intuitive: Consistent \Rightarrow Admissible

Consistent

$$h(v) \leq c(v, a, u) + h(u)$$

 \Rightarrow Never overestimate cost of action

Pacman has to eat all the pellets in the maze while executing the least amount of (4-directional) moves. Devise a non-trivial admissible heuristic for this problem.

 $\bigcirc h_1(n) =$ The number of pellets left.

Admissible $h(v) \leq h^*(v)$

Relaxed problem: Pacman can jump to any cell in one move.

 $\begin{array}{l} \mathsf{Consistent} \\ h(v) \leq c(v,a,u) + h(u) \end{array}$

 $\Delta h(n) = -1$

 $\Delta h(n) = 0$

In both cases, the cost of the action (1) is not overestimated.

3 $h_2(n) =$ The **sum** of distances to all pellets.

Admissible $h(v) \leq h^*(v)$

Counterexample:

 $\begin{array}{l} \mathsf{Consistent} \\ h(v) \leq c(v, \mathsf{a}, u) + h(u) \end{array}$

Since Consistent \Rightarrow Admissible, we have Not Admissible \Rightarrow Not Consistent.

CS1231/S Refresher: $X \Rightarrow Y$ is equivalent to $\sim X \Rightarrow \sim Y$ (contrapositive).

3 $h_3(n) =$ The **maximum** distance to any pellet.

 $\begin{array}{l} \mathsf{Admissible} \\ h(v) \leq h^*(v) \end{array}$

Relaxed problem: Pacman only needs to eat the farthest pellet.

Consistent $h(v) \le c(v, a, u) + h(u)$

The maximum distance decreases by at most 1 after a move.

Admissible $h(v) \le h^*(v)$

Relaxed problem: Pacman only needs to eat any pellet and its neighbours (by "jumping").

Consistent $h(v) \leq c(v, a, u) + h(u)$

Counterexample:

▶
$$h(v) = 1 + 2 = 3$$

h(u) = 1 + 0 = 1

Given a graph G = (V, E) where each node v_n having coordinates (x_n, y_n) , each edge (v_i, v_j) having weight equals to the distance between v_i and v_j , and a unique goal node v_g .

$$h_{SLD}(n) = \sqrt{(x_n - x_g)^2 + (y_n - y_g)^2}$$
$$h_1(n) = \max\{|x_n - x_g|, |y_n - y_g|\}$$
$$h_2(n) = |x_n - x_g| + |y_n - y_g|$$

(a) Is $h_1(n)$ an admissible and consistent heuristic?

(b) Is $h_2(n)$ an admissible heuristic?

(c) Which heuristic function would you choose for A* search?

$$h^*(v_1) = \sqrt{5} + \sqrt{10} = 5.39$$

$$h_{SLD}(v_1) = \sqrt{3^2 + 4^2} = 5$$

$$h_1(v_1) = \max\{3, 4\} = 4$$

$$h_2(v_1) = 3 + 4 = 7$$

$$h_{SLD}(n) = \sqrt{(x_n - x_g)^2 + (y_n - y_g)^2}$$
$$h_1(n) = \max\{|x_n - x_g|, |y_n - y_g|\}$$
$$h_2(n) = |x_n - x_g| + |y_n - y_g|$$

▶ Want to show: h₁(n) ≤ h_{SLD}(n) and hence h₁ is admissible.
 ▶ We have

$$\sqrt{(x_n - x_g)^2 + (y_n - y_g)^2} \ge \sqrt{(x_n - x_g)^2} = |x_n - x_g|$$

and similarly

$$\sqrt{(x_n - x_g)^2 + (y_n - y_g)^2} \ge \sqrt{(y_n - y_g)^2} = |y_n - y_g|$$

Therefore,

$$\max\{|x_n - x_g|, |y_n - y_g|\} \le \sqrt{(x_n - x_g)^2 + (y_n - y_g)^2} \le h^*(n)$$

$$h_{SLD}(n) = \sqrt{(x_n - x_g)^2 + (y_n - y_g)^2}$$
$$h_1(n) = \max\{|x_n - x_g|, |y_n - y_g|\}$$
$$h_2(n) = |x_n - x_g| + |y_n - y_g|$$

▶ Want to show: h_1 is consistent, i.e. $h_1(n) - h_1(n') \le c(n, a, n')$.

$$\begin{split} h_1(n) - h_1(n') &= \max\{|x_n - x_g|, |y_n - y_g|\} - \max\{|x_{n'} - x_g|, |y_{n'} - y_g|\} \\ &\leq \max\{|x_n - x_g| - |x_{n'} - x_g|, |y_n - y_g| - |y_{n'} - y_g|\} \\ &\leq \max\{|x_n - x_{n'}|, |y_n - y_{n'}|\} \\ &\leq \sqrt{(x_n - x_{n'})^2 + (y_n - y_{n'})^2} \blacktriangleleft \text{ by the previous slide} \end{split}$$

$$h_{SLD}(n) = \sqrt{(x_n - x_g)^2 + (y_n - y_g)^2}$$
$$h_1(n) = \max\{|x_n - x_g|, |y_n - y_g|\}$$
$$h_2(n) = |x_n - x_g| + |y_n - y_g|$$

▶ $h^*(v_1) = \sqrt{2} = 1.41$

•
$$h_2(v_1) = 1 + 1 = 2$$

► ∴ h₂ overestimates the cost to the goal, not admissible.

$$h_{SLD}(n) = \sqrt{(x_n - x_g)^2 + (y_n - y_g)^2}$$
$$h_1(n) = \max\{|x_n - x_g|, |y_n - y_g|\}$$
$$h_2(n) = |x_n - x_g| + |y_n - y_g|$$

Which heuristic function would you choose for A* search?

- ▶ h_2 is not admissible \Rightarrow cannot be used.
- ▶ h_{SLD} dominates $h_1 \Rightarrow$ better choice.
 - $h_{SLD}(n) \ge h_1(n)$ for all states n.

Q3. Consistent \Rightarrow Admissible

(a) Given that a heuristic h is such that h(G) = 0, where G is any goal state, prove that if h is consistent, then it must be admissible.

Let v₁ → v₂ → ··· → v_n be the optimal path from v₁ to G (with minimum cost).
We have h(v_{i-1}) - h(v_i) ≤ c(v_{i-1}, a_{i-1}, v_i) by consistency of h.

Summing up over all *i*, we have

$$(h(v_1)(-h(v_2)) + (h(v_2) - h(v_3)) + \dots + (h(v_{n-1})) - h(v_n)) \leq \sum_{i=1}^{n} c(v_{i-1}, a_{i-1}, v_i)$$

$$h(v_1) - h(v_n) \leq h^*(v_1) + \dots$$

Since h(G) = 0, we have $h(v_1) \le h^*(v_1) \Rightarrow h$ is admissible.

Q3. Consistent \Rightarrow Admissible

(b) Give an example of an admissible heurstic function that is not consistent.

Q4. Fagaras to Craiova

(a) Trace A* search with SEARCH using the heuristic $h(n) = |h_{SLD}(\text{Craiov}) - h_{SLD}(n)|.$

Values of hsup - straight-line distances to Bucharest

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Q4. Fagaras to Craiova

(b) Prove that $h(n) = |h_{SLD}(\text{Craiov}) - h_{SLD}(n)|$ is an admissible heuristic.

- lntuition: $h(n) \leq D \leq h^*(n)$.
- We want to show $D \ge h_{SLD}(\text{Craiov}) h_{SLD}(n)$ and $D \ge h_{SLD}(n) h_{SLD}(\text{Craiov})$.
- ► Changing terms: $D + h_{SLD}(n) \ge h_{SLD}(\text{Craiov})$ and $D + h_{SLD}(\text{Craiov}) \ge h_{SLD}(n)$. Triangle inequality!

Q4. Fagaras to Craiova

Proof:

- ▶ By triangle inequality, $D + h_{SLD}(n) \ge h_{SLD}(\text{Craiov})$ and $D + h_{SLD}(\text{Craiov}) \ge h_{SLD}(n)$.
- Therefore, D ≥ h_{SLD}(Craiov) − h_{SLD}(n) and D ≥ h_{SLD}(n) − h_{SLD}(Craiov), i.e. D ≥ |h_{SLD}(Craiov) − h_{SLD}(n)|.

• Since $D \le h^*(n)$, we have $h(n) \le D \le h^*(n)$.

Q5. Inconsistent Heuristic

Show that A* using SEARCH WITH VISITED MEMORY returns a nonoptimal solution path when using an admissible but inconsistent h(n). Then, show that SEARCH will return the optimal solution with the same heuristic.

- The optimal solution path is $S \rightarrow A \rightarrow B \rightarrow G$.
- ▶ We want to trick A* to pick $S \rightarrow B \rightarrow G$ instead (i.e. *B* expanded before *A*). ⇒ Make h(A) large but h(B) small.

Q5. Inconsistent Heuristic

SEARCH WITH VISITED MEMORY:

- S expanded, (A, 2+5=7) and (B, 4+0=4) pushed into frontier.
- B expanded, (A, 5+5=10) and (G, 8+0=8) pushed.
- A expanded, (S, 4 + 7 = 9) and (B, 3 + 0 = 3) pushed.
- We do not revisit B (even though the cost is just 3). We reached G with cost 8. Boom!

SEARCH:

Give a test case where Dijkstra algorithm fails to find the optimal path while A* search always finds the optimal path. Explain why that happens.

Bonus. A* Search vs Dijkstra

- Dijkstra algorithm prioritizes the nodes by distance from source. Therefore, it visits G (distance 1) before A (distance 2).
- For A* search, any admissible heuristic must satisfy h(A) ≤ -2. (This is "additional information" that A might lead a shorter path to G.) We always explore A first since f(A) ≤ 0 < 1 = f(G).</p>

This is why A^* search works even when there are negative edge weights.