CS2109S Tutorial 6
SVMs and Regularisation

(AY 24/25 Semester 2)

March 21, 2025

(Prepared by Benson)
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Recap: Regularisation

@ Why do we need regularisation?

oo w >

To decrease model complexity.

To improve training time efficiency.

To avoid underfitting.

To avoid overfitting.
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Recap: Regularisation

@ How does regularisation address overfitting?

oo w >

By penalizing weights for transformed features.
By reducing noise in the training data.

By penalizing large weights.

By reducing the number of transformed features.
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Q1. L1-norm vs. L2-norm.

L2-norm (Ridge Regression):
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Q1. L1-norm vs. L2-norm.

L1 regularisation L2 regularisation
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Q1. L1-norm vs. L2-norm.

(a) No regularisation.
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Q1. L1-norm vs. L2-norm.

(b) L1 regularisation with A = 5.
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Total cost of the three points (from
left to right):

> 42+1=52

> 224+25=47

» 1.1+4=51
wo =0.0,w; =0.5
Cost = 4.7
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Q1. L1-norm vs. L2-norm.

(c) L2 regularisation with A = 5.

VS : (§>< O}e Total cost of the two points (from left
‘ A N to right):
w ol | N > 0.5+26=31
S N~ > 1.9+14=33
L | wo = 0.2,wy = 0.25
~s, Cost = 3.1
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Q1. L1-norm vs. L2-norm.
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No regularisation L1 regularisation
wo =0.9,w; =0.5 wp =0.0,w; =05
Cost =~ 0 Cost = 4.7

L2 regularisation
wp = 0.2, wip = 0.25
Cost =3.1
» L2 heavily penalizes larger parameters, preferring all smaller values.

» L1 may set values of certain parameters to 0 (why?).
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Q1. L1-norm vs. L2-norm.

L1-norm
w1
A
dw _ w4
dWo o Q de -
> W

L2-norm

If wi is more important than wy, pushing

towards w; is free lunch (*“one for one”).

> WO

As wy — 0, pushing towards w; has little

gain (.. push will be “less aggressive").
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Q1. L1-norm vs. L2-norm.

Animation (See HTML slides):
1 induces sparse solutions for least squares

2 regularization {1 regularization

w2

-1

-4 -3 -2 -1 o 1 2 3 4 -4 -3 -2 -1 o 1 2 3 4

by @itayevron
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Q1. L1-norm vs. L2-norm.

L2-norm (Ridge Regression):

J(w) = 1 [Z(hw(x(i)) _ y(i))2

T 2m ;
i=1

+ )\2’1: w?
i=1

» L2 heavily penalizes larger parameters, preferring all smaller values.

L1-norm (Lasso Regression):

J(w) 1 [Z(hw(x(i)) _ y(i))z

2m |4
i=1

n
A Iwi
i=1

» L1 may set values of certain parameters to 0 — effectively “feature selection”
(select the more important features, and zero out the rest).
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Recap: Support Vector Machines

(0] (0]

@ support
vectors

Decision"«
Boundary

Want to maximize the margin.

1. Find a point zon w-x =0.
(Can always take z = 0)

2. Distance from xtow -x =20
_lx—2) - w|
[w||

(Length of projection from x — z to w)
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Recap: Support Vector Machines

@ Consider the decision boundary w = [ﬂ :

. 2| . . . .
Given that the sample x = [2] is a support vector, what is the size of the margin?

A.

mOU AN

2.2
2.8
4.4
5.6

None of the above

Solution. We have z = [0 :
Distance from x to decision boundary

e () - e

.. The size of the margin is 2.8 x 2 = 5.6.

2.8.
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Recap: Support Vector Machines

Primal Formulation:
1
minimize,, §HwH2

subject to y((w - x(0) > 1

» Convex optimization problem with linear constraints.
> Slow for high-dimensional data (computing w - x()) requires O(m) time, m =
number of features).
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Recap: Support Vector Machines

minimize,, %||w||2 <« quadratic
172 subject to (—1) (w- [_§]> >1 <« linear
(042) )
X -
= (v [o]) =
(=2,0) (3,0 0]
2 2 ) (w-[3]) =1
*
y (1) (w~ ! ) > 1
(=2,-2) o
(1) (w- ; ) >1
SVM Example y
“Throws to an off-the-shelf solver”
—-0.5
=105
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Recap: Support Vector Machines

Dual Formulation: First,

imi (i) _ = (D) o) (D), 0G) (5D . x0)
maximizeq Za 5 Z Z aVaVy\y (x x )
i i j
subject to Za(i)y(i) =0and o) >0

Then compute

» Convex optimization problem with linear constraints.
» x() . x0) can be precomputed — efficient when there are many features.

> For the optimal solution, o)) for non-support vectors can always be 0.
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Recap: Support Vector Machines yDyE (x . x®) = (~1)(1) ([:ﬂ . BD

maximizeq, o + a® +a® + a® 4+ 6O

[x _ %(gamz 1 40Wa® 4 140Wa® 1 26Ma® 1 oMo
(@ <2) +4a@a® + 4032 1 40aB) 4202
1 (1>’<1) + 40P 4 4002 4 200800
(20 B9 1 40®a® 420 a® 4 2000 4 202 | 344)45)
X1

+60®a® +6a5)a? 1303 al® 1 9a(5)2)

% subject to — a® —a® 1+ 0B 4+ o™ 1+ 46 =0 and o) >0
(727 72)

“Throws to an off-the-shelf solver”
SVM Example a® =0,a® =0.25a3 =0.25a® =0,a® =0

s [ [ o] -2
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Q2. SVM

X2
(0]2)
X
(1,1)
X
(~2,0) (3,0)
T 7N /\Xl
t\\
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SVM Example

0.
(a) fw= 05

5] which of the points are found on the

SVM margins?

We have z = [8} )

Distance from each point to decision boundary

[(x —2z)-w| ‘Xw\
[[wl [[wl
-2 =2 2
-2 0 1
— v ) {0'5} =21
V0524052 || ;1 1|05 1
3 0 1.5

.. The support vectors are (—2,0), (0,2) and (1,1).
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Q2. SVM

X2
(0]2)
X
(1,1)
X
(727 O) (370)
t\\
>< A4 AN
(-2,-2) \¢
SVM Example

(b) Suppose we introduce another point, x(®), with
features [—5 1]T and label —1, then retrain the
SVM. Will the learned model change?

Distance to decision boundary

-5] [05
B |x(6)-w| B 1 0.5 /3.0
lw| — V052+052 '

Since x(®) is not a support vector, the learned model will
not change.
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Q2. SVM

X2
(0]2)
X
(1,1)
X
(727 O) (37 O)
t\\
X i N
(_27 _2) T -f} ° <
=
SVM Example

Let's remove data point x(® and retrain. What will
happen to the model?

x@) is a support vector, so the decision boundary is
probably affected.

> x() = (=2, —2) becomes the new support vector.

» The decision boundary should be

shifted towards (—2, —2).
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Q2. SVM

X2
(0]2)
X
(1,1)
X
(7270) (370)
-~ \’é X1
\
\
(_27_2) \
T v
SVM Example

How would the results differ when we remove x(3)
instead of x(®) and retrain the model?

x®) is a support vector, so the decision boundary is
probably affected.

» The support vectors would be (—2,0) and (1,1).

» The decision boundary would be the perpendicular

bisector of the line segment connecting them.
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Q3. Primal Formulation

(a) Write down the expression for the smallest distance of all points to a hyperplane
defined by some w.

» Take z = 0.

» Distance of all points to a hyperplane = =

» .. The expression is min
1

(b) Write down the expression for maximising the smallest distance of all points to a
hyperplane defined by some w.

P> The expression is max min .
woi
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Q3. Primal Formulation

(c) Does this expression satisfy the correct classification constraints of the SVM, i.e.,
do the points lie on the correct side of the hyperplane?

> Nol
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Q3. Primal Formulation

Our current optimization problem:

e . |x - wl
maximize,, min ———
i wl]

subject to y(w - x()) > 0

» Observation 1: w - x() = +¢ for support vectors.
» Observation 2: We can scale w freely.

» = Fix w-x() = 41 by scaling w.
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Q3. Primal Formulation

New optimization problem:

- . |x - w| 1
maximize,, min =
1

lwll - [lwl]

subject to y(w - x(1) > 1

1 1
» Maximize —— = Minimize |w|| = Minimize EHWH2

[wl|
Primal formulation:
1
minimize,, §||WH2

subject to y((w - x(0) > 1
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Bias and Variance

Population Sample Trained Model

Hypothesis class:
hw(x) = wox + b
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Bias and Variance

Bias measures how much the expected predicted value differs from the actual value.
Intuition: The error of the best model when you are given infinite amount of

training data.

—— Best Model
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Bias and Variance

Variance measures the consistency of predictions due to sampling.
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Bias and Variance

@ Poll:
1. If we increase the amount of training samples:
The bias remains unchanged and the variance decreases

2. If we increase the degree of the polynomial in our hypothesis class:
The bias decreases and the variance increases
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Bias and Variance

Less samples (Higher variance) More samples (Lower variance)

’— Expected h,(x) ‘ ’— Expected h,(x) ‘
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Bias and Variance

Lower degree (High bias; Low variance)

’— Expected h,(x) ‘
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Bias-Variance Tradeoff

Err(x) = (y - IE[hw(X)]) +E [(E[hw(X)] — hu(x))?

bias D
variance

/— Optimal Tradeoff Test Error (= Bias2 +Variance)

Variance

Error

/ Rias?

Model Complexity
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Bias-Variance Tradeoff

Underfitting Just Right Overfitting

—— Expected h,(x) —— Expected h,(x)
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Q4. Bias and Variance

The model hypotheses are as below:

1. Hy(x) = wo + wix

2. HW(X) = wy + wix + W2X2 +---+ W1()X10

100
—— Taining error
Test error
80
2
]
- 60
g
s
3
g W
e .‘ N, .
F \/ S
=
N /W“

T T T T T
0 50 100 150 200
Number of data points

250 300

Mean Squared Error

100

20 4

—— Training error
Test error

T T T
100 150 200
Number of data points
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Q4. Bias and Variance

Main ldea:
» Both bias and variance contribute to the mean squared error.

» Bias does not decrease with the number of training samples. Bias causes error in
both the training set and the test set.

» Variance decreases with the number of training samples. Variance causes a
difference between the error in the training set and that in the test set.
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Q4. Bias and Variance
The model hypotheses are as below:
1. Hy(x) = wo + wix High bias
2. Hy(x) = wo + wix + wax? + - - - + wyox1? High variance

100 100
— Taining error

st error

Mean Squared Error
Mean Squared Error

. /V\Ww ol

—— Taining error
Test error

100 150 200
Number of data points

250

High bias

100 150 200 300
Number of data points

250

High variance
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Recap: Kernel Trick

Using the dual formulation:

maximizeqy Za(i) — ;Z Z oDy (),,0) (x(i) . x(j))
1 1 J

subject to Za(i)y(i) =0and o) >0

We transform the features in x() to ¢(x{?)). How does that impact the training?
» Not much, we have to change x() . x() to ¢(x()) - ¢(x1)).
> We define a kernel function K(x(), x0)) = ¢(x(D) . ¢(x1)) to compute this
efficiently.

Important Property of a Kernel Function
K(u,v) = ¢(u) - ¢(v) for some function ¢
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Recap: Kernel Trick

Example: K(u,v) = (u-v)?, where u,v € R3.

K(u,v) = (u-v)?

(5

2.2 2.2 2.2
= uivi + usvs + uzvy + 2uitovive + 2unu3vi vz + 2upuzvav3

uf T T V12 7
2 2

u V5

u3 V3
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Recap: Kernel Trick

Dual formulation with kernel trick:
. i 1 IO ONT i '
maximize Za( ) — 5 ZZQ( Doy Dyl K (x() xU))
i i J

subject to Za(i)y(i) =0and o) >0

Does not slow down training, but “implicitly” considers all transformed features!
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Bonus. Gaussian Kernel

_ = vn2
Prove that the Gaussian Kernel, K(u,v) = e” , has infinite dimensional features.

(We assume o = 1 for simplicity.)

2
flu—v]|
2

K(u,v) =e"

u-u—2u-vtv-v

=e X =lAtx+ 5t

:e_uéue_%
—uu 1 2y 1 3, 1 4 —rv
=e 2 1—|—u-v+—(u v). + 3I(u v) —|—E(u-v) +--- e 2

—e -5 ((Z)O ¢0 )@LI Sum of polynomial kernels (in lecture)

= Also a kernel (by bonus Q1)
= (o ¢0(V)

scalars (multiplied to the transformed features)

<
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