CS2109S Tutorial 8 Neural Networks

(AY 24/25 Semester 2)

April 4, 2025

(Prepared by Benson)

Contents

Perceptron

Q1. Logic GatesQ2. Single vs Multi Layer Perceptron

Forward Propagation

- Q3. Forward Propagation
- Q4. Let's Activate!
- Q5. Working with Dimensions

Bonus. Perceptron Learning Algorithm

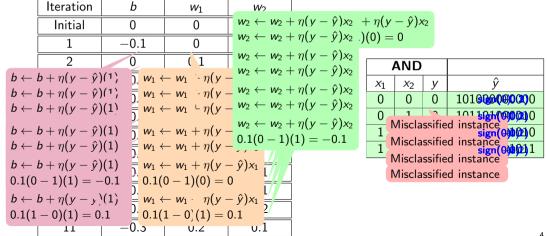
Admin Info

- For those who have reached Level 30, PS5 (Neural Networks) is optional. But I would still encourage you to attempt at least part of it Pytorch is one of the most important takeaways of this course.
- Bonus submission deadlines (for EXP / bubble tea):
 - Behind Pytorch Autograd: 11 Apr (Week 12 Fri) 4pm
 - Messing with a GPT Model: 25 Apr (Reading Week Fri) 4pm

Feel free to share me your progress and I might drop some hints!

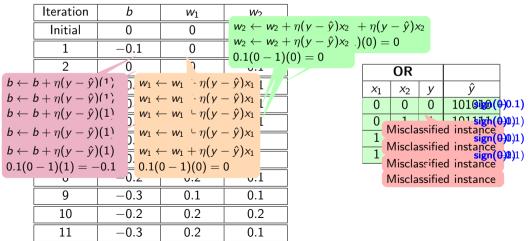
(a) Dry run the Perceptron learning algorithm with $\eta = 0.1$, all weights initialized to 0 and activation function sign(z) = 1 if $z \ge 0$ else 0.

AND: Hypothesis $\hat{y} = \operatorname{sign}(b + w_1x_1 + w_2x_2)$.



(a) Dry run the Perceptron learning algorithm with $\eta = 0.1$, all weights initialized to 0 and activation function sign(z) = 1 if $z \ge 0$ else 0.

OR: Hypothesis $\hat{y} = \text{sign}(b + w_1x_1 + w_2x_2)$.

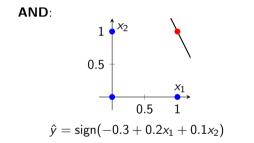


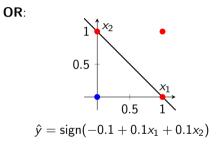
(a) Dry run the Perceptron learning algorithm with $\eta = 0.1$, all weights initialized to 0 and activation function sign(z) = 1 if $z \ge 0$ else 0.

NOT: Hypothesis $\hat{y} = \text{sign}(b + w_1 x)$.

		Iteration			Ь	и	/ 1	
		Initial		0		0		
			L	—(0.1	-0).1	
			2		C	—(1	
Ł	$b \leftarrow b + \eta(y - \hat{y})(1)$ $w_1 \leftarrow w_1 - \eta(y - \hat{y})x$						$-\hat{y})x_1$	
$b \leftarrow b + \eta(y - \hat{y})(1) \longrightarrow w_1 \leftarrow w_1 + \eta(y - \hat{y})$						$-\hat{y})x_1$		
C).1(1 –	0)(1)	= 0.1	-	0.1	(1 - 0))(0) =	0
_	· · ·	-			~		. · ·	-
	(õ	-().2	0	.2	()
		7	-().3	0	.1	()
	8 –0).2	0	.2	0.	1	
	9	9	—().3	0	.1	0.	1
	1	0	—().2	0	.2	0.	2
	1	1	-().3	0	.2	0.	1

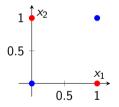
[NOT					
	х	y	ŷ			
	0	1	101 s	ign(0) 0.1)		
Ì	1	\cap	100	ign(0)(0, 7)		
	Misclassified instance					
	Misclassified instance					





(b) Is it possible to model the XOR function using a single Perceptron? Refer to Figure 2 for the truth table of the XOR gate. Comment on your answer.

Hypothesis $\hat{y} = \operatorname{sign}(b + w_1x_1 + w_2x_2)$.

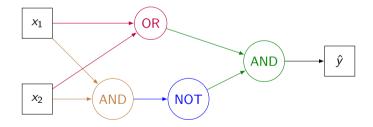


XOR				
<i>x</i> ₁	<i>x</i> ₂	y		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

- The points are not **linearly separable**.
- It is impossible to model the XOR function using a single Perceptron.

(c) Model XOR function (takes 2 inputs) using a number of perceptrons that implement AND, OR, and NOT functions. Show the diagram of the final Perceptron network.

 $XOR(x_1, x_2) = AND(OR(x_1, x_2), NOT(AND(x_1, x_2)))$



 $O \downarrow (O \downarrow O \downarrow O \downarrow O)$

(d) If we change the ordering of data samples in Perceptron Update Rule, will the model converges to a different model weight for the AND operator? What can you conclude from the observation?

Ordering: $(0, 1, 2, 3)$					
Iteration	Ь	w_1	w ₂		
Initial	0	0	0		
1	-0.1	0	0		
2	0	0.1	0.1		
3	-0.1	0.1	0.1		
4	-0.2	0.1	0		
5	-0.1	0.2	0.1		
6	-0.2	0.2	0		
7	-0.3	0.1	0		
8	-0.2	0.2	0.1		
9	-0.3	0.1	0.1		
10	-0.2	0.2	0.2		
11	-0.3	0.2	0.1		

Ordering: $(0, 2, 3, 1)$					
Iteration	Ь	w_1	w ₂		
Initial	0	0	0		
1	-0.1	0	0		
2	0	0.1	0.1		
3	-0.1	0.1	0		
4	-0.2	0	0		
5	-0.1	0.1	0.1		
6	-0.2	0.1	0		
7	-0.1	0.2	0.1		
8	-0.2	0.2	0		
9	-0.3	0.1	0		
10	-0.2	0.2	0.1		
11	-0.3	0.1	0.1		
12	-0.2	0.2	0.2		
13	-0.3	0.2	0.1		

Ordering: (0, 2	2, 1	, 3)
-------------	------	------	------

(0, -, -, 0)					
Ь	w_1	<i>w</i> ₂			
0	0	0			
-0.1	0	0			
0	0.1	0.1			
-0.1	0.1	0.1			
-0.2	0	0.1			
-0.1	0.1	0.2			
-0.2	0	0.2			
-0.3	0	0.1			
-0.2	0.1	0.2			
-0.3	0.1	0.1			
-0.2	0.2	0.2			
-0.3	0.1	0.2			
	$\begin{array}{c} b \\ 0 \\ -0.1 \\ 0 \\ -0.1 \\ -0.2 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.2 \\ -0.3 \\ -0.2 \end{array}$	$\begin{array}{c cccc} b & w_1 \\ 0 & 0 \\ -0.1 & 0 \\ 0 & 0.1 \\ -0.1 & 0.1 \\ -0.2 & 0 \\ -0.1 & 0.1 \\ -0.2 & 0 \\ -0.3 & 0 \\ -0.2 & 0.1 \\ -0.3 & 0.1 \\ -0.2 & 0.2 \\ \end{array}$			

- (d) If we change the ordering of data samples in Perceptron Update Rule, will the model converges to a different model weight for the AND operator? What can you conclude from the observation?
 - Reordering data points could help the model converge much faster.
 - Manipulating the ordering could direct the model to a different weight. There is no guarantee to converge to the same model even for such a simple gate function.

- (e) Vith regards to Figure 1, does your proposed model have high bias and high variance? (Recap: What is bias? What is variance?)
- **Low bias**: It classifies all data points correctly.
- Low variance: It is a simple linear model, the simplest model to perform the logic gates given.

Ooes the Perceptron learning algorithm *always* converge on linearly separable datasets? Make your guess!

- A. Yes, always!
- B. Yes, if the learning rate is small enough.
- C. Yes, if the parameters are ordered properly.
- D. No, it can be stuck in a loop regardless.

Q2. Single vs Multi Layer Perceptron

After training both networks, you obtain a mean squared error of 1000 on the training set and a mean squared error of 2000 on the validation set for the single-layer perceptron, and a mean squared error of 800 on the training set and a mean squared error of 1200 on the validation set for the multi-layer perceptron.

- (a) What might be the reasons for the difference in performance between the single-layer perceptron and the multi-layer perceptron?
 - More layers \Rightarrow able to learn more complex (non-linear) patterns.
 - ▶ The single-layer perceptron is limited to a linear classifier.
- (b) How might you modify the single-layer perceptron to improve its performance, and what are the advantages and disadvantages of doing so?
 - Add transformed features (polynomial $(x_1)^2$, interaction x_1x_2).
- (c) What techniques could you use to improve the performance of the multilayer perceptron?
 - Underfitting: Increase the number of hidden layers (parameters).
 - Overfitting: Regularization.

Recap: Forward Propagation

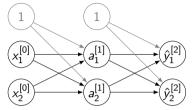
$$\begin{array}{c} 1\\ (x_{1}^{[0]})\\ (x_{2}^{[0]})\\ (x_{2}^{[0]$$

$$oldsymbol{a}^{[1]} = egin{bmatrix} a_1^{[1]} \ a_2^{[1]} \end{bmatrix} = egin{bmatrix} W_{01}^{[1]} & W_{11}^{[1]} & W_{21}^{[1]} \ W_{02}^{[1]} & W_{12}^{[1]} & W_{22}^{[1]} \end{bmatrix} imes egin{bmatrix} 1 \ x_1^{[0]} \ x_2^{[0]} \end{bmatrix} = oldsymbol{W}^ op imes oldsymbol{x}^{[0]}$$

Q3. Forward Propagation Suppose there is a data input $\mathbf{x} = (2,3)^{\top}$ and

Suppose there is a data input $\mathbf{x} = (2,3)^{\top}$ and the actual output label is $\mathbf{y} = (0.1, 0.9)^{\top}$. The weights for the network are

$$\boldsymbol{W}^{[1]} = \begin{bmatrix} 0.1 & 0.1 \\ -0.1 & 0.2 \\ 0.3 & -0.4 \end{bmatrix}, \quad \boldsymbol{W}^{[2]} = \begin{bmatrix} 0.1 & 0.1 \\ 0.5 & -0.6 \\ 0.7 & -0.8 \end{bmatrix}$$
Calculate $\boldsymbol{a}^{[1]}$, $\hat{\boldsymbol{y}}^{[2]}$ and $L(\hat{\boldsymbol{y}}^{[2]}, \boldsymbol{y})$.



Activation Func: ReLU(x) = max(0, x).

$$\boldsymbol{a}^{[1]} = \operatorname{ReLU}((\boldsymbol{W}^{[1]})^{\top}\boldsymbol{X}) = \operatorname{ReLU}\left(\begin{bmatrix}0.1 & -0.1 & 0.3\\0.1 & 0.2 & -0.4\end{bmatrix}\begin{bmatrix}1\\2\\3\end{bmatrix}\right) = \operatorname{ReLU}\left(\begin{bmatrix}0.8\\-0.7\end{bmatrix}\right) = \begin{bmatrix}0.8\\0\end{bmatrix}$$
$$\hat{\boldsymbol{y}}^{[2]} = \operatorname{ReLU}((\boldsymbol{W}^{[2]})^{\top}\boldsymbol{a}^{[1]}) = \operatorname{ReLU}\left(\begin{bmatrix}0.1 & 0.5 & 0.7\\0.1 & -0.6 & -0.8\end{bmatrix}\begin{bmatrix}1\\0.8\\0\end{bmatrix}\right) = \operatorname{ReLU}\left(\begin{bmatrix}0.5\\-0.38\end{bmatrix}\right) = \begin{bmatrix}0.5\\0\end{bmatrix}$$
$$L(\hat{\boldsymbol{y}}^{[2]}, \boldsymbol{y}) = \frac{1}{2}\left((\hat{y}^{[2]}_1 - y_1)^2 + (\hat{y}^{[2]}_2 - y_2)^2\right) = \frac{1}{2}\left((0.5 - 0.1)^2 + (0 - 0.9)^2\right) = 0.485$$

Q4. Let's Activate!

We can define a neural network as follows:

$$\hat{y} = g((\boldsymbol{W}^{[L]})^{\top} \dots g(\boldsymbol{W}^{[2]})^{\top} \cdot g(\boldsymbol{W}^{[1]})^{\top} \boldsymbol{x})$$

where $\boldsymbol{W}^{[l] \in \{1, \dots, L\}}$ is a weight matrix. You're given the following weight matrices:

$$\boldsymbol{W}^{[3]} = \begin{bmatrix} 1.2 & -2.2 \\ 1.2 & 1.3 \end{bmatrix}, \, \boldsymbol{W}^{[2]} = \begin{bmatrix} 2.1 & -0.5 \\ 0.7 & 1.9 \end{bmatrix}, \, \boldsymbol{W}^{[1]} = \begin{bmatrix} 1.4 & 0.6 \\ 0.8 & 0.6 \end{bmatrix}$$

You are given $g(z) = \text{SiLU}(z) = \frac{z}{1 + e^{-z}}$ between all layers except the last layer. Is it possible to replace the whole neural network with just one matrix in both cases with and without non-linear activations g(z)?

Q4. Let's Activate!

Without non-linear activations:

$$\hat{y} = (\boldsymbol{W}^{[3]})^{\top} (\boldsymbol{W}^{[2]})^{\top} (\boldsymbol{W}^{[1]})^{\top} \boldsymbol{x}$$

$$= \begin{bmatrix} 1.2 & 1.2 \\ -2.2 & 1.3 \end{bmatrix} \begin{bmatrix} 2.1 & 0.7 \\ -0.5 & 1.9 \end{bmatrix} \begin{bmatrix} 1.4 & 0.8 \\ 0.6 & 0.6 \end{bmatrix} \boldsymbol{x}$$

$$= \left(\begin{bmatrix} 1.2 & 1.2 \\ -2.2 & 1.3 \end{bmatrix} \begin{bmatrix} 2.1 & 0.7 \\ -0.5 & 1.9 \end{bmatrix} \begin{bmatrix} 1.4 & 0.8 \\ 0.6 & 0.6 \end{bmatrix} \right) \boldsymbol{x}$$

$$= \begin{bmatrix} 4.56 & 3.408 \\ -6.82 & -3.658 \end{bmatrix} \boldsymbol{x}$$

$$= \boldsymbol{M}^{\top} \boldsymbol{x}$$

∴ It is possible to replace the whole neural network with $M = \begin{bmatrix} 4.56 & -6.82 \\ 3.408 & -3.658 \end{bmatrix}$.

Q4. Let's Activate!

With non-linear activations: Suppose $\hat{y} = \boldsymbol{M}^{\top} \boldsymbol{x}$. We expect \hat{y} to be doubled if we double \boldsymbol{x} . \blacktriangleright When $\boldsymbol{x} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\top}$:

$$\hat{y} = g\left((\boldsymbol{W}^{[3]})^{\top} g\left((\boldsymbol{W}^{[2]})^{\top} g\left((\boldsymbol{W}^{[1]})^{\top} \boldsymbol{x} \right) \right) \right)$$
$$= \begin{bmatrix} 3.0571 \\ -5.2727 \end{bmatrix}$$
Intuition: Prove

Intuition: Prove that it is impossible since the network is no longer "linear".

• When $\boldsymbol{x} = \begin{bmatrix} 2 & 0 \end{bmatrix}^\top$:

$$\hat{y} = g\left((\boldsymbol{W}^{[3]})^{\top} g\left((\boldsymbol{W}^{[2]})^{\top} g\left((\boldsymbol{W}^{[1]})^{\top} \boldsymbol{x} \right) \right) \right)$$
$$= \begin{bmatrix} 7.7257\\ -13.2458 \end{bmatrix} \neq 2 \cdot \begin{bmatrix} 3.0571\\ -5.2727 \end{bmatrix}$$

The outputs are not linear \Rightarrow a contradiction! \therefore No such **M** exists.

Conclusion:

> Without non-linear activations, the entire network collapses to a simple linear model.

$$\hat{y} = (\boldsymbol{W}^{[L]})^{ op} \dots (\boldsymbol{W}^{[2]})^{ op} (\boldsymbol{W}^{[1]})^{ op} \boldsymbol{x}$$

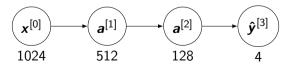
= $\left((\boldsymbol{W}^{[L]})^{ op} \dots (\boldsymbol{W}^{[2]})^{ op} (\boldsymbol{W}^{[1]})^{ op} \right) \boldsymbol{x}$

Non-linear activation functions let the network model non-linear relationships in the data. Increasing the depth of the network will help the model learn more complex relationships.

Q5. Working with Dimensions

You're building a self-driving car program that takes in grayscale images of size 32×32 where 32 is the image height and width. There are 4 classes your simplified program has to classify: {car, person, traffic light, stop sign}. You start off experimenting with a Multi-layer Perceptron composed of three linear layers of the form $\mathbf{y} = \mathbf{W}^{\top} \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^d$ is the input vector, \mathbf{W} is the weight matrix, and \mathbf{y} is the network output.

Layer	Input dim	Weight Matrix dim	Output dim
Linear layer 1	1024×1	<u>1024</u> × <u>512</u>	512 imes 1
Linear layer 2	512×1	<u>512</u> × 128	<u>128</u> × 1
Linear layer 3	128×1	<u> 128 </u>	× 1



Prove that the Perceptron Learning Algorithm always converges on a **linearly** separable dataset! You may assume the initial weights are 0 and $y^{(i)} \in \{-1, 1\}$.

(Hint: Let \mathbf{w}^* be a unit weight vector that linearly separates the data, we have $y^{(i)}(\mathbf{w}^* \cdot \mathbf{x}^{(i)}) \ge \gamma$ since the margin is positive. Also, denote $R = \max_i ||\mathbf{x}^{(i)}||$. Prove that after k iterations, (1) $\mathbf{w} \cdot \mathbf{w}^* \ge k\eta\gamma$ and (2) $|\mathbf{w}||^2 \le k\eta^2 R^2$. Finally, show that $k \le \frac{R^2}{\gamma^2}$, i.e. the algorithm never takes more than this number of iterations.)

Extra Slide

Bonus. Perceptron Learning Algorithm

Solution:

• Consider the *k*-th iteration with initial weights w_0 and misclassified instance $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$. The update rule gives $\mathbf{w} = \mathbf{w}_0 + \eta \mathbf{y}^{(i)} \mathbf{x}^{(i)}$. Then

$$\begin{split} \boldsymbol{w} \cdot \boldsymbol{w}^* &= (\boldsymbol{w}_0 + \eta \boldsymbol{y}^{(i)} \boldsymbol{x}^{(i)}) \cdot \boldsymbol{w}^* \\ &= \boldsymbol{w}_0 \cdot \boldsymbol{w}^* + \eta \boldsymbol{y}^{(i)} (\boldsymbol{x}^{(i)} \cdot \boldsymbol{w}^*) \\ &\geq \boldsymbol{w}_0 \cdot \boldsymbol{w}^* + \eta \boldsymbol{\gamma} \end{split}$$

This implies $\boldsymbol{w} \cdot \boldsymbol{w}^*$ increases by at least $\eta \gamma$ in each iteration. After k iterations, $\boldsymbol{w} \cdot \boldsymbol{w}^* \geq k \eta \gamma$.

Since \boldsymbol{w}^* is a unit vector, we have $\boldsymbol{w} \cdot \boldsymbol{w}^* = \|\boldsymbol{w}\| \|\boldsymbol{w}^*\| \cos \theta = \|\boldsymbol{w}\| \cos \theta \le \|\boldsymbol{w}\|$. Hence $\|\boldsymbol{w}\|^2 \ge (\boldsymbol{w} \cdot \boldsymbol{w}^*)^2 \ge k^2 \eta^2 \gamma^2$.

Extra Slide

Bonus. Perceptron Learning Algorithm

Solution:

Since point $(x^{(i)}, y^{(i)})$ is misclassified, we also have $y^{(i)}(w_0 \cdot x^{(i)}) \leq 0$. Then

$$\begin{aligned} \|\boldsymbol{w}\|^{2} &= \|\boldsymbol{w}_{0} + \eta y^{(i)} \boldsymbol{x}^{(i)}\|^{2} \\ &= \|\boldsymbol{w}_{0}\|^{2} + \eta^{2} (y^{(i)})^{2} \|\boldsymbol{x}^{(i)}\|^{2} + 2\eta y^{(i)} (\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}) \\ &= \|\boldsymbol{w}_{0}\|^{2} + \eta^{2} \|\boldsymbol{x}^{(i)}\|^{2} + 2\eta y^{(i)} (\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}) \\ &\leq \|\boldsymbol{w}_{0}\|^{2} + \eta^{2} \|\boldsymbol{x}^{(i)}\|^{2} \\ &\leq \|\boldsymbol{w}_{0}\|^{2} + \eta^{2} R^{2} \end{aligned}$$

This implies $\|\boldsymbol{w}\|^2$ increases by at most $\eta^2 R^2$ in each iteration. After k iterations, $\|\boldsymbol{w}\|^2 \leq k \eta^2 R^2$.

• Combining both inequalities, we have $k^2\eta^2\gamma^2 \le k\eta^2 R^2 \Rightarrow k \le \frac{R^2}{\gamma^2}$.

Extra Slide