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Recap: Regularisation

} Why do we need regularisation?

A. To decrease model complexity.

B. To improve training time efficiency.

C. To avoid underfitting.

D. To avoid overfitting.
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Recap: Regularisation

} How does regularisation address overfitting?

A. By penalizing weights for transformed features.

B. By reducing noise in the training data.

C. By penalizing large weights.

D. By reducing the number of transformed features.
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Q1. L1-norm vs. L2-norm.

L2-norm (Ridge Regression):

J(w) =
1

2m

[
m∑
i=1

(hw (x (i))− y (i))2

]
+ λ

n∑
i=1

w2
i

L1-norm (Lasso Regression):

J(w) =
1

2m

[
m∑
i=1

(hw (x (i))− y (i))2

]
+ λ

n∑
i=1

|w i |
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Q1. L1-norm vs. L2-norm.

L1 regularisation L2 regularisation
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Q1. L1-norm vs. L2-norm.

(a) No regularisation.

×

w0 = 0.9,w1 = 0.5
Cost ≈ 0
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Q1. L1-norm vs. L2-norm.

(b) L1 regularisation with λ = 5.

×

×

×
×

Total cost of the three points (from
left to right):

▶ 4.2 + 1 = 5.2

▶ 2.2 + 2.5 = 4.7 ð

▶ 1.1 + 4 = 5.1

w0 = 0.0,w1 = 0.5
Cost = 4.7

8 / 42



Q1. L1-norm vs. L2-norm.

(c) L2 regularisation with λ = 5.

×

×
× Total cost of the two points (from left

to right):

▶ 0.5 + 2.6 = 3.1 ð

▶ 1.9 + 1.4 = 3.3

w0 = 0.2,w1 = 0.25
Cost = 3.1
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Q1. L1-norm vs. L2-norm.

×

No regularisation
w0 = 0.9,w1 = 0.5

Cost ≈ 0

×

L1 regularisation
w0 = 0.0,w1 = 0.5

Cost = 4.7

×

L2 regularisation
w0 = 0.2,w1 = 0.25

Cost = 3.1

▶ L2 heavily penalizes larger parameters, preferring all smaller values.

▶ L1 may set values of certain parameters to 0 (why?).
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Q1. L1-norm vs. L2-norm.

L1-norm

w0

w1

dw1

dw0
= 1

dw1

dw0
= −1

L2-norm

w0

w1
dw1

dw0
→ 0

If w1 is more important than w0, pushing

towards w1 is free lunch (“one for one”).

As w0 → 0, pushing towards w1 has little

gain (∴ push will be “less aggressive”).
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Q1. L1-norm vs. L2-norm.

Animation (See HTML slides):
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Q1. L1-norm vs. L2-norm.

L2-norm (Ridge Regression):

J(w) =
1

2m

[
m∑
i=1

(hw (x (i))− y (i))2

]
+ λ

n∑
i=1

w2
i

▶ L2 heavily penalizes larger parameters, preferring all smaller values.

L1-norm (Lasso Regression):

J(w) =
1

2m

[
m∑
i=1

(hw (x (i))− y (i))2

]
+ λ

n∑
i=1

|w i |

▶ L1 may set values of certain parameters to 0 → effectively “feature selection”
(select the more important features, and zero out the rest).
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Recap: Support Vector Machines

Decision
Boundary

m
ar
gi
n support

vectors

Want to maximize the margin.

w · x = 0

×x × z
x − z

w

1. Find a point z on w · x = 0.
(Can always take z = 0)

2. Distance from x to w · x = 0

=
|(x − z) · w |

∥w∥
(Length of projection from x − z to w)
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Recap: Support Vector Machines

} Consider the decision boundary w =

[
3
4

]
.

Given that the sample x =

[
2
2

]
is a support vector, what is the size of the margin?

A. 2.2

B. 2.8

C. 4.4

D. 5.6

E. None of the above

Solution. We have z =

[
0
0

]
.

Distance from x to decision boundary

=
1

32 + 42

([
2
2

]
−
[
0
0

])
·
[
3
4

]
=

6 · 3 + 8 · 4
5

= 2.8.

∴ The size of the margin is 2.8× 2 = 5.6.
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Recap: Support Vector Machines

Primal Formulation:

minimizew
1

2
∥w∥2

subject to y (i)(w · x (i)) ≥ 1

▶ Convex optimization problem with linear constraints.

▶ Slow for high-dimensional data (computing w · x (i) requires O(m) time, m =
number of features).
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Recap: Support Vector Machines

(0, 2)

(1, 1)

(3, 0)(−2, 0)

(−2,−2)

x1

x2

SVM Example

minimizew
1

2
∥w∥2 ◀ quadratic

subject to (−1)

(
w ·
[
−2
−2

])
≥ 1 ◀ linear

(−1)

(
w ·
[
−2
0

])
≥ 1

(1)

(
w ·
[
0
2

])
≥ 1

(1)

(
w ·
[
1
1

])
≥ 1

(1)

(
w ·
[
3
0

])
≥ 1

“Throws to an off-the-shelf solver”

∴ w =

[
−0.5
−0.5

]
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Recap: Support Vector Machines

Dual Formulation: First,

maximizeα
∑
i

α(i) − 1

2

∑
i

∑
j

α(i)α(j)y (i)y (j)
(
x (i) · x (j)

)
subject to

∑
i

α(i)y (i) = 0 and α(i) ≥ 0

Then compute

w =
∑
i

α(i)y (i)x (i)

▶ Convex optimization problem with linear constraints.

▶ x (i) · x (j) can be precomputed – efficient when there are many features.

▶ For the optimal solution, α(i) for non-support vectors can always be 0.
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Recap: Support Vector Machines

(0, 2)

(1, 1)

(3, 0)(−2, 0)

(−2,−2)

x1

x2

SVM Example

maximizeα α(1) + α(2) + α(3) + α(4) + α(5)

− 1

2
(8α(1)2 + 4α(1)α(2) ++4α(1)α(3) + 4α(1)α(4) + 6α(1)α(5)

+ 4α(2)α(1) + 4α(2)2 + 4α(2)α(3) + 2α(2)α(5)

+ 4α(3)α(1) + 4α(3)2 + 2α(3)α(4)

+ 4α(4)α(1) + 2α(4)α(2) + 2α(4)α(3) + 2α(4)2 + 3α(4)α(5)

+ 6α(5)α(1) + 6α(5)α(2) + 3α(5)α(4) + 9α(5)2)

subject to − α(1) − α(2) + α(3) + α(4) + α(5) = 0 and α(i) ≥ 0

“Throws to an off-the-shelf solver”
α(1) = 0, α(2) = 0.25, α(3) = 0.25, α(4) = 0, α(5) = 0

∴ w = −0

[
−2
−2

]
−0.25

[
−2
0

]
+0.25

[
0
2

]
+0

[
1
1

]
+0

[
3
0

]
=

[
0.5
0.5

]

y (1)y (5)(x (1) · x (5)) = (−1)(1)

([
−2
−2

]
·
[
3
0

])
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Q2. SVM

x
2 =

−
x
1

(0, 2)

(1, 1)

(3, 0)(−2, 0)

(−2,−2)

x1

x2

SVM Example

(a) If w =

[
0.5
0.5

]
, which of the points are found on the

SVM margins?

We have z =

[
0
0

]
.

Distance from each point to decision boundary

=
|(x − z) · w |

∥w∥
= |Xw |

∥w∥

=
1√

0.52 + 0.52

∣∣∣∣∣∣∣∣∣∣


−2 −2
−2 0
0 2
1 1
3 0


[
0.5
0.5

]∣∣∣∣∣∣∣∣∣∣
=

√
2


2
1
1
1
1.5


∴ The support vectors are (−2, 0), (0, 2) and (1, 1).
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Q2. SVM

x
2 =

−
x
1

(0, 2)

(1, 1)

(3, 0)(−2, 0)

(−2,−2)

x1

x2

SVM Example

(b) Suppose we introduce another point, x (6), with

features
[
−5 1

]⊤
and label −1, then retrain the

SVM. Will the learned model change?

Distance to decision boundary

=
|x (6) · w |
∥w∥

=

∣∣∣∣[−5
1

]
·
[
0.5
0.5

]∣∣∣∣
√
0.52 + 0.52

=
√
2 · 2.

Since x (6) is not a support vector, the learned model will
not change.

21 / 42



Q2. SVM

x
2 =

−
x
1 −

1
2

(0, 2)

(1, 1)

(3, 0)

(−2,−2)

(−2, 0)

x1

x2

SVM Example

(c) Let’s remove data point x (2) and retrain. What will
happen to the model?

▶ x (2) is a support vector, so the decision boundary is
probably affected.

▶ x (1) = (−2,−2) becomes the new support vector.

▶ The decision boundary should be
shifted towards (−2,−2).
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Q2. SVM

x
2
=

−
3x

1 −
1

(1, 1)

(3, 0)(−2, 0)

(−2,−2)

(0, 2)

x1

x2

SVM Example

(d) How would the results differ when we remove x (3)

instead of x (2) and retrain the model?

▶ x (3) is a support vector, so the decision boundary is
probably affected.

▶ The support vectors would be (−2, 0) and (1, 1).

▶ The decision boundary would be the perpendicular
bisector of the line segment connecting them.
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Q3. Primal Formulation

(a) Write down the expression for the smallest distance of all points to a hyperplane
defined by some w .

▶ Take z = 0.

▶ Distance of all points to a hyperplane =
|(x − z) · w

∥w∥|
=

|x · w |
∥w∥

.

▶ ∴ The expression is min
i

|x · w |
∥w∥

.

(b) Write down the expression for maximising the smallest distance of all points to a
hyperplane defined by some w .

▶ The expression is max
w

min
i

|x · w |
∥w∥

.
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Q3. Primal Formulation

(c) Does this expression satisfy the correct classification constraints of the SVM, i.e.,
do the points lie on the correct side of the hyperplane?

▶ No!
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Q3. Primal Formulation

Our current optimization problem:

maximizew min
i

|x · w |
∥w∥

subject to y (i)(w · x (i)) > 0

▶ Observation 1: w · x (i) = ±c for support vectors.

▶ Observation 2: We can scale w freely.

▶ ⇒ Fix w · x (i) = ±1 by scaling w .
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Q3. Primal Formulation
New optimization problem:

maximizew min
i

|x · w |
∥w∥

=
1

∥w∥
subject to y (i)(w · x (i)) ≥ 1

▶ Maximize
1

∥w∥
⇒ Minimize ∥w∥ ⇒ Minimize

1

2
∥w∥2

Primal formulation:

minimizew
1

2
∥w∥2

subject to y (i)(w · x (i)) ≥ 1
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Bias and Variance

Population Sample Trained Model

Hypothesis class:

hw (x) = w0x + b
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Bias and Variance

Bias measures how much the expected predicted value differs from the actual value.
Intuition: The error of the best model when you are given infinite amount of
training data.

Bias

Best Model
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Bias and Variance

Variance measures the consistency of predictions due to sampling.

Variance
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Bias and Variance

} Poll:

1. If we increase the amount of training samples:
The bias remains unchanged and the variance decreases .

2. If we increase the degree of the polynomial in our hypothesis class:
The bias decreases and the variance increases .
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Bias and Variance

Less samples (Higher variance)

Expected hw (x)

More samples (Lower variance)

Expected hw (x)
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Bias and Variance

Lower degree (High bias; Low variance)

Expected hw (x)

Higher degree (Low bias; High variance)

Expected hw (x)
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Bias-Variance Tradeoff

Err(x) =

y − E[hw (x)]︸ ︷︷ ︸
bias

2

+ E
[
(E[hw (x)]− hw (x))

2
]

︸ ︷︷ ︸
variance
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Bias-Variance Tradeoff

Underfitting

Expected hw (x)

Just Right

Expected hw (x)

Overfitting

Expected hw (x)
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Q4. Bias and Variance

The model hypotheses are as below:

1. Hw (x) = w0 + w1x

2. Hw (x) = w0 + w1x + w2x
2 + · · ·+ w10x

10
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Q4. Bias and Variance

Main Idea:

▶ Both bias and variance contribute to the mean squared error.

▶ Bias does not decrease with the number of training samples. Bias causes error in
both the training set and the test set.

▶ Variance decreases with the number of training samples. Variance causes a
difference between the error in the training set and that in the test set.
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Q4. Bias and Variance
The model hypotheses are as below:

1. Hw (x) = w0 + w1x High bias

2. Hw (x) = w0 + w1x + w2x
2 + · · ·+ w10x

10 High variance

High bias High variance
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Recap: Kernel Trick
Using the dual formulation:

maximizeα
∑
i

α(i) − 1

2

∑
i

∑
j

α(i)α(j)y (i)y (j)
(
x (i) · x (j)

)
subject to

∑
i

α(i)y (i) = 0 and α(i) ≥ 0

We transform the features in x (i) to ϕ(x (i)). How does that impact the training?

▶ Not much, we have to change x (i) · x (j) to ϕ(x (i)) · ϕ(x (j)).

▶ We define a kernel function K (x (i), x (j)) = ϕ(x (i)) · ϕ(x (j)) to compute this
efficiently.

Important Property of a Kernel Function

K (u, v) = ϕ(u) · ϕ(v) for some function ϕ
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Recap: Kernel Trick
Example: K (u, v) = (u · v)2, where u, v ∈ R3.

K (u, v) = (u · v)2

=

(∑
i

uivi

)2

= u21v
2
1 + u22v

2
2 + u23v

2
3 + 2u1u2v1v2 + 2u1u3v1v3 + 2u2u3v2v3

=



u21
u22
u23√
2u1u2√
2u1u3√
2u2u3

 ·



v21
v22
v23√
2v1v2√
2v1v3√
2v2v3


= ϕ(u) · ϕ(v)
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Recap: Kernel Trick

Dual formulation with kernel trick:

maximize
∑
i

α(i) − 1

2

∑
i

∑
j

α(i)α(j)y (i)y (j) × K (x (i), x (j))

subject to
∑
i

α(i)y (i) = 0 and α(i) ≥ 0

Does not slow down training, but “implicitly” considers all transformed features!
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Extra SlideBonus. Gaussian Kernel

Prove that the Gaussian Kernel, K (u, v) = e−
∥u−v∥2

2σ2 , has infinite dimensional features.
(We assume σ2 = 1 for simplicity.)

K (u, v) = e−
∥u−v∥2

2

= e−
u·u−2u·v+v·v

2

= e−
u·u
2 eu·ve−

v·v
2

= e−
u·u
2

(
1 + u · v +

1

2!
(u · v)2 + 1

3!
(u · v)3 + 1

4!
(u · v)4 + · · ·

)
e−

v·v
2

= e−
u·u
2 (ϕ0(u) · ϕ0(v)) e−

v·v
2

=
(
e−

u·u
2 ϕ0(u)

)
·
(
e−

v·v
2 ϕ0(v)

)

ex = 1 + x + x2

2! +
x3

3! +
x4

4! + · · ·

Sum of polynomial kernels (in lecture)

⇒ Also a kernel (by bonus Q1)

scalars (multiplied to the transformed features)
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