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Extra SlideQ1. K-Means Algorithm

Intuition:

▶ Lines 4-5: Minimize the distortion by
reassigning clusters,
keeping the centroids unchanged.

▶ Lines 6-7: Minimize the distortion by
changing centroids,
keeping the assignment unchanged.

Algorithm K-Means Clustering

1: for k = 1 to K do
2: µk ← random location
3: while not converged do
4: for i = 1 to m do
5: c(i) ← argmink∥x (i) − µk∥2
6: for k = 1 to K do
7: µk ← 1

|{x (i)|c(i)=k}|
∑

x∈{x (i)|c(i)=k} x

dE
dµk

= 0 ⇒
∑
c(i)=k

2(x (i) − µk) = 0 ⇒ µk =
1

|{x (i)|c(i) = k}|
∑
c(i)=k

x (i)
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Q1. K-Means Algorithm

(a) Given that every iteration produces a
partition with a lower distortion,
prove that this algorithm always
converges. Convergence is when the
centroids/medoids do not change
after an iteration of the algorithm.

▶ There are not more than kN possible
partitions.

▶ Since every iteration of the algorithm
produces a partition that has a lower
distortion, it eventually terminates.

Algorithm K-Means Clustering

1: for k = 1 to K do
2: µk ← random location
3: while not converged do
4: for i = 1 to m do
5: c(i) ← argmink∥x (i) − µk∥2
6: for k = 1 to K do
7: µk ← 1

|{x (i)|c(i)=k}|
∑

x∈{x (i)|c(i)=k} x
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Q1. K-Means Algorithm

(b) Although k-means always converges, it may get stuck at a bad local minimum. As
mentioned in the lecture, one method of circumventing this is to run the algorithm
multiple times and choose the clusters with the minimum distortion. Suggest some other
ways to help the algorithm get closer to the global minimum.
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▶ Intuition: Pick centroids that are as far as possible during random initialization.

5 / 32



Q1. K-Means Algorithm

Determinstic method:

Algorithm Cluster initialization

1: µ1 ← random location
2: for k = 2 to K do
3: µk ← point farthest possible from

µ1, . . . ,µk−1

Random method (K-means++):

Algorithm Cluster initialization

1: µ1 ← random location
2: for k = 2 to K do
3: D(x)← distance from x to closest cen-

troid in µ1, . . . ,µk−1

4: µk ← random point with (weighted)
probability distribution D(x)2
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Q1. K-Means Algorithm
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Q1. K-Means Algorithm

(c) Cluster the 6 points in table 1 into
two clusters using the K-means
algorithm. The two initial centroids
are (0, 1) and (2.5, 2).

Iteration 1

i 1 2 3 4 5 6
x 1 1 2 2 3 3
y 0 1 1 2 1 2
c 1 1 2 2 2 2

▶ µ1 =
1

2
((1, 0) + (1, 1)) = (1, 0.5)

▶ µ2 =
1

4
((2, 1) + (2, 2) + (3, 1) +

(3, 2)) = (2.5, 1.5)

Algorithm K-Means Clustering

1: for k = 1 to K do
2: µk ← random location
3: while not converged do
4: for i = 1 to m do
5: c(i) ← argmink∥x (i) − µk∥2
6: for k = 1 to K do
7: µk ← 1

|{x (i)|c(i)=k}|
∑

x∈{x (i)|c(i)=k} x
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Q1. K-Means Algorithm

(c) Cluster the 6 points in table 1 into
two clusters using the K-means
algorithm. The two initial centroids
are (0, 1) and (2.5, 2).

Iteration 2

i 1 2 3 4 5 6
x 1 1 2 2 3 3
y 0 1 1 2 1 2
c 1 1 2 2 2 2

▶ µ1 =
1

2
((1, 0) + (1, 1)) = (1, 0.5)

▶ µ2 =
1

4
((2, 1) + (2, 2) + (3, 1) +

(3, 2)) = (2.5, 1.5)

Algorithm K-Means Clustering

1: for k = 1 to K do
2: µk ← random location
3: while not converged do
4: for i = 1 to m do
5: c(i) ← argmink∥x (i) − µk∥2
6: for k = 1 to K do
7: µk ← 1

|{x (i)|c(i)=k}|
∑

x∈{x (i)|c(i)=k} x
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Q1. K-Means Algorithm

(d) Cluster the 6 points in table 1 into
two clusters using the K-medoids
algorithm. The initial medoids are
point 1 and point 3.

Iteration 1

i 1 2 3 4 5 6
x 1 1 2 2 3 3
y 0 1 1 2 1 2
c 1 2* 2 2 2 2

▶ µ1 = (1, 0)

▶ µ2 =
1

5
((1, 1) + (2, 1) + (2, 2) +

(3, 1) + (3, 2)) = (2.2, 1.4)⇒ (2, 1)

Algorithm K-Medoids Clustering

1: for k = 1 to K do
2: µk ← random data point x (i)

3: while not converged do
4: for i = 1 to m do
5: c(i) ← argmink∥x (i) − µk∥2
6: for k = 1 to K do
7: µk ← 1

|{x (i)|c(i)=k}|
∑

x∈{x (i)|c(i)=k} x
8: for k = 1 to K do ▷ Closest data point
9: µk ← argminx∈{x (i)|c(i)=k}∥x (i) − µk∥2
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Closest
data point

⋆

⋆

x

y
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Recap: Kernel Trick

Important Property of a Kernel Function

K (u, v) = ϕ(u) · ϕ(v) for some function ϕ

If we have a model that ONLY relies on the dot products of x (i):

SVMα(x) = sign

(
N∑
i=1

α(i)y (i)(x (i) · x)

)

Applying the kernel function ≡ applying the transformed features!

SVMα(x) = sign

(
N∑
i=1

α(i)y (i)(ϕ(x (i)) · ϕ(x))

)
= sign

(
N∑
i=1

α(i)y (i)K (x (i), x)

)
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Q2. Kernel K-Means

(a) Clustering 1 should be considered better than Clustering 2. Can the K-means algorithm
achieve the better clustering? Why or why not?
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Q2. Kernel K-Means

(a) Clustering 1 should be considered better than Clustering 2. Can the K-means algorithm
achieve the better clustering? Why or why not?
▶ No. K-means uses Euclidean distance.
▶ Assignment to clusters will follow a linear boundary.
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Q2. Kernel K-Means
(b) Write the squared Euclidean distance between two points pi and pj using vector norms

(length) and the dot product. How can we apply the kernel trick?

∥pi − pj∥2 = (pi − pj) · (pi − pj)

= pi · pi − pi · pj − pj · pi + pj · pj

= pi · pi − 2(pi · pj) + pj · pj

Naively applying transformed features:

ϕ(pi ) · ϕ(pi )− 2(ϕ(pi ) · ϕ(pj)) + ϕ(pj) · ϕ(pj)

Kernel trick:
K (pi ,pi )− 2K (pi ,pj) + K (pj ,pj)
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Q2. Kernel K-Means

Dot products can be viewed as a similarity measure.

u · v = ∥u∥∥v∥ cos θ

uv

θ = 0◦, cos θ = 1

u
v

θ = 90◦, cos θ = 0

u

v

θ = 180◦, cos θ = −1
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Q2. Kernel K-Means

(c) Gaussian radial basis function (RBF) kernel:

krbf (pi ,pj) = exp

(
−
∥pi − pj∥2

2σ2

)

Calculate krbf (pi ,pj) for all pairs of data points. Explain what the value represents.

p k(pi ,p1) k(pi ,p2) k(pi ,p3) k(pi ,p4) k(pi ,p5)
(0, 0) 1 e−1 e−1 e−1 e−1

(4, 4) e−1 1 e−2 e−4 e−2

(−4, 4) e−1 e−2 1 e−2 e−4

(−4,−4) e−1 e−4 e−2 1 e−2

(4,−4) e−1 e−2 e−4 e−2 1

p x y
1 0 0
2 4 4
3 -4 4
4 -4 -4
5 4 -4

distance ⇒ similarity measure!
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Extra SlideQ2. Kernel K-Means
Intuition:

▶ Lines 4-5: Minimize the distortion by
reassigning clusters,
keeping the centroids unchanged.

▶ Do not compute the centers (We
cannot compute ϕ(x)...).

Algorithm Kernel K-Means Clustering

1: for k = 1 to K do
2: µk ← random location
3: while not converged do
4: for i = 1 to m do
5: c(i) ← argmink d2

rbf (x
(i),µk)

d2
rbf (x

(i),µc)

= ϕ(x (i)) · ϕ(x (i))− 2 ·

ϕ(x (i)) · 1

size

∑
j∈C

ϕ(x (j))

+

 1

size

∑
j∈C

ϕ(x (j))

 ·( 1

size

∑
k∈C

ϕ(x (k))

)
= krbf (x (i), x (i)) +

2

size

∑
j∈C

krbf (x (i), x (j)) +
1

size2

∑
j,k∈C

krbf (x (j), x (k))
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Extra SlideQ2. Kernel K-Means

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 1
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 2
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 3
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 4
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 5
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 6
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 7
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 8
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 9
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 10
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 11
Cluster 0
Cluster 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Iteration 12
Cluster 0
Cluster 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

18 / 32



Extra SlideQ2. Kernel K-Means
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Recap: Principal Component Analysis (PCA)
X =

[
4 2 5 1
1 3 4 0

]

1. Mean-center the data (subtract each x by the mean x̄).

x̄ =
1

4

[
12
8

]
=

[
3
2

]

X̂ =

[
4 2 5 1
1 3 4 0

]
−
[
3 3 3 3
2 2 2 2

]
=

[
1 −1 2 −2
−1 1 2 −2

]
2. Compute the covariance matrix Cov(X ) = 1

m X̂ X̂
⊤
.

Cov(X ) =
1

4

[
1 −1 2 −2
−1 1 2 −2

]
1 −1
−1 1
2 2
−2 −2

 =

[
2.5 1.5
1.5 2.5

] 2 4 6

2

4

6
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Recap: Principal Component Analysis (PCA)

X =

[
4 2 5 1
1 3 4 0

]
,Cov(X ) =

[
2.5 1.5
1.5 2.5

]

3. Compute the singuar value decomposition of Cov(X )
(Cov(X ) = VΣ2V⊤).[

2.5 1.5
1.5 2.5

]
=

[
1√
2

1√
2

1√
2
− 1√

2

] [
4 0
0 1

] [ 1√
2

1√
2

1√
2
− 1√

2

]

4. Reduce the basis to k components to obtain the new basis Ũ .

Calculate the ratio of explained variance

∑r
i=1 σ

2
i∑m

i=1 σ
2
i

.

Ũ =

[
1√
2
1√
2

]
,

∑r
i=1 σ

2
i∑m

i=1 σ
2
i

=
4

4 + 1
= 80%

2 4 6

2

4

6
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Recap: Principal Component Analysis (PCA)

X =

[
4 2 5 1
1 3 4 0

]
, Ũ =

[
1√
2
1√
2

]

▶ Reduction: Z = Ũ
⊤
X

Z =
[

1√
2

1√
2

] [4 2 5 1
1 3 4 0

]
=
[

5√
2

5√
2

9√
2

1√
2

]
▶ Reconstruction: X ≈ ŨZ

X ≈

[
1√
2
1√
2

] [
5√
2

5√
2

9√
2

1√
2

]
=

[
2.5 2.5 4.5 0.5
2.5 2.5 4.5 0.5

]

We are only required to store Ũ and Z (instead of X )!

2 4 6

2

4

6
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Q3. Lossy Compression

(a) The current choice of k = 9 does not produce a very nice output. What is a good value
for k? Justify your answer.

Before After k=9
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Q3. Lossy Compression

1. Compute the covariance matrix Cov(X ) = 1
m X̂ X̂

⊤
(already includes mean-centering).

2. Compute the singuar value decomposition of Cov(X ) (Cov(X ) = VΣ2V⊤).

1 cov = np.cov(X, bias=True)

2 U, s, VT = np.linalg.svd(cov)
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Q3. Lossy Compression

Goal: Retain at least 99% of the explained variance.

1 def explained_variance(s, k):

2 """ returns the explained variance when we keep the first k cols """

3 return sum(s[:k]) / sum(s)

4

5 minimum_retained_variance = 0.99

6 k = 0

7 var = 0

8 while var < minimum_retained_variance:

9 k += 1

10 var = explained_variance(s, k)
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Q3. Lossy Compression

Answer: k = 286
Before After
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Q3. Lossy Compression

(b) For the value of k you select in (a), what is the space saved by doing this compression?

▶ Original: X (512× 1536)

▶ New: Ũ (512× 286) and Z (286× 1536).

▶ Compression ratio =
(512× 286) + (286× 1536)

512× 1536
= 0.745.

▶ 25.5% space saved!

Reduction: Z = Ũ
⊤
X

Reconstruction: X ≈ ŨZ
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Q3. Lossy Compression

(c) What are the drawbacks of this form of compression?

▶ This is a lossy compression as we do not regain 100% of the variance.

▶ Ũ is only used for one image ⇒ waste of space (if k is large, we might end up using more
space).
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Extra SlideBonus. Composing Kernels

Refer to the template code provided.

1. Let K (1)(u, v) and K (2)(u, v) be kernel functions.
Work out the transformed features in the kernel K (1)(u, v) + K (2)(u, v).

2. Let K (1)(u, v) and K (2)(u, v) be kernel functions.
Work out the transformed features in the kernel K (1)(u, v)× K (2)(u, v).

3. Invent your own kernel!
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Extra SlideBonus. Composing Kernels

Sample Solution:

1. We have
K (1)(u, v) = ϕ(1)(u) · ϕ1(v)

K (2)(u, v) = ϕ(2)(u) · ϕ2(v)

Then, we get

K (1)(u, v) + K (2)(u, v) =
[
ϕ(1)(u)
ϕ(2)(u)

]
·
[
ϕ(1)(v)
ϕ(2)(v)

]
which means the addition of two kernel functions essentially concatenates the
transformed features together.
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Extra SlideBonus. Composing Kernels
2. Similarly, we get

K (1)(u, v)× K (2)(u, v) = (ϕ(1)(u) · ϕ(1)(v))× (ϕ(2)(u) · ϕ(2)(v))

=

(∑
i

ϕ
(1)
i (u)ϕ(1)

i (v)

)
×

∑
j

ϕ
(2)
j (u)ϕ(2)

j (v)


=
∑
ij

(
ϕ
(1)
i (u)ϕ(2)

j (u)
)(

ϕ
(1)
i (v)ϕ(2)

j (v)
)

Define another set of transformed features ϕ∗(u) which consists of ϕ
(1)
i (u)ϕ(2)

j (u)
for all pairs (i , j), then

K (1)(u, v)× K (2)(u, v) = ϕ∗(u) · ϕ∗(v)

which means the product of two kernel functions takes the pairwise product of
between their transformed features.
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Extra SlideBonus. Composing Kernels

1. Just a simple concatenation.

1 def transform_add(X1, X2):

2 return np.hstack ([X1 , X2])

2. Broadcasting is your best friend!

1 def transform_multiply(X1, X2):

2 n = X1.shape [0]

3 pairwise_prod = X1.reshape(n, -1, 1) * X2.reshape(n, 1, -1)

4 return pairwise_prod.reshape(n, -1)
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