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Recap: Decision Tree Learning
▶ Information content / “surprisal”: The informational value of communicating

that an event happened.

I (e) = log

(
1

p

)
= − log p bits

▶ Entropy: The expected amount of information conveyed by identifying the
outcome of a random trial.

H(X ) =
∑
e∈E

P(e)I (e) = −
∑
e∈E

P(e) logP(e)

▶ Information gain: Difference between the entropy before the split and the
expected entropy (of a sample) after the split.

IG (D,A) = H(D)−
∑
v∈A

|Dv |
|D|

H(Dv )

frequency of occurrence

to bits

Remainder (minimize this)
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Q1. Decisions That Matter
(a) Construct the best decision tree to classify

the final outcome (Decision) from the three
features Income, Credit History, and Debt.

Credit
History

3
Reject

7
Approve

Bad Good

Income Credit History Debt Decision

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject
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Q1. Decisions That Matter
(b) Construct the best decision tree. Calculate

the information gain values and remainders at
each stage.

remainder(Income) =
3

10
I (2, 1) +

7

10
I (6, 1)

=
3

10
(0.9183) +

7

10
(0.5917)

= 0.690

remainder(Credit History) =
7

10
I (7, 0) +

3

10
I (1, 2)

=
7

10
(0) +

3

10
(0.9183)

= 0.275

remainder(Debt) =
7

10
I (6, 1) +

3

10
I (1, 2)

=
7

10
(0.5917) +

3

10
(0.9183)

= 0.690

Income Credit History Debt Decision

Over 10k Bad Low Approve

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject

+

−
0 1 2 3 4 5

1 0 1 0.9183 0.8113 0.7219 0.6500

2 0 0.9183 1 0.9710 0.9183 0.8631

3 0 0.8113 0.9710 1 0.9852 0.9544

4 0 0.7219 0.9183 0.9852 1 0.9911

5 0 0.6500 0.8631 0.9544 0.9911 1

6 0 0.5917 0.8113 0.9183 0.9710 0.9940

7 0 0.5436 0.7642 0.8813 0.9457 0.9799
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Q1. Decisions That Matter
(b) Construct the best decision tree. Calculate

the information gain values and remainders at
each stage.

Credit History

7
Approve

Good

Income
2

Approve/Reject

Bad

remainder(Income) =
2

3
I (1, 1) +

1

3
I (0, 1)

=
2

3
(1) +

1

3
(0) = 0.667

remainder(Debt) =
2

3
I (1, 1) +

1

3
I (0, 1)

=
2

3
(1) +

1

3
(0) = 0.667

Income Credit History Debt Decision

Over 10k Bad Low Approve

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject

+

−
0 1 2 3 4 5

1 0 1 0.9183 0.8113 0.7219 0.6500

2 0 0.9183 1 0.9710 0.9183 0.8631

3 0 0.8113 0.9710 1 0.9852 0.9544

4 0 0.7219 0.9183 0.9852 1 0.9911

5 0 0.6500 0.8631 0.9544 0.9911 1

6 0 0.5917 0.8113 0.9183 0.9710 0.9940

7 0 0.5436 0.7642 0.8813 0.9457 0.9799
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Q1. Decisions That Matter
(b) Construct the best decision tree. Calculate

the information gain values and remainders at
each stage.

Credit History

7
Approve

Good

Income

Bad

1
Reject

0 - 10k

2

Approve/Reject

Over 10k

Income Credit History Debt Decision

Over 10k Bad Low Approve

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject

+

−
0 1 2 3 4 5

1 0 1 0.9183 0.8113 0.7219 0.6500

2 0 0.9183 1 0.9710 0.9183 0.8631

3 0 0.8113 0.9710 1 0.9852 0.9544

4 0 0.7219 0.9183 0.9852 1 0.9911

5 0 0.6500 0.8631 0.9544 0.9911 1

6 0 0.5917 0.8113 0.9183 0.9710 0.9940

7 0 0.5436 0.7642 0.8813 0.9457 0.9799

7 / 29



Q1. Decisions That Matter
(c) What is the decision made by the decision

tree in part (b) for a person with an income
over 10k, a bad credit history, and low
debt?

Credit History

7
Approve

Good

Income

Bad

1
Reject

0 - 10k

2

Approve/Reject

Over 10k

Credit History

Income

2

Approve/Reject

The decision might either reject or accept the
person.

Income Credit History Debt Decision

Over 10k Bad Low Approve

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject

+

−
0 1 2 3 4 5

1 0 1 0.9183 0.8113 0.7219 0.6500

2 0 0.9183 1 0.9710 0.9183 0.8631

3 0 0.8113 0.9710 1 0.9852 0.9544

4 0 0.7219 0.9183 0.9852 1 0.9911

5 0 0.6500 0.8631 0.9544 0.9911 1

6 0 0.5917 0.8113 0.9183 0.9710 0.9940

7 0 0.5436 0.7642 0.8813 0.9457 0.9799
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Q1. Decisions That Matter
(d) The situation in part (c) demonstrates

inconsistent data in the decision tree i.e. the
attribute does not provide information to
differentiate the two classes. In practice, it is
usually left undecided. What are some ways
to mitigate inconsistent data?

Solutions:

▶ Pruning (Min-sample / Max-depth).

▶ Pre-processing of data to remove outliers that
create noise.

▶ Select only relevant features.

▶ Collect more data on new features to clearly
differentiate the inconsistent classes.

Income Credit History Debt Decision

Over 10k Bad Low Approve

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject

+

−
0 1 2 3 4 5

1 0 1 0.9183 0.8113 0.7219 0.6500

2 0 0.9183 1 0.9710 0.9183 0.8631

3 0 0.8113 0.9710 1 0.9852 0.9544

4 0 0.7219 0.9183 0.9852 1 0.9911

5 0 0.6500 0.8631 0.9544 0.9911 1

6 0 0.5917 0.8113 0.9183 0.9710 0.9940

7 0 0.5436 0.7642 0.8813 0.9457 0.9799
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Q1. Decisions That Matter
(e) Let’s consider a scenario where you desire a

Decision Tree with each leaf node
representing a minimum of 3 training data
points. Derive the tree by pruning the tree
you previously obtained in part (b). Which
data(s) do you think are likely outlier(s)?

Credit History

7
Approve

Good

Income

Bad

1
Reject

0 - 10k

2

Approve/Reject

Over 10k

Income

1
Reject

2

Approve/Reject

3
Reject

Bad

The first person is probably the outlier.

Income Credit History Debt Decision

Over 10k Bad Low Approve

Over 10k Good High Approve

0 - 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

Over 10k Good Low Approve

0 - 10k Good Low Approve

Over 10k Bad Low Reject

Over 10k Good High Approve

0 - 10k Bad High Reject

+

−
0 1 2 3 4 5

1 0 1 0.9183 0.8113 0.7219 0.6500

2 0 0.9183 1 0.9710 0.9183 0.8631

3 0 0.8113 0.9710 1 0.9852 0.9544

4 0 0.7219 0.9183 0.9852 1 0.9911

5 0 0.6500 0.8631 0.9544 0.9911 1

6 0 0.5917 0.8113 0.9183 0.9710 0.9940

7 0 0.5436 0.7642 0.8813 0.9457 0.9799
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Q2. Linear Regression Model Fitting

(a) Apply the Normal Equation formula to obtain a linear
regression model that minimizes MSE of the data points.

w = (X⊤X )−1X⊤y

Solution.

X =


1 6 4 11
1 8 5 15
1 12 9 25
1 2 1 3

 , y =


20
30
50
7


w = (X⊤X )−1X⊤y =

[
4 −5.5 −7 7

]⊤
∴ ŷ = 4− 5.5x1 − 7x2 + 7x3.

x1 x2 x3 y

6 4 11 20
8 5 15 30
12 9 25 50
2 1 3 7
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Q2. Linear Regression Model Fitting

(b) Normal Equation needs the calculation of (X⊤X )−1. But sometimes this matrix is not
invertible. When will that happen, and what should we do in that situation?

▶ When is X⊤X invertible?
▶ When all columns are linearly independent.
▶ If some columns are linearly dependent, there are infinitely many solutions (thus it’s

impossible to find an “unique optimal solution”).

▶ Almost linearly dependent columns create problems too...
▶ A slight change in values drastically affects the result.

▶ Solution: Use gradient descent instead.
(It is also a good practice to remove linearly dependent features.)
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Extra SlideQ2. Linear Regression Model Fitting

Lemma. X⊤X is invertible if and only if all columns of X are linearly independent.

Proof.

X⊤X is invertible

⇔ rank(X⊤X ) = m ◀ since X⊤X is an m ×m matrix

⇔ rank(X ) = m ◀ rank(X⊤X ) = rank(X )

MA1522/2001 Refresher: rank(X⊤X ) = rank(X ).
(Prove this by showing the nullspace of X⊤X is equal
to the nullspace of X . See tutorial 7 for either course.)
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Q3. Examining Cost Functions
Mean Squared Error: L(y , ŷ) =

1

2
(y − ŷ)2

Mean Absolute Error: L(y , ŷ) =
1

2
|y − ŷ |

(a) Justify your choice of cost function for this problem.

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

Weight (kg)

P
ri
ce

($
)
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Q3. Examining Cost Functions

Mean Squared Error: L(y , ŷ) =
1

2
(y − ŷ)2

Mean Absolute Error: L(y , ŷ) =
1

2
|y − ŷ |

MSE penalizes large losses (caused by
outliers) heavier than MAE.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

y − ŷ

L
(y
,ŷ

)

MSE

MAE
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Q3. Examining Cost Functions
} Which line corresponds to MSE? Which line corresponds to MAE?

▶ MSE peanlizes large losses heavily ⇒ it will be more sensitive to outliers.

▶ These outliers could be a result of human error, they should have a smaller impact and
MAE is preferred. If we consider outliers as important, MSE is preferred.

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

Weight (kg)

P
ri
ce

($
)

MSE

MAE
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Q3. Examining Cost Functions

} True or False:

1. Consider a dataset where all y values
are larger than 1. MSE penalizes the
outliers more heavily than MAE.

2. Consider a dataset where all y values
are between 0 and 1. MSE penalizes
the outliers more heavily than MAE.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

y − ŷ

L
(y
,ŷ

)

MSE

MAE

17 / 29



Q3. Examining Cost Functions

(b) Can you provide examples of cost
functions that are better suited to
handle outliers more effectively?

Huber loss: MSE → MAE.

L(y , ŷ) =

{
1
2 (y − ŷ)2 for |y − ŷ | ≤ δ

δ · |y − ŷ | − 1
2δ

2 otherwise

Log-cosh loss: ≈ 1
2x

2 for small x →
≈ |x | − log 2 for large x .

L(y , ŷ) = log(cosh(y − ŷ))
0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

y − ŷ

L
(y
,ŷ

)

MSE

MAE

Huber δ = 1

Log-cosh
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Recap: Gradient Descent
We wish to minimize the loss y by varying x .

▶ Parameters: Initial value x , Learning rate α.

−6 −4 −2 2 4 6

10

20

dy
dx > 0dy

dx < 0

x

y

when x increases, y increases
⇒ decrease x to minimize y

when x increases, y decreases
⇒ increase x to minimize y

Theorem. If α is small enough, gradient descent would reach a local minima. This
would also be the global minima if f (x) is convex.

How far do we change x?Decides this

For convex functions, local
minima ⇒ global minima.
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Q4. Choosing Learning Rates

} Assume α is negative. Which of the following is the equation to perform the updates?

A. x ← x + α
dy

dx

B. x ← x − α
dy

dx

C. y ← y + α
dy

dx

D. y ← y − α
dy

dx

Solution. When
dy

dx
> 0, we need to decrease x .

Only option A successfully decreases x .
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Q4. Choosing Learning Rates
(a) Trace the gradient descent algorithm at the function y = x2, starting from the point

a = (5, 25) and using α = 10, 1, 0.1, 0.01. Record the value of x over 5 iterations.

α = 10:

1. dy
dx

∣∣∣
x=5

= 10

x = 5− 10 · 10 = −95.
2. dy

dx

∣∣∣
x=−95

= −190

x = −95− 10 · (−190) = 1805.

3. dy
dx

∣∣∣
x=1805

= 3610

x = 1805− 10 · 3610 = −34295.
4. dy

dx

∣∣∣
x=−34295

= −68590

x = −34295− 10 · (−68590) = 651605.

5. dy
dx

∣∣∣
x=651605

= 1303210

x = 651605− 10 · 1303210 = −12380495.
5−95
1805

−34295−34295

651605

x

y
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Q4. Choosing Learning Rates
(a) Trace the gradient descent algorithm at the function y = x2, starting from the point

a = (5, 25) and using α = 10, 1, 0.1, 0.01. Record the value of x over 5 iterations.

α = 1:

1. dy
dx

∣∣∣
x=5

= 10

x = 5− 1 · 10 = −5.
2. dy

dx

∣∣∣
x=−5

= −10

x = −5− 1 · (−10) = 5.

3. dy
dx

∣∣∣
x=5

= 10

x = 5− 1 · 10 = −5.
4. dy

dx

∣∣∣
x=−5

= −10

x = −5− 1 · (−10) = 5.

5. dy
dx

∣∣∣
x=5

= 10

x = 5− 1 · 10 = −5.

5−5−5

x

y
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Q4. Choosing Learning Rates
(a) Trace the gradient descent algorithm at the function y = x2, starting from the point

a = (5, 25) and using α = 10, 1, 0.1, 0.01. Record the value of x over 5 iterations.

α = 0.1:

1. dy
dx

∣∣∣
x=5

= 10

x = 5− 0.1 · 10 = 4.

2. dy
dx

∣∣∣
x=4

= 8

x = 4− 0.1 · (8) = 3.2.

3. dy
dx

∣∣∣
x=3.2

= 6.4

x = 3.2− 0.1 · 6.4 = 2.56.

4. dy
dx

∣∣∣
x=2.56

= 5.12

x = 2.56− 0.1 · 5.12 = 2.048.

5. dy
dx

∣∣∣
x=2.048

= 4.096

x = 2.048− 0.1 · 4.096 = 1.6384.

5

4

3.2

2.56

2.048
1.6384

x

y

23 / 29



Q4. Choosing Learning Rates
(a) Trace the gradient descent algorithm at the function y = x2, starting from the point

a = (5, 25) and using α = 10, 1, 0.1, 0.01. Record the value of x over 5 iterations.

α = 0.01:

1. dy
dx

∣∣∣
x=5

= 10

x = 5− 0.01 · 10 = 4.9.

2. dy
dx

∣∣∣
x=4.9

= 9.8

x = 4.9− 0.01 · (9.8) = 4.802.

3. dy
dx

∣∣∣
x=4.802

= 9.604

x = 4.802− 0.01 · 9.604 = 4.70596.

4. dy
dx

∣∣∣
x=4.70596

= 9.41192

x = 4.70596− 0.01 · 9.41192 = 4.6118408.

5. dy
dx

∣∣∣
x=4.6118408

= 9.2236816

x = 4.6118408−0.01·9.2236816 = 4.51960398.

5
4.9
4.802
4.70596
4.6118408
4.51960398

x

y
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Q4. Choosing Learning Rates

5−95
1805

−34295

651605

x

y

α = 10

5−5

x

y

α = 1

5

4

3.2

2.56

2.048
1.6384

x

y

α = 0.1

5
4.9
4.802
4.70596
4.6118408
4.51960398

x

y

α = 0.01
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Q4. Choosing Learning Rates

(b) During the course of training for a large number of epochs/iterations, what can be done
to the value of the learning rate α to enable better convergence?

▶ Large α helps the model to converge faster, but might cause it to overshoot or even
diverge.

▶ Idea: Vary α to help the model “stabilize”. But how?
▶ Solution: Decrease the learning rate α through the course of training.
▶ This is the logic behind a learning rate scheduler.
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Extra SlideBonus. Learning Rate Schedulers (Practical)
The given template code implements the gradient descent algorithm corresponding to
Tutorial Q4. Copy the template code from the website.
Experiment with the different Pytorch learning rate schedulers and record your findings.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

3000

2000

1000

0

1000

2000

3000

x
x vs Iterations

constant lr = 1.05
constant lr = 0.1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate vs Iterations

constant lr = 1.05
constant lr = 0.1
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Extra SlideBonus. Learning Rate Schedulers (Practical)
Sample Solution.

1 def optimize(lr_scheduler_class , scheduler_params ={}, ...):

2 ...

3

4 scheduler = lr_scheduler_class(optimizer , ** scheduler_params)

5

6 for i in range(num_iterations ):

7 ...

8

9 # Update the learning rate (i.e. take a step)

10 if isinstance(scheduler , torch.optim.lr_scheduler.ReduceLROnPlateau ):

11 scheduler.step(metrics=loss.item ())

12 else:

13 scheduler.step()

14

15 x_history.append(x.item ())

16 lr_history.append(scheduler.get_last_lr ()[0]) # Get current lr

17 # optimizer.param_groups [0][’lr ’] also works

18

19 ...

28 / 29



Extra SlideBonus. Learning Rate Schedulers (Practical)
Sample Solution.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

3000

2000

1000

0

1000

2000

3000

x
x vs Iterations

ConstantLR
ExponentialLR
CosineAnnealingLR
OneCycleLR
ReduceLROnPlateau

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate vs Iterations

ConstantLR
ExponentialLR
CosineAnnealingLR
OneCycleLR
ReduceLROnPlateau
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