
CS2109S Tutorial 8

Neural Networks

(AY 24/25 Semester 2)

April 4, 2025

(Prepared by Benson)

1 / 24



Contents

Perceptron
Q1. Logic Gates
Q2. Single vs Multi Layer Perceptron

Forward Propagation
Q3. Forward Propagation
Q4. Let’s Activate!
Q5. Working with Dimensions

Bonus. Perceptron Learning Algorithm

2 / 24



Admin Info

▶ For those who have reached Level 30, PS5 (Neural Networks) is optional. But I
would still encourage you to attempt at least part of it – Pytorch is one of the
most important takeaways of this course.

▶ Bonus submission deadlines (for EXP / bubble tea):
▶ Behind Pytorch Autograd: 11 Apr (Week 12 Fri) 4pm
▶ Messing with a GPT Model: 25 Apr (Reading Week Fri) 4pm

Feel free to share me your progress and I might drop some hints!

3 / 24



Q1. Logic Gates
(a) Dry run the Perceptron learning algorithm with η = 0.1, all weights initialized to 0 and

activation function sign(z) = 1 if z ≥ 0 else 0.

AND: Hypothesis ŷ = sign(b + w1x1 + w2x2).

Iteration b w1 w2

Initial 0 0 0

1 −0.1 0 0

2 0 0.1 0.1

3 −0.1 0.1 0.1

4 −0.2 0.1 0

5 −0.1 0.2 0.1

6 −0.2 0.2 0

7 −0.3 0.1 0

8 −0.2 0.2 0.1

9 −0.3 0.1 0.1

10 −0.2 0.2 0.2

11 −0.3 0.2 0.1

AND
x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

ŷ
101000000000
101101000010
101101101010
101101101011

sign(0)

sign(0)

sign(0)

sign(0)

Misclassified instance

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.1)

sign(−0.1)

sign(−0.1)

sign(−0.1)

Misclassified instance

b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(1) = 0.1

w2 ← w2 + η(y − ŷ)x2
0.1(1− 0)(1) = 0.1

sign(0)

sign(0.1)

sign(0.1)

sign(0.2)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.1)

sign(0)

sign(0)

sign(0.1)
Misclassified instance

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(1) = −0.1

sign(−0.2)

sign(−0.2)

sign(−0.1)

sign(−0.1)b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(1) = 0.1

w2 ← w2 + η(y − ŷ)x2
0.1(1− 0)(1) = 0.1

sign(−0.1)

sign(0)

sign(0.1)

sign(0.2)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(1) = −0.1

sign(−0.2)

sign(−0.2)

sign(0)

sign(0)
Misclassified instance

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(1) = −0.1

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.3)

sign(−0.3)

sign(−0.2)

sign(−0.2)

b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(1) = 0.1

w2 ← w2 + η(y − ŷ)x2
0.1(1− 0)(1) = 0.1

sign(−0.2)

sign(−0.1)

sign(0)

sign(0.1)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(1) = −0.1

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.3)

sign(−0.2)

sign(−0.2)

sign(−0.1)b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(1) = 0.1

w2 ← w2 + η(y − ŷ)x2
0.1(1− 0)(1) = 0.1

sign(−0.2)

sign(0)

sign(0)

sign(0.2)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(1) = −0.1

sign(−0.3)

sign(−0.2)

sign(−0.1)

sign(0)

4 / 24



Q1. Logic Gates
(a) Dry run the Perceptron learning algorithm with η = 0.1, all weights initialized to 0 and

activation function sign(z) = 1 if z ≥ 0 else 0.

OR: Hypothesis ŷ = sign(b + w1x1 + w2x2).

Iteration b w1 w2

Initial 0 0 0

1 −0.1 0 0

2 0 0 0.1

3 −0.1 0 0.1

4 0 0.1 0.1

5 −0.1 0.1 0.1

6 −0.2 0.2 0

7 −0.3 0.1 0

8 −0.2 0.2 0.1

9 −0.3 0.1 0.1

10 −0.2 0.2 0.2

11 −0.3 0.2 0.1

OR
x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

ŷ
101010
101111
101011
101111

Misclassified instance

Misclassified instance

Misclassified instance

Misclassified instance

sign(0)

sign(0)

sign(0)

sign(0)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.1)

sign(−0.1)

sign(−0.1)

sign(−0.1)

b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(1− 0)(1) = 0.1

sign(0)

sign(0.1)

sign(0)

sign(0.1)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.1)

sign(0)

sign(−0.1)

sign(0)

b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(1) = 0.1

w2 ← w2 + η(y − ŷ)x2
0.1(1− 0)(1) = 0

sign(0)

sign(0.1)

sign(0.1)

sign(0.2)b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(0) = 0

w2 ← w2 + η(y − ŷ)x2
0.1(0− 1)(0) = 0

sign(−0.1)

sign(0)

sign(0)

sign(0.1)

5 / 24



Q1. Logic Gates
(a) Dry run the Perceptron learning algorithm with η = 0.1, all weights initialized to 0 and

activation function sign(z) = 1 if z ≥ 0 else 0.

NOT: Hypothesis ŷ = sign(b + w1x).

Iteration b w1

Initial 0 0

1 −0.1 −0.1

2 0 −0.1

3 −0.1 0 0.1

4 0 0.1 0.1

5 −0.1 0.1 0.1

6 −0.2 0.2 0

7 −0.3 0.1 0

8 −0.2 0.2 0.1

9 −0.3 0.1 0.1

10 −0.2 0.2 0.2

11 −0.3 0.2 0.1

NOT
x y
0 1
1 0

ŷ
101
100

Misclassified instance

Misclassified instance

sign(0)

sign(0)

b ← b + η(y − ŷ)(1)

0.1(0− 1)(1) = −0.1
w1 ← w1 + η(y − ŷ)x1
0.1(0− 1)(1) = −0.1

sign(−0.1)

sign(−0.2)

b ← b + η(y − ŷ)(1)

0.1(1− 0)(1) = 0.1

w1 ← w1 + η(y − ŷ)x1
0.1(1− 0)(0) = 0

sign(0)

sign(−0.1)

6 / 24



Q1. Logic Gates

AND:

0.5 1

0.5

1

x1

x2

ŷ = sign(−0.3 + 0.2x1 + 0.1x2)

OR:

0.5 1

0.5

1

x1

x2

ŷ = sign(−0.1 + 0.1x1 + 0.1x2)

7 / 24



Q1. Logic Gates

(b) Is it possible to model the XOR function using a single Perceptron? Refer to Figure 2 for
the truth table of the XOR gate. Comment on your answer.

Hypothesis ŷ = sign(b + w1x1 + w2x2).

0.5 1

0.5

1

x1

x2

▶ The points are not linearly separable.

▶ It is impossible to model the XOR function using a
single Perceptron.

XOR
x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

8 / 24



Q1. Logic Gates

(c) Model XOR function (takes 2 inputs) using a number of perceptrons that implement
AND, OR, and NOT functions. Show the diagram of the final Perceptron network.

XOR(x1, x2) = AND(OR(x1, x2),NOT(AND(x1, x2)))

x1

x2 AND NOT

OR

AND ŷ

9 / 24



Q1. Logic Gates
(d) If we change the ordering of data samples in Perceptron Update Rule, will the model

converges to a different model weight for the AND operator? What can you conclude
from the observation?

Ordering: (0, 1, 2, 3)
Iteration b w1 w2

Initial 0 0 0

1 −0.1 0 0

2 0 0.1 0.1

3 −0.1 0.1 0.1

4 −0.2 0.1 0

5 −0.1 0.2 0.1

6 −0.2 0.2 0

7 −0.3 0.1 0

8 −0.2 0.2 0.1

9 −0.3 0.1 0.1

10 −0.2 0.2 0.2

11 −0.3 0.2 0.1

Ordering: (0, 2, 3, 1)
Iteration b w1 w2

Initial 0 0 0

1 −0.1 0 0

2 0 0.1 0.1

3 −0.1 0.1 0

4 −0.2 0 0

5 −0.1 0.1 0.1

6 −0.2 0.1 0

7 −0.1 0.2 0.1

8 −0.2 0.2 0

9 −0.3 0.1 0

10 −0.2 0.2 0.1

11 −0.3 0.1 0.1

12 −0.2 0.2 0.2

13 −0.3 0.2 0.1

Ordering: (0, 2, 1, 3)
Iteration b w1 w2

Initial 0 0 0

1 −0.1 0 0

2 0 0.1 0.1

3 −0.1 0.1 0.1

4 −0.2 0 0.1

5 −0.1 0.1 0.2

6 −0.2 0 0.2

7 −0.3 0 0.1

8 −0.2 0.1 0.2

9 −0.3 0.1 0.1

10 −0.2 0.2 0.2

11 −0.3 0.1 0.2

10 / 24



Q1. Logic Gates

(d) If we change the ordering of data samples in Perceptron Update Rule, will the model
converges to a different model weight for the AND operator? What can you conclude
from the observation?

▶ Reordering data points could help the model converge much faster.

▶ Manipulating the ordering could direct the model to a different weight. There is no
guarantee to converge to the same model even for such a simple gate function.

11 / 24



Q1. Logic Gates

(e) } With regards to Figure 1, does your proposed model have high bias and high variance?
(Recap: What is bias? What is variance?)

▶ Low bias: It classifies all data points correctly.

▶ Low variance: It is a simple linear model, the simplest model to perform the logic gates
given.

12 / 24



Extra SlideQ1. Logic Gates

} Does the Perceptron learning algorithm always converge on linearly separable
datasets? Make your guess!

A. Yes, always!

B. Yes, if the learning rate is small enough.

C. Yes, if the parameters are ordered properly.

D. No, it can be stuck in a loop regardless.

13 / 24



Q2. Single vs Multi Layer Perceptron

After training both networks, you obtain a mean squared error of 1000 on the training set and
a mean squared error of 2000 on the validation set for the single-layer perceptron, and a mean
squared error of 800 on the training set and a mean squared error of 1200 on the validation set
for the multi-layer perceptron.

(a) What might be the reasons for the difference in performance between the single-layer
perceptron and the multi-layer perceptron?
▶ More layers ⇒ able to learn more complex (non-linear) patterns.
▶ The single-layer perceptron is limited to a linear classifier.

(b) How might you modify the single-layer perceptron to improve its performance, and what
are the advantages and disadvantages of doing so?
▶ Add transformed features (polynomial (x1)

2, interaction x1x2).

(c) What techniques could you use to improve the performance of the multilayer perceptron?
▶ Underfitting: Increase the number of hidden layers (parameters).
▶ Overfitting: Regularization.

14 / 24



Recap: Forward Propagation

1

x
[0]
1

x
[0]
2

a
[1]
1

a
[1]
2

a
[1]
1 = 1 ·W [1]

01 + x
[0]
1 ·W [1]

11 + x
[0]
2 ·W [0]

21

a
[1]
2 = 1 ·W [1]

02 + x
[0]
1 ·W [1]

12 + x
[0]
2 ·W [0]

22

a[1] =

[
a
[1]
1

a
[1]
2

]
=

[
W

[1]
01 W

[1]
11 W

[1]
21

W
[1]
02 W

[1]
12 W

[1]
22

]
×

 1

x
[0]
1

x
[0]
2

 = W⊤ × x [0]

15 / 24



Q3. Forward Propagation
Suppose there is a data input x = (2, 3)⊤ and
the actual output label is y = (0.1, 0.9)⊤. The
weights for the network are

W [1] =

 0.1 0.1
−0.1 0.2
0.3 −0.4

 ,W [2] =

0.1 0.1
0.5 −0.6
0.7 −0.8


Calculate a[1], ŷ [2] and L(ŷ [2], y).

1

x
[0]
1

x
[0]
2

1

a
[1]
1

a
[1]
2

ŷ
[2]
1

ŷ
[2]
2

Activation Func: ReLU(x) = max(0, x).

a[1] = ReLU((W [1])⊤X ) = ReLU

[
0.1 −0.1 0.3
0.1 0.2 −0.4

]12
3

 = ReLU

([
0.8
−0.7

])
=

[
0.8
0

]

ŷ [2] = ReLU((W [2])⊤a[1]) = ReLU

[
0.1 0.5 0.7
0.1 −0.6 −0.8

] 1
0.8
0

 = ReLU

([
0.5

−0.38

])
=

[
0.5
0

]

L(ŷ [2], y) =
1

2

(
(ŷ

[2]
1 − y1)

2 + (ŷ
[2]
2 − y2)

2
)

=
1

2

(
(0.5− 0.1)2 + (0− 0.9)2

)
= 0.485

16 / 24



Q4. Let’s Activate!

We can define a neural network as follows:

ŷ = g((W [L])⊤ . . . g(W [2])⊤ · g(W [1])⊤x)

where W [l ]∈{1,··· ,L} is a weight matrix. You’re given the following weight matrices:

W [3] =

[
1.2 −2.2
1.2 1.3

]
,W [2] =

[
2.1 −0.5
0.7 1.9

]
,W [1] =

[
1.4 0.6
0.8 0.6

]

You are given g(z) = SiLU(z) =
z

1 + e−z
between all layers except the last layer.

Is it possible to replace the whole neural network with just one matrix in both cases with and
without non-linear activations g(z)?

17 / 24



Q4. Let’s Activate!

Without non-linear activations:

ŷ = (W [3])⊤(W [2])⊤(W [1])⊤x

=

[
1.2 1.2
−2.2 1.3

] [
2.1 0.7
−0.5 1.9

] [
1.4 0.8
0.6 0.6

]
x

=

([
1.2 1.2
−2.2 1.3

] [
2.1 0.7
−0.5 1.9

] [
1.4 0.8
0.6 0.6

])
x

=

[
4.56 3.408
−6.82 −3.658

]
x

= M⊤x

∴ It is possible to replace the whole neural network with M =

[
4.56 −6.82
3.408 −3.658

]
.

18 / 24



Q4. Let’s Activate!
With non-linear activations: Suppose ŷ = M⊤x . We expect ŷ to be doubled if we double x .
▶ When x =

[
1 0

]⊤
:

ŷ = g
(
(W [3])⊤g

(
(W [2])⊤g

(
(W [1])⊤x

)))
=

[
3.0571
−5.2727

]
▶ When x =

[
2 0

]⊤
:

ŷ = g
(
(W [3])⊤g

(
(W [2])⊤g

(
(W [1])⊤x

)))
=

[
7.7257

−13.2458

]
̸= 2 ·

[
3.0571
−5.2727

]

The outputs are not linear ⇒ a contradiction! ∴ No such M exists.

Intuition: Prove that it is impossible
since the network is no longer “linear”.

19 / 24



Q4. Let’s Activate!

Conclusion:

▶ Without non-linear activations, the entire network collapses to a simple linear model.

ŷ = (W [L])⊤ . . . (W [2])⊤(W [1])⊤x

=
(
(W [L])⊤ . . . (W [2])⊤(W [1])⊤

)
x

▶ Non-linear activation functions let the network model non-linear relationships in the data.
Increasing the depth of the network will help the model learn more complex relationships.

20 / 24



Q5. Working with Dimensions

You’re building a self-driving car program that takes in grayscale images of size 32× 32
where 32 is the image height and width. There are 4 classes your simplified program
has to classify: {car, person, traffic light, stop sign}. You start off experimenting with
a Multi-layer Perceptron composed of three linear layers of the form y = W⊤x , where
x ∈ Rd is the input vector, W is the weight matrix, and y is the network output.

Layer Input dim Weight Matrix dim Output dim

Linear layer 1 1024 × 1 1024 × 512 512 × 1

Linear layer 2 512 × 1 512 × 128 128 × 1

Linear layer 3 128 × 1 128 × 4 4 × 1

x [0] a[1] a[2] ŷ [3]

1024 512 128 4

21 / 24



Extra SlideBonus. Perceptron Learning Algorithm

Prove that the Perceptron Learning Algorithm always converges on a linearly
separable dataset! You may assume the initial weights are 0 and y (i) ∈ {−1, 1}.

(Hint: Let w∗ be a unit weight vector that linearly separates the data, we have
y (i)(w∗ · x (i)) ≥ γ since the margin is positive. Also, denote R = maxi∥x (i)∥. Prove
that after k iterations, (1) w · w∗ ≥ kηγ and (2) |w∥2 ≤ kη2R2. Finally, show that

k ≤ R2

γ2
, i.e. the algorithm never takes more than this number of iterations.)

22 / 24



Extra SlideBonus. Perceptron Learning Algorithm

Solution:

▶ Consider the k-th iteration with initial weights w0 and misclassified instance
(x (i), y (i)). The update rule gives w = w0 + ηy (i)x (i). Then

w · w∗ = (w0 + ηy (i)x (i)) · w∗

= w0 · w∗ + ηy (i)(x (i) · w∗)

≥ w0 · w∗ + ηγ

This implies w · w∗ increases by at least ηγ in each iteration. After k iterations,
w · w∗ ≥ kηγ.

▶ Since w∗ is a unit vector, we have w · w∗ = ∥w∥∥w∗∥ cos θ = ∥w∥ cos θ ≤ ∥w∥.
Hence ∥w∥2 ≥ (w · w∗)2 ≥ k2η2γ2.

23 / 24



Extra SlideBonus. Perceptron Learning Algorithm
Solution:

▶ Since point (x (i), y (i)) is misclassified, we also have y (i)(w0 · x (i)) ≤ 0. Then

∥w∥2 = ∥w0 + ηy (i)x (i)∥2

= ∥w0∥2 + η2(y (i))2∥x (i)∥2 + 2ηy (i)(w · x (i))
= ∥w0∥2 + η2∥x (i)∥2 + 2ηy (i)(w · x (i))
≤ ∥w0∥2 + η2∥x (i)∥2

≤ ∥w0∥2 + η2R2

This implies ∥w∥2 increases by at most η2R2 in each iteration. After k iterations,
∥w∥2 ≤ kη2R2.

▶ Combining both inequalities, we have k2η2γ2 ≤ kη2R2 ⇒ k ≤ R2

γ2
.

24 / 24


	Perceptron
	Q1. Logic Gates
	Q2. Single vs Multi Layer Perceptron

	Forward Propagation
	Q3. Forward Propagation
	Q4. Let’s Activate!
	Q5. Working with Dimensions

	Bonus. Perceptron Learning Algorithm

