
CS2109S Tutorial 9

Back Propagation (Last F2F Tutorial)

(AY 24/25 Semester 2)

April 11, 2025

(Prepared by Benson)

1 / 22



Contents

Back Propagation
Recap
Q1. Back Propagation
Q2. Back Propagation for a Deep(er) Network

Training Neural Networks
Q3. Training Deep Neural Networks
Q4. Dying ReLU Problem

Bonus. Behind Pytorch Autograd (Practical)

2 / 22



Recap. Back Propagation

} Warm-Up Exercise: Let ŷ = W⊤x .

Find
∂E
∂x

.

A. W · ∂E
∂ŷ

B. W⊤ · ∂E
∂ŷ

C.
∂E
∂ŷ

· W

D.
∂E
∂ŷ

· W⊤

Find
∂E
∂W

.

A. x ·
(
∂E
∂ŷ

)⊤

B. x⊤ · ∂E
∂ŷ

C.

(
∂E
∂ŷ

)⊤

· x

D.
∂E
∂ŷ

· x⊤

m×1 m×n n×1

n×1
W : n×m
∂E
∂ŷ : m×1

(n×m)·(m×1)

n×m
x : n×1
∂E
∂y : m×1

(n×1)·(1×m)

3 / 22



Recap. Back Propagation

Forward propagation helps us to evaluate ŷ in a neural network given x . To perform gradient

descent, we also need to evaluate
∂E

∂W [i ]
for all layers (to update the weights).

x f [1] f [2] ŷ E
W [1] W [2] W [3]

∂E
∂ŷ

ŷ = (W [3])⊤f [2]

∂E
∂f [2]

= W [3] ∂E
∂ŷ

∂E
∂W [3]

= f [2]

(
∂E
∂ŷ

)⊤

∂E
∂f [2]

∂E
∂W [3]

f [2] = (W [2])⊤f [1]

∂E
∂f [1]

= W [2] ∂E
∂f [2]

∂E
∂W [2]

= f [1]

(
∂E
∂f [2]

)⊤

∂E
∂f [1]

∂E
∂W [2]

f [1] = (W [1])⊤x

∂E
∂W [1]

= x
(

∂E
∂f [1]

)⊤

∂E
∂W [1]

Input grad

Weight grad

4 / 22



Recap. Back Propagation

} Suppose a neural network takes time T for inference. What’s the closest estimate of the
training time using the same data?

A. T

B. 2T

C. 3T

D. 4T

E. None of the other options

Solution: Forward propagation takes time T .
Backward propagation requires time 2T (2 ma-
trix multiplications are involved for input gradi-
ent & weight gradient). Hence the total time
is 3T .

5 / 22



Q1. Back Propagation

E = −1

n

n−1∑
i=0

{
[Y0i log(Ŷ0i )] + [(1− Y0i ) log(1− Ŷ0i )]

}
E = −

{
[Y00 log(Ŷ00)] + [(1− Y00) log(1− Ŷ00)]

}
◀ n = 1

(i) When n = 1, show that ∂E
∂Ŷ

=
[
−Y00

Ŷ00
+ 1−Y00

1−Ŷ00

]
.

∂E
∂Ŷ

=

[
∂E
∂Ŷ00

]
=

[
−
(
Y00

Ŷ00

+
1− Y00

1− Ŷ00

× (−1)

)]
=

[
−Y00

Ŷ00

+
1− Y00

1− Ŷ00

]

X0i = 1

X1i

X2i

∑
σ

W
[1]
00

W
[1]
10

W
[1]
20

Ŷ

f [1] = (W [1])⊤X
Ŷ = g [1](f [1])

where W [1] =
[
W

[1]
00 W

[1]
10 W

[1]
20

]⊤
,

X ∈ R3×n, and
g [1](s) = σ(s) = 1

1+e−s .

log x → 1
x

∂
∂Ŷ00

(1− Ŷ00)

6 / 22



Q1. Back Propagation

(ii) When n = 1, show that ∂E
∂f [1] = Ŷ − Y .

∂E
∂f [1]

=

[
∂E
∂f

[1]
00

]
=

[
∂E
∂Ŷ00

· ∂Ŷ00

∂f
[1]
00

]

=

[(
−Y00

Ŷ00

+
1− Y00

1− Ŷ00

)
· Ŷ00(1− Ŷ00)

]
=
[
−Y00(1− Ŷ00) + (1− Y00)Ŷ00

]
=
[
−Y00 + Ŷ00

]
= Ŷ − Y

(iii) When n = 1, show that ∂E
∂W

[1]
20

=
(

∂E
∂f [1]

)
00
X20.

∂E
∂W

[1]
20

=
∂E
∂f

[1]
00

· ∂f
[1]
00

∂W
[1]
20

=

(
∂E
∂f [1]

)
00

X20

X0i = 1

X1i

X2i

∑
σ

W
[1]
00

W
[1]
10

W
[1]
20

Ŷ

f [1] = (W [1])⊤X
Ŷ = g [1](f [1])

where W [1] =
[
W

[1]
00 W

[1]
10 W

[1]
20

]⊤
,

X ∈ R3×n, and
g [1](s) = σ(s) = 1

1+e−s .

f
[1]
00

σ−→ Ŷ00 → E
Chain Rule

from (i)

Ŷ 00 = σ(f [1]
00 )

σ′(x) = σ(x)(1− σ(x))

W
[1]
20 → f

[1]
00 → · · · → E

Chain Rule

f
[1]
00 = W

[1]
20 · X20 + · · ·

7 / 22



Q1. Back Propagation

(b) Derive an expression for
∂E

∂W [1]
.

∂E
∂W [1]

=
∂E
∂f [1]

· ∂f [1]

∂W [1]
= (Ŷ − Y )X

X0i = 1

X1i

X2i

∑
σ

W
[1]
00

W
[1]
10

W
[1]
20

Ŷ

f [1] = (W [1])⊤X
Ŷ = g [1](f [1])

where W [1] =
[
W

[1]
00 W

[1]
10 W

[1]
20

]⊤
,

X ∈ R3×n, and
g [1](s) = σ(s) = 1

1+e−s .

W [1] → f [1] → · · · → E

from (ii)

f [1] = (W [1])⊤X

8 / 22



Q1. Back Propagation

E = −1

n

n−1∑
i=0

{
[Y0i log(Ŷ0i )] + [(1− Y0i ) log(1− Ŷ0i )]

}
(c) Consider a general case where n ∈ N. Find

∂E
∂f [1]

.

∂E
∂Ŷ

=

[
∂E
∂Ŷ0i

]n−1

i=0

=

[
1

n

(
−Y0i

Ŷ0i

+
1− Y0i

1− Ŷ0i

)]n−1

i=0

∂E
∂f [1]

=

[
∂E
∂f

[1]
0i

]n−1

i=0

=

[
∂E
∂Ŷ0i

· ∂Ŷ0i

∂f
[1]
0i

]n−1

i=0

=

[
1

n

(
−Y0i

Ŷ0i

+
1− Y0i

1− Ŷ0i

)
· Ŷ0i (1− Ŷ0i )

]n−1

i=0

=

[
1

n
(−Y0i + Ŷ0i )

]n−1

i=0

=
1

n
(Ŷ − Y )

X0i = 1

X1i

X2i

∑
σ

W
[1]
00

W
[1]
10

W
[1]
20

Ŷ

f [1] = (W [1])⊤X
Ŷ = g [1](f [1])

where W [1] =
[
W

[1]
00 W

[1]
10 W

[1]
20

]⊤
,

X ∈ R3×n, and
g [1](s) = σ(s) = 1

1+e−s .

from (i)

f
[1]
0i

σ−→ Ŷ0i → E

Chain Rule

Ŷ0i = σ(f
[1]
0i )

σ′(x) = σ(x)(1− σ(x))

9 / 22



Q1. Back Propagation

(d) Let’s say that Grace has 100 samples from cultivar A and 1000 samples from cultivar B
that make up the 1100 total samples. To deal with the imbalanced data set, she decided
to introduce two hyper-parameters α and β in the loss function, as shown below:

E = −1

n

n−1∑
i=0

{
α[Y0i · log(Ŷ0i )] + β[(1− Y0i ) log(1− Ŷ0i )]

}
Why do you think that she introduced the hyper-parameters α and β? How should she
set their values?

▶ We would like the weight of cultivar A ≈ the weight of cultivar B.

▶ α = 10β (since the dataset has 10 times more samples from cultivar B than those from
cultivar A).

10 / 22



Q2. Back Propagation for a Deep(er) Network

Compute ∂E
∂W

[1]
11

.

∂E
∂W

[1]
11

=
∂E
∂Ŷ00

· ∂Ŷ00

∂f
[2]
00

· ∂f
[2]
00

∂a
[1]
10

· ∂a
[1]
10

∂f
[1]
10

· ∂f
[1]
10

∂W
[1]
11

=

[
−Y00

Ŷ00

+
1− Y00

1− Ŷ00

]
· Ŷ00(1− Ŷ00) ·W [2]

10

·

({
1 if f

[1]
10 > 0

0 otherwise

)
· X10

=

{
(Ŷ00 − Y00)W

[2]
10 X10 if f

[1]
10 > 0

0 otherwise

X0i = 1

X1i

X2i

∑
g [1]

∑
g [1]

W
[1]
00

W
[1]
01

W
[1]
10

W
[1]
11

W
[1]
20

W
[1]
21

∑
σ

W
[2]
00

W
[2]
10

Ŷ

f
[1]
10

ReLU−−−→ a
[1]
10

f
[2]
00

σ−→ Ŷ00

f [1] = (W [1])⊤X
a[1] = g [1](f [1]) = ReLU(f [1])

f [2] = (W [2])⊤a[1]

Ŷ = g [2](f [2]) = σ(f [2])

from (i) σ′(x) ReLU′(x)

11 / 22



Q3. Training Deep Neural Networks
Suppose we use σ (the sigmoid function) as our activation function in a neural network with 50
hidden layers, as per the code in the accompanying Python notebook.

(a) Play around with the code. Notice that when performing back propagation, the gradient
magnitudes of the first few layers are extremely small. What do you think causes this
problem?

0 1 2 3 4 5 6 7 8
Layer Index

0.0e+00

1.0e-38

2.0e-38

3.0e-38

4.0e-38

M
ax

 G
ra

di
en

t M
ag

ni
tu

de

12 / 22



Q3. Training Deep Neural Networks

X
∑

σ
∑

σ
∑

σ
∑

σ Ŷ

∂E
∂Ŷ

∂E
∂a[5]

∂E
∂f [5]

∂E
∂a[4]

∂E
∂f [4]

∂E
∂a[3]

∂E
∂f [3]

∂E
∂a[2]

∂E
∂f [2] σ′(x)W [4]σ′(x)W [3]σ′(x)W [2]σ′(x)

= σ(x)(1− σ(x))

≤ 0.25

= σ(x)(1− σ(x))

≤ 0.25

= σ(x)(1− σ(x))

≤ 0.25

= σ(x)(1− σ(x))

≤ 0.25

0.5 1

0.2

0.4

σ(x)(1− σ(x))

σ(x)

Vanishing gradient!
Issue: Convergence will be slow.

13 / 22



Q3. Training Deep Neural Networks

Suppose we use σ (the sigmoid function) as our activation function in a neural network with 50
hidden layers, as per the code in the accompanying Python notebook.

(b) Based on what we have learnt thus far, how can we mitigate this problem? Test out your
solution by modifying the code and checking the gradient magnitudes.

14 / 22



Q3. Training Deep Neural Networks

Sigmoid Function:

σ(x) =
1

1 + e−x

σ′(x) = σ(x)(1− σ(x))

ReLU Function:

ReLU(x) =

{
x if x > 0

0 otherwise

ReLU′(x) =

{
1 if x > 0

0 otherwise

−10 −5 5 10

0.5

1

1.5

σ′(x)
x

−10 −5 5 10

0.5

1

1.5

ReLU′(x)

x

15 / 22



Q3. Training Deep Neural Networks

Sigmoid Function:

0 1 2 3 4 5 6 7 8
Layer Index

0.0e+00

1.0e-38

2.0e-38

3.0e-38

4.0e-38

M
ax

 G
ra

di
en

t M
ag

ni
tu

de

ReLU Function:

0 1 2 3 4 5 6 7 8
Layer Index

0.0e+00

2.0e-21

4.0e-21

6.0e-21

8.0e-21

1.0e-20

1.2e-20

1.4e-20

1.6e-20

M
ax

 G
ra

di
en

t M
ag

ni
tu

de
16 / 22



Q4. Dying ReLU Problem
This problem occurs when majority of the activations are 0 (meaning the underlying
pre-activations are mostly non-positive), resulting in the network dying midway. The gradients
passed back are also 0 which leads to poor gradient descent performance and hence poor
learning. Refer to the figure below on the ReLU and Leaky ReLU activation functions.

f (y) = y

f (y) = 0

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

How does Leaky ReLU fix this? What happens if we set a = 1 in Leaky ReLU?

17 / 22



Q4. Dying ReLU Problem
ReLU Function:

ReLU(x) =

{
x if x > 0

0 otherwise

ReLU′(x) =

{
1 if x > 0

0 otherwise

Leaky ReLU Function:

ReLU(x) =

{
x if x > 0

ax otherwise

ReLU′(x) =

{
1 if x > 0

a otherwise

−10 −5 5 10

0.5

1

1.5

ReLU′(x)

x

−10 −5 5 10

0.5

1

1.5

ReLU′(x)

x

small positive constant

18 / 22



Beyond CS2109S
Introductory

CS2109S Intro to AI and ML

Theoretical Foundations

CS3263 Foundations of AI

↪→ CS4246 AI Decision Making

CS3264 Foundations of ML
Sem 1 (Harold): Math-intensive version of
CS2109S (linear algebra?)
Sem 2 (Bryan): Focuses on proving /
more “old-school” techniques

Applications

CS4243 Computer Vision

CS4248 Natural Language P.

Cool 5k mods

CS5339 Theory and Algo for ML

Algos, e.g. Perceptron, SVM, Kernels
ML Theory, e.g. Conc. Measures, VC-dim
Prerequisite: CS3264

CS5275 Algo Designer’s Toolkit

Math Tools for Algo/ML: Randomized,
Optimization, Info Theory, and more
Prerequisite: CS3230

19 / 22



Student Feedback Exercise: 

Your Voice Matters!

https://blue.nus.edu.sg/blue/

20 / 22



Extra SlideBonus. Behind Pytorch Autograd (Practical)
Copy the template code from the website.
Complete the function visualize autograd graph(loss) to print out the Pytorch autograd
graph. Get started by reading the provided starter code and the comments.

1 # Sample neural network with 2 linear layers

2 class TwoLayerNet(nn.Module ):

3 def __init__(self , D_in , H, D_out):

4 super(TwoLayerNet , self). __init__ ()

5 self.linear1 = nn.Linear(D_in , H)

6 self.relu = nn.ReLU()

7 self.linear2 = nn.Linear(H, D_out)

8

9 def forward(self , x):

10 x = self.linear1(x)

11 x = self.relu(x)

12 x = self.linear2(x)

13 return x

14

15 model = TwoLayerNet (1000 , 100, 10)

16 loss = nn.MSELoss ()
MseLossBackward0

AddmmBackward0

(10) ReluBackward0

AddmmBackward0

(100) TBackward0

(100, 1000)

TBackward0

(10, 100)

21 / 22



Extra SlideBonus. Behind Pytorch Autograd (Practical)

Solution.1

1 def add_nodes(var):

2 if var in visited:

3 return

4 visited.add(var)

5

6 if hasattr(var , "variable"):

7 create_parameter_node(var , var.variable.size ())

8 else:

9 create_func_node(var)

10

11 if hasattr(var , "next_functions"):

12 for u in var.next_functions:

13 if u[0] is not None:

14 create_edge(u[0], var)

15 add_nodes(u[0])

1Adapted from https://www.kaggle.com/code/ehsanmjz/torchviz-example.
22 / 22

https://www.kaggle.com/code/ehsanmjz/torchviz-example

	Back Propagation
	Recap
	Q1. Back Propagation
	Q2. Back Propagation for a Deep(er) Network

	Training Neural Networks
	Q3. Training Deep Neural Networks
	Q4. Dying ReLU Problem

	Bonus. Behind Pytorch Autograd (Practical)

