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Q1. Linear vs Non-linear Separability

Define a (minimal) set of features that will perfectly classify whether or not a bunny
can be released into the wild.

Equation of an ellipse:

(A− x)2

a2
+

(B − y)2

b2
= 1

A minimal set of features is
(A2,B2,A,B).
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Q1. Linear vs Non-linear Separability

Define a (minimal) set of features that will perfectly classify whether or not a bunny
can be released into the wild.

A minimal set of features is (A).
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Recap: Logistic Regression

Target: Solve classification tasks (output a probability between 0 and 1).

▶ First Try (regression): p = w · x
▶ FAIL: w · x can be outside [0, 1].

▶ Second Try (odds ratio):
p

1− p
= w · x

▶ FAIL:
p

1− p
is always non-negative, but w · x can be outside [0,∞).

▶ Third Try (logits): log

(
p

1− p

)
= w · x (works!)

▶ Rearrange terms: p =
1

1 + e−w ·x
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Recap: Logistic Regression
Hypothesis:

hw (x) =
1

1 + e−w⊤x = σ(w⊤x)

Loss function:

▶ Mean Squared Error is not convex under logistic regression ⇒ gradient descent might
not reach global minimum.

▶ Use binary cross entropy loss instead:

BCE (ŷ) =

{
− log(ŷ) if y = 1

− log(1− ŷ) if y = 0

= −y log(ŷ)− (1− y) log(1− ŷ)

“surprisal” in entropy!

σ(z) =
1

1 + e−z
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Extra SlideQ2. Loss Function of Logistic Regression

hw (x) =
1

1 + e−w⊤x

(a) Write down the probability p as a function of x and calculate the derivative of log(p) with
respect to each weight wi .

p =
1

1 + e−w⊤x =
1

1 + e−w ·x =
1

1 + e
∑n

i=1 −wixi

log(p) = log

(
1

1 + e
∑n

i=1 −wixi

)
= − log

(
1 + e

∑n
i=1 −wixi

)
∂ log(p)

∂wi
= −

(
1

1 + e
∑n

i=1 −wixi
· ∂

∂wi

(
1 + e

∑n
i=1 −wixi

))
= −

(
1

1 + e
∑n

i=1 −wixi
· (e

∑n
i=1 −wixi )(−xi )

)
=

e
∑n

i=1 −wixi

1 + e
∑n

i=1 −wixi
· (xi ) = (1− p)xi

log 1
x
= − log x

Chain Rule∂
∂x

log x

Chain Rule

∂
∂x

(1 + ex ) ∂
∂wi

(
∑n

i=1 −wixi )
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Extra SlideQ2. Loss Function of Logistic Regression
(b) Write down the probability 1− p as a function of x and calculate the derivative of

log(1− p) with respect to each weight wi .

1− p =
e−w⊤x

1 + e−w⊤x ·
ew⊤x

ew⊤x =
1

1 + ew⊤x =
1

1 + ew ·x =
1

1 + e
∑n

i=1 wixi

log(1− p) = log

(
1

1 + e
∑n

i=1 wixi

)
= − log

(
1 + e

∑n
i=1 wixi

)

∂ log(1− p)

∂wi
= −

(
1

1 + e
∑n

i=1 wixi
· ∂

∂wi

(
1 + e

∑n
i=1 wixi

))
= −

(
1

1 + e
∑n

i=1 wixi
· (e

∑n
i=1 wixi )(xi )

)
= − e

∑n
i=1 wixi

1 + e
∑n

i=1 wixi
·e

∑n
i=1 −wixi

e
∑n

i=1 −wixi
· (xi ) = − 1

1 + e
∑n

i=1 −wixi
· (xi ) = −pxi

1

1+e−w⊤x

Chain Rule∂
∂x

log x

Chain Rule

∂
∂x

(1 + ex ) ∂
∂wi

(
∑n

i=1 wixi )
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Q2. Loss Function of Logistic Regression

Derivative of Sigmoid Function

Let σ(z) =
1

1 + e−z
. We have σ′(z) = σ(z) (1− σ(z)).

Proof.

σ′(z) =
d
dz (1) · (1 + e−z)− (1) · d

dz (1 + e−z)

(1 + e−z)2
◀ quotient rule

=
(0) · (1 + e−z)− (1) · (−e−z)

(1 + e−z)2

=
e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z
= σ(z)(1− σ(z))
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Q2. Loss Function of Logistic Regression

Derivative of Sigmoid Function

Let σ(z) =
1

1 + e−z
. We have σ′(z) = σ(z) (1− σ(z)).

Easier solution to (a), (b):

∂ log(p)

∂wi
=

1

p
· ∂p

∂wi
=

1

p
· p(1− p) · ∂

∂wi
(w⊤x) = (1− p)xi

∂ log(1− p)

∂wi
=

−1

1− p
· ∂p

∂wi
=

−1

1− p
· p(1− p) · ∂

∂wi
(w⊤x) = −pxi

Chain Rule

∂ log(p)
∂p

p = σ(w⊤x)

Chain Rule

∂p
∂(w⊤x)

w⊤x = w · x =
∑

wixi

= xi

∂ log(1−p)
∂p

= xi
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Q2. Loss Function of Logistic Regression

(c) Using results from 3(a) and 3(b), derive
∂L

∂wi
, where L is the loss function of logistic

regression model.

L = −y log(p)− (1− y) log(1− p)

∂L

∂wi
= − y

∂ log(p)

∂wi
− (1− y)

∂ log(1− p)

∂wi

= −y(1− p)xi − (1− y)(−pxi )

= −yxi + ypxi + pxi − ypxi

= xi (p − y)

= xi (hw (x)− y)
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Q4. Logistic Regression for Multi-Class Classification

(a) Compute the probability of an animal belonging to
a certain class and classify them accordingly.

First animal: x =
[
1 4.2 0.4

]⊤
▶ w cat ·x = 1 ·4.2+4.2 ·(−0.01)+0.4 ·(−0.12) = 4.11

pcat =
1

1 + e−4.11
= 0.984

▶ whorse · x = −6.336

phorse =
1

1 + e6.336
= 0.00177

▶ w elephant · x = −1246.196

pelephant =
1

1 + e1246.196
≈ 0

w cat =
[
4.2 −0.01 −0.12

]⊤
whorse =

[
−20 −0.08 35

]⊤
w elephant =

[
−1250 0.82 0.9

]⊤
Weight (kg) Length (m)

4.2 0.4
720 2.4
2350 5.5
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Q4. Logistic Regression for Multi-Class Classification

(a) Compute the probability of an animal belonging to
a certain class and classify them accordingly.

Second animal: x =
[
1 720 2.4

]⊤
▶ w cat · x = −3.288

pcat =
1

1 + e3.288
= 0.0360

▶ whorse · x = 6.4

phorse =
1

1 + e−6.4
= 0.998

▶ w elephant · x = −657.44

pelephant =
1

1 + e657.44
≈ 0

w cat =
[
4.2 −0.01 −0.12

]⊤
whorse =

[
−20 −0.08 35

]⊤
w elephant =

[
−1250 0.82 0.9

]⊤
Weight (kg) Length (m)

4.2 0.4
720 2.4
2350 5.5
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Q4. Logistic Regression for Multi-Class Classification

(a) Compute the probability of an animal belonging to
a certain class and classify them accordingly.

Third animal: x =
[
1 2350 5.5

]⊤
▶ w cat · x = −19.96

pcat =
1

1 + e19.96
≈ 0

▶ whorse · x = −15.5

phorse =
1

1 + e15.5
≈ 0

▶ w elephant · x = 681.95

pelephant =
1

1 + e−681.95
≈ 1

w cat =
[
4.2 −0.01 −0.12

]⊤
whorse =

[
−20 −0.08 35

]⊤
w elephant =

[
−1250 0.82 0.9

]⊤
Weight (kg) Length (m)

4.2 0.4
720 2.4
2350 5.5

14 / 26



Q4. Logistic Regression for Multi-Class Classification

(b) What if we want to extend the classification task to classify other animals? Can we train
a new model while keeping the weights of the previous models?

▶ For an animal that are very distinct with the three animals, we can create a new logistic
regression model without changing the previous weights.

▶ For classifying a new animal that is similar with one of the classes (e.g, classifying a dog),
we need to retrain the old models.
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Q3. Precision, recall, F1 score and ROC curve

(a) For the threshold p = 0.5, come up with
the confusion matrix.

0 1
Predicted Values

0

1

A
ct
u
al

V
al
u
es

10 1

1 8

Model M outputs label 1 if M(x) is
greater than or equal to the threshold,
otherwise the model outputs 0.
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Q3. Precision, recall, F1 score and ROC curve

0 1
Predicted Values

0

1A
ct
u
al

V
al
u
es

Precision

Recall
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Q3. Precision, recall, F1 score and ROC curve

(b) For the threshold p = 0.5, find the
precision, recall and F1 score.

0 1
Predicted Values

0

1

A
ct
u
al

V
al
u
es

10 1

1 8

▶ Precision =
TP

TP + FP
=

8

8 + 1
=

8

9

▶ Recall =
TP

TP + FN
=

8

8 + 1
=

8

9

▶ F1 Score =
2

1
P + 1

R

=
2

8
9 + 8

9

=
8

9

Model M outputs label 1 if M(x) is
greater than or equal to the threshold,
otherwise the model outputs 0.
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Q3. Precision, recall, F1 score and ROC curve

(d) In this question’s case for detecting tumours, should we maximize precision or recall?
Explain the reason for your choice.

▶ If cancer detection is being performed as a regular check up, then precision should be
maximized; as we do not want to start cancer treatment on a person unless we are sure
that he has cancer.

▶ If cancer detection is being performed as part of cancer treatment progress monitoring,
then recall should be maximized; as we do not want to stop the ongoing treatment unless
we are sure that there is no residual tumour cell left in the patient.
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Q5. Evaluating Logistic Regression

} Which of the following evaluation metrics is the least appropriate when comparing a
logistic regression model’s output with the target label? Explain your answer.

(a) Accuracy

(b) Precision, Recall

(c) Binary Cross Entropy Loss

(d) Mean Squared Error (MSE)
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Q5. Evaluating Logistic Regression

Evaluation Metric:
▶ Judges the performance, doesn’t

care about the process.

[MRQ] Which of the following link(s) are

pruned? Shade all that is/are true.

⃝ a ⃝ b ⃝ c ⃝ d ⃝ e

⃝ f ⃝ g ⃝ h ⃝ i ⃝ j

⃝ k ⃝ l ⃝ m ⃝ n ⃝ o

⃝ p ⃝ q ⃝ r ⃝ s ⃝ t

⃝ u ⃝ v ⃝ w ⃝ x ⃝ y

⃝ z

✓

✓p

0 / 4

Loss Function:
▶ Helps with model training.

Minimized by the optimizer.

[MRQ] Which of the following link(s) are

pruned? Shade all that is/are true.

⃝ a ⃝ b ⃝ c ⃝ d ⃝ e

⃝ f ⃝ g ⃝ h ⃝ i ⃝ j

⃝ k ⃝ l ⃝ m ⃝ n ⃝ o

⃝ p ⃝ q ⃝ r ⃝ s ⃝ t

⃝ u ⃝ v ⃝ w ⃝ x ⃝ y

⃝ z

✓

✓p

25/26 items right m Try again!

} Which options are suitable evaluation metrics?
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Q5. Evaluating Logistic Regression

Evaluation metrics:

(a) Accuracy
Gauging a model’s overall

performance.

(b) Precision, Recall
Quantifies the model’s ability to

distinguish between positive and

negative classes effectively.

Loss functions:

(c) Binary Cross Entropy Loss
More suitable for classification tasks

(assumes the binomial distribution).

(d) Mean Squared Error
More suitable for regression tasks

(assumes the normal distribution).

Answer: (b) > (a) > (c) > (d).
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Extra SlideBonus. Sigmoid vs Softmax

We use the sigmoid function for logistic regression in lecture:

σ(z) =
1

1 + e−z

In multi-class logistic regression, we often use the softmax function instead:

softmax(z)i =
ezi∑K
j=1 e

zj

(a) Show that sigmoid function is a special case of the softmax function.

(b) Express the derivative softmax′(z)ik in terms of softmax(z).
(c) Under what scenarios would you consider using softmax function instead of the

sigmoid function?
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Extra SlideBonus. Sigmoid vs Softmax
Solution.

(a) When K = 2,

softmax(z) =
[

ez1

ez1 + ez2
ez2

ez1 + ez2

]⊤
=

[
ez1−z2

ez1−z2 + 1

ez2−z1

1 + ez2−z1

]⊤
=
[
σ(z1 − z2) σ(z2 − z1)

]⊤
which can be replaced by logistic regression where z = z1 − z2, predicting the
probability of class 1.

1 def mysoftmax(z):

2 softmax_class0 = torch.sigmoid(z[:, 0:1] - z[:, 1:2])

3 return torch.hstack ([ softmax_class0 , 1 - softmax_class0 ])
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Extra SlideBonus. Sigmoid vs Softmax
(b) Define δik as 1 if i = k , 0 otherwise.

softmax′(z)ik =
δike

zi
(∑K

j=1 e
zj
)
− ezi ezk(∑K

j=1 e
zj
)2

=
ezi∑K
j=1 e

zj
·

(
δik −

ezk∑K
j=1 e

zj

)
= softmax(z)i · (δik − softmax(z)k)

Notice the similarity with the sigmoid function!

1 def mysoftmax_grad(z):

2 n, m = z.shape

3 z = torch.softmax(z, dim =1)

4 return z.reshape(n, m, 1)

5 * (torch.eye(m). reshape(1, m, m) - z.reshape(n, 1, m))
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Extra SlideBonus. Sigmoid vs Softmax

(c) The softmax function ensures that all output probabilities sums up to 1. It is a
good idea to use the softmax function if the classes are mutually exclusive. On
the other hand, use the sigmoid function if the classes are independent events.
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