
Oracle® OLAP
Application Developer's Guide  

10g Release 2 (10.2)  

B14349-01

June 2005



Oracle OLAP Application Developer’s Guide, 10g Release 2 (10.2)   

B14349-01

Copyright © 2003, 2005, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they 
are provided under a license agreement containing restrictions on use and disclosure and are also protected 
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, 
or decompilation of the Programs, except to the extent required to obtain interoperability with other 
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in 
the documentation, please report them to us in writing. This document is not warranted to be error-free. 
Except as may be expressly permitted in your license agreement for these Programs, no part of these 
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any 
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on 
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation 
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license 
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, 
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such 
purposes, and we disclaim liability for any damages caused by such use of the Programs. 

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its 
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third 
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. 
You bear all risks associated with the use of such content. If you choose to purchase any products or services 
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: 
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the 
third party, including delivery of products or services and warranty obligations related to purchased 
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from 
dealing with any third party. 



iii

Contents

Preface ...............................................................................................................................................................   xiii

Audience.....................................................................................................................................................    xiii
Documentation Accessibility ...................................................................................................................    xiii
Related Documents ...................................................................................................................................    xiv
Conventions ...............................................................................................................................................    xiv

What’s New in Oracle OLAP Applications Development? ................................................    xv

Oracle Database 10g Release 10.2 Oracle OLAP ...................................................................................     xv
Oracle Database 10g Release 10.1.0.4 Oracle OLAP .............................................................................     xv

Part I      Fundamentals

1  Overview

OLAP Technology Within Oracle Database ........................................................................................   1-1
Problems Maintaining Two Distinct Systems................................................................................   1-1
Full Integration of Multidimensional Technology ........................................................................   1-2

Using OLAP to Answer Business Questions ......................................................................................   1-2
Common Analytical Applications.........................................................................................................   1-3
Tools for Querying OLAP Data Stores .................................................................................................   1-3

Formulating Queries..........................................................................................................................   1-4
Creating Custom Measures ..............................................................................................................   1-4

The Logical Dimensional Data Model .................................................................................................   1-5
Logical Cubes......................................................................................................................................   1-6
Logical Measures................................................................................................................................   1-6
Logical Dimensions............................................................................................................................   1-6
Logical Hierarchies and Levels ........................................................................................................   1-7
Logical Attributes...............................................................................................................................   1-7

About Multidimensional Data Stores ..................................................................................................   1-7
Creating Analytic Workspaces.........................................................................................................   1-8
Summary Data....................................................................................................................................   1-8

Deciding When to Use Analytic Workspaces .....................................................................................   1-9
When to Use Analytic Workspaces .................................................................................................   1-9
When to Use Relational Schemas.....................................................................................................   1-9
Structured and Unstructured Data Stores ...................................................................................    1-10
Processing Analytic Queries..........................................................................................................    1-10



iv

Creating Summary Data.................................................................................................................    1-10
How Analytic Workspaces Store Summary Data ...............................................................    1-10
How Relational Schemas Store Aggregate Data .................................................................    1-11

Components of Oracle OLAP .............................................................................................................    1-11
OLAP Analytic Engine ...................................................................................................................    1-11
Analytic Workspaces ......................................................................................................................    1-11
Analytic Workspace Manager .......................................................................................................    1-12
OLAP Worksheet ............................................................................................................................    1-12
SQL Interface to OLAP...................................................................................................................    1-12
OLAP DML ......................................................................................................................................    1-12
Analytic Workspace Java APIs......................................................................................................    1-12
OLAP API.........................................................................................................................................    1-12
OLAP Catalog..................................................................................................................................    1-13

Implementing an Analytic Workspace..............................................................................................    1-13
Identifying Business Goals ............................................................................................................    1-13
Identifying Data Sources................................................................................................................    1-13
Defining a Logical Model...............................................................................................................    1-14
Mapping, Loading, and Aggregating the Data...........................................................................    1-14
Generating Information-Rich Data ...............................................................................................    1-14

Implementing a Relational Data Warehouse for OLAP ................................................................    1-14
Identifying Business Goals ............................................................................................................    1-14
Identifying Data Sources................................................................................................................    1-15
Defining a Logical Model...............................................................................................................    1-15
Generating Summary Data ............................................................................................................    1-15

Upgrading Oracle Database 10g Release 1 Analytic Workspaces ................................................    1-15
Upgrading Oracle9i Analytic Workspaces........................................................................................    1-16

Upgrading the Physical Storage Format......................................................................................    1-16
Upgrading the Standard Form Metadata ....................................................................................    1-17

2  The Sample Schema

Case Study Scenario.................................................................................................................................   2-1
Reporting Requirements ...................................................................................................................   2-2
Business Goals ....................................................................................................................................   2-2
Information Requirements................................................................................................................   2-3

Business Analysis Questions.....................................................................................................   2-3
What products are profitable?...................................................................................................   2-3
Who are our customers, and what and how are they buying? ............................................   2-3
What accounts are most profitable? .........................................................................................   2-4
What is the performance of each distribution channel?........................................................   2-4
Is there still a seasonal variance to the business? ...................................................................   2-4
Summary of Information Requirements..................................................................................   2-4

Identifying Required Business Facts....................................................................................................   2-5



v

Designing a Logical Data Model for Global Computing .................................................................   2-5
Identifying Dimensions.....................................................................................................................   2-5
Identifying Levels ..............................................................................................................................   2-6
Identifying Hierarchies .....................................................................................................................   2-6
Identifying Stored Measures ............................................................................................................   2-6

The Global Schema ..................................................................................................................................   2-7

Part II     Creating and Managing Analytic Workspaces

3  Creating an Analytic Workspace

Introduction to Analytic Workspace Manager....................................................................................   3-1
Model View.........................................................................................................................................   3-2
Object View ........................................................................................................................................   3-2
OLAP Worksheet ...............................................................................................................................   3-3

Getting Started with Analytic Workspace Manager..........................................................................   3-4
Installing Analytic Workspace Manager ........................................................................................   3-4
Opening Analytic Workspace Manager .........................................................................................   3-4
Defining a Database Connection......................................................................................................   3-5
Opening a Database Connection......................................................................................................   3-5

Identifying the Source Data ...................................................................................................................   3-5
Schema Requirements .......................................................................................................................   3-5

Star Schema..................................................................................................................................   3-6
Snowflake Schema ......................................................................................................................   3-7
Other .............................................................................................................................................   3-8
Making Transformations in Your Source Data.......................................................................   3-9

Choosing a Build Tool ....................................................................................................................    3-10
Creating a Standard Form Workspace Using Analytic Workspace Manager ............................    3-10

How Analytic Workspace Manager Saves Changes..................................................................    3-10
Basic Steps for Creating a Standard Form Workspace ..............................................................    3-11
Adding Functionality to a Standard Form Analytic Workspace .............................................    3-11

Creating Logical Dimensions..............................................................................................................    3-12
Creating Dimensions ......................................................................................................................    3-12

Defining a Time Dimension ...................................................................................................    3-12
Creating Unique Dimension Members.................................................................................    3-12
Opening the Create Dimension Dialog Box.........................................................................    3-13

Creating Levels ................................................................................................................................    3-13
Creating Hierarchies.......................................................................................................................    3-14
Creating Attributes .........................................................................................................................    3-14

Automatically Defined Attributes .........................................................................................    3-14
User Attributes .........................................................................................................................    3-15

Creating Logical Cubes ........................................................................................................................    3-15
Creating Cubes ................................................................................................................................    3-15
Creating Measures ..........................................................................................................................    3-16
Creating Calculated Measures ......................................................................................................    3-16



vi

Making Data Storage Decisions .........................................................................................................    3-17
What is Sparsity? .............................................................................................................................    3-17

Sparsity Patterns ......................................................................................................................    3-17
Physical Storage of Sparse Data.............................................................................................    3-18
Manually Calculating Sparsity in a Cube.............................................................................    3-18

Ordering the Dimensions in a Cube.............................................................................................    3-19
Partitioning Large Measures .........................................................................................................    3-19
Defining Rules for Summarizing Data.........................................................................................    3-21

Basic Strategy for Summarizing Analytic Workspace Data ..............................................    3-21
Selecting Levels to Aggregate in the Builds.........................................................................    3-21
Choosing Aggregation Methods............................................................................................    3-22

Mapping Logical Objects to Data Sources .......................................................................................    3-22
Mapping Dimensions ....................................................................................................................    3-23
Mapping Cubes ...............................................................................................................................    3-24

Maintaining the Data............................................................................................................................    3-25
Submitting Maintenance Tasks to the Oracle Job Queue..........................................................    3-25
Managing Maintenance Jobs .........................................................................................................    3-26

Defining Measure Folders ...................................................................................................................    3-26
Supporting Multiple Languages ........................................................................................................    3-26
Creating Calculation Plans ..................................................................................................................    3-27
Case Study: Creating the Global Analytic Workspace...................................................................    3-27

Defining the GLOBAL_AW User..................................................................................................    3-27
Examining Sparsity Characteristics for GLOBAL ......................................................................    3-28
Identifying Levels for Precalculation ...........................................................................................    3-28
Creating the GLOBAL Analytic Workspace ...............................................................................    3-29
Creating GLOBAL Dimensions and Attributes..........................................................................    3-29
Creating GLOBAL Cubes and Measures.....................................................................................    3-30
Mapping the GLOBAL Logical Model to Data Sources ............................................................    3-30
Loading and Aggregating the Data..............................................................................................    3-31
Creating Calculated Measures ......................................................................................................    3-32
Creating a Measure Folder.............................................................................................................    3-33

Case Study: Creating the Sales History Analytic Workspace .......................................................    3-33
Creating the SH Analytic Workspace ..........................................................................................    3-34
Defining Database Parameters ......................................................................................................    3-35
Defining Tablespaces for Sales History .......................................................................................    3-35
Defining the SH_AW User.............................................................................................................    3-36
Defining the Logical Dimensions for Sales History ...................................................................    3-36

Defining TIMES_DIM..............................................................................................................    3-36
Defining CUSTOMERS_DIM .................................................................................................    3-37
Defining PRODUCTS_DIM, CHANNELS_DIM, and PROMOTIONS_DIM .................    3-37

Defining the Logical Sales Cube for Sales History.....................................................................    3-37
About the Sparsity Advisor....................................................................................................    3-38
Sample Program for Evaluating Sales History Tables........................................................    3-38
Interpreting the Results from the Sparsity Advisor............................................................    3-40

Maintaining Sales History..............................................................................................................    3-42



vii

4  Predicting Future Performance

Creating a Forecast ...................................................................................................................................   4-1
Steps for Creating a Forecast ............................................................................................................   4-1
Creating the Forecast Time Periods.................................................................................................   4-2
Defining a Measure for the Results .................................................................................................   4-2
Defining Supporting Variables (Optional) .....................................................................................   4-2
Developing a Forecast Program.......................................................................................................   4-2
Generating a Forecast ........................................................................................................................   4-3
Aggregating the Forecast Data.........................................................................................................   4-3

Case Study: Forecasting Global Sales ..................................................................................................   4-4
Defining the Sales Forecast Measure for Global Sales ..................................................................   4-4
Defining a Variable for Seasonal Adjustment................................................................................   4-4
Developing a Forecasting Program for Global Sales ....................................................................   4-5

Historical and Forecast Time Periods ......................................................................................   4-5
The FORECAST_SALES Program ............................................................................................   4-5
Generating the Global Sales Forecast.......................................................................................   4-6
Aggregating the Sales Forecast Measure.................................................................................   4-7

5  Developing Java Applications for OLAP

Building Analytical Java Applications ................................................................................................   5-1
About Java...........................................................................................................................................   5-1
The Java Solution for OLAP .............................................................................................................   5-2
Oracle Java Development Environment .........................................................................................   5-2

Introducing OracleBI Beans ...................................................................................................................   5-3
Metadata ..............................................................................................................................................   5-3
Navigation...........................................................................................................................................   5-3
Formatting...........................................................................................................................................   5-4
Graphs..................................................................................................................................................   5-4
Crosstabs .............................................................................................................................................   5-4
Data Beans...........................................................................................................................................   5-4
Wizards................................................................................................................................................   5-4
JSP Tag Library ...................................................................................................................................   5-5

Understanding the OLAP API ...............................................................................................................   5-5
How the OLAP API Accesses Dimensional Data..........................................................................   5-6
Calculation Capabilities ....................................................................................................................   5-6
Intelligent Caching.............................................................................................................................   5-7

Managing Data Sources for OracleBI Beans and the OLAP API....................................................   5-7
Building Java Applications that Manage Analytic Workspaces .....................................................   5-7

6  Administering Oracle OLAP

Administration Overview.......................................................................................................................   6-1
Creating Tablespaces for Analytic Workspaces..................................................................................   6-2

Creating an UNDO Tablespace........................................................................................................   6-2
Creating a Permanent Tablespace for Analytic Workspaces.......................................................   6-2
Creating a Temporary Tablespace for Analytic Workspaces ......................................................   6-3
Querying the Size of an Analytic Workspace ................................................................................   6-4



viii

Setting Up User Names ...........................................................................................................................   6-4
SQL Access For DBAs and Application Developers.....................................................................   6-4
SQL Access for Analysts ...................................................................................................................   6-5
Access to Database Objects Using OracleBI Beans........................................................................   6-5
Access to the Oracle JVM ..................................................................................................................   6-5

Initialization Parameters for Oracle OLAP .........................................................................................   6-6
Procedure: Setting System Parameters for OLAP .........................................................................   6-6
About the PGA_AGGREGATE_TARGET Setting ........................................................................   6-7

Initialization Parameters for OracleBI Beans .....................................................................................   6-7
Permitting Access to External Files.......................................................................................................   6-7

Creating a Directory Object ..............................................................................................................   6-8
Granting Access Rights to a Directory Object................................................................................   6-8
Example: Creating and Using a Directory Object .........................................................................   6-8

Understanding Data Storage ..................................................................................................................   6-9
Analytic Workspace Tables ..............................................................................................................   6-9
System Tables and Views...............................................................................................................    6-10

Monitoring Performance......................................................................................................................    6-11
Copying and Backing Up Analytic Workspaces..............................................................................    6-12

Part III      Creating a Relational Data Warehouse

7  Using the OLAP Catalog

Choosing a Method for Creating OLAP Catalog Metadata .............................................................   7-1
For Source Data in a Basic Star or Snowflake Schema..................................................................   7-1
For Dimension Tables with Complex Hierarchies ........................................................................   7-2
For Other Schema Configurations ...................................................................................................   7-3

Overview of the OLAP Catalog .............................................................................................................   7-3
OLAP Catalog Components .............................................................................................................   7-3

About CWM1...............................................................................................................................   7-3
About CWM2...............................................................................................................................   7-4

Steps for Creating OLAP Metadata .................................................................................................   7-4
Creating Metadata Using Enterprise Manager Database Control .................................................   7-4

Procedure: Accessing OLAP Management ....................................................................................   7-4
Defining Metadata for Dimension Tables ......................................................................................   7-5

Information That You Supply for Dimensions .......................................................................   7-5
Time Dimension ..........................................................................................................................   7-5
Procedure: Defining a Logical Dimension in the OLAP Catalog ........................................   7-5

Defining Metadata for Fact Tables...................................................................................................   7-5
Information That You Supply for Cubes .................................................................................   7-6
Procedure: Defining a Logical Cube in the OLAP Catalog ..................................................   7-6

Case Study: Creating Metadata for the GLOBAL Star Schema ......................................................   7-6
Defining a Logical Time Dimension for the Global Schema........................................................   7-6
Defining a Logical Price and Cost Cube for the Global Schema .................................................   7-8

Creating Metadata Using PL/SQL.........................................................................................................   7-9
CWM2 Packages for Creating OLAP Dimensions ........................................................................   7-9
CWM2 Packages for Creating Cubes ..............................................................................................   7-9
CWM2 Package for Mapping Metadata .........................................................................................   7-9



ix

CWM2 Package for Creating Level-Based Dimension Tables ....................................................   7-9
CWM2 Packages for Classification and Validation ......................................................................   7-9

8  Materialized Views for the OLAP API 

Summary Management with Oracle OLAP ........................................................................................   8-1
Overview and Requirements .................................................................................................................   8-2

Materialized Views Required for a Cube .......................................................................................   8-2
Materialized Views and OLAP Metadata.......................................................................................   8-2

A Dimension Materialized View ..........................................................................................................   8-3
CREATE Materialized View for a Dimension Hierarchy ............................................................   8-3
Bitmap Indexes for a Dimension Hierarchy...................................................................................   8-3
Statistics for a Dimension Hierarchy...............................................................................................   8-4

A Fact Materialized View........................................................................................................................   8-4
CREATE Fact Materialized View.....................................................................................................   8-4
Bitmap Indexes for Fact Materialized Views .................................................................................   8-5
Statistics for Fact Materialized Views .............................................................................................   8-5

Using the DBMS_ODM Package ..........................................................................................................   8-5
Procedure: Automatically Generate the Materialized Views ......................................................   8-6
Procedure: Manually Generate the Materialized Views ..............................................................   8-7

Example: Automatically Generate the Materialized Views for a Price Cube ...............................   8-7
Example: Manually Generate the Materialized Views for a Sales Cube.......................................   8-8

A  Database Standard Form for Analytic Workspaces 

Overview of Database Standard Form ................................................................................................    A-1
Terminology: Using Role Names to Identify Objects ..................................................................    A-2

Querying a Standard Form Analytic Workspace...............................................................................    A-2
Querying the Standard Form Catalogs ..........................................................................................    A-2
Querying Properties..........................................................................................................................    A-3

Standard Form Implementation of the Logical Model ....................................................................    A-4
Relationships Among Logical Objects ...........................................................................................    A-4
Classes of Workspace Objects .........................................................................................................    A-4

Object Naming Conventions ................................................................................................................    A-5
Logical Names ...................................................................................................................................    A-5
Simple Logical Names and Full Names.........................................................................................    A-5
Name Space Organization ...............................................................................................................    A-6

Workspace Object Properties ................................................................................................................    A-6
System Properties on All Workspace Objects ...............................................................................    A-6
Properties Specific to Implementation Class Objects...................................................................    A-7
Role Property Values for Implementation Class Objects ............................................................    A-7
Role Property Values for Catalogs Class Objects .........................................................................    A-8
Role Property Values for Features Class Objects........................................................................    A-10
Role Property Values for Extensions Class Objects ...................................................................    A-10

Implementation Class Objects............................................................................................................    A-11
Cube Objects ....................................................................................................................................    A-11

Cubedef Dimension .................................................................................................................    A-12



x

Measure Objects ..............................................................................................................................    A-13
Measuredef Object ...................................................................................................................    A-13

Dimension Objects ..........................................................................................................................    A-14
Dimdef Dimension...................................................................................................................    A-15
Hierlist Dimension...................................................................................................................    A-16
Levellist Dimension .................................................................................................................    A-16
Member_Levelrel Relation .....................................................................................................    A-17
Member_Parentrel Relation....................................................................................................    A-17
Hier_Levels Valueset...............................................................................................................    A-18
Attrdef Object ...........................................................................................................................    A-18

Catalogs Class Objects .........................................................................................................................    A-19
Lists of Objects .................................................................................................................................    A-20

ALL_CUBES Dimension .........................................................................................................    A-20
ALL_MEASURES Dimension ................................................................................................    A-20
ALL_DIMENSIONS Dimension ............................................................................................    A-20
ALL_HIERARCHIES Dimension ..........................................................................................    A-21
ALL_LEVELS Dimension .......................................................................................................    A-21
ALL_ATTRIBUTES Dimension .............................................................................................    A-22
ALL_OBJECTS Dimension .....................................................................................................    A-22

Lists of Types and Languages .......................................................................................................    A-23
ALL_DESCTYPES Dimension................................................................................................    A-23
ALL_ATTRTYPES Dimension ...............................................................................................    A-23
ALL_LANGUAGES Dimension ............................................................................................    A-23

Lists of Cube and Dimension Objects ..........................................................................................    A-24
CUBE_MEASURES Relation ..................................................................................................    A-24
DIM_HIERARCHIES Relation...............................................................................................    A-24
DIM_LEVELS Relation............................................................................................................    A-25
DIM_ATTRIBUTES Relation..................................................................................................    A-25

Supporting Object Information .....................................................................................................    A-26
AW_NAMES Variable.............................................................................................................    A-26

Features Class Objects..........................................................................................................................    A-27
ALL_DESCRIPTIONS Variable ....................................................................................................    A-27
DEFAULT_HIER Relation .............................................................................................................    A-27
VISIBLE Variable.............................................................................................................................    A-28
Member_Inhier Valueset................................................................................................................    A-28
Member_Createdby Variable ........................................................................................................    A-29
Member_Familyrel Relation ..........................................................................................................    A-29
Member_Gid Variable ....................................................................................................................    A-29
OBJ_CREATEDBY Variable...........................................................................................................    A-30
VERSION Variable..........................................................................................................................    A-30

Extensions Class Objects .....................................................................................................................    A-30

B  Upgrading From Express Server

Administration.........................................................................................................................................    B-1
Management Tools............................................................................................................................    B-1
Authentication of Users....................................................................................................................    B-2
Data Transfer .....................................................................................................................................    B-2



xi

Localization ........................................................................................................................................    B-2
Applications Support .............................................................................................................................    B-3

Programming Environment.............................................................................................................    B-3
Communications ...............................................................................................................................    B-4
Metadata .............................................................................................................................................    B-4

Programming Language Changes ........................................................................................................    B-4
New Commands................................................................................................................................    B-4
Obsolete Commands.........................................................................................................................    B-4
UPDATE and COMMIT...................................................................................................................    B-5

Transforming Oracle Express Databases to Standard Form............................................................    B-5
Who Should Use the Transformation Tool....................................................................................    B-5

What the Transformation Tool Does For You .......................................................................    B-6
What the Transformation Tool Does Not Do For You .........................................................    B-6

Converting From Oracle Express Objects Metadata....................................................................    B-7
Procedure: Converting From Oracle Express Objects to Standard Form ..........................    B-7

Populating Time Attributes .............................................................................................................    B-8
Sorting Time Dimension Members .........................................................................................    B-9
Creating and Populating End Date and Time Span Attributes...........................................    B-9
Setting Properties on Time Objects .........................................................................................    B-9

Revising the Load Programs ...........................................................................................................    B-9
Example: Converting the XADEMO Database to Standard Form...........................................    B-10

Creating a Standard Form XADEMO Analytic Workspace ..............................................    B-10
About the Time Dimension in XADEMO ............................................................................    B-12
Populating the XADEMO Time Attributes ..........................................................................    B-13

Glossary 

Index



xii



xiii

Preface

The Oracle OLAP Application Developer’s Guide explains how SQL and Java applications 
can extend their analytic processing capabilities by using the OLAP option in the 
Enterprise edition of the Oracle Database.

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for applications developers and DBAs who need to perform 
these tasks:

■ Develop business intelligence applications

■ Design and develop dimensional data stores (analytic workspaces)

■ Administer Oracle Database with the OLAP option

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace. 

http://www.oracle.com/accessibility/


xiv

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites. 

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services 
within the United States of America 24 hours a day, seven days a week. For TTY 
support, call 800.446.2398.

Related Documents
For more information, see the following manuals in the Oracle Database 10g 
documentation set:

■ Oracle OLAP Application Developer's Guide

Explains how SQL and Java applications can extend their analytic processing 
capabilities by using Oracle OLAP in the Enterprise Edition of Oracle Database. 

■ Oracle OLAP Reference

Explains the syntax of PL/SQL packages and types and the column structure of 
views related to Oracle OLAP. 

■ Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language 
(OLAP DML) used to define and manipulate analytic workspace objects. 

■ Oracle OLAP Developer's Guide to the OLAP API

Introduces the Oracle OLAP API, a Java application programming interface for 
Oracle OLAP, which is used to perform online analytical processing of the data 
stored in an Oracle database. Describes the API and how to discover metadata, 
create queries, and retrieve data. 

■ Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for querying 
analytic workspaces and relational data warehouses. 

■ Oracle OLAP Analytic Workspace Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for building and 
maintaining analytic workspaces.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



xv

What’s New in Oracle OLAP
Applications Development?

The following identifies some of the major changes from prior releases.

Oracle Database 10g Release 10.2 Oracle OLAP
Oracle OLAP in Oracle Database 10g Release 2 (10.2) provides numerous performance 
enhancements and extensions to the dimensional data model.

Enhanced Data Model in Analytic Workspace Manager
Analytic Workspace Manager 10.2 supports calculation plans and multiple languages. 
Compressed composites provide support for partial computation and non-additive 
operators. 

Support for Transportable Tablespaces
Analytic workspaces are included with other database objects in transportable 
tablespaces.

Oracle Database 10g Release 10.1.0.4 Oracle OLAP
Oracle OLAP 10.1.0.4 provides a simpler approach to building and enabling analytic 
workspaces while introducing the more powerful analytic tools of the OLAP engine 
into the build process.

New Storage Format for Analytic Workspaces
Analytic workspaces are still stored in LOB tables in Oracle Database 10g, but in a 
different format that supports partitioning and multiple writers.

See Also:

■ Chapter 1 for upgrade instructions

■ Chapter 3 for new features in Analytic Workspace Manager

See Also: Chapter 6 for information about backing up analytic 
workspaces



xvi

New Model View in Analytic Workspace Manager
The Model View in Analytic Workspace Manager 10g enables you to define the logical 
model of your analytic workspace directly in database standard form. You no longer 
create logical models in the OLAP Catalog for building analytic workspaces. Analytic 
Workspace Manager supports a wider range of schema designs than the OLAP 
Catalog.

Database Standard Form 10g
Analytic Workspace Manager and the PL/SQL DBMS_AWM package generate a new 
version of standard form metadata that supports the new features of Oracle 
Database 10g.

Dynamic Enabling for the OLAP API and OracleBI Beans
The SELECT statements for the views of an analytic workspace are stored in the 
analytic workspace itself. Enablement no longer requires the creation of database 
objects.

Direct Metadata Access
The OLAP API and OracleBI Beans query the Active Catalog views, which display the 
database standard form metadata stored in analytic workspaces. Enablement no 
longer requires the creation of OLAP Catalog CWM2 metadata.

See Also:

■ Chapter 1 for upgrade instructions

■ Chapter 6 for a description of the storage format

See Also: Chapter 3 for instructions on using the Model View

See Also: Appendix A for a description of standard form metadata.



Part I
Fundamentals

Part I introduces basic concepts, tools, and capabilities of the OLAP option. By reading 
the chapters in this part, you will learn how the OLAP option works within Oracle 
Database. You will also get an introduction to the sample schema used in examples 
throughout this guide.

Part I contains the following chapters:

■ Chapter 1, "Overview"

■ Chapter 2, "The Sample Schema"





Overview 1-1

1
Overview

This chapter introduces the powerful analytic resources available in Oracle 
Database 10g installed with the OLAP option. It consists of the following topics:

■ OLAP Technology Within Oracle Database

■ Using OLAP to Answer Business Questions

■ Common Analytical Applications

■ Tools for Querying OLAP Data Stores

■ The Logical Dimensional Data Model

■ About Multidimensional Data Stores

■ Deciding When to Use Analytic Workspaces

■ Components of Oracle OLAP

■ Implementing an Analytic Workspace

■ Implementing a Relational Data Warehouse for OLAP

■ Upgrading Oracle Database 10g Release 1 Analytic Workspaces

■ Upgrading Oracle9i Analytic Workspaces

OLAP Technology Within Oracle Database
Multidimensional technology is now available within Oracle Database. Organizations 
no longer need to choose between a multidimensional OLAP database and a relational 
database. By integrating multidimensional tables and an analytic engine into the 
database, Oracle provides the power of multidimensional analysis along with the 
manageability, scalability, and reliability of Oracle Database.

Problems Maintaining Two Distinct Systems
The integration of multidimensional technology in a relational database is important 
because maintaining a standalone multidimensional database is costly. It requires 
additional hardware and DBAs who are skilled at using the specialized administrative 
tools of the multidimensional database. Moreover, standalone multidimensional 
databases require applications that use proprietary APIs. This severely limits the 
number of applications that can be run against them, not only because fewer 
applications are available in these APIs, but because all the data that they run on must 
be transferred from the relational database to the multidimensional database. These 
requirements often force enterprises into supporting two sets of query and reporting 
tools, one for the relational database and the other for the multidimensional database.



Using OLAP to Answer Business Questions

1-2 Oracle OLAP Application Developer’s Guide

Full Integration of Multidimensional Technology
In contrast, the OLAP option is fully integrated into the Oracle Database. DBAs use the 
same tools to administer this option as they use to administer all other components of 
the database. The DBA can decide the best location for storing and calculating the data 
as part of optimizing the operations of the database. A single application can access 
both relational and multidimensional data.

SQL-based applications can now use pure SQL against information-rich relational 
views of multidimensional data provided by an OLAP-enabled Oracle Database. 
OLAP calculations can be queried using SQL, enabling application developers to 
leverage their investment in SQL while expanding the analytic sophistication of their 
software to include modeling, forecasting, and what-if analysis. Standard reporting 
applications can present the results of complex multidimensional calculations, while 
ad-hoc querying tools such as custom aggregate members and custom measures can 
expand the analyst's range of calculation functions.

Using OLAP to Answer Business Questions
Relational databases provide the online transactional processing (OLTP) that is 
essential for businesses to keep track of their affairs. Designed for efficient selection, 
storage, and retrieval of data, relational databases are ideal for housing gigabytes of 
detailed data.

The success of relational databases is apparent in their use to store information about 
an increasingly wide scope of activities. As a result, they contain a wealth of data that 
can yield critical information about a business. This information can provide a 
significant edge in an increasingly competitive marketplace.

The challenge is in deriving answers to business questions from the available data, so 
that decision makers at all levels can respond quickly to changes in the business 
climate. 

A standard transactional query might ask, "When did order 84305 ship?" This query 
reflects the basic mechanics of doing business. It involves simple data selection and 
retrieval of one record (or, at most, several related records) identified by a unique 
order number. Any follow-up questions, such as which postal carrier was used and 
where was the order shipped to, can probably be answered by the same record. This 
record has a useful life span in the transactional world: it begins when a customer 
places the order and ends when the order is shipped and paid for. At this point, the 
record can be rolled off to an archive. 

In contrast, a typical series of analytical queries might ask, "How do sales in the Pacific 
Rim for this quarter compare with sales a year ago? What can we predict for sales next 
quarter? What factors can we alter to improve the sales forecast? What happens if I 
change this number?" 

These are not questions about doing business transactions, but about analyzing past 
performance and making decisions that will improve future performance, provide a 
more competitive edge, and thus enhance profitability. The analytic database provides 
the information needed by decision makers whose ability to set goals today is 
dependent on how well they can predict the future. Getting the answers to these 
questions involves single-row calculations, time series analysis, and access to 
aggregated historical and current data. This requires OLAP -- online analytical 
processing. 



Tools for Querying OLAP Data Stores

Overview 1-3

Common Analytical Applications
Here are a few examples of common applications that can use the OLAP option to 
realize valuable gains in functionality and performance:

■ Planning applications enable organizations to predict outcomes. They generate 
new data using predictive analytical tools such as models, forecasts, aggregation, 
allocation, and scenario management. Some examples of this type of application 
are corporate budgeting and financial analyses, and demand planning systems.

■ Budgeting and financial analysis systems enable organizations to analyze past 
performance, build revenue and spending plans, manage to attain profit goals, 
and model the effects of change on the financial plan. Management can determine 
spending and investment levels that are appropriate for the anticipated revenue 
and profit levels. Financial analysts can prepare alternative budgets and 
investment plans contingent on factors such as fluctuations in currency values.

■ Demand planning systems enable organizations to predict market demand based 
on factors such as sales history, promotional plans, and pricing models. They can 
model different scenarios that forecast product demand and then determine 
appropriate manufacturing goals.

As this discussion highlights, the data processing required to answer analytical 
questions is fundamentally different from the data processing required to answer 
transactional questions. The users are different, their goals are different, their queries 
are different, and the type of data that they need is different. A relational data 
warehouse enhanced with the OLAP option provides the best environment for data 
analysis.

Tools for Querying OLAP Data Stores
Analysts can choose between two query and analysis tools for selecting, viewing, and 
analyzing the data:

■ OracleBI Discoverer Plus OLAP is a full featured tool for business analysis that 
provides a variety of presentation options.

Discoverer Plus OLAP provides various wizards to guide power users through the 
entire process of building and publishing sophisticated reports containing 
crosstabs and graphs. They can choose from multiple layout options to create a 
visual representation of their query results. They can create queries, drill, pivot, 
slice and dice data, add analytic calculations, graph the data, share results with 
other users, and export their Discoverer reports in various data formats. 
Discoverer reports can also be published in dashboards where other users can 
access them from their browsers.

■ OracleBI Spreadsheet Add-In combines Oracle Database dimensional analytics 
with the capabilities of Microsoft Excel.

Spreadsheet Add-In enables analysts to work with live dimensional data in the 
familiar spreadsheet environment of Microsoft Excel. The add-in fetches data 
using an active connection to an OLAP data store, and displays the data in a 
spreadsheet. Users can use the add-in to perform OLAP operations such as 
drilling, rotation, and data selection. 

In addition, OracleBI Beans and the OLAP API are available for developing custom 
applications, as described in Chapter 5.



Tools for Querying OLAP Data Stores

1-4 Oracle OLAP Application Developer’s Guide

Formulating Queries
Both Discoverer Plus OLAP and Spreadsheet Add-In use a dimensional data model so 
that analysts can formulate their queries in the language of business. Dimensions 
provide the context for the data. Consider the following request for information: 

For fiscal years 2003 and 2004, show the percent change in sales for the top 10 
products for each of the top 10 customers based on sales.

The sales measure is dimensioned by time periods, products, and customers. This 
request is articulated in business terms, but easily translates into a query in the 
language of dimensional analysis: dimensions, levels, hierarchies, and attributes.

Figure 1–1 shows a step in the Query Wizard in Discoverer Plus OLAP for selecting 
the top 10 products. The Query Wizard assists users in selecting by criteria, by value, 
and by saved selections. All OLAP tools provide a Query Wizard to assist users in 
formulating these queries.

Figure 1–1 Selecting Dimension Values By Criteria

Creating Custom Measures
Multidimensional data types facilitate the creation of custom measures. From the 
measures stored in your data warehouse, you can use numerous operators and 
functions to generate a wealth of information. Figure 1–2 shows a step in the 
Calculation Wizard of Discoverer Plus OLAP for calculating percent change in sales. 
Spreadsheet Add-In has the same Calculation Wizard. Both tools use the OracleBI 
Beans CalcBuilder.



The Logical Dimensional Data Model

Overview 1-5

Figure 1–2 Choosing a Calculation Method for a Custom Measure

The Logical Dimensional Data Model
The dimensional data model is an integral part of On-Line Analytical Processing, or 
OLAP. Because OLAP is on-line, it must provide answers quickly; analysts pose 
iterative queries during interactive sessions, not in batch jobs that run overnight. And 
because OLAP is also analytic, the queries are complex.

The dimensional data model is composed of logical cubes, measures, dimensions, 
hierarchies, levels, and attributes. The simplicity of the model is inherent because it 
defines objects that represent real-world business entities. Analysts know which 
business measures they are interested in examining, which dimensions and attributes 
make the data meaningful, and how the dimensions of their business are organized 
into levels and hierarchies.

Figure 1–3 shows the general relationships among logical objects.

Figure 1–3 Diagram of the OLAP Logical Dimensional Model



The Logical Dimensional Data Model

1-6 Oracle OLAP Application Developer’s Guide

Logical Cubes
Logical cubes provide a means of organizing measures that have the same shape, that 
is, they have the exact same dimensions. Measures in the same cube have the same 
relationships to other logical objects and can easily be analyzed and displayed 
together.

Logical Measures
Measures populate the cells of a logical cube with the facts collected about business 
operations. Measures are organized by dimensions, which typically include a Time 
dimension.

An analytic database contains snapshots of historical data, derived from data in a 
transactional database, legacy system, syndicated sources, or other data sources. Three 
years of historical data is generally considered to be appropriate for analytic 
applications.

Measures are static and consistent while analysts are using them to inform their 
decisions. They are updated in a batch window at regular intervals: weekly, daily, or 
periodically throughout the day. Some administrators refresh their data by adding 
periods to the time dimension of a measure, and may also roll off an equal number of 
the oldest time periods. Each update provides a fixed historical record of a particular 
business activity for that interval. Other administrators do a full rebuild of their data 
rather than performing incremental updates.

A critical decision in defining a measure is the lowest level of detail. Users may never 
view this base level data, but it determines the types of analysis that can be 
performed. For example, market analysts (unlike order entry personnel) do not need 
to know that Beth Miller in Ann Arbor, Michigan, placed an order for a size 10 blue 
polka-dot dress on July 6, 2002, at 2:34 p.m. But they might want to find out which 
color of dress was most popular in the summer of 2002 in the Midwestern United 
States. 

The base level determines whether analysts can get an answer to this question. For this 
particular question, Time could be rolled up into months, Customer could be rolled up 
into regions, and Product could be rolled up into items (such as dresses) with an 
attribute of color. However, this level of aggregate data could not answer the question: 
At what time of day are women most likely to place an order? An important decision 
is the extent to which the data has been aggregated before being loaded into a data 
warehouse.

Logical Dimensions
Dimensions contain a set of unique values that identify and categorize data. They 
form the edges of a logical cube, and thus of the measures within the cube. Because 
measures are typically multidimensional, a single value in a measure must be 
qualified by a member of each dimension to be meaningful. For example, the Sales 
measure has four dimensions: Time, Customer, Product, and Channel. A particular 
Sales value (43,613.50) only has meaning when it is qualified by a specific time period 
(Feb-01), a customer (Warren Systems), a product (Portable PCs), and a channel 
(Catalog).



About Multidimensional Data Stores

Overview 1-7

Logical Hierarchies and Levels
A hierarchy is a way to organize data at different levels of aggregation. In viewing 
data, analysts use dimension hierarchies to recognize trends at one level, drill down to 
lower levels to identify reasons for these trends, and roll up to higher levels to see 
what affect these trends have on a larger sector of the business. 

Each level represents a position in the hierarchy. Each level above the base (or most 
detailed) level contains aggregate values for the levels below it. The members at 
different levels have a one-to-many parent-child relation. For example, Q1-02 and 
Q2-02 are the children of 2002, thus 2002 is the parent of Q1-02 and Q2-02. 

Suppose a data warehouse contains snapshots of data taken three times a day, that is, 
every 8 hours. Analysts might normally prefer to view the data that has been 
aggregated into days, weeks, quarters, or years. Thus, the Time dimension needs a 
hierarchy with at least five levels.

Similarly, a sales manager with a particular target for the upcoming year might want 
to allocate that target amount among the sales representatives in his territory; the 
allocation requires a dimension hierarchy in which individual sales representatives are 
the child values of a particular territory. 

Although hierarchies are typically composed of levels, they do not have to be. The 
parent-child relations among dimension members may not define meaningful levels. 
For example, in an employee dimension, each manager has one or more reports, which 
forms a parent-child relation. Creating levels based on these relations (such as 
individual contributors, first-level managers, second-level managers, and so forth) 
may not be meaningful for analysis. 

Hierarchies and levels have a many-to-many relationship. A hierarchy typically 
contains several levels, and a single level can be included in more than one hierarchy.

Logical Attributes
An attribute provides additional information about the data. Some attributes are used 
for display. For example, you might have a product dimension that uses Stock 
Keeping Units (SKUs) for dimension members. The SKUs are an excellent way of 
uniquely identifying thousands of products, but are meaningless to most people if 
they are used to label the data in a report or graph. You would define attributes for the 
descriptive labels. 

You might also have attributes like colors, flavors, or sizes. This type of attribute can 
be used for data selection and answering questions such as: Which colors were the 
most popular in women's dresses in the summer of 2002? How does this compare with 
the previous summer?

Time attributes can provide information about the Time dimension that may be useful 
in some types of analysis, such as identifying the last day or the number of days in 
each time period.

About Multidimensional Data Stores
Multidimensional data is stored in analytic workspaces, where it can be manipulated 
by the OLAP engine in Oracle Database. Individual analytic workspaces are stored in 
tables in a relational schema, and they can be managed like other relational tables. An 
analytic workspace is owned by a particular user ID, and other users can be granted 
access to it. Within a single database, many analytic workspaces can be created and 
shared among users.



About Multidimensional Data Stores

1-8 Oracle OLAP Application Developer’s Guide

Analytic workspaces have been designed explicitly to handle multidimensionality in 
their physical data storage and manipulation of data. The multidimensional 
technology that underlies analytic workspaces is based on an indexed 
multidimensional array model, which provides direct cell access. This intrinsic 
multidimensionality affords analytic workspaces much of their speed and power in 
performing multidimensional analysis.

Creating Analytic Workspaces
Creating an analytic workspace involves a physical transformation of the data. The 
first step in that transformation is defining dimensional objects such as measures, 
dimensions, levels, hierarchies, and attributes. Afterward, you can map the 
dimensional objects to the data sources. The analytic workspace instantiates the logical 
objects as physical objects, and the data loading process transforms the data from a 
relational format into a dimensional format.

Analytic workspaces have several different types of data containers, such as 
dimensions, variables, and relations. Each type of container can be used in a variety of 
ways to store different types of information, including business measures and 
metadata.

The analytic workspaces that are created by Oracle Warehouse Manager and Analytic 
Workspace Manager are in database standard form (typically called simply "standard 
form"). Standard form specifies the types of physical objects that are used to instantiate 
logical objects (such as dimensions and measures), and the type, form, and storage 
location of the metadata that describes these logical objects. This metadata is exposed 
to SQL in the Active Catalog. The Active Catalog is composed of views of standard 
form metadata that is stored in analytic workspaces. These views are maintained 
automatically, so that a change to a standard form analytic workspace is reflected 
immediately by a change to the Active Catalog. Discoverer Plus OLAP and 
Spreadsheet Add-In use the Active Catalog to query data in analytic workspaces.

Summary Data
An analytic workspace initially contains only base-level data loaded from its data 
sources. Summary data is calculated in the analytic workspace, and the aggregates are 
stored with the base data in the same object. Aggregates can be stored permanently in 
the analytic workspace, or for the duration of an individual session, or only for a 
single query. Aggregation rules identify which aggregates are stored, and which 
aggregates are calculated on the fly. 

When an application queries the analytic workspace, either the aggregate values have 
already been calculated and can simply be retrieved, or they can be calculated on the 
fly from a small number of stored aggregates. The data is always presented to the 
application as fully solved; that is, both detail and summary values are provided, 
without requiring that calculations be specified in the query. Analytic workspaces are 
optimized for multidimensional calculations, making run-time summarizations 
extremely fast.

Analytic workspaces provide an extensive list of aggregation methods, including 
weighted, hierarchical, and weighted hierarchical methods.



Deciding When to Use Analytic Workspaces

Overview 1-9

Deciding When to Use Analytic Workspaces
To implement an OLAP solution, you must create a data store using one of these 
designs:

■ Dimensional schema. An analytic workspace in database standard form

■ Relational schema. A star schema with metadata defined in the OLAP Catalog

For most DBAs, relational tables and SQL provide a familiar environment. On the 
other hand, analytic workspaces require transformation of the data and learning new 
concepts. So why use analytic workspaces? The answer is simple: The powerful 
analytics and run-time performance of analytic workspaces often provide the best 
support for many types of decision-making. Nonetheless, relational schemas are the 
best choice for some other situations.

The following sections identify data characteristics that are best handled by analytic 
workspaces, and those that may be handled better by relational schemas. Your 
situation may not fit perfectly into one category, so you will need to weigh the relative 
importance of each characteristic as well as the long-range plans for your enterprise. 
For example, if your data store primarily supports the generation of routine reports, 
with some exploratory reporting, and this usage appears to be stable, then a relational 
schema might be the best choice. However, if usage is shifting toward fewer routine 
reports and more extensive exploratory ad-hoc querying, then you might choose an 
analytic workspace instead.

When to Use Analytic Workspaces
Analytic workspaces are the best choice for these requirements:

■ Exploratory, ad-hoc querying of all areas of the data

■ Advanced calculations such as models, forecasts, growth ratios, and trends

■ What-if scenarios

■ Time series calculations such as lead, lag, moving average, and year-to-date

■ Complex run-time calculations

■ High performance for calculating summary data and inter-row functions such as 
share calculations

When to Use Relational Schemas
Star schemas may be preferable to analytic workspaces for these requirements:

■ Predictable querying patterns and prepared reports

■ No advanced calculations (such as forecasts)

■ Infrequent complex run-time calculations

■ Measures with a large number of dimensions

■ Dimensions with few aggregate levels

The following topics explore the technical differences between dimensional and 
relational data stores that support these guidelines.



Deciding When to Use Analytic Workspaces

1-10 Oracle OLAP Application Developer’s Guide

Structured and Unstructured Data Stores
The dimensional data model is highly structured. Structure implies rules that govern 
the relationships among the data and control how the data can be queried. Analytic 
workspaces are the physical implementation of the dimensional model, and thus are 
highly optimized for dimensional queries. The OLAP engine leverages the model in 
performing highly efficient cross-cube joins (for inter-row calculations), outer joins (for 
time series analysis), and indexing. Dimensions are pre-joined to the measures.

Relational schemas can have much less structure, and the relationships among tables 
and views can be established on a query-by-query basis. This flexibility may be very 
important for some users, although it may result in reduced performance. OLAP 
Catalog metadata can be used to superimpose a dimensional data model on relational 
data stores. Nonetheless, a superimposed model does not provide the same 
performance as an integrated data model. The data storage design limits the 
opportunities the relational engine has for optimizing queries. 

Processing Analytic Queries
For data stored in analytic workspaces, the OLAP calculation engine performs analytic 
operations and supports sophisticated analysis, such as modeling and what-if analysis. 
If you require these types of analysis, then you need analytic workspaces. The OLAP 
engine also provides the fastest run-time response to analytic queries, which is 
important if you anticipate user sessions that are heavily analytical.

For data stored in a relational schema, analytical operations are performed by SQL. 
The SELECT MODEL clause and the analytical functions (such as RANK, LEAD, and LAG) 
support calculations such as year-to-date totals and moving averages.

Creating Summary Data
A basic characteristic of business analysis is hierarchically structured data; detail data 
is summarized at various levels, which allows trends and patterns to emerge. After the 
analyst has detected a pattern, he or she can drill down to lower levels to identify the 
factors that contributed to this pattern.

The creation and maintenance of summary data is a serious issue for DBAs. If no 
summary data is stored, then all summarizations must be performed in response to 
individual queries. This can easily result in unacceptably slow response time. At the 
other extreme, if all summary data is stored, then the database can quickly multiply in 
size.

Analytic workspaces store the data much more efficiently than relational tables and 
return answer sets to ad-hoc queries as quickly as routine reports. Thus, analytic 
workspaces provide better support as ad-hoc querying and custom measures become 
more prevalent.

How Analytic Workspaces Store Summary Data
Analytic workspaces store aggregate data in the same objects as the base level data. 
Aggregates can be stored permanently in the analytic workspace, or only for the 
duration of an individual session, or only for a single query. Aggregation rules 
identify which aggregates are stored for each measure. When an application queries 
the analytic workspace, either the aggregate values have already been calculated and 
can simply be retrieved, or they can be calculated on the fly from a small number of 
stored aggregates. Analytic workspaces are optimized for multidimensional 
calculations, making these run-time summarizations extremely fast.



Components of Oracle OLAP

Overview 1-11

How Relational Schemas Store Aggregate Data
Relational schemas store aggregate data in materialized views. Queries can be issued 
directly against the source tables or the materialized views. When the queries are 
issued against the source tables, Oracle Database obtains stored aggregates for the 
answer set from the materialized views. Query rewrite is possible when the 
materialized views have been created using SQL similar to that used for the query. If 
the materialized views do not exist or the query cannot be rewritten, then the 
aggregates are calculated on the fly from the source tables.

A relational schema with a relatively small number of materialized views can support 
the reports that access a known slice of the data. However, extensive use of ad-hoc 
queries and user-defined custom measures create a random situation in which any 
part of the data store may be queried and summarized. A relational schema for OLAP 
may require hundreds of materialized views, which can result in degraded 
performance and an a significant increase in the size of the database. 

Components of Oracle OLAP
The OLAP option is installed with Oracle Database 10g Enterprise Edition. The 
following components are installed from the database (db) disk:

OLAP Analytic Engine
Analytic Workspaces
SQL Interface to OLAP
OLAP DML
Analytic Workspace Java APIs
OLAP API
OLAP Catalog

These components are installed from the client disk:

Analytic Workspace Manager
OLAP Worksheet

These OLAP components are described in the following paragraphs. The relationships 
among them are described throughout this guide.

OLAP Analytic Engine
The OLAP analytic engine supports the selection and rapid calculation of 
multidimensional data. The status of an individual session persists to support a series 
of queries, which is typical of analytical applications; the output from one query is 
easily used as input to the next query. A comprehensive set of data manipulation tools 
supports modeling, aggregation, allocation, forecasting, and what-if analysis. The 
OLAP engine runs within the Oracle kernel.

Analytic Workspaces
Analytic workspaces store data in a multidimensional format, as described previously 
in "About Multidimensional Data Stores" on page 1-7. An analytic workspace is stored 
as a table in a relational schema. Individual workspace objects are stored in one or 
more rows as LOBs. This storage structure permits the analytic workspace to be 
partitioned and for multiple users to write to the analytic workspace simultaneously.



Components of Oracle OLAP

1-12 Oracle OLAP Application Developer’s Guide

Analytic Workspace Manager
Analytic Workspace Manager provides an easy-to-use interface for creating and 
managing analytic workspaces in database standard form so they can be queried by 
OLAP tools. It enables you to develop a logical dimensional model of your data 
quickly and easily, map logical objects to relational data sources, and load and 
aggregate the data. Using Analytic Workspace Manager, you can manage the life cycle 
of your analytic workspaces. You can save the logical model as an XML file.

Analytic Workspace Manager also contains tools for upgrading Oracle9i analytic 
workspaces and Express databases.

OLAP Worksheet
OLAP Worksheet is an interactive environment for working with analytic workspaces, 
similar to SQL*Plus Worksheet. It provides easy access to the OLAP DML, which is the 
native language of analytic workspaces. You can switch between two different modes, 
one for working with analytic workspaces in the OLAP DML, and the other for 
working with relational tables and views in SQL. It is available through Analytic 
Workspace Manager or as a separate executable. 

SQL Interface to OLAP
The SQL interface to OLAP provides access to analytic workspaces from SQL. The 
SQL interface is implemented in PL/SQL packages. 

For more information, refer to the Oracle OLAP Reference.

OLAP DML
OLAP DML is the native language of analytic workspaces. It is a data definition and 
manipulation language for creating analytic workspaces, defining data containers, and 
manipulating the data stored in these containers. All other levels of operation (GUIs, 
Java, and SQL) resolve to the OLAP DML. It offers the maximum power and flexibility 
in acquiring, manipulating, and analyzing data. 

If you are upgrading from Oracle Express, or if your data is stored in formats not 
supported by the higher level tools, then you may work directly in the OLAP DML at 
an early stage. Otherwise, you may use the OLAP DML directly only to enhance the 
functionality of your analytic workspaces. 

Analytic Workspace Java APIs
The Analytic Workspace Java APIs support the creation and maintenance of analytic 
workspaces in Java. They provide a programmatic method for defining a logical 
dimensional data model and instantiating that model in an analytic workspace. These 
APIs are used in Analytic Workspace Manager to create and modify analytic 
workspaces.

OLAP API
The OLAP API is a Java-based programming interface for OLAP applications, and it 
supports OracleBI Beans.

OracleBI Beans contains building blocks for developing analytic applications in Java, 
and it is available for use with JDeveloper. If you are an applications developer, then 

See Also: Oracle OLAP Analytic Workspace Java API Reference



Implementing an Analytic Workspace

Overview 1-13

you will use OracleBI Beans in your OLAP applications. OracleBI Beans is not 
included with the OLAP option, but it requires a Oracle Database with the OLAP 
option.

OLAP Catalog
OLAP Catalog provides OLAP applications with a query interface to data stored in 
star and snowflake schemas. It defines fact tables and dimension tables as logical 
dimensional objects such as measures, dimensions, hierarchies, levels, and attributes. 
OLAP Catalog consists of write APIs, which are a set of PL/SQL procedures, and read 
APIs, which are relational views within Oracle Database.

Implementing an Analytic Workspace
Analytic workspaces can be created in a variety of ways, depending on the 
characteristics of the data source and your own personal preference. However, the 
basic process is the same for all of them.

These are the basic stages:

1. Identifying Business Goals

2. Identifying Data Sources

3. Defining a Logical Model

4. Mapping, Loading, and Aggregating the Data

5. Generating Information-Rich Data

Identifying Business Goals
The first stage of implementing an analytic workspace is defining the analysis 
requirements of end users. By interviewing them, you can identify the business 
analysis questions they want to answer with an OLAP application. With this 
information, you can determine the business measures that must be available, the base 
level at which the measures must be stored, and the types of data calculations that 
must be available.

Identifying Data Sources
To load data into an analytic workspace using OLAP tools, the source data must be in 
relational tables or views. The tables can be in a star, snowflake, or network schema, as 
described in Chapter 3. Analytic Workspace Manager supports direct mapping of 
logical objects to relational columns. If your relational data requires transformation, 
then you must define views that perform the transformations.

If your source data is not stored in relational tables or requires extensive 
transformation, then you can choose from one of these options:

■ Use Oracle Warehouse Builder to create a star schema from disparate data sources, 
then use Analytic Workspace Manager to create an analytic workspace from the 
relational data. Your Information Technology (IT) department may do this task for 
you. Choose this option when you are developing a new analytic workspace.

See Also: Oracle OLAP Java API Reference

See Also: Chapter 2 for a sample approach to identifying business 
goals.



Implementing a Relational Data Warehouse for OLAP

1-14 Oracle OLAP Application Developer’s Guide

■ Use Oracle Warehouse Builder to create an analytic workspace, then use Analytic 
Workspace Manager to manage it. Choose this option when the design phase is 
complete and the analytic workspace is in a production environment. The IT 
department can manage this task along with its other maintenance tasks.

Defining a Logical Model
A logical dimensional model defines the dimensions, levels, hierarchies, attributes, 
cubes, and measures of your data. The Model View in Analytic Workspace Manager 
enables you to define the logical model by defining the individual objects and the 
relationships among them. When you save the definition of a logical object, Analytic 
Workspace Manager creates the physical objects in an analytic workspace that are 
needed to instantiate the logical object in database standard form. 

Mapping, Loading, and Aggregating the Data
Analytic Workspace Manager provides a graphical tool for mapping the logical objects 
to physical data stores. You can drag-and-drop tables and views from schemas to 
which you have access onto a mapping canvas. You can then draw lines from the 
appropriate columns to the logical objects that you have defined in the analytic 
workspace. Using a wizard, you can load data into the analytic workspace and 
aggregate the data using the rules that you provided.

Generating Information-Rich Data
As part of setting up an analytic workspace, you can define numerous derived 
measures using the Calculation Wizard, which is described in "Creating Custom 
Measures" on page 1-4.

Implementing a Relational Data Warehouse for OLAP
OracleBI Discoverer Plus OLAP, OracleBI Spreadsheet Add-In, and custom OracleBI 
Beans applications can run directly against relational tables, either instead of or in 
addition to analytic workspaces.

These are the basic stages:

1. Identifying Business Goals

2. Identifying Data Sources 

3. Defining a Logical Model

4. Generating Summary Data

Identifying Business Goals
The first stage is defining the analysis requirements of your end users. By interviewing 
end users, you can identify the business analysis questions they want to answer with 
an OLAP application. With this information, you can determine the business measures 
that must be available, the base level at which the measures must be stored, and the 
types of data calculations that must be available to analysts.

See Also: Oracle Warehouse Builder User's Guide

See Also: Chapter 3 for an introduction to the Model View of 
Analytic Workspace Manager



Upgrading Oracle Database 10g Release 1 Analytic Workspaces

Overview 1-15

Identifying Data Sources
For OLAP tools to query data in a relational data warehouse, the source data must be 
in a star or snowflake schema that conforms to specific requirements.

If your source data does not conform to those requirements, then use Oracle 
Warehouse Builder to create a star schema.

Defining a Logical Model
OLAP tools query the OLAP Catalog; they do not issue queries directly against the 
data source. There are several methods of defining a logical dimensional model of a 
relational schema:

■ OLAP Management tool in Oracle Enterprise Manager Database Control

■ CWM2 PL/SQL procedures

■ Oracle Warehouse Builder

The storage format of your data determines which of these methods you can use. 

Generating Summary Data
Use the DBMS_ODM PL/SQL package to create materialized views for OLAP. Do not 
use any other method of generating materialized views, because they will not be used 
by query rewrite when formulating an answer set to an OLAP query.

Upgrading Oracle Database 10g Release 1 Analytic Workspaces
If you created an analytic workspace in Oracle 10g Release 1, you can upgrade it to 
Release 2 using the following procedure. Upgrading is optional. However, upgrading 
enables you to use the new features of Analytic Workspace Manager 10.2, such as 
additional aggregation operators for compressed composites, support for multiple 
languages, and performance improvements.

To upgrade an analytic workspace, take these steps:

1. Open Analytic Workspace Manager in the Model View.

2. In the navigation tree, select the name of the Oracle Database instance where your 
analytic workspace is stored.

3. On the Basic tab of the Database property sheet, verify that the database is running 
in 10.2 compatibility mode.

4. Right-click the analytic workspace, and select Upgrade Analytic Workspace to 
10.2.

5. Complete the Analytic Workspace Upgrade to Version 10.2 dialog box. 

Click Help for additional information.

See Also: Chapter 2 for a sample approach to identifying business 
goals

See Also: Oracle Warehouse Builder User's Guide

See Also: Chapter 7 for a discussion of the requirements for using 
each method of defining OLAP Catalog metadata.

See Also: Chapter 8 for information about using DBMS_ODM.



Upgrading Oracle9i Analytic Workspaces

1-16 Oracle OLAP Application Developer’s Guide

Upgrading Oracle9i Analytic Workspaces
If you have analytic workspaces that were created in Oracle9i, then you should 
upgrade them to take advantage of new features such as partitioning and compressed 
composites.

Upgrading may break custom OLAP DML programs. For this reason, you can choose 
to upgrade at a time that is convenient for you. You can continue to manage your 
older analytic workspaces by using an older version of Analytic Workspace Manager 
(such as Oracle9i Release 9.2.0.4.1). 

Any new analytic workspaces that you create using the new Oracle Database 10g 
version of Analytic Workspace Manager will automatically be in 10g standard form, as 
long as Oracle Database is running in 10g compatibility mode.

If Oracle Database is running in 9i compatibility mode, then you will continue to work 
the same way as before without upgrading the analytic workspaces.

To upgrade an analytic workspace, take these steps:

1. Set the COMPATIBLE parameter to 10.0.0.0 or later in the database initialization 
file.

2. Upgrade the physical storage format.

3. Upgrade the standard form metadata.

You can upgrade the physical storage format without upgrading the standard form 
metadata, if you wish. This change will improve performance and support 
partitioning. However, the analytic workspace will not be enabled dynamically for 
OracleBI Beans until you upgrade the metadata.

You can perform the upgrade steps either in the Object View of Analytic Workspace 
Manager or in PL/SQL.

Upgrading the Physical Storage Format
Convert the physical storage format by using either of these methods:

■ Recreate the analytic workspace by following these steps:

1. Export the contents to an EIF file.

2. Delete the old analytic workspace.

3. Create a new, empty analytic workspace.

4. Import the contents from the EIF file.

You can export and import in Analytic Workspace Manager. For more 
information, see these topics in Help: “Exporting Workspace Objects” and 
“Importing Workspace Objects”

■ Use the PL/SQL conversion program by following these steps:

1. Rename the old analytic workspace so the upgraded analytic workspace has 
the original name, using the following syntax:

EXECUTE DBMS_AW.AW_RENAME('orig_name', 'temp_name');

2. Run the upgrade procedure, using the syntax:

EXECUTE DBMS_AW.CONVERT('temp_name', 'orig_name', 'tablespace');



Upgrading Oracle9i Analytic Workspaces

Overview 1-17

Tip: Use a program such as SQL*Plus to execute these procedures. For their 
full syntax, refer to the Oracle OLAP Reference.

3. Delete the old analytic workspace (temp_name) using the PL/SQL 
DBMS_AW.AW_DELETE procedure.

EXECUTE DBMS_AW.AW_DELETE('temp_name');

Upgrading the Standard Form Metadata
To upgrade the standard form metadata, follow these steps: 

1. In Analytic Workspace Manager, open the Object View.

2. Expand the navigation tree until you see the name of the analytic workspace.

3. Right-click the analytic workspace and choose Upgrade Analytic Workspace 
From 9i to 10g Standard Form from the popup menu.

4. Upgrade to Release 2 by following the instructions in "Upgrading Oracle Database 
10g Release 1 Analytic Workspaces" on page 1-15.

Alternatively, you can use DBMS_AWM PL/SQL procedures 
CREATE_DYNAMIC_AW_ACCESS and DELETE_ALL_AW_ACCESS to perform the 
upgrade. Refer to the Oracle OLAP Reference for the syntax and usage notes.



Upgrading Oracle9i Analytic Workspaces

1-18 Oracle OLAP Application Developer’s Guide



The Sample Schema 2-1

2
The Sample Schema

This guide uses the Global schema for its examples. This chapter describes this schema 
and explains how it will be mapped to dimensional objects. It consists of the following 
topics:

■ Case Study Scenario

■ Identifying Required Business Facts

■ Designing a Logical Data Model for Global Computing

■ The Global Schema

Case Study Scenario
The fictional Global Computing Company was established in 1990. Global Computing 
distributes computer hardware and software components to customers on a 
worldwide basis. The Sales and Marketing department has not been meeting its 
budgeted numbers. As a result, this department has been challenged to develop a 
successful sales and marketing strategy.

Global Computing operates in an extremely competitive market. Competitors are 
numerous, customers are especially price-sensitive, and profit margins tend to be 
narrow. In order to grow profitably, Global Computing must increase sales of its most 
profitable products.

Various factors in Global Computing's current business point to a decline in sales and 
profits:

■ Traditionally, Global Computing experiences low third-quarter sales (July through 
September). However, recent sales in other quarters have also been lower than 
expected. The company has experienced bursts of growth but, for no apparent 
reason, has had lower first-quarter sales during the last two years as compared 
with prior years.

■ Global has been successful with its newest sales channel, the Internet. Although 
sales within this channel are growing, overall profits are declining.

■ Perhaps the most significant factor is that margins on personal computers - 
previously the source of most of Global Computing's profits - are declining 
rapidly.

Global Computing needs to understand how each of these factors is affecting its 
business.

Current reporting is done by the IT department, which produces certain standard 
reports on a monthly basis. Any ad hoc reports are handled on an as-needed basis and 
are subject to the time constraints of the limited IT staff. Complaints have been 



Case Study Scenario

2-2 Oracle OLAP Application Developer’s Guide

widespread within the Sales and Marketing department, with regard to the delay in 
response to report requests. Complaints have also been numerous in the IT 
department, with regard to analysts who change their minds frequently or ask for 
further information.

The Sales and Marketing department has been struggling with a lack of timely 
information about what it is selling, who is buying, and how they are buying. In a 
meeting with the CIO, the VP of Sales and Marketing states, "By the time I get the 
information, it's no longer useful. I'm only able to get information at the end of each 
month, and it doesn't have the details I need to do my job."

Reporting Requirements
When asked to be more specific about what she needs, the Vice President of Sales and 
Marketing identifies the following requirements:

■ Trended sales data for specific customers, regions, and segments.

■ The ability to provide information and some analysis capabilities to the field sales 
force. A Web interface would be preferred, since the sales force is distributed 
throughout the world.

■ Detail regarding mail-order, phone, and e-mail sales on a monthly and quarterly 
basis, as well as a comparison to past time periods. Information must identify 
when, how, and what is being sold by each channel.

■ Margin information on products in order to understand the dollar contribution for 
each sale.

■ Knowledge of percent change versus the prior and year-ago period for sales, units, 
and margin.

■ The ability to perform analysis of the data by ad hoc groupings.

The CIO has discussed these requirements with his team and has come to the 
conclusion that a standard reporting solution against the production order entry 
system would not be flexible enough to provide the required analysis capabilities. The 
reporting requirements for business analysis are so diverse that the projected cost of 
development, along with the expected turnaround time for requests, would make this 
solution unacceptable.

The CIO's team recommends using an analytic workspace to support analysis. The 
team suggests that the Sales and Marketing department's IT group work with 
Corporate IT to build an analytic workspace that meets their needs for information 
analysis.

Business Goals
The development team identifies the following high-level business goals that the 
project must meet:

■ Global Computing's strategic goal is to increase company profits by increasing 
sales of higher margin products and by increasing sales volume overall.

■ The Sales and Marketing department objectives are to:

– Analyze industry trends and target specific market segments

– Analyze sales channels and increase profits

– Identify product trends and create a strategy for developing the appropriate 
channels



Case Study Scenario

The Sample Schema 2-3

Information Requirements
Once you have established business goals, you can determine the type of information 
that will help achieve these goals. To understand how end users will examine the data 
in the analytic workspace, it is important to conduct extensive interviews. From 
interviews with key end users, you can determine how they look at the business, and 
what types of business analysis questions they want to answer

Business Analysis Questions
Interviews with the VP of Sales and Marketing, salespeople, and market analysts at 
Global Computing reveal the following business analysis questions:

■ What products are profitable?

■ Who are our customers, and what and how are they buying?

■ What accounts are most profitable? 

■ What is the performance of each distribution channel?

■ Is there still a seasonal variance to the business?

We can examine each of these business analysis questions in detail.

What products are profitable?
This business analysis question consists of the following questions:

■ What is the percent of total sales for any item, product family, or product class in 
any month, quarter or year, and in any distribution channel? How does this 
percent of sales differ from a year ago?

■ What is the unit price, unit cost, and margin for each unit for any item in any 
particular month? What are the price, cost, and margin trends for any item in any 
month?

■ What items were most profitable in any month, quarter, or year, in any 
distribution channel, and in any geographic area or market segment? How did 
profitability change from the prior period? What was the percent change in 
profitability from the prior period?

■ What items experienced the greatest change in profitability from the prior period?

■ What items contributed the most to total profitability in any month, quarter, or 
year, in any distribution channel, and in any geographic area or market segment?

■ What items have the highest per unit margin for any particular month?

■ In summary, what are the trends?

Who are our customers, and what and how are they buying?
This business analysis question consists of the following questions:

■ What were sales for any item, product family, or product class in any month, 
quarter, or year? 

■ What were sales for any item, product family, or product class in any distribution 
channel, geographic area, or market segment?

■ How did sales change from the prior period? What was the percent change in sales 
from the prior period?



Case Study Scenario

2-4 Oracle OLAP Application Developer’s Guide

■ How did sales change from a year ago? What was the percent change in sales from 
a year ago?

■ In summary, what are the trends?

What accounts are most profitable?
This business analysis question consists of the following questions:

■ What accounts are most profitable in any month, quarter, or year, in any 
distribution channel, by any item, product family, or product class?

■ What were sales and extended margin (gross profit) by account for any month, 
quarter, or year, for any distribution channel, and for any product?

■ How does account profitability compare to the prior time period?

■ Which accounts experienced the greatest increase in sales as compared to the prior 
period?

■ What is the percent change in sales from the prior period? Did the percent change 
in profitability increase at the same rate as the percent change in sales?

■ In summary, what are the trends?

What is the performance of each distribution channel?
This business analysis question consists of the following questions:

■ What is the percent of sales to total sales for each distribution channel for any 
item, product family, or product class, or for any geographic area or market 
segment?

■ What is the profitability of each distribution channel: direct sales, catalog sales, 
and the Internet?

■ Is the newest distribution channel, the Internet, "cannibalizing" catalog sales? Are 
customers simply switching ordering methods, or is the Internet distribution 
channel reaching additional customers?

■ In summary, what are the trends?

Is there still a seasonal variance to the business?
This business analysis question consists of the following questions:

■ Are there identifiable seasonal sales patterns for particular items or product 
families?

■ How do seasonal sales patterns vary by geographic location?

■ How do seasonal sales patterns vary by market segment?

■ Are there differences in seasonal sales patterns as compared to last year?

Summary of Information Requirements
By examining the types of analyses that users wish to perform, we can identify the 
following key requirements for analysis:

■ Global Computing has a strong need for profitability analysis. The company must 
understand profitability by product, account, market segment, and distribution 
channel. It also needs to understand profitability trends.



Designing a Logical Data Model for Global Computing

The Sample Schema 2-5

■ Global Computing needs to understand how sales vary by time of year. The 
company must understand these seasonal trends by product, geographic area, 
market segment, and distribution channel.

■ Global Computing has a need for ad hoc sales analysis. Analysis must identify 
what products are sold to whom, when these products are sold, and how 
customers buy these products.

■ The ability to perform trend analysis is important to Global Computing.

Identifying Required Business Facts
The key analysis requirements reveal the business facts that are required to support 
analysis requirements at Global Computing.

These facts are ordered by time, product, customer shipment or market segment, and 
distribution channel:

Sales
Units
Change in sales from prior period
Percent change in sales from prior period
Change in sales from prior year
Percent change in sales from prior year
Product share
Channel share
Market share
Extended cost
Extended margin
Extended margin change from prior period
Extended margin percent change from prior period
Units sold, change from prior period
Units sold, percent change from prior period
Units sold, change from prior year
Units sold, percent change from prior year

These facts are ordered by item and month:

Unit price
Unit cost
Margin per unit

Designing a Logical Data Model for Global Computing
"Business Goals" on page 2-2 identifies the business facts that will support analysis 
requirements at Global Computing. Next, we will identify the dimensions, levels, and 
attributes in a logical data model. We will also identify the relationships within each 
dimension. The resulting data model will be used to design the Global schema, the 
logical dimensional model, and the analytic workspace.

Identifying Dimensions
Four dimensions will be used to organize the facts in the database.

■ Product shows how data varies by product. 

■ Customer shows how data varies by customer or geographic area. 



Designing a Logical Data Model for Global Computing

2-6 Oracle OLAP Application Developer’s Guide

■ Channel shows how data varies according to each distribution channel. 

■ Time shows how data varies over time.

Identifying Levels
Now that we have identified dimensions, we can identify the levels of summarization 
within each dimension. Analysis requirements at Global Computing reveal that:

■ There are three distribution channels: Sales, Catalog, and Internet. These three 
values are the lowest level of detail in the data warehouse and will be grouped in 
the Channel level. From the order of highest level of summarization to the lowest 
level of detail, levels will be Total Channel and Channel.

■ Global performs customer and geographic analysis along the line of shipments to 
customers and by market segmentation. Shipments and Market Segment will be 
two hierarchies in the Customer dimension. In each case, the lowest level of detail 
in the data model is the Ship To location.

– When analyzing along the line of customer shipments, the levels of 
summarization will be (highest to lowest): Total Customer, Region, 
Warehouse, and Ship To.

– When analyzing by market segmentation, the levels of summarization will be 
(highest to lowest): Total Market, Market Segment, Account, and Ship To.

■  In the examples in this guide, Product is mapped to a parent-child table and is 
defined as a value-based hierarchy rather than a level-based hierarchy. Thus, no 
levels are defined for Product.

■ The Time dimension will have three levels (highest to lowest): Year, Quarter, and 
Month.

Within the Channel, Customer, and Product dimensions, we added a Total or All level 
as the highest level of summarization. Adding this highest level provides additional 
flexibility as application users analyze data.

Identifying Hierarchies
We will identify the hierarchies that organize the levels within each dimension. To 
identify hierarchies, we will group the levels in the correct order of summarization 
and in a way that supports the identified types of analysis.

For the Channel, Product, and Time dimensions, Global Computing requires only one 
hierarchy for each dimension. For the Customer dimension, however, Global 
Computing requires two hierarchies. Analysis within the Customer dimension tends 
to be either by geographic area or market segment. Therefore, we will organize levels 
into two hierarchies, Shipments and Market Segment.

Identifying Stored Measures
"Identifying Required Business Facts" on page 2-5 lists 21 business facts that are 
required to support the analysis requirements of Global Computing. Of this number, 
only four facts need to be acquired from the transactional database:

■ Units

■ Sales

■ Unit Price

■ Unit Cost



The Global Schema

The Sample Schema 2-7

All of the other facts can be derived from these basic facts. The derived facts can be 
calculated in the analytic workspace on demand. If experience shows that some of 
these derived facts are being used heavily and the calculations are putting a noticeable 
load on the system, then some of these facts can be calculated and stored in the 
analytic workspace as a data maintenance procedure.

The Global Schema
You can download the Global schema from

http://www.oracle.com/technology/products/OracleBI/olap/olap.html

and use it to try the examples shown throughout this guide. Instructions for installing 
the schema are provided in the readme file.

The Global schema contains alternative data sources for the logical Global model, so 
that you can explore these variations:

■ Star schema

■ Snowflake schema

■ Parent-child table

The examples in this guide use a parent-child table for the Product dimension, a star 
schema for the Customer and Channel dimensions, and a snowflake schema for the 
Time dimension. See Chapter 3 for schema diagrams.

http://www.oracle.com/technology/products/OracleBI/olap/olap.html


The Global Schema

2-8 Oracle OLAP Application Developer’s Guide



Part II
Creating and Managing Analytic

Workspaces

Part II contains information about creating analytic workspaces. It contains the 
following chapters:

■ Chapter 3, "Creating an Analytic Workspace"

■ Chapter 4, "Predicting Future Performance"

■ Chapter 5, "Developing Java Applications for OLAP"

■ Chapter 6, "Administering Oracle OLAP"





Creating an Analytic Workspace 3-1

3
Creating an Analytic Workspace

This chapter explains how to design a logical data model and create a standard form 
analytic workspace using Analytic Workspace Manager.

This chapter contains the following topics:

■ Introduction to Analytic Workspace Manager

■ Getting Started with Analytic Workspace Manager

■ Identifying the Source Data

■ Creating a Standard Form Workspace Using Analytic Workspace Manager

■ Creating Logical Dimensions

■ Creating Logical Cubes

■ Making Data Storage Decisions

■ Defining Rules for Summarizing Data

■ Mapping Logical Objects to Data Sources

■ Maintaining the Data

■ Case Study: Creating the Global Analytic Workspace

■ Case Study: Creating the Sales History Analytic Workspace

Introduction to Analytic Workspace Manager
Analytic Workspace Manager is the primary tool for creating, developing, and 
managing analytic workspaces. The main window provides two views: the Model 
View and the Object View. You can switch between views using the View menu. In 
addition, there are menus, a toolbar, a navigation tree, and property sheets. When you 
select an object in the navigation tree, the property sheet to the right provides detailed 
information about that object. When you right-click an object, you get a choice of menu 
items with appropriate actions for that object.

You can also conduct an interactive session by opening OLAP Worksheet and using 
the OLAP DML. You can switch between the console and OLAP Worksheet, and have 
an up-to-date view of your workspace in each one, because they share the same 
session.

Analytic Workspace Manager has a full online Help system, which includes 
context-sensitive Help.



Introduction to Analytic Workspace Manager

3-2 Oracle OLAP Application Developer’s Guide

Model View
The Model View enables you to define a logical dimensional model composed of 
dimensions, levels, hierarchies, attributes, measures, calculated measures, and 
measure folders. The model is stored in the analytic workspace as database standard 
form metadata.

A drag-and-drop user interface facilitates mapping of the logical objects to columns in 
relational tables and views in Oracle Database. The source columns can be star, 
snowflake, or any other schema design that supports the logical model.

Figure 3–1 shows the logical objects created in the GLOBAL analytic workspace.

Figure 3–1 Model View in Analytic Workspace Manager

Object View 
The Object View provides a graphical user interface to the OLAP DML. You can 
create, modify, and delete individual workspace objects. This view is provided for 
users who are familiar with the OLAP DML and want to upgrade Express databases, 
modify custom applications, or customize a new analytic workspace. Be very careful 
when working with a standard form analytic workspace, so that you do not create 
inconsistencies in the metadata.

Figure 3–2 shows the Object View. A formula named UNITS_CUBE_SALES is 
currently selected in the navigation tree, and the right pane shows the Expression tab 
of the property sheet. This tab shows the OLAP DML expression used to calculate the 
formula.



Introduction to Analytic Workspace Manager

Creating an Analytic Workspace 3-3

Figure 3–2 Object View in Analytic Workspace Manager

OLAP Worksheet
OLAP Worksheet provides full use of the OLAP DML for users who need to manage 
the contents of an object or execute a program. It opens in a separate window from the 
Analytic Workspace Manager console. This window provides menus, a toolbar, an 
input pane for OLAP DML commands on the bottom, and an output pane on the top. 

Figure 3–3 shows OLAP Worksheet opened from Analytic Workspace Manager. 
Notice that the GLOBAL workspace is attached with read/write access in both OLAP 
Worksheet (as shown by the AW LIST command) and Analytic Workspace Manager 
(as shown by the Model View navigation tree). The two applications share the same 
session.

The OLAP DML Reference is available through the Help menu.



Getting Started with Analytic Workspace Manager

3-4 Oracle OLAP Application Developer’s Guide

Figure 3–3 OLAP Worksheet Opened From Analytic Workspace Manager

Getting Started with Analytic Workspace Manager
In this section, you will learn how to obtain the Analytic Workspace Manager 
software, install it on your computer, and make a connection to Oracle Database.

Installing Analytic Workspace Manager
Analytic Workspace Manager is distributed with Oracle Database. Three disks 
compose the Oracle Database 10g Release 2 installation set: Database (db), Companion, 
and Client. Analytic Workspace Manager is on the Client disk. 

If you are installing on the same system as the database, then choose a Custom 
installation and install into the same Oracle home directory as the database. Select 
OLAP Analytic Workspace Manager and Worksheet from the list of components.

If you are installing on a remote system, then choose either an Administrator or a 
Custom installation.

Opening Analytic Workspace Manager
On Windows, use the Start menu to open Analytic Workspace Manager:

Start > All Programs > Oracle - Oracle_home > Integrated Management Tools > 
OLAP Analytic Workspace Manager and Worksheet

On Linux, open Analytic Workspace Manager from the shell command line:

$ORACLE_HOME/olap/awm/awm.sh

See Also: An installation guide for your platform, such as:

■ Oracle Database Client Quick Installation Guide for 32-Bit Windows

■ Oracle Database Client Installation Guide for 32-Bit Windows



Identifying the Source Data

Creating an Analytic Workspace 3-5

Defining a Database Connection
You can define a connection to each database that you use for OLAP. After you have 
defined a connection, the database instance is listed in the navigation tree for you to 
access at any time.

To define a database connection:

1. Right-click the top Databases folder in the navigation tree, then choose Add 
Database to Tree from the pop-up menu. 

2. Complete the Add Database to Tree dialog box.

Opening a Database Connection
To connect to a database:

1. Click the plus icon (+) next to a database in the navigation tree. 

2. Complete the Connect to Database dialog box. 

Identifying the Source Data
Using Analytic Workspace Manager, you can:

■ Design the logical dimensional model for the analytic workspace

■ Map logical objects to relational data sources

■ Load and aggregate the data

These steps are very closely related. The data that supports your logical model must 
exist in your database, and you must have SELECT privileges on the tables containing 
the data so you can load it into your analytic workspace. 

Schema Requirements
Your goal in using Analytic Workspace Manager is to create a multidimensional data 
store that supports business analysis. The analytic workspace that you create must 
contain the logical objects described in "The Logical Dimensional Data Model" on 
page 1-5. For the source data to support a logical dimensional data model, these 
relationships must exist:

■ Dimensions. You can map dimensions, levels, and attributes to any collection of 
tables or views that identify the child-parent relationships and the 
member-attribute relationships. The tables and views can be in one schema or 
owned by multiple schemas. When mapping dimensions, you can choose from 
these categories of schemas:

– Star Schema

– Snowflake Schema

– Other

You can identify different dimensions as having different schema characteristics, 
for example, Customer could be a star schema (all levels and their attributes are in 
one table) and Time could be a snowflake schema (levels are in two or more tables 
with their attributes).

■ Measures. You can map measures to any table or view that contains the 
appropriate data.



Identifying the Source Data

3-6 Oracle OLAP Application Developer’s Guide

Hierarchies and cubes are strictly metadata objects and are not mapped to data 
sources.

Tables may contain columns of no importance to your analytic workspace. You can 
simply omit them from the mappings, and Analytic Workspace Manager will ignore 
them.

Star Schema
A star schema is the simplest of the three types. It is called a star schema because a 
diagram of this schema resembles a star, with points radiating from a central table. 
The center of the star is a fact table and the points of the star are the dimension tables. 

■ Dimension tables define the dimensions. In a star schema, all of the information 
for a dimension is stored in one table.

■ Fact tables contain foreign keys from each dimension table and a column for each 
measure.

Figure 3–4 shows the relationships in a star schema using the GLOBAL relational tables. 
These tables provide the data for the Units Cube. These source tables illustrate 
different types of schema designs:

■ PRODUCT_DIM and CHANNEL_DIM are level-based dimensions in a star schema.

■ PRODUCT_CHILD_PARENT is a parent-child table that supports a value-based 
hierarchy. There are no level columns.

■ TIME_MONTH_DIM is the base-level table of a snowflake schema. The Time tables 
are described in "Snowflake Schema" on page 3-7.



Identifying the Source Data

Creating an Analytic Workspace 3-7

Figure 3–4 Star Schema

Snowflake Schema
A snowflake schema is a type of star schema. It is called a snowflake schema because a 
diagram of the schema resembles a snowflake. Snowflake schemas normalize 
dimensions to eliminate redundancy. That is, the dimension data has been divided 
into multiple tables instead of one large table. Each level may be in a separate table 
with its attributes.

Figure 3–5 shows the Time dimension in a snowflake schema, with separate tables for 
months, quarters, and years.

Note that the other dimensions are shown only partially in this snowflake diagram.



Identifying the Source Data

3-8 Oracle OLAP Application Developer’s Guide

Figure 3–5 Normalized Time Dimension in a Snowflake Schema

Other
Any schema can be used that contains the parent-child relationships and the 
member-attribute relationships needed to implement dimensions in a dimensional 
data model. In the most extreme case, each parent-child and member-attribute value 
pairs for each hierarchy may be in a different table.

Figure 3–6 shows the Product dimension in schema that contains the appropriate 
relationships. Contrast these 11 tables with the single table shown in Figure 3–5 for the 
Product dimension in a star schema. Whereas in the star schema, the Product 
dimension has one source table, this schema has been normalized to store each level 
and each attribute in a separate table. 

Note that the other dimensions are not shown in this diagram.



Identifying the Source Data

Creating an Analytic Workspace 3-9

Figure 3–6 Product Dimension in an "Other" Schema Design

Making Transformations in Your Source Data
Analytic Workspace Manager provides direct mapping of one logical object to one 
column of a relational table or view. If you need to transform your data, then you can 
choose between these alternatives:

■ Create views that perform the necessary transformations.

■ Use an ETL tool such as Oracle Warehouse Builder to generate a star schema. You 
can then create the analytic workspace using Analytic Workspace Manager. 

■ Use Oracle Warehouse Builder to generate an analytic workspace in Oracle9i 
standard form. You can then use Analytic Workspace Manager to upgrade the 
analytic workspace to Oracle Database 10g standard form. (The second step is not 
needed when using Oracle Warehouse Builder 10g Release 2.)



Creating a Standard Form Workspace Using Analytic Workspace Manager

3-10 Oracle OLAP Application Developer’s Guide

Following are some of the basic types of transformations that can be handled by 
creating views:

■ Load a selection of data. The Maintenance Wizard loads all rows from a mapped 
column into the analytic workspace. If you only want a selection of the available 
data, create a view with a WHERE clause.

■ Load data from multiple tables into one cube. Analytic Workspace Manager 
currently permits you to map only one table to a cube. You can create a union 
view or join the tables in a view. 

■ Load multiple levels of data. Analytic Workspace Manager currently permits you 
to map only one level. Create a view with a WHERE clause that selects the base 
level for the analytic workspace.

Choosing a Build Tool
Both Analytic Workspace Manager and Warehouse Builder can be used to generate 
analytic workspaces.

Warehouse Builder is designed for Information Technology (IT) professionals who 
manage production systems. It is a powerful tool that can generate analytic 
workspaces as one element in a larger ETL process. 

Analytic Workspace Manager is an easy-to-use tool designed for application 
developers, departmental DBAs, and other nonprofessional DBAs. It enables them to 
design and develop a data model quickly and interactively based on their reporting 
needs. After the data model has been developed and its design is stable, the IT 
department may assume responsibility for generating the analytic workspace using 
Warehouse Builder. Analytic Workspace Manager can be used to enhance the analytic 
workspaces created by the IT department, such as by adding custom measures.

Creating a Standard Form Workspace Using Analytic Workspace Manager
In the Model View, you can define and build an analytic workspace from relational 
tables and views. The tables and views can be stored in one or more schemas in which 
the appropriate data relationships exist, as described in "Identifying the Source Data" 
on page 3-5.

How Analytic Workspace Manager Saves Changes
Analytic Workspace Manager saves changes automatically that you make to the 
analytic workspace. You do not explicitly save your changes. 

Saves occur when you take an action such as these:

■ Click OK or the equivalent button in a dialog box.

For example, when you click Import in the Import From EIF File dialog box, the 
contents are imported, and the revised analytic workspace is committed to the 
database. Likewise, when you click Create in the Create Dimension dialog box, the 
new dimension is committed to the database.

■ Click Apply in a property sheet.

For example, when you change the labels on the General property page for an 
object, the change takes effect when you click Apply.

See Also: Oracle Warehouse Builder User's Guide



Creating a Standard Form Workspace Using Analytic Workspace Manager

Creating an Analytic Workspace 3-11

Basic Steps for Creating a Standard Form Workspace
To create an analytic workspace in database standard form:

1. Configure your database instance for OLAP use. Define permanent, temporary, 
and undo tablespaces, and set the database parameters to values appropriate for 
data loads. Refer to Chapter 6 for details.

2. Define a database user who will own the analytic workspace. Grant the user the 
OLAP_USER role and SELECT privileges on the source data tables.

While you can create the workspace in the same schema as the relational tables, 
doing so can cause problems in defining unique names within a single namespace. 

3. Examine the sparsity characteristics of your data, so that you can implement a 
logical model for the best performance.

See "What is Sparsity?" on page 3-17 and "Examining Sparsity Characteristics for 
GLOBAL" on page 3-28.

4. Open Analytic Workspace Manager and connect to your database instance as the 
user you defined earlier for this purpose. 

5. Create a new analytic workspace container in your database: 

a. In the Model View navigation tree, expand the folders until you see the 
schema where you want to create the analytic workspace.

b. Right-click the schema name, then choose Create Analytic Workspace from 
the pop-up menu.

c. Complete the Create Analytic Workspace dialog box, then choose Create. 

The new analytic workspace appears in the Analytic Workspaces folder for the 
schema.

6. Define the logical dimensions for the data.

See "Creating Logical Dimensions" on page 3-12.

7. Define the logical cubes for the data.

See "Creating Logical Cubes" on page 3-15.

8. Map the logical items to their data sources.

See "Mapping Logical Objects to Data Sources" on page 3-22.

9. Load the data.

See "Mapping Logical Objects to Data Sources" on page 3-22.

10. Define measure folders to simplify access for end users.

See "Defining Measure Folders" on page 3-26.

When you have finished, you will have an analytic workspace populated with the 
detail data fetched from relational tables or views. You may also have summarized 
data and calculated measures.

Adding Functionality to a Standard Form Analytic Workspace
In addition to the basic steps, you can add functionality to an analytic workspace in 
these ways:

■ Support multiple languages by adding translations of metadata and attribute 
values.



Creating Logical Dimensions

3-12 Oracle OLAP Application Developer’s Guide

See "Supporting Multiple Languages" on page 3-26.

■ Develop one or more calculation plans for the analytic workspace, so that you can 
establish the order of calculations. Calculation plans enable you to include 
dependent calculations in the model.

See "Creating Calculation Plans" on page 3-27.

Creating Logical Dimensions
Dimensions are the parents of levels, hierarchies, and attributes in the logical model. 
You define these supporting objects, in addition to the dimension itself, in order to 
have a fully functional dimension. 

However, you can also define dimensions with value-based hierarchies that do not 
have levels defined as metadata, or "flat" dimensions that do not have hierarchies or 
levels. These types of dimensions must be defined with natural keys, as described in 
the next topic.

Creating Dimensions
Dimensions are lists of unique values that identify and categorize data. They form the 
edges of a logical cube, and thus of the measures within the cube. Analytic Workspace 
Manager supports these common dimension styles:

■ List or flat dimensions have no levels or hierarchies.

■ Level-based dimensions use parent-child relationships to group members into 
levels. Most dimensions are level-based.

■ Value-based dimensions have parent-child relationships among their members, 
but these relationships do not form meaningful levels.

Defining a Time Dimension
You can define dimensions as either User or Time dimensions. Business analysis is 
performed on historical data, so fully defined time periods are vital. A time dimension 
table must have columns for period end dates and time span. These required attributes 
support time-series analysis, such as comparisons with earlier time periods. If this 
information is not available, then you can define Time as a User dimension, but it will 
not support time-based analysis.

Creating Unique Dimension Members
Every dimension member must be a unique value. Depending on your data, you can 
create a dimension that uses either natural keys or surrogate keys from the relational 
sources for its members. 

■ Natural keys are read from the relational sources without modification. To use 
natural keys, the values must be unique across levels. Because each level may be 
mapped to a different relational column, this uniqueness may not be enforced in 
the source data.

For example, a Geography source table might have a value of NEW_YORK in the 
CITIES column and a value of NEW_YORK in the STATES column. Unless you take 
steps to assure uniqueness, the second value for NEW_YORK will overwrite the 
first.

If a dimension is flat or value-based, then it must use natural keys. You must take 
whatever steps you need to assure that the dimension members are unique.



Creating Logical Dimensions

Creating an Analytic Workspace 3-13

■ Surrogate keys ensure uniqueness by adding a level prefix to the members while 
loading them into the analytic workspace. For the previous example, surrogate 
keys create two dimension members named CITIES_NEW_YORK and 
STATES_NEW_YORK, instead of a single member named NEW_YORK. A dimension 
that has surrogate keys must be defined with at least one level-based hierarchy.

Opening the Create Dimension Dialog Box
To create a standard form dimension:

1. Expand the folder for the analytic workspace. 

An analytic workspace folder contains subfolders named Dimensions, Cubes, 
Measure Folders, and Calculation Plans.

2. Right-click Dimensions, then choose Create Dimension from the pop-up menu. 

The Create Dimension dialog box is displayed.

3. Complete all tabs. 

Click Help for specific information about your choices. 

4. Click Create. 

The new dimension appears as a subfolder under Dimensions. 

Creating Levels
For business analysis, data is typically summarized by level. For example, your 
database may contain daily snapshots of a transactional database. Days are thus the 
base level. You might summarize this data at the weekly, quarterly, and yearly levels.

Levels have parent-child or one-to-many relationships, which form a level-based 
hierarchy. For example, each week summarizes seven days, each quarter summarizes 
13 weeks, and each year summarizes four quarters. This hierarchical structure enables 
analysts to detect trends at the higher levels, then drill down to the lower levels to 
identify factors that contributed to a trend.

For each level that you define, you must identify a data source for dimension members 
at that level. Members at all levels are stored in the same dimension. In the previous 
example, the Time dimension contains members for weeks, quarters, and years.

To create a level:

1. Expand the folder for the dimension. 

A dimension folder contains subfolders named Levels, Hierarchies, and 
Attributes. 

2. Right-click Levels, then choose Create Level from the pop-up menu. 

The Create Level dialog box is displayed.

3. Complete all tabs of the Create Level dialog box. 

Click Help for specific information about these choices. 

4. Click Create. 

The new level appears as an item in the Levels folder. 



Creating Logical Dimensions

3-14 Oracle OLAP Application Developer’s Guide

Creating Hierarchies
Dimensions can have one or more hierarchies. Most hierarchies are level-based. 
Analytic Workspace Manager supports these common types of level-based hierarchies:

■ Normal hierarchies consist of one or more levels of aggregation. Members roll up 
into the next higher level in a many-to-one relationship, and these members roll 
up into the next higher level, and so forth to the top level.

■ Ragged hierarchies contain at least one member with a different base, creating a 
"ragged" base level for the hierarchy.

■ Skip-level hierarchies contain at least one member whose parents are more than 
one level above it, creating a hole in the hierarchy. An example of a skip-level 
hierarchy is City-State-Country, where at least one city has a country as its parent 
(for example, Washington D.C. in the United States).

In relational source tables, a skip-level hierarchy may contain nulls in the level 
columns.

You may also have dimensions with parent-child relations that do not support levels. 
For example, an employee dimension might have a parent-child relation that identifies 
each employee’s supervisor. However, levels that group together first-, second-, and 
third-level supervisors and so forth may not be meaningful for analysis. Similarly, you 
might have a line-item dimension with members that cannot be grouped into 
meaningful levels. In this situation, you can create a value-based hierarchy defined by 
the parent-child relations instead of levels. You can create value-based hierarchies only 
for dimensions that use natural keys, because surrogate keys are formed with the 
names of the levels.

To create a hierarchy:

1. Expand the folder for the dimension. 

A dimension folder contains subfolders named Levels, Hierarchies, and 
Attributes. 

2. Right-click Hierarchies, then choose Create Hierarchy from the pop-up menu.

The Create Hierarchy dialog box is displayed. 

3. Complete all tabs of the Create Hierarchy dialog box. 

If you define multiple hierarchies, be sure to define one of them as the default 
hierarchy. 

Click Help for specific information about these choices. 

4. Click Create. 

The new hierarchy appears as an item in the Hierarchies folder. 

Creating Attributes
Attributes provide information about the individual members of a dimension. They 
are used for labeling crosstabular and graphical data displays, selecting data, 
organizing dimension members, and so forth.

Automatically Defined Attributes
Analytic Workspace Manager creates some attributes automatically when creating a 
dimension. These attributes have a unique type, such as "Member Long Description," 
which client applications expect to find. You can create additional "User" attributes 
that provide supplementary information about the dimension members.



Creating Logical Cubes

Creating an Analytic Workspace 3-15

All dimensions are created with long and short description attributes. If your source 
tables include long and short descriptions, then you can map the attributes to the 
appropriate columns. However, if your source tables include only one set of labels, 
then you should always map the long description attributes. You can decide whether 
or not to map the short description attributes to the same column. If you do, the data 
will be loaded twice.

Discoverer Plus OLAP, Spreadsheet Add-In, and OracleBI Beans use long description 
attributes in selection lists and for labelling crosstabs and graphs. The Add-In initially 
makes limited use of short description attributes, but users can switch to long 
descriptions. If the appropriate descriptions are not available, then these tools use 
dimension members. For example, if the Product dimension has short descriptions but 
no long descriptions, then the tools display Product dimension members.

Time dimensions are created with time-span and end-date attributes. This information 
must be provided for all Time dimension members.

Be sure to examine all of these attribute definitions, because you may wish to change 
the default settings. In particular, expand the hierarchy tree on the Basic tab to verify 
that the correct levels are selected. These choices affect the number of columns that 
you can map to the dimension.

User Attributes
To create a new user attribute:

1. Expand the folder for the dimension. 

A dimension folder contains subfolders named Levels, Hierarchies, and 
Attributes. 

2. Right-click Attributes, then choose Create Attribute from the pop-up menu. 

The Create Attribute dialog box is displayed. 

3. Complete all tabs of the Create Attribute dialog box. 

Click Help for specific information about these choices.

4. Click Create. 

The new attribute appears as an item in the Attributes folder. 

Creating Logical Cubes
Cubes are the parents of measures. They are informational objects that identify 
measures with the exact same dimensions and thus are candidates for being processed 
together at all stages: data loading, aggregation, storage, and querying.

Creating Cubes
Cubes define the shape of your business measures. They are defined by a set of 
ordered dimensions. The dimensions form the edges of a cube, and the measures are 
the cells in the body of the cube. 

To create a cube:

1. Expand the folder for the analytic workspace. 

An analytic workspace folder contains subfolders named Dimensions, Cubes, 
Measure Folders, and Calculation Plans.

2. Right-click Cubes, then choose Create Cube from the pop-up menu. 



Creating Logical Cubes

3-16 Oracle OLAP Application Developer’s Guide

The Create Cube dialog box is displayed. 

3. Complete all tabs of the Create Cube dialog box. 

Important: Your decisions have a major impact on the performance of the analytic 
workspace. Click Help for specific information, and refer to "Making Data Storage 
Decisions" on page 3-17.

4. Click Create. The new cube appears as a subfolder under Cubes. 

Creating Measures
Measures store the facts collected about your business. Each measure belongs to a 
particular cube, and thus shares particular characteristics with other measures in the 
cube, such as the same dimensions. 

To create a measure:

1. Expand the folder for the cube that has the dimensions of the new measure. 

A cube folder contains subfolders named Measures and Calculated Measures. 

2. Right-click Measures, then choose Create Measure from the pop-up menu.

The Create Measure dialog box is displayed. 

3. Complete the General, Translations, and Implementation Details tabs of the Create 
Measure dialog box. Complete all tabs if you wish to override the cube settings.

Click Help for specific information about these choices. 

4. Click Create. 

The new measure appears as an item in the Measures folder.

Creating Calculated Measures
Calculated measures add valuable information to an analytic workspace. They are 
created by performing calculations on the measures stored in an analytic workspace. 
Oracle OLAP offers an extensive range of functions and operators that can be used to 
define custom measures. Analytic Workspace Manager provides a Calculation Wizard, 
as shown in Figure 1–2, which provides these calculations:

■ Basic Arithmetic. Addition, subtractions, multiplication, division, ratio

■ Advanced Arithmetic. Cumulative total, index, percent markup, percent variance, 
rank, share, variance

■ Prior/Future Comparison. Prior value, difference from prior period, percent 
difference from prior period, future value

■ Time Frame. Moving average, moving maximum, moving minimum, moving 
total, year to date

Calculated measures are not stored, and so they do not occupy any significant disk 
space. The data values are calculated in response to individual queries on the 
calculated measures. In this respect, calculated measures are similar to relational 
views. 

To create a calculated measure:

1. Expand the folder for the cube that contains the base measures that will be used in 
the calculation. 



Making Data Storage Decisions

Creating an Analytic Workspace 3-17

2. Right-click Calculated Measures, then choose Create Calculated Measure from 
the pop-up menu. 

The Calculation Wizard Welcome page is displayed. 

3. Follow the steps of the wizard. 

Click Help for specific information about these choices. When you are done, the 
name of the new calculated measure appears as an item in the Calculated 
Measures folder.

Making Data Storage Decisions
The creation of a cube requires several decisions about data storage that affect the 
performance of the analytic workspace. These choices are on the Implementation 
Details tab for the cube.

The DBMS_AW PL/SQL package contains a Sparsity Advisor and an Aggregate 
Advisor. These advisors analyze the tables in a relational schema and provide 
recommendations for data storage in an analytic workspace. These recommendations 
may help you to make the best choices for storing your data. Remember to always 
evaluate the advice generated by these tools against your own knowledge of the data. 

What is Sparsity?
Sparsity refers to the extent to which cells contain null (NA) values instead of data. For 
example, if a cube is 25 percent sparse, then 25 percent of that cube’s cells contain NA 
values and 75 percent contain data. You can also describe this cube as 75% dense.

In general, if a cube’s detail-level data is more than 80 percent sparse, then you must 
manage sparsity by identifying the sparse dimensions in order to promote good 
performance.

Sparsity Patterns
There are two types of sparsity patterns:

■ Controlled sparsity means that a range of values of one or more dimensions has 
no data. This is often a result of the way you design your analytic workspace. For 
example, a Time dimension might contain future time periods that will be 
populated by a forecast after the data is loaded into the analytic workspace. This 
type of sparsity is temporary and should be disregarded when evaluating the 
sparsity of the cube. Other types of controlled sparsity may remain sparse and 
should be considered as a factor in evaluating sparsity.

■ Random sparsity means that NA values are scattered throughout a measure, 
usually because some combinations of dimension values never have any data. This 
is often a result of the nature of your business. Random sparsity tends to be more 
common than controlled sparsity.

Your data may demonstrate one or both types of sparsity. 

Measures have the same sparsity pattern when all of the following are true:

■ They have exactly the same dimensions

■ They have many of the same empty cells

■ They have roughly the same number of empty cells

See Also: Oracle OLAP Reference for information about the Sparsity 
Advisor and the Aggregate Advisor



Making Data Storage Decisions

3-18 Oracle OLAP Application Developer’s Guide

Measures that share these characteristics should be created in the same cube. 
However, if their sparsity patterns are very different, then they should be created in 
different cubes even if they share the same dimensions. Typically, measures that are 
mapped to the same source tables have the same sparsity pattern.

Physical Storage of Sparse Data
A cube can be dense, sparse, or extremely sparse. 

■ Dense cubes have up to 20% empty cells. For a dense cube, do not identify any 
dimensions as sparse.

■ For a sparse cube, identify the sparse dimensions.

■ For an extremely sparse cube, identify all of the dimensions as sparse and use 
compressed storage.

Compressed storage is for measures that are extremely sparse. Extreme sparsity often 
results from these factors:

■ A cube has a large number of dimensions (seven or more).

■ One dimension has more than 300,000 members.

■ Two dimensions have more than 100,000 members each.

■ Dimension hierarchies have numerous levels, with little change to the number of 
dimension members from one level to the next, so that many parents have only 
one descendant for several contiguous levels. 

Compressed storage for this type of sparsity uses less space and results in faster 
aggregation than normal sparse storage. 

Manually Calculating Sparsity in a Cube
Sparsity is calculated as the relationship between the number of actual data values in 
the measures and the number of cells defined by the dimensions of the cube.

To calculate the percent sparsity in a cube, use this equation:

(data values in measure) / (cells in cube) * 100

To obtain the number of data values in a measure, count the number of rows in the 
data source. The following SQL statement returns the number of values in the UNITS 
measure in the GLOBAL schema:

SELECT COUNT(*) FROM units_history_fact WHERE units IS NOT NULL;

To calculate the number of cells in a cube, first count the number of base-level values 
for each dimension. The following SQL statement returns the number of base-level 
Customers in the GLOBAL schema:

SELECT COUNT(ship_to_id) FROM customer_dim;

Then multiply the number of values for each dimension in the cube:

time periods * customers * products * channels

All of the dimensions may be sparse, or all of them may be dense, or the cube may 
have a mixture of sparse and dense dimensions. You can determine these 

Note: You must know the number of dimension values so that you 
can order the dimensions correctly.



Making Data Storage Decisions

Creating an Analytic Workspace 3-19

characteristics by comparing the total number of dimension values with the number of 
dimension values actually used in a cube. For even more insight, you can compare 
these numbers at all levels.

For example, the following SQL statement returns the total number of dimension 
values at each level in the Global TIME_DIM dimension table:

SELECT COUNT(month_id), COUNT(DISTINCT quarter_id), COUNT(DISTINCT year_id)
     FROM time_dim;

The next SQL statement returns the number of dimension values at each level of Time 
that are used in the Global UNITS_HISTORY_FACT fact table.

SELECT COUNT(DISTINCT a.month_id), COUNT(DISTINCT a.quarter_id), 
     COUNT(DISTINCT a.year_id) 
     FROM time_dim a, units_history_fact b
     WHERE a.month_id=b.month_id;

Ordering the Dimensions in a Cube
The order in which the dimensions are listed for a cube affects performance because it 
determines the way the data is stored on disk. The first dimension in a cube is the 
fastest-varying dimension, and the last dimension is the slowest-varying dimension. 
The data for each measure in a cube is stored as a linear stream, in which the values of 
the fastest-varying dimension are clustered together and values of the slowest-varying 
dimension are spread far apart. Performance is optimized when values that are 
accessed together are stored together, because fewer pages must be swapped in and 
out of memory.

Data storage may be optimized for querying or loading. To optimize for loading, list 
the dense dimension (such as Time) before the sparse dimensions. If there is more than 
one dense dimension, then list the largest one first. To optimize for querying, you need 
to understand how your users are querying the data.

Partitioning Large Measures
Partitioning is an method of physically storing the measures in a cube. It improves the 
performance of large measures in the following ways:

■ Improves scalability by keeping data structures small. Each partition functions like 
a smaller measure. 

■ Keeps the working set of data smaller both for queries and maintenance, since the 
relevant data is stored together. 

■ Enables parallel aggregation during data maintenance. Each partition can be 
aggregated by a separate process. 

■ Allows different client sessions to have write access to different partitions of the 
same object at the same time. 

■ Simplifies removal of old data from storage. Old partitions can be dropped as a 
unit, and new partitions can be added.

■ Stores each partition of a compressed cube in a separate analytic workspace object. 
If a compressed cube is not partitioned, then all measures of the cube are stored in 
one object.

For partitioning a cube in Analytic Workspace Manager, you must choose a dimension 
and one of its levels as the basis for creating the partitions. For example, you might 
choose the Quarter level of the Time dimension. Each Quarter and its descendants are 



Making Data Storage Decisions

3-20 Oracle OLAP Application Developer’s Guide

stored in a separate partition. If there are three years of data in the analytic workspace, 
then partitioning on Quarter produces 12 partitions, in addition to the default 
partition. The default partition contains all remaining levels, that is, those above 
Quarter (such as Year) and those in other hierarchies (such as Fiscal Year or 
Year-to-Date). The aggregate levels in the new partitions are calculated and stored in 
the analytic workspace as a data maintenance step, while the levels in the default 
partition are calculated on the fly. 

Figure 3–7 illustrates the Global Time dimension partitioned by Quarter.

Figure 3–7 Partitioning Time by Quarter

The number of partitions also affects the database resources that can be allocated to 
loading and aggregating the data in an analytic workspace. Partitions can be 
aggregated simultaneously when sufficient resources have been allocated, as 
described in "Maintaining the Data" on page 3-25.

As this discussion explains, partitioning affects the extent to which an analytic 
workspace is optimized for querying or for maintenance. The fewer partitions, the 
more levels are precalculated (optimized for querying); the more partitions, the more 
levels are calculated on the fly, and the more resources can be allocated to loading and 
aggregating the data (optimized for maintenance).

Time is typically a good candidate for partitioning, because this choice supports 
life-cycle maintenance. Old time periods can be dropped as a unit in a partition, and 
new time periods can be added in a new partition. Moreover, the partitions will be 
approximately the same size because of the inherent regularity of the calendar. For 
example, in a calendar hierarchy, months have 28-31 children, quarters have 3 
children, and years have 4 children.

However, some enterprises prefer to redeploy their analytic workspaces with new 
data instead of maintaining them. This is also the model used by Oracle Warehouse 
Builder. When life-cycle maintenance is not a factor, you should choose the most dense 
dimension for partitioning. The most dense dimension is frequently the one with the 
fewest members.



Making Data Storage Decisions

Creating an Analytic Workspace 3-21

Defining Rules for Summarizing Data
Analytic Workspace Manager enables you to define summarization rules at three 
different levels. You can use whatever combination of levels best suits your needs:

■ Cube. You can define default summarization rules for all measures in a cube. You 
define these rules when creating or modifying a cube.

■ Measure. You can define unique summarization rules for a particular measure. 
These rules override the default cube summarization rules. You define these rules 
when creating or modifying a measure.

■ Analytic Workspace. You can define rules for one or more measures and 
determine the order in which the measures are summarized. In this way, you can 
support dependencies among the measures. You define these rules when creating 
or modifying a calculation plan.

Regardless of the level at which you define the summarization rules, the decisions and 
the user interface are the same.

Basic Strategy for Summarizing Analytic Workspace Data
A data load typically fetches data only at the lowest, or base, level. The data cells at the 
higher levels are empty until the values are calculated from the base values. In analytic 
workspaces, aggregate data can be generated at two distinct times:

■ On the fly in response to a query. Calculated values may be cached for use 
throughout the session, but they are not shared among sessions.

■ As part of the build procedure. Calculated values are stored in the analytic 
workspace and shared by all sessions.

If your dimensions have multiple hierarchies or if the hierarchies have many levels, 
then fully aggregating the measures can increase the size of your analytic workspace 
(and thus your database) geometrically. At the same time, much of the intermediate 
level data may be accessed infrequently or not at all.

The most effective method of summarizing data in an analytic workspace is by storing 
some aggregates and calculating others on the fly. A typical strategy for doing this is 
called skip-level aggregation, because some levels are stored and others are skipped 
until runtime.

Selecting Levels to Aggregate in the Builds
Skip-level aggregation is a strategy for identifying levels for data storage by 
determining the ratio of dimension members at each level, and keeping the ratio of 
members to be rolled up on the fly at approximately 10:1. This ratio assures that all 
answer sets can be returned quickly. Either a data value is stored in the analytic 
workspace so it can simply be retrieved, or it can be calculated quickly from 10 stored 
values. 

This 10:1 rule is best applied with some judgment. You might want to permit a higher 
ratio for levels that you know are seldom accessed. Or you might want to store levels 
at a lower ratio if you know they have heavy use.

Slower varying dimensions take longer to aggregate because the data is scattered 
throughout its storage space. If you are optimizing for data maintenance, then fully 
aggregate the faster varying dimensions and use skip-level aggregation on the slower 
varying dimensions.



Mapping Logical Objects to Data Sources

3-22 Oracle OLAP Application Developer’s Guide

Aggregation rules identify how and when the aggregate values are calculated. You 
define the aggregation rules for each cube, and you can override these rules by 
defining new ones for a particular measure.

Choosing Aggregation Methods
Analytic workspaces offer a large selection of aggregation methods, including scaled, 
weighted, hierarchical, and hierarchical weighted methods. Descriptions of these 
methods are provided in Analytic Workspace Manager Help.

You can specify different operators for different dimensions. If you do, then order the 
dimensions in the aggregation rules to achieve the results you want; for example, the 
sum of averages may yield different values than the average of sums.

Mapping Logical Objects to Data Sources
After creating logical objects, you can map them to data sources in Oracle Database. 
Afterward, you can load data into your analytic workspace using the Maintenance 
Wizard. 

The mapping window has a tabular view and a graphical view.

■ Tabular view. Drag-and-drop the names of individual columns from the schema 
navigation tree to the rows for the logical objects. 

■ Graphical view. Drag-and-drop icons, which represent tables and views, from the 
schema navigation tree onto the mapping canvas. Then you draw lines from the 
columns to the logical objects. 

If you want to see the values in a particular source table or view, right-click it in either 
the schema tree or the mapping canvas. Choose View Data from the menu to fetch up 
to 1000 rows.

Figure 3–8 shows the CHANNEL dimension mapped in the tabular view. The toolbar 
appears across the top and the schema navigation tree is on the left.

Figure 3–8 Dimension Mapped in Tabular View



Mapping Logical Objects to Data Sources

Creating an Analytic Workspace 3-23

The following procedure explains how to map a dimension in the graphical view.

Mapping Dimensions 
To map a dimension in the graphical view, take these steps: 

1. Define the dimension and its levels, hierarchies, and attributes.

2. In the Model View navigation tree, expand the dimension folder and click 
Mappings. 

The Mapping Window will be displayed in the right pane. 

3. Enlarge the mapping window by dragging the divider to the left.

4. In the toolbar, identify the source schema as Star Schema, Snowflake Schema, or 
Other.

5. In the schema navigation tree, locate the tables with the dimension members and 
attributes for all levels. Drag-and-drop them onto the mapping canvas.

6. Draw lines from the source columns to the target objects. To draw a line, click the 
output connector of the source column and drag it to the input connector of the 
target object. Be careful to map every logical object to a source column.

Tip: For a star schema with logical names that match the column names, click 
Auto Map Star Schema in the toolbar. Verify that all logical objects are mapped 
correctly.

7. To uncross the lines, click the Auto Arrange Mappings tool. 

8. Click Apply.

9. When you have mapped all objects for the dimension, drag the divider to the right 
to restore access to the navigation tree.

Figure 3–9 shows the mapping canvas with the Channel dimension and its attributes 
mapped to columns in the CHANNEL_DIM table. The mapping toolbar is at the top, and 
the schema navigation tree is on the left.



Mapping Logical Objects to Data Sources

3-24 Oracle OLAP Application Developer’s Guide

Figure 3–9 GLOBAL CHANNEL Dimension Mapped in Graphical View

Mapping Cubes
To map a cube in the graphical view, take these steps:

1. Define the cube and its measures. 

You can define derived measures at any time, because they are calculated, not 
loaded.

2. In the Model View navigation tree, expand the Cubes folder and click Mappings. 

The Mapping Window will be displayed in the right pane. You will see a schema 
navigation tree and a table with rows for the measures, dimensions, and levels.

3. Enlarge the mapping window by dragging the divider to the left.

4. In the schema navigation tree, locate the tables with the measures. Drag-and-drop 
them onto the mapping canvas.

5. Draw lines from the source columns to the target objects. 

To draw a line, click the output connector of the source column and drag it to the 
input connector of the target object. You must map both the measures and the 
related dimension keys. 

6. To uncross the lines, click the Auto Arrange Mappings tool.

7. When you have mapped all objects for the dimension, drag the divider to the right 
to restore access to the navigation tree.

Figure 3–10 shows the mapping canvas with the Price and Cost cube mapped to 
columns in the PRICE_AND_COST_HIST_FACT table. The mapping toolbar is at the 
top, and the schema navigation tree is on the left.



Maintaining the Data

Creating an Analytic Workspace 3-25

Figure 3–10 GLOBAL PRICE_AND_COST_CUBE Cube Mapped in Graphical View

Maintaining the Data
The Maintenance Wizard loads and aggregates the data as a single job. You can load 
all mapped objects in the analytic workspace, or individual dimensions and measures. 
You can also choose to run the job immediately, enter it in the Oracle job queue, or 
save it as a SQL script.

To maintain the data:

1. Right-click the name of the analytic workspace, a measure, or a dimension, then 
choose Maintenance Wizard from the pop-up menu.

Choose a folder that includes all the items that you want to maintain. For example, 
if you open the Maintenance Wizard from a particular cube, you will load that 
cube and summarize its measures. You will not load data or summarize other 
cubes.

2. Follow the steps of the wizard. 

Click Help for additional information about each step. 

3. Verify the results in the Data Viewer. Right-click a cube, and choose View Data 
from the pop-up menu.

Submitting Maintenance Tasks to the Oracle Job Queue
If you submit a maintenance task to the Oracle job queue, you can specify the 
maximum number of simultaneous processes the job can use. This number is limited 
by two factors:

■ The number of objects in the analytic workspace that can be summarized in 
parallel. Each cube and each partition (including the default partition) can use a 
separate process.

■ The number of simultaneous database processes the user is authorized to run. 



Defining Measure Folders

3-26 Oracle OLAP Application Developer’s Guide

This number is controlled by the JOB_QUEUE_PROCESSES parameter. The setting 
for this parameter is based on the number of processors, as described in 
"Initialization Parameters for Oracle OLAP" on page 6-6. You can obtain the 
current parameter setting with the following SQL command:

SHOW PARAMETER JOB_QUEUE_PROCESSES

Specify the smaller of these two numbers when submitting a job.

Oracle Database allocates the specified number of processes (if you have sufficient 
authorization) regardless of whether all of them can be used simultaneously at any 
point in the job. For example, if your job can use up to three processes, but you specify 
five, then two of the processes allocated to your job cannot be used by it or any other 
job.

Managing Maintenance Jobs
When submitting a maintenance task to the job queue, be sure to note the job number 
so that you can verify that the job completed successfully. Runtime messages are 
stored in a table named OLAPSYS.XML_LOAD_LOG. Messages in this file are identified 
just by the digits in the job number. The following SQL statement returns the messages 
for job AWXML$_54:

SELECT XML_MESSAGE FROM OLAPSYS.XML_LOAD_LOG WHERE XML_LOADID='54';

You can manage these jobs using tools such as Oracle Enterprise Manager Scheduler 
or the DBMS_SCHEDULER PL/SQL package.

Defining Measure Folders
You can define a measure folder for use by OLAP tools, so that the measures can be 
located and identified quickly by users. They may have access to several analytic 
workspaces or relational schemas with measures named Sales or Costs, and they will 
have no means of differentiating them outside of a measure folder.

To create a measure folder:

1. Expand the folder for the analytic workspace.

2. Right-click Measure Folders, then choose Create Measure Folders from the 
pop-up menu.

3. Complete the General tab of the Create Measure Folder dialog box. 

Click Help for specific information about these choices.

Supporting Multiple Languages
A single analytic workspace can support multiple languages. This support enables 
users of OLAP applications and tools to view the metadata in their native languages. 
For example, you can provide translations for the display names of measures, cubes, 
and dimensions. You can also map attributes to multiple columns, one for each 
language.

The number and choice of languages is restricted only by the database character set 
and your ability to provide translated text. Languages can be added or removed at any 
time.



Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 3-27

To add support for multiple languages:

1. In the Model View navigation tree, expand the folder for the analytic workspace.

2. Click the Languages folder, and select the languages for the analytic workspace on 
the Basic tab.

3. For each dimension, level, hierarchy, attribute, cube, measure, calculated measure, 
and measure folder, open the Translations tab of the property sheet. Enter the 
object labels and descriptions in each language.

4. For each dimension, open the Mappings window. Map the attributes to columns 
for each language. 

Creating Calculation Plans
Calculation plans enable you to create the aggregation rules for one or more measures, 
as an alternative to the default aggregation plan for the cube or defining individual 
plans for each measure. You can also identify the order in which you want the 
measures aggregated when there are interdependencies.

To create a calculation plan:

1. Expand the folder for the analytic workspace.

2. Right-click Calculation Plans, then choose Create Calculation Plan from the 
pop-up menu.

The Create Calculation Plan dialog box is displayed.

3. Complete the General tab.

Click Help for specific information about these choices.

4. To create a new aggregation step, click Add.

The Create New Aggregation Step dialog box is displayed.

5. Complete all tabs, then click Create.

The new aggregation step is listed on the Calculation Plan General tab.

6. Click Create.

The new calculation plan appears as an item in the Calculation Plans folder.

Case Study: Creating the Global Analytic Workspace
The following case study explains the choices made in creating an analytic workspace 
from the GLOBAL schema. Chapter 2 describes the tables.

Defining the GLOBAL_AW User
This example follows best practices by creating the GLOBAL analytic workspace in a 
different schema from the source tables. Example 3–1 lists the SQL commands to 
define the GLOBAL_AW user with sufficient access rights to use Analytic Workspace 
Manager and to access the GLOBAL star schema. Alternatively, you can define users 
through Oracle Enterprise Manager.



Case Study: Creating the Global Analytic Workspace

3-28 Oracle OLAP Application Developer’s Guide

Example 3–1 SQL Script for Defining the GLOBAL_AW User

CREATE USER "GLOBAL_AW" PROFILE "DEFAULT" 
    IDENTIFIED BY "global_aw" DEFAULT TABLESPACE "GLOBAL"
    TEMPORARY TABLESPACE "OLAPTEMP" 
    QUOTA UNLIMITED ON "GLOBAL"
    ACCOUNT UNLOCK;

GRANT OLAP_USER TO GLOBAL_AW;

GRANT SELECT ON global.channel_dim TO global_aw;
GRANT SELECT ON global.product_child_parent TO global_aw;
GRANT SELECT ON global.customer_dim TO global_aw;
GRANT SELECT ON global.time_month_dim TO global_aw;
GRANT SELECT ON global.time_quarter_dim TO global_aw;
GRANT SELECT ON global.time_year_dim TO global_aw;
GRANT SELECT ON global.units_history_fact TO global_aw;
GRANT SELECT ON global.price_and_cost_history_fact TO global_aw;

Examining Sparsity Characteristics for GLOBAL
By using SQL SELECT commands with the COUNT and COUNT(DISTINCT) functions, 
you can estimate how dense the resulting dimensional cubes will be in the analytic 
workspace.

The Time dimension has 96 members. However, the last 17 months have no data. 
These time periods and their aggregates will be used initially for forecasting and later 
to store actual data. These additional time periods are excluded from the following 
calculations because they might skew the results in such a small data set.

The PRICE_AND_COST_HISTORY_FACT table has 2023 rows out of a possible 2844 
dimension value combinations (79 historic months * 36 products). The Price cube is 
mapped to the PRICE_AND_COST_HISTORY_FACT table and is over 70% dense. 

The UNITS_HISTORY_FACT table has 222,589 rows out of a possible 520,452 
dimension value combinations (79 historic months * 36 products * 61 customers * 3 
channels). The Units cube, which is mapped to UNITS_HISTORY_FACT, is over 40% 
dense.

Because the Global data set is dense, even a regular composite should not be used.

Identifying Levels for Precalculation
To identify the levels to be precalculated, you must know the number of dimension 
members at each level. You can easily acquire this information using either SQL 
statements or OLAP DML commands.

For example, this SQL statement:

SELECT COUNT(DISTINCT year_id) FROM global.time_year_dim;

and this OLAP DML command in the GLOBAL analytic workspace (after loading the 
dimension):

SHOW NUMLINES(LIMIT(time TO time_levelrel EQ 'YEAR'))

both return the number of TIME dimension members at the Year level.

Global is a very small data set, so few adjacent levels have a 10:1 ratio of dimension 
members. Table 3–1 identifies the levels to be calculated and stored in the analytic 
workspace.



Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 3-29

Creating the GLOBAL Analytic Workspace
Take these steps to create the GLOBAL analytic workspace:

1. Open Analytic Workspace Manager and connect to Oracle Database as the 
GLOBAL_AW user.

2. In the Model View navigation tree, expand the GLOBAL_AW folder, and right-click 
Analytic Workspaces.

3. Choose Create Analytic Workspace from the pop-up menu.

4. Complete the Create Analytic Workspace dialog box, then choose Create.

This step creates the analytic workspace container and populates it with standard form 
catalogs and similar objects. You must now define the logical model.

Creating GLOBAL Dimensions and Attributes
GLOBAL has four dimensions: TIME, PRODUCT, CUSTOMER, and CHANNEL. Implement 
the logical model described in Chapter 2 by following the basic instructions in 
"Creating Logical Dimensions" on page 3-12.

Note these choices:

■ Time Dimension: On the General tab, select Time Dimension as the dimension 
type. You can map Time to a star schema (TIME_DIM table) or to a snowflake 
schema (TIME_MONTH_DIM, TIME_QUARTER_DIM, and TIME_YEAR_DIM tables).

■ Product Dimension: You can map Product to a star, level-based table 
(PRODUCT_DIM) or to a parent-child table (PRODUCT_CHILD_PARENT).

■ All Dimensions: On the Implementation Details tab, select Use Natural Keys 
From Data Source. 

Table 3–1 Precalculated Levels in the Global Workspace

Dimension Level Members Precalculate

TIME Month 96 Yes

TIME   Quarter 32 No

TIME     Year 8 Yes

CUSTOMER Ship_To 61 Yes

CUSTOMER   Account 24 No

CUSTOMER     Market_Segment 5 Yes

CUSTOMER       Total_Market 1 No

CUSTOMER   Warehouse 11 No

CUSTOMER     Region 3 Yes

CUSTOMER       Total_Customer 1 No

PRODUCT Product (no levels) 48 No

CHANNEL Channel 3 Yes

CHANNEL   Total_Channel 1 No

See Also: Chapter 2 for information about installing the Global 
schema



Case Study: Creating the Global Analytic Workspace

3-30 Oracle OLAP Application Developer’s Guide

The source tables have numeric surrogate keys that assure unique dimension 
members across all levels.

■ All Attributes: On the General tab, verify that the attributes apply to all levels.

■ Languages: Add French and Dutch.

Creating GLOBAL Cubes and Measures
GLOBAL has two cubes: UNITS_CUBE and PRICE_AND_COST_CUBE.

■ UNITS_CUBE is dimensioned by TIME, PRODUCT, CUSTOMER, and CHANNEL. It 
contains two measures, UNITS and SALES.

■ PRICE_AND_COST_CUBE is dimensioned by TIME and PRODUCT. It contains two 
measures, UNIT_PRICE and UNIT_COST.

Implement the logical model described in Chapter 2 by following the basic 
instructions in "Creating Logical Cubes" on page 3-15.

UNITS_CUBE
On the Implementation Details page, list the dimensions in this order: 

1. TIME

2. CUSTOMER

3. PRODUCT

4. CHANNEL

Deselect the sparsity check boxes for all dimensions. They are dense.

On the Aggregation page, select the SUM operator for all dimensions. Use Table 3–1 to 
select levels for presummarization.

PRICE_AND_COST_CUBE
On the Implementation Details page, list the dimensions in this order: 

1. TIME

2. PRODUCT

Measures in the Price Cube and the Units Cube will be used together frequently in 
calculated measures. For performance, the dimensions that the cubes share must be 
listed in the same order.

Deselect the sparsity check boxes for all dimensions. They are dense.

On the Aggregation page, select Last Non-NA Data Value for Time and Average for 
Product.

Mapping the GLOBAL Logical Model to Data Sources
The data for the GLOBAL analytic workspace is stored in the GLOBAL schema. 

To map the PRODUCT dimension, take these steps:

1. Expand the Dimensions folder, then click the Mappings node for PRODUCT.

2. Drag the divider to the left to expand the size of the mapping canvas.

3. In the schema navigation tree, expand the GLOBAL folder, then drag-and-drop the 
PRODUCT_CHILD_PARENT table onto the canvas.



Case Study: Creating the Global Analytic Workspace

Creating an Analytic Workspace 3-31

4. Drag a line from the output connectors in the PRODUCT_CHILD_PARENT table to 
the appropriate input connector in the PRODUCT table.

5. Click Apply.

Repeat these steps to map CUSTOMER to the CUSTOMER_DIM table and CHANNEL to the 
CHANNEL_DIM table. For TIME, select Snowflake Schema and map to 
TIME_MONTH_DIM, TIME_QUARTER_DIM, and TIME_YEAR_DIM.

To map UNITS_CUBE, take these steps:

1. Expand the Cubes folder, then click the Mappings node for UNITS_CUBE.

2. Drag the divider to the left to expand the size of the mapping canvas.

3. In the schema navigation tree, expand the GLOBAL folder, then drag-and-drop the 
UNITS_DETAIL_FACT table onto the canvas.

4. Drag lines from the output connectors in the UNITS_DETAIL_FACT table to the 
appropriate input connectors in the UNITS_CUBE table.

5. Click Apply.

Repeat these steps to map PRICE_AND_COST_CUBE to the 
PRICE_AND_COST_HIST_FACT table.

Loading and Aggregating the Data
To load all of the data for GLOBAL, run the Maintenance Wizard as described in 
"Maintaining the Data" on page 3-25. Note these choices:

■ Run the Maintenance Wizard from the GLOBAL folder in the Model navigation 
tree.

■ Select Objects page: Select the Add the Dimensions of the Cube box, then move 
Cubes to the Selected Source Objects column. Click Finish to run the job 
immediately.

Figure 3–11 shows the results of a query in OracleBI Discoverer Plus OLAP. 



Case Study: Creating the Global Analytic Workspace

3-32 Oracle OLAP Application Developer’s Guide

Figure 3–11 Discoverer Plus OLAP Displays Data from PRICE_AND_COST_CUBE

Creating Calculated Measures
"Identifying Required Business Facts" on page 2-5 identifies the business measures 
required by the Global Corporation. Only three measures were acquired from the 
source fact tables: Units, Unit Price, and Unit Cost. The remaining business measures 
can be calculated from those three. Table 3–2 shows the calculated measures for the 
Units Cube.

Table 3–2 Custom Measures for the GLOBAL Analytic Workspace

Required Business Measures Calculation Type Based On Measures

Sales Basic Arithmetic > Multiplication UNITS* UNIT_PRICE

Extended Cost Basic Arithmetic > Multiplication UNITS*UNIT_COST

Extended Margin Basic Arithmetic > Subtraction SALES-EXTENDED_COST

Change in sales from prior period 
(month, quarter, or year)

Change in sales from prior year

Prior/Future Comparison > Difference from 
Prior Period

SALES

Percent change in sales from prior 
period

Percent change in sales from prior 
year

Prior/Future Comparison > Percent Difference 
from Prior Period

SALES

Product share Advanced Arithmetic > Share SALES(PRODUCT)

Channel share Advanced Arithmetic > Share SALES(CHANNEL)

Market share Advanced Arithmetic > Share SALES(CUSTOMER)



Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 3-33

Creating a Measure Folder
Define a measure folder with a name such as Global Enterprises, and add all measures 
and calculated measures to the folder.

Case Study: Creating the Sales History Analytic Workspace
Sales History (SH) is a sample star schema that is delivered with Oracle Database, 
along with OLAP Catalog metadata for access directly to the relational tables by OLAP 
query tools. Although Global is used for most of the examples in this manual, Sales 
History has a very different set of data characteristics and demonstrates a 
correspondingly different set of build choices. 

You can download a template for a Sales History analytic workspace from 

http://www.oracle.com/technology/products/OracleBI/olap/olap.html

Figure 3–12 shows a schema diagram of Sales History. 

Extended margin change from 
prior period

Extended margin change from 
prior year

Prior/Future Comparison > Difference from 
Prior Period

EXTENDED_MARGIN

Extended margin percent change 
from prior period

Extended margin percent change 
from prior year

Prior/Future Comparison > Percent Difference 
from Prior Period

EXTENDED_MARGIN

Units sold, change from prior 
period

Prior/Future Comparison > Difference from 
Prior Period

UNITS

Extended margin per unit Basic Arithmetic > Division EXTENDED_MARGIN/ UNITS

Table 3–2 (Cont.) Custom Measures for the GLOBAL Analytic Workspace

Required Business Measures Calculation Type Based On Measures

http://www.oracle.com/technology/products/OracleBI/olap/olap.html


Case Study: Creating the Sales History Analytic Workspace

3-34 Oracle OLAP Application Developer’s Guide

Figure 3–12 Sales History Schema Diagram

Creating the SH Analytic Workspace
Take these steps to create the SH analytic workspace:

1. Define database parameters for OLAP.

2. Create permanent and temporary tablespaces specifically for use by the SH 
analytic workspace.

3. Define the SH_AW user.

4. Open Analytic Workspace Manager and connect to Oracle Database as the SH_AW 
user.

5. Create the SH analytic workspace, and define the logical dimensions.

See Also: Oracle Database Sample Schemas for a full description of 
Sales History



Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 3-35

6. Examine the sparsity characteristics of the data and define the logical cube.

7. Map, load, and summarize the data.

8. Query the analytic workspace.

Defining Database Parameters
When building a large analytic workspace, the parameters for Oracle Database may 
affect how quickly the build proceeds. Before changing any database parameters, you 
should monitor performance using the default settings.

Example 3–2 shows a few of the settings in the init.ora file for a computer with 32G 
of physical memory and four processors. Note that you must define an undo 
tablespace before you can specify it in a startup parameter. For more information 
about these settings, refer to Chapter 6.

Example 3–2 Startup Parameters for Building Sales History

UNDO_MANAGEMENT=AUTO
UNDO_TABLESPACE=OLAPUNDO
SGA_TARGET=16G
PGA_AGGREGATE_TARGET=8G
JOB_QUEUE_PROCESSES=5

Defining Tablespaces for Sales History
While the GLOBAL analytic workspace has about a half million cells for base-level data 
in its largest cube, the Sales History SALES cube has over 18 trillion. This makes the 
Sales History analytic workspace small to average for a real application, although 
quite large for a sample data set. It is sufficiently large for a build to fail on a small 
desktop computer unless resources have been allocated for its use. 

You should define temporary and permanent tablespaces for use by Sales History.

■ Define a tablespace that is large enough to hold the base-level data, stored 
aggregates, forecast data, and so forth. If multiple physical disks are available, 
define an extension file for each one. For the best performance, do not use the 
same tablespace that the star schema uses.

■ Define a temporary tablespace that is large enough to hold the data for the SALES 
cube. Stripe this tablespace across multiple disks the same as for the permanent 
tablespace. Use a small EXTENT MANAGEMENT SIZE value, such as 256K.

Example 3–3 shows how the tablespaces might be defined for Sales History when four 
disk drives are available.

Example 3–3 SQL Script for Defining Tablespaces for the Sales History Analytic Workspace

/* Create permanent tablespaces on four disks */
CREATE TABLESPACE sh_aw DATAFILE '/disk1/oradata/sh_aw1.dbf' SIZE 64M 
AUTOEXTEND ON NEXT 64M MAXSIZE 1024M 
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE sh_aw ADD DATAFILE 
'/disk2/oradata/sh_aw2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk3/oradata/sh_aw3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk4/oradata/sh_aw4.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE UNLIMITED;

/* Create temporary tablespaces on four disks */
CREATE TEMPORARY TABLESPACE sh_temp TEMPFILE '/disk1/oradata/sh_aw1.tmp' SIZE 64M REUSE 



Case Study: Creating the Sales History Analytic Workspace

3-36 Oracle OLAP Application Developer’s Guide

AUTOEXTEND ON NEXT 64M MAXSIZE 1024M 
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

ALTER TABLESPACE sh_temp ADD TEMPFILE 
'/disk2/oradata/sh_aw2.tmp' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk3/oradata/sh_aw3.tmp' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE 1024M,
'/disk4/oradata/sh_aw4.tmp' SIZE 64M REUSE AUTOEXTEND ON NEXT 64M MAXSIZE UNLIMITED;

Defining the SH_AW User
Example 3–4 shows a script that is similar to the one used to create the GLOBAL_AW 
user in Example 3–1. It defines a user named SH_AW and authorizes it to access the SH 
star schema. The script sets the new permanent and temporary tablespaces as the 
defaults for the SH_AW user.

Example 3–4 Script for Creating the SH_AW User

/* Create the user and grant privileges */
CREATE USER sh_aw PROFILE "DEFAULT"
    IDENTIFIED BY "sh_aw" 
    DEFAULT TABLESPACE sh_perm
    TEMPORARY TABLESPACE sh_temp
    QUOTA UNLIMITED ON sh_perm
    ACCOUNT UNLOCK;
GRANT OLAP_USER TO sh_aw;

/* Create a directory object*/
CREATE OR REPLACE DIRECTORY sh_scripts AS '/users/oracle/sh_scripts'; 
GRANT ALL ON DIRECTORY sh_scripts TO PUBLIC;

/* Grant access to SH star schema */
GRANT SELECT ON SH.CHANNELS to SH_AW;
GRANT SELECT ON SH.PRODUCTS to SH_AW;
GRANT SELECT ON SH.TIMES to SH_AW;
GRANT SELECT ON SH.CUSTOMERS to SH_AW;
GRANT SELECT ON SH.COUNTRIES to SH_AW;
GRANT SELECT ON SH.PROMOTIONS to SH_AW;
GRANT SELECT ON SH.SALES to SH_AW;

Defining the Logical Dimensions for Sales History
Because Sales History is a star schema, the logical model for the analytic workspace is 
primarily indicated by the schema design, as shown in Figure 3–12.

The two fact tables, SALES and COSTS, are the data sources for two logical cubes. This 
case study only uses SALES.

The SALES table has a primary key composed of foreign keys from five dimension 
tables, which are named TIMES, PRODUCTS, CHANNELS, PROMOTIONS, and 
CUSTOMERS. CUSTOMERS is related to a sixth dimension table, COUNTRIES, by a 
foreign key. In addition, SALES has two columns that contain business measures 
named QUANTITY_SOLD and AMOUNT_SOLD. Thus, the star schema defines a logical 
SALES cube with five dimensions and two measures for the analytic workspace.

Defining TIMES_DIM
The Times table has a numeric surrogate key for each level, so you can specify natural 
keys as an implementation detail for TIMES_DIM. 



Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 3-37

Each level in a Time dimension must have time-span and end-date attributes. 
However, the Times table does not have this data for Day or Fiscal Week. One way to 
correct this problem is to add the columns to the Times table, using SQL statements 
like the following:

ALTER TABLE times ADD 
   ( days_in_day NUMBER(1) DEFAULT 1,
     days_in_week NUMBER(1) DEFAULT 7 );

When you have finished mapping the dimension, run the Maintenance Wizard to load 
the members and attributes. Because they load quickly, you can run the job 
immediately (instead of in the job queue) to verify that the mappings are correct.

Defining CUSTOMERS_DIM
The Customers and Countries tables are related on the Countries key column, and 
together they support two hierarchies, CUST_ROLLUP and GEOG_ROLLUP. Because the 
two hierarchies share two aggregate levels (CITY and STATE), you must generate 
surrogate keys in the analytic workspace so that each hierarchy has unique dimension 
members. Otherwise, a single set of aggregates might not be correct for both 
hierarchies.

Only 7,059 customers have sales data of the 55,500 listed in the Customers table, as 
shown in Example 3–7. You can choose the way you implement CUSTOMERS_DIM:

■ Load all of the customers into the analytic workspace, regardless of their 
purchasing history. This case study implements this choice.

■ Create a view of the Customers table with a WHERE clause in the SELECT 
statement that filters the customers so that only those who have made purchases 
are included in the analytic workspace. Map CUSTOMERS_DIM to the new view.

■ Define City as the base level; do not map the Customer level or its attributes. 
Create a view of the SALES table with a GROUP BY clause in the SELECT 
statement that aggregates the data to the CITY level. This choice is appropriate 
only if data at the Customer level is not needed for analysis.

When you have finished mapping the dimension, run the Maintenance Wizard to load 
the members and attributes. Because they load quickly, you can run the job 
immediately (instead of in the job queue) to verify that the mappings are correct.

Defining PRODUCTS_DIM, CHANNELS_DIM, and PROMOTIONS_DIM
The three remaining dimensions do not present any new challenges. Their source 
tables can be identified as star schema in the Mappings canvas, because all levels and 
attributes are in a single source table.

The measures in the Sales cube use only 4 of the 503 promotions listed in the 
PROMOTIONS_DIM dimension table. You have the same choices for handling this 
dimension as you did for the CUSTOMERS_DIM dimension, which also has a large 
percentage of unused key values. 

Defining the Logical Sales Cube for Sales History
The definition of a cube involves decisions that affect performance. Unlike Global, the 
Sales History data set is fairly large and sparse like many real data sets. It is a good 
candidate for using the Sparsity Advisor. The Sparsity Advisor analyzes the sparsity 
characteristics of the data as it is stored in the relational source tables.



Case Study: Creating the Sales History Analytic Workspace

3-38 Oracle OLAP Application Developer’s Guide

About the Sparsity Advisor
The Sparsity Advisor consists of several subprograms in the DBMS_AW PL/SQL 
package.

■ SPARSITY_ADVICE_TABLE procedure creates a table for storing the advice 
generated by the ADVISE_SPARSITY procedure.

■ ADD_DIMENSION_SOURCE procedure populates a table type named 
DBMS_AW$_DIMENSION_SOURCES_T with information about the dimensions of a 
cube. This information is analyzed by the ADVISE_SPARSITY procedure.

■ ADVISE_SPARSITY procedure analyzes a fact table for sparsity using information 
about its dimensions provided by the ADD_DIMENSION_SOURCE procedure. It 
populates a table created by the SPARSITY_ADVICE_TABLE procedure with the 
results of its analysis.

■ ADVISE_DIMENSIONALITY function returns an OLAP DML definition of a 
composite dimension and the dimension order for variables in the cube, based on 
the sparsity recommendations generated by the ADVISE_SPARSITY procedure for 
a particular partition.

■ ADVISE_DIMENSIONALITY procedure evaluates the information provided by the 
ADVISE_SPARSITY procedure and generates the OLAP DML commands for 
defining a composite and a variable in the analytic workspace.

It returns its results in two forms: as a table with its recommendations and as OLAP 
DML commands that implement these recommendations. When creating an analytic 
workspace using Analytic Workspace Manager, you cannot use the OLAP DML 
commands directly. However, you can use the table or the commands (or both) to 
guide your choices on the property sheets.

Sample Program for Evaluating Sales History Tables
Example 3–5 shows a sample PL/SQL program for evaluating the sparsity 
characteristics of the tables in the SH schema. The ADD_DIMENSION_SOURCE 
procedure provides the Sparsity Advisor with information about the dimensions, 
levels, and hierarchies.

Example 3–5 PL/SQL Program for Using the Sparsity Advisor on Sales History

--Connect and set display parameters
CONNECT sh/sh
SET ECHO ON
SET LINESIZE 300
SET PAGESIZE 300
SET LONG     8000
SET SERVEROUT ON FORMAT WRAPPED
 
--Create a table for results
BEGIN
     dbms_aw.sparsity_advice_table('sh_sparsity_advice');
EXCEPTION
     WHEN OTHERS THEN NULL;
END;
/
 
TRUNCATE TABLE sh_sparsity_advice;
 

See Also: Oracle OLAP Reference for complete information about the 
Sparsity Advisor



Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 3-39

--Define program variables
DECLARE
     dimsources dbms_aw$_dimension_sources_t;
     dimlist VARCHAR2(500);
     sparsedim VARCHAR2(500);
     counter NUMBER(2) := 1;
     maxpart NUMBER(2);
     defs CLOB;
BEGIN
--Describe the dimension hierarchies
     dbms_aw.add_dimension_source('channel', 'channel_id', dimsources,
         'channels', dbms_aw.hier_levels,
          dbms_aw$_columnlist_t('channel_id', 'channel_class_id',
         'channel_total_id'));
     dbms_aw.add_dimension_source('product', 'prod_id', dimsources, 'products',
          dbms_aw.hier_levels, dbms_aw$_columnlist_t('prod_id',
         'prod_subcategory_id', 'prod_category_id', 'prod_total_id'));
     dbms_aw.add_dimension_source('customer', 'cust_id', dimsources, 
         'customers', dbms_aw.hier_levels,
          dbms_aw$_columnlist_t('cust_id', 'cust_city_id',
         'cust_state_province_id', 'cust_total_id'));
     dbms_aw.add_dimension_source('time', 'time_id', dimsources, 'times',
          dbms_aw.hier_levels, dbms_aw$_columnlist_t('time_id',
         'calendar_month_id','calendar_quarter_id', 'calendar_year_id'));
     dbms_aw.add_dimension_source('promotion', 'promo_id', dimsources,
         'promotions', dbms_aw.hier_levels,
          dbms_aw$_columnlist_t('promo_id', 'promo_subcategory_id',
         'promo_category_id', 'promo_total_id'));
 
--Analyze tables using default settings
   dbms_aw.advise_sparsity('sales', 'sales_cube', dimsources,
         dbms_aw.advice_default, dbms_aw.partby_default, 'sh_sparsity_advice');
 
commit;
 
-- Get recommendations as OLAP DML commands 
select max(partnum) into maxpart from sh_sparsity_advice;
WHILE counter <= maxpart LOOP
     dimlist := dbms_aw.advise_dimensionality('sales_cube', sparsedim,
          'sales_cube_composite', counter, 'sh_sparsity_advice');
     dbms_output.put_line('Dimension list:  ' || dimlist);
     dbms_output.put_line('Sparse dimension:  ' || sparsedim);
counter := counter+1;
END LOOP;
dbms_aw.advise_dimensionality(defs,'sales_cube', 'sales_cube_composite',
     'DECIMAL', 'sh_sparsity_advice');
dbms_output.put_line('Definitions:  ');
dbms_aw.printlog(defs);
END;
/
-- Get recommendations directly from the output table 
COLUMN cubename          FORMAT a8
COLUMN fact              FORMAT a20
COLUMN dimension         FORMAT a12
COLUMN dimcolumn         FORMAT a12
COLUMN dimsource         FORMAT a12
COLUMN nmem              FORMAT 99999
COLUMN nleaf             FORMAT 99999
COLUMN advice            FORMAT a12
COLUMN pos               FORMAT 99



Case Study: Creating the Sales History Analytic Workspace

3-40 Oracle OLAP Application Developer’s Guide

COLUMN density           FORMAT 9.9999
COLUMN partnum           FORMAT 99
COLUMN partby            FORMAT a20
COLUMN parttops          FORMAT a20
 
--Get basic information about the dimensions
SELECT DISTINCT(dimension), dimcolumn, position pos, membercount nmem, 
      leafcount nleaf
      FROM sh_sparsity_advice
      WHERE cubename='sales_cube'
      ORDER BY position;
 
--Get partitioning advice about the dimensions
SELECT dimcolumn, advice, partnum, parttops
      FROM sh_sparsity_advice
      WHERE cubename='sales_cube'
      ORDER BY partnum;
 
--Identify the partition tops
SELECT DISTINCT(calendar_year_id), calendar_year FROM times
      ORDER BY calendar_year;

Interpreting the Results from the Sparsity Advisor
The Sparsity Advisor makes very detailed recommendations, but you can derive 
general recommendations that can be implemented in Analytic Workspace Manager:

■ List the dimensions in this order: TIME, CHANNEL, PRODUCT, PROMOTION, 
CUSTOMER.

■ Include all dimensions in a compressed composite. 

■ Create five partitions for the five years of data.

On the Implementation Details page for SALES_CUBE, do the following to implement 
these recommendations:

■ In the Dimension Order and Sparsity table, list the dimensions in the 
recommended order and mark all of them as sparse.

■ Select Use Compression.

■ Select Partition Cube.

■ For partitioning, select the TIMES_DIM dimension, CAL_ROLLUP hierarchy, and 
YEAR level.

Example 3–6 shows the recommendations as OLAP DML commands. The dimensions 
are listed in order within angle brackets (<>), and definition of the sparse dimension 
shows all dimensions in a compressed composite. The partition template creates five 
partitions on TIME.

Example 3–6 Recommendations for Sales History in OLAP DML 

Dimension list:  <sales_cube_composite<time channel product promotion customer>>
Sparse dimension:  DEFINE sales_cube_composite COMPOSITE COMPRESSED <time channel product promotion 
customer>
DEFINE sales_cube_pt PARTITION TEMPLATE <time channel product promotion customer> -
    PARTITION BY LIST (time) -
   (PARTITION p1 VALUES () <sales_cube_composite_p1<>> -
    PARTITION p2 VALUES () <sales_cube_composite_p2<>> -
    PARTITION p3 VALUES () <sales_cube_composite_p3<>> -



Case Study: Creating the Sales History Analytic Workspace

Creating an Analytic Workspace 3-41

    PARTITION p4 VALUES () <sales_cube_composite_p4<>> -
    PARTITION p5 VALUES () <sales_cube_composite_p5<>>)
          .
          .
          .

The Sparsity Advisor bases its OLAP DML commands on the information stored in the 
output table, which in this example is named SH_SPARSITY_ADVICE. You can also 
view this information directly in the table.

Example 3–7 queries SH_SPARSITY_ADVICE. The first SELECT statement retrieves 
basic information about the dimensions. The POSITION column identifies their 
recommended order. MEMBERCOUNT shows the total number of dimension members 
defined in the dimension tables, and LEAFCOUNT shows the number with data in the 
SALES fact table. 

The second SELECT statement retrieves partitioning advice. It shows five partitions 
based on Time, and compression is the recommendation for four of the five. A SELECT 
statement on the TIMES table shows that the partition tops are the five years.

Example 3–7 Recommendations for Sales History in the Advice Table

SELECT distinct(dimension), dimcolumn, position, membercount, leafcount
     FROM sh_sparsity_advice
     WHERE cubename='sales_cube'
     ORDER BY position;
 
DIMENSION    DIMCOLUMN    POSITION MEMBERCOUNT LEAFCOUNT
------------ ------------ -------- ----------- ---------
time         time_id             1        1826      1460
channel      channel_id          2           5         4
product      prod_id             3          72        72
promotion    promo_id            4         503         4
customer     cust_id             5       55500      7059
 
SELECT dimcolumn, advice, partnum, parttops
     FROM sh_sparsity_advice
     WHERE cubename='sales_cube'
     ORDER BY partnum;
 
DIMCOLUMN    ADVICE       PARTNUM PARTTOPS
------------ ------------ ------- --------------------
time_id      COMPRESSED         1 1803
channel_id   COMPRESSED         1
prod_id      COMPRESSED         1
promo_id     COMPRESSED         1
cust_id      COMPRESSED         1
time_id      COMPRESSED         2 1805
channel_id   COMPRESSED         2
prod_id      COMPRESSED         2
promo_id     COMPRESSED         2
cust_id      COMPRESSED         2
time_id      COMPRESSED         3 1804
channel_id   COMPRESSED         3
prod_id      COMPRESSED         3
promo_id     COMPRESSED         3
cust_id      COMPRESSED         3
time_id      COMPRESSED         4 1813
channel_id   COMPRESSED         4
prod_id      COMPRESSED         4
promo_id     COMPRESSED         4



Case Study: Creating the Sales History Analytic Workspace

3-42 Oracle OLAP Application Developer’s Guide

cust_id      COMPRESSED         4
time_id      SPARSE             5 1802
channel_id   SPARSE             5
prod_id      SPARSE             5
promo_id     SPARSE             5
cust_id      SPARSE             5
 
25 rows selected.
 
SELECT DISTINCT(calendar_year_id), calendar_year FROM times
      ORDER BY calendar_year;
 
CALENDAR_YEAR_ID CALENDAR_YEAR
---------------- -------------
            1802          1998
            1803          1999
            1804          2000
            1805          2001
            1813          2002

Maintaining Sales History
When building the cube, submit the maintenance task to the job queue, either to run 
immediately or at a later time. If you are running Oracle Database on a 
single-processor computer, keep the number of processes at 1. Otherwise, check the 
value of JOB_QUEUE_PROCESSES to see how many jobs you can run simultaneously. 
As defined in this example, Sales History can use up to six processes (1 cube + 5 
partitions).



Predicting Future Performance 4-1

4
Predicting Future Performance

Using the Object View in Analytic Workspace Manager and OLAP Worksheet, you 
can generate a forecast and store it in a standard form measure. This chapter 
introduces the tools you can use to generate a forecast.

This chapter contains the following topics:

■ Creating a Forecast

■ Case Study: Forecasting Global Sales

Creating a Forecast
The OLAP option supports various forecasting methods, including simple linear 
regressions, several non-linear regression methods, single exponential smoothing, 
double exponential smoothing, and the Holt-Winters method. You can specify which 
one of these methods you prefer to use, but the OLAP engine determines the best fit 
for your data based on past performance and will override your choice if it is 
inappropriate for your data. The "automatic" method, which is the default, is the best 
choice because it defers to the best fit.

Most forecasts are calculated at the base level, and the base-level forecast data is used 
to generate forecast aggregates. The examples in this chapter assume that you wish to 
generate forecast aggregates in this way. The alternative method, which uses actual 
data at all levels to generate the forecast, produces forecast aggregates that may be 
inconsistent with the lower-level data.

Steps for Creating a Forecast
Forecasting is not supported at this time in the Analytic Workspace Manager graphical 
user interface. The following sections explain how you can generate a forecast 
manually and store the results in a standard form measure. 

These are the steps for creating a forecast. Each one is discussed in more detail in the 
sections that follow.

1. Creating the Forecast Time Periods

2. Defining a Measure for the Results

3. Defining Supporting Variables (Optional)

4. Developing a Forecast Program

5. Generating a Forecast

6. Aggregating the Forecast Data



Creating a Forecast

4-2 Oracle OLAP Application Developer’s Guide

Creating the Forecast Time Periods
The future time periods that you want to forecast must be defined as members of the 
time dimension in your analytic workspace. If they do not exist there already, you 
must:

1. Add the new time periods and attributes to the relational tables in the source 
schema. 

2. Use the Maintenance Wizard in Analytic Workspace Manager to add the new 
members to the Time dimension in the analytic workspace.

You should use whatever mechanism guarantees that these Time dimension members 
are identical to those for loading actual data at a later date.

Defining a Measure for the Results
In the Model View, define a standard form measure for the forecast results, as 
described in Chapter 3. You can add the measure to the cube that contains the source 
data for the forecast, or you can create a new cube.

When you define a standard form measure, you create several analytic workspace 
objects. You will use one of them, a measure_stored variable, as the target of the 
forecast.

Defining Supporting Variables (Optional)
If you want the forecast to use seasonal adjustment or smoothing, then define 
variables that the forecast can use when performing its calculations. These variables do 
not require any standard form metadata, because they are only used during 
calculation of the forecast and are not accessed by the client.

Take these steps to define the supporting variables:

1. In the Object View, expand the folder for your analytic workspace.

2. Right-click the Variables folder and choose Create Variable from the menu.

3. Define the variable with a DECIMAL data type.

4. On the Dimensions page, list the dimensions in the appropriate order for variables 
in the cube, which is typically Time first, then a composite dimension.

"Defining a Variable for Seasonal Adjustment" on page 4-4 provides an example of 
creating supporting variables.

Developing a Forecast Program
A forecast uses several related commands that are always executed from within an 
OLAP DML program. Use the following commands in the order they are listed here.

1. FCOPEN function. Opens a forecasting context and returns its handle.

2. FCSET command. Specifies the characteristics of a forecast.

3. FCEXEC command. Executes a forecast and populates Oracle OLAP variables with 
forecasting data.

4. FCQUERY function (optional). Retrieves information about the characteristics of a 
forecast or a trial of a forecast.

5. FCCLOSE command. Closes a forecasting context.



Creating a Forecast

Predicting Future Performance 4-3

You can define and compile a program either in the Object View or in OLAP 
Worksheet. You can run a program only in OLAP Worksheet.

Example 4–1 provides a template for these commands and others that are typically 
used in a forecast.

Example 4–1 Template for a Forecast

VARIABLE handle INTEGER    " Define a local variable
TRAP ON OOPS                 " Redirect processing on error to OOPS label

" Select base level time periods
LIMIT time_dim TO levelrel_time 'base_data'
" Keep historical and forecast periods
LIMIT time_dim KEEP LAST n

" Open a handle for the forecast
handle = FCOPEN('forecast_name')
" Specify the forecast method
FCSET handle METHOD 'method' descriptors 
" Execute the forecast and identify source and target variables
FCEXEC handle TIME time_dim INTO target_var1 SEASONAL -
     target_var2 SMSEASONAL target_var3 source_var
FCCLOSE handle             " Close the forecast
RETURN

OOPS:
SHOW 'Error running program'

Generating a Forecast
To generate the forecast data, run the forecast program in OLAP Worksheet, using the 
OLAP DML CALL command:

CALL program [(args)
]
The program calculates the forecast at the base level. You can then generate summary 
data by running the Maintenance Wizard. Be sure not to delete dimension members as 
a maintenance step, because you will lose the forecast data.

Aggregating the Forecast Data
In the OLAP DML, the AGGREGATE command calculates summary data that is stored 
permanently in the analytic workspace, and the AGGREGATE function triggers the 
calculation of the remaining summary data on the fly. An object called an aggmap 
identifies the areas of a cube that are calculated by the AGGREGATE command.

When you create a forecast measure, you create a formula that uses the AGGREGATE 
function to calculate forecast aggregates on the fly. It only calculates those areas of the 
cube that are not identified in the aggmap as precalculated by an AGGREGATE 
command. Because the Maintenance Wizard does not load data or precalculate the 
variable that stores the data for the forecast measure, you must execute the 
appropriate AGGREGATE command manually.

See Also: Oracle OLAP DML Reference for descriptions of the various 
forecasting methods, information about querying forecast trials, and 
the full syntax of these commands and functions. 



Case Study: Forecasting Global Sales

4-4 Oracle OLAP Application Developer’s Guide

The name of the aggmap, which has the form OBJnnnnnnnn, is identified in the 
formula. The AGGREGATE command has this form:

AGGREGATE variable USING aggmap [COUNTVAR counter]

Where:

variable is a MEASURE_STORED object

aggmap is an AGGREGATIONDFN object

counter is a MEASURE_COUNTVAR object

Appendix A describes these standard form objects.

Case Study: Forecasting Global Sales
This example adds a measure named Sales Forecast to the Units cube.

In the Global analytic workspace, there are 65 historical periods (Jan-98 to Jun-04) 
and 18 forecast periods (Jul-04 to Dec-05) already loaded from the Global relational 
schema.

Defining the Sales Forecast Measure for Global Sales
Take these steps to create a measure for Sales Forecast:

1. Expand the UNITS_CUBE folder so that you can see its subfolders: Dimensions, 
Measures, and Calculated Measures.

2. In the UNITS_CUBE folder, right-click Measures and choose Create Measure from 
the pop-up menu.

3. Create a measure named SALES_FORECAST with a decimal data type. Use the 
aggregation specification from the cube.

Note: Do not map this measure to a data source.

This procedure creates several objects in the analytic workspace. The UNITS_CUBE_
SALES_FORECAST_STORED variable is the target for the forecast, and it will store the 
forecast results.

Defining a Variable for Seasonal Adjustment
The Global Sales Forecast will use seasonal adjustment.

To create a variable for the OLAP engine to use when adjusting for seasonality, take 
these steps:

1. In the Object View, expand the folder for the Global analytic workspace.

2. Right-click the Variables folder and choose Create Variable from the pop-up 
menu.

3. On the Basic tab, specify the name UNITS_CUBE_SALES_FORECAST_SEASONAL 
and the Short Decimal data type.

4. On the Dimensions tab, select TIME, CUSTOMER, PRODUCT, and CHANNEL, in this 
order to match the dimension order of UNITS_CUBE_SALES_FORECAST_STORED.

5. Choose Create.



Case Study: Forecasting Global Sales

Predicting Future Performance 4-5

Developing a Forecasting Program for Global Sales
Example 4–2 shows a program named FORECAST_SALES, which forecasts sales 
revenue. You can use this program as the basis of forecast programs in other analytic 
workspaces.

Although the program contains numerous commands, only four of them are used to 
define and execute the forecast. The default forecast method is AUTOMATIC, which 
uses the best method based on the historical data. 

Historical and Forecast Time Periods
Because the base time period in Global is a month, seasonal adjustments are based on 
a 12-period cycle. The program uses the INTEGER argument of the LIMIT function to 
obtain the numeric position of the last historical time period, and sets the status of 
TIME relative to that position.

The program arguments, along with some preset local variables, are used to select the 
dimension members used to generate the forecast. All dimensions are limited to the 
base level. 

The FORECAST_SALES Program
You can define a program directly in the Global analytic workspace, or you may prefer 
to create a separate analytic workspace with your custom programs. Be sure to work 
in the Object View, not in the Model View.

To create and compile the FORECAST_SALES program, take these steps:

1. In the Object View, expand the Global analytic workspace folder.

2. Right-click Programs and choose Create Program from the pop-up menu.

3. On the Basic tab, type the name FORECAST_SALES.

4. On the Program tab, cut-and-paste the program code shown in Example 4–2.

5. Click Create. 

FORECAST_SALES appears in the Programs folder. 

6. Make whatever changes you want to the program, then click Compile.

Make whatever corrections are needed to compile the program.

Example 4–2 Forecasting Program for Global Sales

ARG _method                TEXT   " Forecasting method
ARG _last_time             TEXT   " Long desc of last hist time period
ARG _histperiods           INT    " Number of historical periods
ARG _fcast_periods         INT    " Number of forecast periods
ARG _periodicity           INT    " Number of periods in a cycle
VARIABLE _time_level       TEXT   " Base level of time dimension
VARIABLE _channel_level    TEXT   " Base level of channel dimension
VARIABLE _product_level    TEXT   " Base level of product dimension
VARIABLE _customer_level   TEXT   " Base level of customer dimension
VARIABLE _last_time_pos    INT    " Numeric position of _last_time in time dim
VARIABLE _handle           INT    " Forecast handle
 
TRAP ON OOPS              " Divert processing on error to OOPS label
 
" Set default values for args
if _method eq na
  then _method = 'AUTOMATIC'



Case Study: Forecasting Global Sales

4-6 Oracle OLAP Application Developer’s Guide

if _last_time eq na
  then _last_time = 'Jun-04'
if _histperiods eq na
  then _histperiods = 48
if _fcast_periods eq na
  then _fcast_periods = 18
if _periodicity eq na
  then _periodicity = 12
 
" Identify base levels of dimensions (Product is value-based)
 _time_level='MONTH'
 _channel_level='CHANNEL'
 _customer_level='SHIP_TO'
 
" Set dimension status to base level
PUSH time channel product customer
LIMIT channel TO channel_levelrel EQ _channel_level
LIMIT product TO all
LIMIT customer TO customer_levelrel EQ _customer_level
LIMIT time TO time_levelrel EQ _time_level
 
" Check time parameters of forecast and refine status of time dimension
_last_time_pos = LIMIT(INTEGER time TO time_long_description EQ _last_time)
IF _histperiods + _fcast_periods GT STATLEN(time)
  THEN SIGNAL toosmall 'You specified more time periods than are defined.'
IF _last_time_pos - _histperiods lt 0
  THEN SIGNAL nohist 'You specified too many historical periods.'
IF _last_time_pos + _fcast_periods GT STATLAST(time)
  THEN SIGNAL nofuture 'You specified too many forecast periods.'
  ELSE LIMIT time KEEP -
     (_last_time_pos - _histperiods + 1) TO (_last_time_pos + _fcast_periods)
 
" Run the forecast
_handle = FCOPEN('sales')
FCSET _handle METHOD _method HISTPERIODS _histperiods PERIODICITY _periodicity
FCEXEC _handle TIME time INTO units_cube_sales_forecast_stored -
  SEASONAL units_cube_sales_forecast_seasonal units_cube_sales
FCCLOSE _handle
POP time channel product customer
RETURN
 
OOPS:
SHOW 'Program ended in an error.'

Generating the Global Sales Forecast
To execute the forecast, take these steps:

1. Open OLAP Worksheet by choosing OLAP Worksheet from the Tools menu.

2. Run the program using a command such a this one:

CALL forecast_sales

3. Save the forecast results by typing these commands:

UPDATE
COMMIT



Case Study: Forecasting Global Sales

Predicting Future Performance 4-7

The FORECAST_SALES program takes five arguments:

■ The forecasting method (AUTOMATIC, LINREF, NLREL1 to NLREG5, SESMOOTH, 
DESMOOTH, or HOLT/WINTERS). These methods are described in the Oracle OLAP 
DML Reference.

■ The long description of the last time period with historical data.

■ The number of historical periods to be used in the forecast.

■ The number of periods to forecast.

■ The number of periods in a seasonal cycle.

Default values are set for these program arguments, so that they can be omitted from 
the command line as shown in the previous steps. These are some additional ways that 
you can run this program:

CALL forecast_sales('holt/winters')
CALL forecast_sales(na, na, 36, 6)

Because arguments are passed sequentially to the program, you may need to pass an 
NA as a placeholder value for some arguments, as shown in the last example. Later 
arguments can simply be omitted.

Aggregating the Sales Forecast Measure
To aggregate the forecast measure, take these steps:

1. From the Tools menu, choose OLAP Worksheet.

2. Use the DESCRIBE command to view the equation for the UNITS_CUBE_SALES_
FORECAST formula.

DESCRIBE units_cube_sales_forecast

DEFINE UNITS_CUBE_SALES_FORECAST FORMULA DECIMAL <TIME CUSTOMER PRODUCT 
CHANNEL>
EQ aggregate(this_aw!UNITS_CUBE_SALES_FORECAST_STORED using this_aw!-
OBJ248542689 COUNTVAR this_aw!UNITS_CUBE_SALES_FORECAST_COUNTVAR)

3. Issue a command like this one to aggregate the SALES_FORECAST measure:

AGGREGATE units_cube_sales_forecast_stored USING OBJ248542689

4. Save the summary data by typing these commands:

UPDATE
COMMIT

In the Model View, right-click SALES_FORECAST and choose View Data from the 
pop-up menu. Verify that the forecast results have been calculated, as shown in 
Figure 4–1.



Case Study: Forecasting Global Sales

4-8 Oracle OLAP Application Developer’s Guide

Figure 4–1 SALES_FORECAST displayed in Measure Data Viewer



Developing Java Applications for OLAP 5-1

5
Developing Java Applications for OLAP

This chapter presents the rich development environment and the powerful tools that 
you can use to create OLAP applications in Java. It includes the following topics:

■ Building Analytical Java Applications

■ Introducing OracleBI Beans

■ Understanding the OLAP API

■ Managing Data Sources for OracleBI Beans and the OLAP API

■ Building Java Applications that Manage Analytic Workspaces

For information about SQL access to analytic workspaces, refer to the Oracle OLAP 
Reference.

Building Analytical Java Applications
Java is the language of the Internet. Using Java, application developers can write 
standalone Java applications (which can be launched from a browser with Java's 
WebStart technology) or HTML applications that access live data from Oracle 
Database, through servlets, JavaServer Pages (JSP), and Oracle User Interface XML 
(UIX).

About Java
Java is the preferred programming language for an ever-increasing number of 
professional software developers. For those who have been programming in C or C++, 
the move to Java is easy because it provides a familiar environment while avoiding 
many of the shortcomings of the C language. Developed by Sun Microsystems, Java is 
fast superseding C++ and Visual Basic as the language of choice for application 
developers, for the following reasons:

■ Object oriented. Java enables application developers to focus on the data and 
methods of manipulating that data, rather than on abstract procedures; the 
programmer defines the desired object rather than the steps needed to create that 
object. Almost everything in Java is defined as an object.

■ Platform independent. The Java compiler creates byte code that is interpreted at 
runtime by the Java Virtual Machine (JVM). As the result, the same software can 
run on all Windows, Linux, Unix, and Macintosh platforms where the JVM has 
been installed. All major browsers have the JVM built in.

■ Network based. Java was designed to work over a network, which enables Java 
programs to handle remote resources as easily as local resources. 



Building Analytical Java Applications

5-2 Oracle OLAP Application Developer’s Guide

■ Secure. Java code is either trusted or untrusted, and access to system resources is 
determined by this characteristic. Local code is trusted to have full access to 
system resources, but downloaded remote code (that is, an applet) is not trusted. 
The Java "sandbox" security model provides a very restricted environment for 
untrusted code.

The Java Solution for OLAP
To develop an OLAP application, you can use the Java programming language. Java 
enables you to write applications that are platform-independent and easily deployed 
over the Internet.

The OLAP API is a Java-based application programming interface that provides access 
to dimensional data for analytical business applications. Java classes in the OLAP API 
provide all of the functions required of an OLAP application: Connection to an OLAP 
instance; authentication of user credentials; access to data in the RDBMS controlled by 
the permissions granted to those credentials; and selection and manipulation of that 
data for business analysis.

OracleBI Beans simplifies application development by providing these functions as 
JavaBeans. Moreover, OracleBI Beans includes JavaBeans for presenting the data in 
graphs and crosstabs.

The OLAP API has a companion interface that can be used to build applications for 
OLAP DBAs. The OLAP Analytic Workspace Java API is a set of Java classes and an 
XML schema for designing, building, and updating analytic workspaces in the Oracle 
Database. For more information, see "Building Java Applications that Manage Analytic 
Workspaces" on page 5-7.

Oracle Java Development Environment
Oracle JDeveloper provides an integrated development environment (IDE) for 
developing Java applications. Although third-party Java IDEs can also be used 
effectively, only JDeveloper achieves full integration with the Oracle Database and 
OracleBI Beans wizards. The following are a few JDeveloper features: 

■ Remote graphical debugger with break points, watches, and an inspector.

■ Multiple document interface (MDI)

■ Codecoach feature that helps you to optimize your code

■ Generation of 100% Pure Java applications, applets, servlets, Java beans, and so 
forth with no proprietary code or markers

■ Oracle Database browser

Note: Oracle JDeveloper and OracleBI Beans are not packaged 
with the Oracle RDBMS.

Note: Oracle JDeveloper is an application and is not packaged 
with Oracle Database.



Introducing OracleBI Beans

Developing Java Applications for OLAP 5-3

Introducing OracleBI Beans
OracleBI Beans provides reusable components that are the basic building blocks for 
OLAP decision support applications. Using OracleBI Beans, developers can rapidly 
develop and deploy new applications, because these large functional units have 
already been developed and tested — not only for their robustness, but also for their 
ease of use. And because OracleBI Beans provides a common look and feel to OLAP 
applications, the learning curve for end users is greatly reduced. 

OracleBI Beans includes the following:

■ Presentation beans display the data in a rich variety of formats so that trends and 
variations can easily be detected. Among the presentation beans currently 
available are Graph and Crosstab.

■ Data beans acquire and manipulate the data. The data beans use the OLAP API to 
connect to a data source, define a query, manipulate the resultant data set, and 
return the results to the presentation beans for display. Data beans include a 
QueryBuilder, a CalcBuilder, and a Metadata Manager.

■ Persistence Service is a set of packages that support the storage and retrieval of 
objects in the OracleBI Beans Catalog, not only so that you can save your work, 
but also so that you can share the work with others who have access to the 
Catalog. 

OracleBI Beans can be incorporated in a Java client or an HTML client application. 
Java clients best support users who do immersed analyses, that is, use the system for 
extensive periods of time with a lot of interaction. For example, users who create 
reports benefit from a Java client. HTML clients best support remote users who use a 
low bandwidth connection and have basic analytical needs. Thin clients can be 
embedded in a portal or other Web site for these users.

Metadata
The OLAP API and OracleBI Beans use the logical model that is projected by the 
Active Catalog to obtain the information they need about dimensional objects defined 
in analytic workspaces. They use OLAP Catalog metadata to obtain information about 
dimensional objects defined in Oracle relational data warehouses. 

OracleBI Beans generates additional metadata to support its additional functionality. 
This additional metadata is contained in the OracleBI Beans Catalog. The Metadata 
Manager presents applications with a consolidated view of metadata from the Active 
Catalog, OLAP Catalog, and the OracleBI Beans Catalog. For example, in the 
QueryBuilder, the measures obtained from the Active Catalog and the custom 
measures obtained from the OracleBI Beans Catalog appear together.

Navigation
The presentation beans support navigation techniques such as drilling, pivoting, and 
paging. 

■ Drilling displays lower-level values that contribute to a higher-level aggregate, 
such as the cities that contribute to a state total. 

■ Pivoting rotates the data cube so that the dimension members that labeled a graph 
series now label groups, or the dimension members that labeled columns in a 
crosstab now label rows instead. For example, if products label the rows and 
regions label the columns, then you can pivot the data cube so that products label 
the columns and regions label the rows.



Introducing OracleBI Beans

5-4 Oracle OLAP Application Developer’s Guide

■ Paging handles additional dimensions by showing each member in a separate 
graph, crosstab, or table rather than nesting them in the columns or rows. For 
example, you might want to see each time period in a separate graph rather than 
all time periods on the same graph.

Formatting
The presentation beans enable you to change the appearance of a particular display. In 
addition, the values of the data itself can affect the format.

■ Number formatting. Numerical displays can be modified by changing their scale, 
number of decimal digits and leading zeros, currency symbol, negative notation, 
and so forth. 

■ Stoplight formatting. The formatting of the cell background color, border, font, 
and so forth can be data driven so that outstanding or problematic results stand 
out visually from the other data values.

Graphs
The Graph bean presents data in a large selection of two- and three-dimensional 
business graph types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and 
stock market. Most graph types have several subtypes, such as clustered bar, stacked 
bar, and percent bar. 

Bar, line, and area graphs can be combined so that individual rows in the data cube 
can be specified as one of these graph types. You can also assign marker shape and 
type, data line type, color, fill color, and width and on a row-by-row basis, depending 
on the type of graph.

The graph image can be exported in PNG and other image formats. 

Users can zoom in and out of selected areas of a graph. They can also scroll across the 
axes.

Crosstabs
The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet. 
Multiple dimensions can be nested along the rows or columns, and additional 
dimensions can appear as separate pages. Among the available customizations are: 
Font style, size, and color; data-driven formatting, stoplight reporting, and 
underlining; individual cell background colors; border formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard.

Data Beans
The data beans use the OLAP API to provide the basic services needed by an 
application. They enable clients to identify a database, present credentials for 
accessing that database, and make a connection. The application can then access the 
metadata and identify the available data. Users can select the measures they want to 
see and the specific slice of data that is of interest to them. That data can then be 
modified and manipulated.

Wizards
OracleBI Beans offers wizards that can be used both by application developers in 
creating an initial environment and by end users in customizing applications to suit 



Understanding the OLAP API

Developing Java Applications for OLAP 5-5

their particular needs. The wizards lead you step-by-step so that you provide all of the 
information needed by an application. The following are some of the tasks that can be 
done using wizards.

■ Building a query. Fact tables and materialized views often contain much more 
data than users are interested in viewing. Fetching vast quantities of data can also 
degrade performance unnecessarily. In addition to selecting measures, you can 
limit the amount of data fetched in a query by selecting dimension members from 
a list or using a set of conditions. Selections can be saved, and these saved 
selections can be used again just by picking their names from a list. 

OracleBI Beans takes advantage of all of the new OLAP functions in the database, 
including ranking, lag, lead, and windowing. End users can create powerful 
queries that ask sophisticated analytical questions, without knowing SQL at all.

■ Generating custom measures. You can define new "custom" measures whose 
values are calculated from data stored within the database. For example, a user 
might create a custom measure that shows the percent of change in sales from a 
year ago. The data in the custom measure would be calculated using the lag 
method on data in the Sales measure. Because a DBA cannot anticipate and create 
all of the calculations required by all users, OracleBI Beans enables users to create 
their own. 

JSP Tag Library
OracleBI Beans includes an extensive JSP tag library that enables the development of 
applications without writing custom code. After you use wizards to create the 
presentations that are needed for an application, you can use JSP tags to insert the 
presentations in HTML pages and to create additional pages for the user interface. 

The tags in this library are grouped in the following categories:

■ General tags. Used to represent objects such as graphs, crosstabs, formatting tools, 
explorers for the OracleBI Beans Catalog, and controls for displaying messages; 
also includes a tag that lets you link the queries of graphs and crosstabs. 

■ Dialog and wizard tags. Used to create user interface elements that let end users 
manipulate presentations. For example, these tags let users change the type of a 
graph or export crosstab data.

■ List tags. Used to create lists that let end users perform the following kinds of 
tasks: Modify queries by selecting dimensions or measures; browse for graphs or 
crosstabs in the Catalog; and navigate pages in an application.

OracleBI Beans also includes an extensive UIX tag library.

Understanding the OLAP API
OLAP applications typically have object-oriented user interfaces where users 
manipulate objects that represent organized groupings of their data. Thus, there is a 
natural relationship between an object-oriented user interface and an object-oriented 
API such as the Oracle OLAP API. The OLAP API exploits this natural relationship by 
providing objects that match the end-user behavior that an application needs.

Object-oriented languages such as Java manipulate data by applying methods on 
objects. This approach enables the objects to maintain a current state and support 
incremental modifications to that state. This approach provides excellent support for 
common OLAP actions such as drill and rotate.



Understanding the OLAP API

5-6 Oracle OLAP Application Developer’s Guide

For example, a central activity for users of OLAP applications is refining queries. A 
user has a question in mind and devises a query to answer that question. In most 
cases, the initial results of the query prompt the user to want to dig deeper for a 
solution, perhaps by drilling to see more detailed data or by rotating the report to 
highlight correlations in the data. The OLAP API is able to use the result of one query 
as the input to the next query.

How the OLAP API Accesses Dimensional Data
The OLAP API accesses the data through OLAP metadata. The application does not 
need to be aware of whether the data is located in relational tables or in an analytic 
workspace, nor does it need to know the mechanism for accessing that data.

Oracle OLAP translates all queries from the OLAP API into SQL; when a query is 
issued through the OLAP API, the SQL generator in Oracle OLAP issues a SELECT 
statement against a relational table or view. (When the data is stored in an analytic 
workspace, the relational view is dynamically generated during the query.) This has 
several advantages for application developers:

■ The difficult task of writing the complex SQL needed to resolve dimensional 
queries, and even more difficult task of optimizing that complex SQL, is left for 
Oracle OLAP to do. Application developers can be more productive writing in the 
OLAP API, which is designed for OLAP. 

■ Updates to SQL and the OLAP DML will be incorporated into new versions of the 
OLAP API. Applications can make use of new analytic and performance features 
without recoding.

As an alternative access method, the OLAP API provides a way for a Java application 
to directly manipulate workspace data, without the need for any metadata and 
without the use of the OLAP API data manipulation classes. The Java application uses 
the SPLExecutor class in the OLAP API to send DML commands directly to Oracle 
OLAP for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens the 
workspace, accesses the data (either through MDM metadata or through 
SPLExecutor), closes the workspace, and closes the connection. 

Calculation Capabilities
The OLAP API generates SQL commands to select and manipulate data stored in the 
relational tables or views. When the data is stored in an analytic workspace, the 
computational power of the OLAP engine can be used to manipulate the data, 
including:

■ Modeling

■ Forecasting

■ What-if scenarios

When the data is stored in a star or snowflake schema, the SQL commands generated 
by the OLAP API can include the "N-pass" functions, such as RANK, PERCENTILE, 
TOPN, BOTTOMN, LAG, LEAD, SUM, AVG, MIN, MAX, COUNT, and STDDEV. Data fetches 

See Also:

■ Oracle OLAP Developer's Guide to the OLAP API

■ Oracle OLAP Java API Reference



Building Java Applications that Manage Analytic Workspaces

Developing Java Applications for OLAP 5-7

use many database innovations, including concatenated rollup, scrollable cursors, and 
query rewrite.

The OLAP API provides expanded calculation capabilities beyond those that can be 
handled efficiently in other OLAP solutions, such as:

■ Totals broken out by multiple attributes

■ Suppression of NA and zero rows, columns, and pages 

■ Union dimensions

■ Measures as dimensions

■ Inter-row calculations such as the following book-to-bill ratio:

Balance(Account "BOOKED", Period "PRIOR")/ Balance(Account "BILLED", Period 
"LAST")

■ Asymmetric queries

Intelligent Caching
Analytical queries are by nature iterative. An analyst formulates a query, sees the 
results, and then formulates other queries based on those results. Since the likelihood 
is very high in business analysis of needing the same data to answer subsequent 
queries, the OLAP API caches the metadata so that it is available throughout the 
session without fetching it again. Moreover, the OLAP API defines the result set of a 
query geometrically. Using multidimensional cursors, the OLAP API can randomly 
access disparate regions of the result set. This enables an application to retrieve just the 
data currently of interest instead of all of the data in the result set. For example, you 
might scroll to the end of a page without having to fetch all of the data on the page.

Managing Data Sources for OracleBI Beans and the OLAP API
Applications built using OracleBI Beans and the OLAP API can have as a data source 
either an analytic workspace or a relational schema (star or snowflake). This guide is 
written primarily to describe the creation and management of analytic workspaces. 
However, the information for creating a relational data warehouse for use by OracleBI 
Beans and the OLAP API is also contained here.

Take these steps if you plan to use a star or snowflake schema as the data source for 
OLAP applications, and you do not plan to create an analytic workspace:

1. Create CWM1 or CWM2 metadata as described in "Overview of the OLAP Catalog" 
on page 7-3.

2. Using a SQL command processor such as SQL*Plus, issue this command to make 
the metadata accessible to OracleBI Beans.

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_REFRESH

3. Create materialized views as described in Chapter 8.

Building Java Applications that Manage Analytic Workspaces
The Analytic Workspace application programming interface is a companion API to the 
OLAP API and OracleBI Beans. You can use the Analytic Workspace API to build Java 
applications that create and maintain analytic workspaces.

The Analytic Workspace API provides a set of Java classes that:



Building Java Applications that Manage Analytic Workspaces

5-8 Oracle OLAP Application Developer’s Guide

■ Create a logical dimensional model of cubes, dimensions, measures, and attributes

■ Define a set of mappings for loading data from relational columns into objects in 
the logical model

■ Define the aggregation rules for data in the logical model

■ Define advanced analytics such as allocations, forecasts, and models on objects in 
the logical model

■ Instantiate the logical model in an analytic workspace

The Analytic Workspace API supports two deployment modes: It can be embedded in 
a Java application; or it can be used to generate XML that is executable by the DBMS_
AW_XML.EXECUTE PL/SQL function. DBMS_AW_XML.EXECUTE can process any XML 
document that has been validated against the OLAP XML schema.

See Also:

■ Oracle OLAP Analytic Workspace Java API Reference

■ Oracle OLAP Reference for information on DBMS_AW_
XML.EXECUTE



Administering Oracle OLAP 6-1

6
Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with Oracle 
OLAP. It contains the following topics:

■ Administration Overview

■ Creating Tablespaces for Analytic Workspaces

■ Setting Up User Names

■ Initialization Parameters for Oracle OLAP

■ Initialization Parameters for OracleBI Beans

■ Permitting Access to External Files

■ Understanding Data Storage

■ Monitoring Performance

Administration Overview
Because Oracle OLAP is contained in the database and its resources are managed 
using the same tools, the management tasks of Oracle OLAP and the database 
converge. Nonetheless, a database administrator or applications developer needs to 
address management tasks in the specific context of Oracle OLAP, in addition to 
creating and maintaining analytic workspaces. Following is a list of these tasks.

■ Tablespaces. Create permanent and temporary tablespaces to prevent I/O 
bottlenecks, as described in "Creating Tablespaces for Analytic Workspaces" on 
page 6-2. 

■ Security. Users of OLAP applications must have database identities that have 
been granted the appropriate access rights. For users to have access to files, you 
must define directory objects and grant users access to them. Refer to "Setting Up 
User Names" on page 6-4.

■ Database configuration. Set initialization parameters to optimize performance, as 
described in "Initialization Parameters for Oracle OLAP" on page 6-6 and 
"Initialization Parameters for OracleBI Beans" on page 6-7.

■ Performance. Database monitoring tools can identify recommended changes to 
the database configuration based on past usage, as described in "Monitoring 
Performance" on page 6-11.

See Also: Oracle Database Administrator's Guide for detailed 
information about managing Oracle Database.



Creating Tablespaces for Analytic Workspaces

6-2 Oracle OLAP Application Developer’s Guide

Creating Tablespaces for Analytic Workspaces
Before you create an analytic workspace, you should create undo, permanent, and 
temporary tablespaces dedicated to their use. Analytic workspaces are created in the 
user's default tablespace, unless the user specifies otherwise. The default tablespace 
for all users is set initially to SYS. Creating analytic workspaces in the SYS tablespace 
can degrade overall performance. Similarly, analytic workspaces should not share 
tablespaces with relational tables, especially not the source schema.

Oracle OLAP makes heavy use of temporary tablespaces, so it is particularly 
important that they be set up correctly to prevent I/O bottlenecks.

If possible, you should stripe the data files and temporary files across as many 
controllers and drives as are available.

Creating an UNDO Tablespace
The following SQL commands create an undo tablespace.

CREATE UNDO TABLESPACE tablespace DATAFILE 'pathname' 
     SIZE size REUSE AUTOEXTEND ON NEXT size
     MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

Where:

tablespace is the name of the tablespace
pathname is the fully qualified file name
size is an appropriate number of bytes

For example:

CREATE UNDO TABLESPACE olapundo DATAFILE '$ORACLE_HOME/oradata/undo.dbf'
    SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
    MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

After creating the undo tablespace, change your system parameter file to include these 
settings, then restart the database as described in "Initialization Parameters for Oracle 
OLAP" on page 6-6.

UNDO_TABLESPACE=tablespace
UNDO_MANAGEMENT=AUTO

Creating a Permanent Tablespace for Analytic Workspaces
When a user creates an analytic workspace, it is created in the user's default 
tablespace, which is initially set to the SYS tablespace. The following SQL statements 
create a tablespace appropriate for storing analytic workspaces. 

CREATE TABLESPACE tablespace DATAFILE 'pathname'
    SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED
    EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER USER username DEFAULT TABLESPACE tablespace

Where:

tablespace is the name of the tablespace
pathname is the fully qualified file name
size is an appropriate number of bytes
username is the name of a database user



Creating Tablespaces for Analytic Workspaces

Administering Oracle OLAP 6-3

For example:

CREATE TABLESPACE glo DATAFILE '$ORACLE_HOME/oradata/glo.dbf'
   SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED
   EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

If your computer has multiple disks, then you can stripe the tablespace across them. 
The next example shows SQL statements that distribute the GLO tablespace across 
three physical disks:

CREATE TABLESPACE glo DATAFILE 
   'disk1/oradata/glo1.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M
   EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE glo ADD DATAFILE 
   'disk2/oradata/glo2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M,
   'disk3/oradata/glo3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED;

Creating a Temporary Tablespace for Analytic Workspaces
Oracle OLAP uses temporary tablespace to store all changes to the data in an analytic 
workspace, whether the changes are the result of a data load, what-if analysis, 
forecasting, aggregation, or some other analysis. An OLAP DML UPDATE command 
moves the changes into the permanent tablespace and clears the temporary tablespace.

Oracle OLAP also uses temporary tablespace to maintain different generations of an 
analytic workspace. This enables it to present a consistent view of the analytic 
workspace when one or more users are reading it while the contents are being 
updated. This usage creates numerous extensions within the tablespace, so be sure to 
specify a small EXTENT MANAGEMENT size. 

The following commands create a temporary tablespace suitable for use by Oracle 
OLAP.

CREATE TEMPORARY TABLESPACE tablespace TEMPFILE 'pathname' 
   SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED
   EXTENT MANAGEMENT LOCAL UNIFORM SIZE size;

Where:

pathname is a fully qualified file name
size is an appropriate number of bytes
tablespace is the name of the tablespace
username is a database user

For example:

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE '$ORACLE_HOME/oradata/glotmp.tmp'
   SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
   EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

You can stripe temporary tablespaces across several disks the same as permanent 
tablespaces. The next example shows the GLOTMP temporary tablespace striped across 
three physical disks.

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE 
   'disk1/oradata/glotmp1.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE 1024M
   EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

ALTER TABLESPACE glotmp ADD TEMPFILE 
   'disk2/oradata/glotmp2.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE 1024M,
   'disk3/oradata/glotmp3.tmp' SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED;



Setting Up User Names

6-4 Oracle OLAP Application Developer’s Guide

Querying the Size of an Analytic Workspace
To find out the size of the tablespace extensions for a particular analytic workspace, 
use the following SQL statements:

COLUMN DBMS_LOB.GETLENGTH(AWLOB) HEADING "Bytes";
SELECT EXTNUM, SUM(DBMS_LOB.GETLENGTH(AWLOB)) FROM AW$awname GROUP BY EXTNUM;

Where:

awname is the name of the analytic workspace.

Setting Up User Names
To connect to the database, a user must present a user name and password that can be 
authenticated by database security. All users must have the CONNECT role. The 
additional privileges associated with that user name control the user's access to data. 
As a database administrator, you must set up user names with appropriate credentials 
for all users of Oracle OLAP applications.

You can define user names and grant them these rights from the Users General Page of 
Oracle Enterprise Manager Database Control or by using SQL commands.

Two roles are defined on installation of the database explicitly to support Oracle 
OLAP:

■ OLAP_USER role provides users with the privileges to create, manage, or access 
standard form analytic workspaces. All OLAP users should have the OLAP_USER 
role or equivalent privileges.

■ OLAP_DBA role provides a DBA or system administrator with privileges to create 
CWM metadata for relational tables. The OLAP_DBA role is granted with the DBA 
role.

SQL Access For DBAs and Application Developers
To use Analytic Workspace Manager, users must be granted the OLAP_USER role. 
They also need SELECT privileges on the source schema tables, and an unlimited 
quota on the tablespace in which the workspace is created. Example 6–1 shows the 
SQL statements for creating the GLOBAL_AW user.

Example 6–1 SQL Statements for Creating the GLOBAL_AW User 

CREATE USER 'GLOBAL_AW' IDENTIFIED BY 'global_aw'
   DEFAULT TABLESPACE glo 
   TEMPORARY TABLESPACE glotmp
   QUOTA UNLIMITED ON glo
   ACCOUNT UNLOCK;

GRANT SELECT ON global.channel_dim TO global_aw;
GRANT SELECT ON global.customer_dim TO global_aw;
GRANT SELECT ON global.product_dim TO global_aw;
GRANT SELECT ON global.time_dim TO global_aw;
GRANT SELECT ON global.price_and_cost_history_fact TO global_aw;
GRANT SELECT ON global.price_and_cost_update_fact TO global_aw;
GRANT SELECT ON global.units_history_fact TO global_aw;
GRANT SELECT ON global.units_update_fact TO global_aw;

See Also: Oracle Database SQL Reference for more information 
about granting privileges.



Setting Up User Names

Administering Oracle OLAP 6-5

SQL Access for Analysts
To access an existing analytic workspace, users must have these access privileges on 
the table in which the workspace is stored: 

■ To read from the analytic workspace, SELECT privileges.

■ To write to the analytic workspace, SELECT, INSERT, and UPDATE privileges.

Note that the name of the table is the same as the name of the analytic workspace, with 
the addition of an AW$ prefix. For example, the GLOBAL analytic workspace is stored in 
the AW$GLOBAL relational table.

For users to access views of workspace data, they must be granted EXECUTE privileges 
explicitly on those views.

Example 6–2 shows the SQL statements that gives all users read-only privileges to the 
GLOBAL analytic workspace, and user SCOTT read/write privileges.

Example 6–2 Granting Access Rights to the GLOBAL Analytic Workspace

GRANT SELECT ON global_aw.aw$global TO public;
GRANT INSERT ON global_aw.aw$global TO scott;
GRANT UPDATE ON global_aw.aw$global TO scott;

Access to Database Objects Using OracleBI Beans
To connect to a database using OracleBI Beans, users must have the following access 
rights:

■ CONNECT role

■ QUERY REWRITE system privilege (for relational tables)

■ SELECT privileges on the database objects containing the data to be analyzed, 
whether the data is stored in an analytic workspace or in relational tables. Refer to 
the previous topic, "SQL Access for Analysts", for information about granting 
access to analytic workspaces.

Access to the Oracle JVM
Users who want to author or execute Analytic Workspace Java API applications 
within the Oracle Java Virtual Machine (JVM) may need the following Java 
permissions, in addition to the OLAP_DBA or OLAP_USER role:

You can grant these permissions in either Java or SQL.

Table 6–1 Java Permissions

Permission Type Action

java.io.FilePermission read, write, execute

java.util.PropertyPermission read, write

java.net.SocketPermission connect, resolve

java.lang.RuntimePermission null



Initialization Parameters for Oracle OLAP

6-6 Oracle OLAP Application Developer’s Guide

Initialization Parameters for Oracle OLAP
Table 6–2 identifies the parameters that affect the performance of Oracle OLAP. Alter 
your server parameter file or init.ora file to these values, then restart your database 
instance. You can monitor the effectiveness of these settings and adjust them as 
necessary.

These recommendations assume that the computer is dedicated to Oracle Database, 
and Oracle Database is used predominately (if not exclusively) for OLAP. If you want 
to reserve some resources for other applications, then first calculate the percent of 
resources that are available to Oracle Database. For example, if your computer has 4G 
of physical memory and you want to reserve 25% for other applications, then you 
would calculate SGA_TARGET and PGA_AGGREGATE_TARGET based on 75% of 4G, 
which is 3G. 

Procedure: Setting System Parameters for OLAP
Take the following steps to set system parameters:

1. Open the init.ora initialization file in a text editor.

2. Add or change the settings in the file.

For example, you might enter a command like this so that Oracle can write files to 
the olapscripts directory:

utl_file_dir=c:\olapscripts

See Also:

■ Oracle Database Java Developer's Guide for information about Oracle 
JVM security and Java permissions

■ Oracle OLAP Analytic Workspace Java API Reference for information 
about using this Java API

Table 6–2 Initial Settings for Database Parameter Files

Parameter Setting

JOB_QUEUE_PROCESSES Number of CPUs, plus one additional process for every 
three CPUs

For example, JOB_QUEUE_PROCESSES=5 for a 
four-processor computer

PGA_AGGREGATE_TARGET 25% of physical memory (increase up to 50% for builds 
and major query operations) 

SGA_TARGET 50% of physical memory

SESSIONS 2.5 * maximum number of simultaneous OLAP users

UTL_FILE_DIR Directory path where the Oracle Database can write to a 
file.

UNDO_MANAGEMENT AUTO

UNDO_TABLESPACE Name of the undo tablespace, which must be defined 
first as shown in "Creating an UNDO Tablespace" on 
page 6-2

See Also: Oracle Database Performance Tuning Guide for 
information about these parameters.



Permitting Access to External Files

Administering Oracle OLAP 6-7

3. Stop and restart the database, using commands such as the following. Be sure to 
identify the initialization file in the STARTUP command.

SQLPLUS '/ AS SYSDBA'
SHUTDOWN IMMEDIATE
STARTUP pfile=$ORACLE_HOME/admin/rel10g/pfile/initrel10g.ora

About the PGA_AGGREGATE_TARGET Setting
PGA_AGGREGATE_TARGET helps the OLAP engine determine whether the OLAP page 
pool can grow in response to a session's demand for pages. It is also used by SQL 
statements, particularly when performing SELECT statements with GROUP BY and 
ORDER BY clauses. PGA_AGGREGATE_TARGET can affect the performance of OracleBI 
Beans when selecting data from relational tables. 

Set PGA_AGGREGATE_TARGET initially to 200-400MB, and use the database 
performance monitoring tools to recommend adjustments.

Initialization Parameters for OracleBI Beans
OracleBI Beans performs best when the configuration parameters for the database are 
optimized for its use. During installation of Oracle Database, an OLAP configuration 
table is created and populated with ALTER SESSION commands that have been tested 
to optimize the performance of OracleBI Beans. Each time OracleBI Beans opens a 
session, it executes these ALTER SESSION commands.

If a database instance is being used only to support Java applications that use 
OracleBI Beans, then you can modify your server parameter file or init.ora file to 
include these settings. Alternatively, you might want to include some of the settings in 
the server parameter file and leave others in the table, depending upon how your 
database instance is going to be used. These are your choices:

■ Keep all of the parameters in the configuration table, so that they are set as part of 
the initialization of a OracleBI Beans session. This method fully isolates these 
configuration settings solely for OracleBI Beans. (Default)

■ Add some of the configuration parameters to the server parameter file or 
init.ora file, and delete those rows from the configuration table. This is useful if 
your database is being used by other applications that require the same settings.

■ Add all of the configuration parameters to the server parameter file or init.ora 
file, and delete all rows from the configuration table. This is the most convenient if 
your database instance is being used only by OracleBI Beans.

Regardless of where these parameters are set, you should check the Oracle Technology 
Network for updated recommendations. 

Permitting Access to External Files
The OLAP DML contains three types of commands that read from and write to 
external files:

■ File read commands that copy data from flat files to workspace objects.

■ Import and export commands that copy workspace objects and their contents to 
files for transfer to another database instance.

See Also: Oracle Database SQL Reference for descriptions of 
initialization parameters that can be set by the ALTER SESSION 
command



Permitting Access to External Files

6-8 Oracle OLAP Application Developer’s Guide

■ File input and output commands that read and execute DML commands from a 
file and redirect command output to a file.

These commands control access to files by using BFILE security. This database 
security mechanism creates a logical directory object to represent a physical disk 
directory. Permissions are assigned to the directory object, which control access to files 
within the associated physical directory. 

You use PL/SQL statements to create a directory object and grant permissions. The 
relevant syntax of these SQL statements is provided in this chapter.

Creating a Directory Object
To create a directory object, you must have CREATE ANY DIRECTORY system 
privileges.

Use a CREATE DIRECTORY statement to create a new directory, or a REPLACE 
DIRECTORY statement to redefine an existing directory, using the following PL/SQL 
syntax:

{CREATE | REPLACE | CREATE OR REPLACE} DIRECTORY directory AS 'pathname';

Where:

directory is the name of the logical directory object
pathname is the physical directory path

Granting Access Rights to a Directory Object
After you create a directory, grant users and groups access rights to the files contained 
in that directory, using the following PL/SQL syntax:

GRANT permission ON DIRECTORY directory TO {user | role | PUBLIC};

Where:

permission is one of the following:

READ for read-only access
WRITE for write-only access
ALL for read and write access

directory is the name of the directory object

user is a database user 

role is a database role

PUBLIC is all database users

Example: Creating and Using a Directory Object
The following SQL commands create a directory object named OLAPFILES to control 
access to a physical directory named /users/oracle/OraHome1/olap and grant 
read access to all users.

CREATE DIRECTORY olapfiles as '/users/oracle/OraHome1/olap';
GRANT READ ON DIRECTORY olapfiles TO PUBLIC;

See Also: Oracle Database SQL Reference under the entries for 
CREATE DIRECTORY and GRANT for the full syntax and usage 
notes.



Understanding Data Storage

Administering Oracle OLAP 6-9

Users access files located in /users/oracle/OraHome1/olap with DML 
commands such as this one:

IMPORT ALL FROM EIF FILE 'olapfiles/salesq2.eif' DATA DFNS

Understanding Data Storage
Oracle OLAP multidimensional data is stored in analytic workspaces, which are, in 
turn, stored in relational tables. An analytic workspace can contain a variety of objects, 
such as dimensions, variables, and OLAP DML programs. These objects typically 
support a particular application or set of data.

Whenever an analytic workspace is created, modified, or accessed, the information is 
stored in a table in the relational database.

Analytic Workspace Tables
Analytic workspaces are stored in tables in the Oracle Database. The names of these 
tables always begin with AW$. 

For example, if the GLOBAL_AW user creates two analytic workspaces, one named 
GLOBAL and the other named GLOBAL_PROGRAMS, then these tables will be created in 
the GLOBAL_AW schema:

AW$GLOBAL
AW$GLOBAL_PROGRAMS

Tables are created by default with eight partitions. You can manage these partitions 
the same as you would for any other table in your database. 

The tables store all of the object definitions and data. Each object in an analytic 
workspace is stored in one or more page spaces, and each page space is stored in a 
separate row of the table. A page space is grouping of related data pages; a page is a 
unit for swapping data in and out of memory. 

For example, a dimension is stored in three page spaces and thus has three rows (one 
each for dimension members, a hash index, and a logical-to-physical map). A variable 
is stored in one row; a partitioned variable has a row for each partition.

Table 6–3 describes the columns of a table that stores an analytic workspace.

Important: These tables are vital for the operation of Oracle 
OLAP. Do not delete them or attempt to modify them directly 
without being fully aware of the consequences.

Table 6–3 Column Descriptions for Analytic Workspace Tables

Column Data Type NULL Description

EXTNUM NUMBER(8) - Extension number

Analytic workspaces are stored in physical 
LOBs (called extensions), which have a 
default maximum size of 500MB. The first 
extension is 0, the second is 1, and so forth.

PS# NUMBER(10) - Page space number

Each object is stored in at least one page 
space.



Understanding Data Storage

6-10 Oracle OLAP Application Developer’s Guide

Table 6–4 shows a few sample rows of an analytic workspace table, which are the 
results of the following query.

SELECT ps#, gen#, objname, partname FROM aw$global WHERE
     OBJNAME = 'TIME' OR
     OBJNAME = 'UNITS_CUBE_UNITS_STORED'
     ORDER BY GEN#, PS#;

System Tables and Views
The SYS user owns several tables and views associated with analytic workspaces: 

AW$EXPRESS
AW$AWMD
AW$AWCREATE
AW$AWCREATE10G
AW$AWXML

GEN# NUMBER(10) - Generation number

A generation (a snapshot of the page space) is 
maintained for each reader to assure a 
consistent view of the analytic workspace 
throughout a session.

AWLOB BLOB - Analytic workspace LOB

Actual storage of the analytic workspace 
object.

OBJNAME VARCHAR2(60) - Object name

The name of the object in the analytic 
workspace.

PARTNAME VARCHAR2(60) - Partition name

A name for the page space in which the object 
is stored. Each object is stored in its own page 
space. A partitioned variable is stored with a 
page space for each partition. The number of 
partitions and their names are specified when 
a partition template is created in the analytic 
workspace.

Table 6–4 Sample Rows From AW$GLOBAL

PS# GEN# OBJNAME PARTNAME

2515 0 TIME TIME

2516 0 TIME TIME

2517 0 TIME TIME

2745 0 UNITS_CUBE_UNITS_STORED UNITS_CUBE_UNITS_STORED

2515 2 TIME TIME

2516 2 TIME TIME

2517 2 TIME TIME

See Also: Oracle OLAP DML Reference for information about 
managing analytic workspaces.

Table 6–3 (Cont.) Column Descriptions for Analytic Workspace Tables

Column Data Type NULL Description



Monitoring Performance

Administering Oracle OLAP 6-11

AW$
PS$

Following are brief descriptions of these objects.

■ AW$EXPRESS stores the EXPRESS analytic workspace. This workspace contains 
objects and programs that support the OLAP DML. The EXPRESS workspace is 
used any time that a session is open.

■ AW$AWCREATE stores the AWCREATE analytic workspace, which contains 
programs for creating and managing standard form analytic workspaces for 
Analytic Workspace Manager 9.2.0.4.

■ AW$AWCREATE10G stores the AWCREATE10G analytic workspace, which contains 
programs for using OLAP Catalog metadata in Analytic Workspace Manager 
10.1.0.3.

■ AW$AWXML stores the AWXML analytic workspace, which contains programs for 
creating and managing standard form analytic workspaces for Analytic 
Workspace Manager 10g.

■ AW$AWMD stores the AWMD analytic workspace, which contains programs for 
creating standard form catalogs.

■ AW$ maintains a record of all analytic workspaces in the database, recording its 
name, owner, and other information.

■ PS$ maintains a history of all page spaces. A page space is an ordered series of 
bytes equivalent to a file. Oracle OLAP manages a cache of workspace pages. 
Pages are read from storage in a table and written into the cache in response to a 
query. The same page can be accessed by several sessions. 

The information stored in PS$ enables the Oracle OLAP to discard pages that are 
no longer in use, and to maintain a consistent view of the data for all users, even 
when the workspace is being modified during their sessions. When changes to a 
workspace are saved, unused pages are purged and the corresponding rows are 
deleted from PS$.

■ ALL_AW_OBJ is a view that lists the current objects in all analytic workspaces to 
which the user has access rights.

■ ALL_AW_PROP is a view that lists the current OLAP DML properties and their 
values in all analytic workspaces to which the user has access rights.

The CWM1 and CWM2 read APIs are tables owned by the OLAPSYS user. Public 
synonyms provide user access to these tables.

Monitoring Performance
Each Oracle Database instance maintains a set of virtual tables that record current 
database activity. These tables are called dynamic performance tables. The dynamic 
performance tables collect data on internal disk structures and memory structures. 
Among them are tables that collect data on Oracle OLAP. By monitoring these tables, 
you can detect usage trends and diagnose system bottlenecks. Refer to the Oracle 
OLAP Reference for information about the OLAP dynamic performance views.



Copying and Backing Up Analytic Workspaces

6-12 Oracle OLAP Application Developer’s Guide

Copying and Backing Up Analytic Workspaces
You can copy analytic workspaces at several levels, either as a way of replicating it on 
another computer or backing it up.

■ XML Template. A template saves the XML definition of logical objects in a 
standard form analytic workspace. You can save the entire analytic workspace, or 
individual cubes, dimensions, and calculated measures. Using a saved template, 
you can create a new analytic workspace exactly like an existing one. The template 
does not save any data, nor does it save any customizations to the analytic 
workspace. You can copy a template to a different platform.

■ EIF File. An EIF file saves the object definitions of any analytic workspace (not just 
standard form analytic workspaces), and optionally, saves the data also. You can 
copy an EIF file to a different platform.

■ Database Dump Files. Analytic workspaces are copied with the other objects in a 
schema or database export. You can use either the expdp/impdb or the exp/imp 
database utilities.

■ Transportable Tablespaces. Analytic workspaces are copied with the other objects 
to a transportable tablespace. However, you can only transport the tablespace to 
the same platform (for example, from Linux to Linux, Solaris to Solaris, or 
Windows to Windows). You can use either the expdp/impdp or the exp/imp 
database utilities. Transportable tablespaces are much faster than dump files.

The owner of an analytic workspace can create an XML template or an EIF file, or 
export the schema to a dump file. Only users with the EXP_FULL_DATABASE privilege 
or a privileged user (such as SYS or a user with the DBA role) can export the full 
database or create a transportable tablespace.

See Also:

■ Analytic Workspace Manager Help for information about 
exporting to an XML template or an EIF file. Search for the topic 
"Saving Analytic Workspaces in Flat Files."

■ Oracle Database Utilities for information about Oracle Data Pump 
and the expdp/impdp commands.



Part III
Creating a Relational Data Warehouse

Part 3 provides information about creating and maintaining a relational data 
warehouse for use by OLAP tools such as Discoverer Plus OLAP, Spreadsheet Add-In, 
and OracleBI Beans custom applications.

■ Chapter 7, "Using the OLAP Catalog"

■ Chapter 8, "Materialized Views for the OLAP API"

This information is for use only when the data source for an OLAP application is a star 
or snowflake schema. When analytic workspaces are used as the data source, neither 
OLAP Catalog metadata nor materialized views have any use.





Using the OLAP Catalog 7-1

7
Using the OLAP Catalog

This chapter describes methods of creating a logical dimensional model. It includes the 
following sections:

■ Choosing a Method for Creating OLAP Catalog Metadata

■ Overview of the OLAP Catalog

■ Creating Metadata Using Enterprise Manager Database Control

■ Case Study: Creating Metadata for the GLOBAL Star Schema

■ Creating Metadata Using PL/SQL

Choosing a Method for Creating OLAP Catalog Metadata
You can use either Oracle Enterprise Manager Database Control or the CWM2 PL/SQL 
package to define a logical dimensional model in OLAP Catalog metadata. Both 
methods have restrictions on the format of the data sources, as described in the 
following topics. If your data sources do not conform to their requirements, then use 
Oracle Warehouse Builder to generate both a star schema and OLAP Catalog 
metadata.

For Source Data in a Basic Star or Snowflake Schema
The CWM1 write APIs, which are used by the OLAP Management tool in Database 
Control, create a database dimension object for each logical OLAP dimension. The 
database dimension object imposes the following restrictions on dimension tables and 
the related fact tables of a star or snowflake schema:

■ All hierarchies must be level-based; the schema cannot use parent-child dimension 
tables.

■ Multiple hierarchies defined for a dimension must have the same base level.

■ Level columns cannot contain NULLs.

■ Fact data must be unsolved, that is, it is stored only at the lowest level of the 
hierarchy, and all the data for a cube must be stored in a single fact table.

If your source data is a star or snowflake schema and conforms to these requirements, 
then you can use either Database Control or the CWM2 APIs, depending on your 
personal preference. The OLAP Management tool in Database Control provides a 
graphical user interface. The CWM2 APIs enable you to generate a SQL program that 
you can easily modify and port to other databases.

If your source data is a star or snowflake schema that does not conform with these 
requirements, then use the CWM2 APIs.



Choosing a Method for Creating OLAP Catalog Metadata

7-2 Oracle OLAP Application Developer’s Guide

Figure 7–1 shows the tools for creating OLAP Catalog metadata.

Figure 7–1 Tools for Creating OLAP Catalog Metadata for Source Data

This chapter introduces the OLAP Management tool in Enterprise Manager Database 
Control and the CWM2 APIs.

For Dimension Tables with Complex Hierarchies
If your source data is a star or snowflake schema, but the dimension tables include any 
of the following variations, then use the CWM2 APIs:

■ Level columns containing NULLs, such as skip-level hierarchies

■ Multiple hierarchies with different base levels (sometimes called ragged 
hierarchies)

■ Multiple hierarchies with values mapped to different levels

■ Embedded total dimensions

■ Parent-child dimensions

If your schema contains parent-child dimension tables, then you must convert them to 
level-based dimension tables. The CWM2 write APIs include a package for this 
transforming symmetrical parent-child dimension tables.

See Also: Oracle OLAP Reference for complete syntax and 
descriptions of the CWM2 APIs



Overview of the OLAP Catalog

Using the OLAP Catalog 7-3

For Other Schema Configurations
If you are using Oracle Warehouse Builder already to transform your data, then 
generating a metadata takes only an extra step. Warehouse Builder provides a 
graphical interface for designing a logical model, and deploys the model as metadata. 
It generates CWM2 metadata from its Design Repository. 

If your data is stored in flat files or SQL tables, then you can use a manual method 
described in this guide. This method enables you to use the OLAP Catalog, but 
requires you to write data loading programs in the OLAP DML.

If you are upgrading from Oracle Express, then you may be able to automate the 
conversion process.

Overview of the OLAP Catalog
The OLAP Catalog defines logical dimensional objects and maps them to physical data 
sources. The logical objects are cubes, measures, dimensions, and so forth as described 
in "The Logical Dimensional Data Model" on page 1-5. The physical data sources are 
the columns of a relational star or snowflake schema. 

OLAP Catalog Components
The OLAP Catalog includes the following:

■ Metadata model tables: A set of relational tables within the database that 
instantiate the OLAP metadata model. These tables define all the OLAP metadata 
objects: dimensions, measures, cubes, measure folders, and so on. Within the 
metadata definitions are references to the actual data sources. 

■ Write API: A set of PL/SQL packages for creating and editing OLAP metadata. 
These packages contain procedures for inserting, updating, and deleting rows in 
the model tables. 

■ Read API: A set of relational views within the database that provide information 
about the metadata registered in the model tables. 

Two versions of the OLAP Catalog are currently in use, CWM1 (also called CWM-Lite) 
and CWM2. Each version has its own metadata model tables, write API, and read API. 
However, applications can query a set of union views that contains all of the OLAP 
Catalog metadata, regardless of the write API used to generate it.

About CWM1
CWM1 is available through the OLAP Management tool of Enterprise Manager 
Database Control. You can use CWM1 only to describe a schema that complies with the 
requirements listed in "Choosing a Method for Creating OLAP Catalog Metadata" on 
page 7-1. You can then use the OLAP Catalog to access the relational schema directly 
through OracleBI Beans.

You can view CWM1 metadata in the OLAP Management tool of Database Control.

See Also:

■ Oracle Warehouse Builder User's Guide if your data requires 
transformation

■ Appendix B if your data is in an Express database



Creating Metadata Using Enterprise Manager Database Control

7-4 Oracle OLAP Application Developer’s Guide

About CWM2
CWM2 is available as a set of PL/SQL packages. You can use CWM2 to describe a star or 
snowflake schema that does not comply with the requirements for CWM1.

You can view CWM2 metadata by querying the read API.

Steps for Creating OLAP Metadata
Whether you create OLAP metadata programmatically or by using a graphic interface, 
you follow the same basic steps.

To create OLAP metadata:

1. Create logical dimensions. Specify the levels, attributes, and hierarchies associated 
with each one. ("Procedure: Defining a Logical Dimension in the OLAP Catalog" 
on page 7-5)

2. Create logical cubes and specify their edges (dimensions). ("Procedure: Defining a 
Logical Cube in the OLAP Catalog" on page 7-6)

3. Create logical measures that represent the fact data. Associate each measure with a 
cube. ("Procedure: Defining a Logical Cube in the OLAP Catalog")

4. Map the logical entities to the source data. ("Procedure: Defining a Logical Cube in 
the OLAP Catalog" on page 7-6)

Creating Metadata Using Enterprise Manager Database Control 
If your data warehouse complies with the requirements listed in "For Source Data in a 
Basic Star or Snowflake Schema" on page 7-1, you can create OLAP metadata using the 
OLAP Management tool in Enterprise Manager Database Control.

You generate the SQL statements that create the metadata primarily by following the 
steps presented by a wizard or by completing a property sheet. If you wish, you can 
display the SQL statements before executing them.

Procedure: Accessing OLAP Management
Follow these steps to access OLAP Management:

1. Open Enterprise Manager Database Control in your browser.

The login page is displayed.

2. Enter a user name and password.

3. For the Grid Control edition of Enterprise Manager, then do the following from 
the Grid Control home page:

a. Click the Targets tab.

The Hosts page is displayed.

b. Click the Database tab.

The Databases page is displayed.

c. Click the link for the database you want to manage.

The Database home page is displayed.

4. Click the Administration tab.

The Administration page is displayed.



Creating Metadata Using Enterprise Manager Database Control

Using the OLAP Catalog 7-5

5. Look for the Warehouse heading. Links in the left column are used for Oracle 
OLAP: Cubes, OLAP Dimensions, and Measure Folders. These links are for 
OLAP Management. 

The other Warehouse links are used only for relational warehouses that do not use 
the OLAP option. Do not use those links. 

Defining Metadata for Dimension Tables
When creating OLAP metadata, you must first define the metadata objects for the 
dimension tables. These metadata objects are logical dimensions based on database 
dimension objects.

Information That You Supply for Dimensions
To define a dimension, you provide all the information that will be needed to label 
and aggregate the measures dimensioned by it, including: 

■ The name of the dimension

■ The name of each level, and the columns that contain the data for each one

■ Join keys for levels that are stored in separate tables

■ The name of each hierarchy, and the order of levels in each one

■ The name of each attribute, and the columns that contain data for each one

■ A display name and description for the dimension and each of its hierarchies, 
levels, and attributes 

Time Dimension
Business analysis is performed on historical data, so fully defined time periods are 
vital. Your Time dimension table must have columns for period end dates and time 
span. This information supports time-series analysis, such as comparisons with earlier 
time periods. If your schema does not have these columns, then you can define Time 
as a normal dimension, but it will not support time-based analysis. 

Procedure: Defining a Logical Dimension in the OLAP Catalog
Follow these steps to create a dimension and its associated levels, hierarchies, and 
attributes:

1. Start Enterprise Manager Database Control and access OLAP Management, as 
described in "Procedure: Accessing OLAP Management" on page 7-4.

2. Click the OLAP Dimensions link under Warehouse.

The Dimensions page is displayed.

3. Click Create.

The Create Dimension page is displayed. 

4. Choose Help for further information.

Defining Metadata for Fact Tables
After you have defined the metadata objects for the dimension tables, you can create 
metadata objects for the fact tables. These metadata objects are measures and cubes. A 
cube is a collection of identically dimensioned measures. Cubes and measures are 
defined entirely in the OLAP metadata; there are no corresponding database objects.



Case Study: Creating Metadata for the GLOBAL Star Schema

7-6 Oracle OLAP Application Developer’s Guide

Information That You Supply for Cubes
When you define a cube, you identify information such as the following:

■ The name of the cube and the fact table associated with it. All measures in a cube 
must be from a single fact table.

■ The names of the dimensions and the levels in the dimension hierarchies that will 
be used in the cube.

■ The names of the measures and the columns in the fact table where the values for 
each measure are stored.

■ Default aggregation operators for each dimension of each measure (such as sum or 
average). 

■ Any dimension dependencies.

Procedure: Defining a Logical Cube in the OLAP Catalog
 Follow these steps to create a cube:

1. If you have not done so already, start Enterprise Manager Database Control and 
access OLAP Management, as described in "Procedure: Accessing OLAP 
Management" on page 7-4.

2. Click the Cubes link.

The Cubes page is displayed.

3. Click Create.

The Create Cube page is displayed. 

4. Choose Help for further information.

5. When you are done creating metadata, open SQL*Plus and issue this command:

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_REFRESH;

6. Create materialized views as described in Chapter 8.

Case Study: Creating Metadata for the GLOBAL Star Schema
The Global star schema conforms to all of the requirements of CWM1, so you can use 
the OLAP Management tool in Enterprise Manager Database Control. 

 The following procedures explain how to define just one dimension and one cube in 
the Global schema. However, you can follow this example by creating the metadata in 
a different schema.

See Chapter 2 for instructions for installing the Global schema.

Defining a Logical Time Dimension for the Global Schema
The TIMES_DIM table supports a single Calendar hierarchy with three levels (Month, 
Quarter, and Year) as described in Table 7–1. 

Table 7–1 Global TIME Dimension Mapping: CALENDAR Hierarchy

TIME Objects in GLOBAL GLOBAL.TIME_DIM Columns

CALENDAR hierarchy, MONTH level MONTH_ID

CALENDAR hierarchy, QUARTER level QUARTER_ID



Case Study: Creating Metadata for the GLOBAL Star Schema

Using the OLAP Catalog 7-7

These are the steps to define a logical Time dimension, using the general instructions 
in "Procedure: Defining a Logical Dimension in the OLAP Catalog" on page 7-5. 

1. On the Dimensions page, choose Create.

The Create Dimension page is displayed.

2. On the General tab, do the following:

■ For Name, type time. 

■ For Schema, type global (or click the flashlight icon to display the Search 
and Select dialog).

■ For Type, select Time.

3. On the Levels tab, click Add to display the Add Level page. Then do the 
following:

a. For Name, type year.

b. For Type, choose Year from the drop-down menu.

c. For Table, type GLOBAL.TIME_DIM.

d. Click Populate Columns.

e. Move YEAR_ID from Available Columns to Selected Columns.

f. Click OK.

g. Repeat these steps for the Quarter and Month levels, making the appropriate 
changes.

4. On the Hierarchies tab, click Add to display the Add Hierarchy page. Then do the 
following:

a. For Name, type calendar.

b. Choose Move All.

c. Use the up- and down-arrow keys to order the levels like this:

CALENDAR hierarchy, YEAR level YEAR_ID

MONTH Long Description attribute

MONTH Short Description attribute

MONTH_DSC

QUARTER Long attribute Attribute

QUARTER Short attribute Attribute

QUARTER_DSC

YEAR Long Description attribute

YEAR Short Description attribute

YEAR_DSC

MONTH Time_Span attribute MONTH_TIMESPAN

QUARTER Time_Span attribute QUARTER_TIMESPAN

YEAR Time_Span attribute YEAR_TIMESPAN

MONTH End_Date attribute MONTH_END_DATE

QUARTER End_Date attribute QUARTER_END_DATE

YEAR End_Date attribute YEAR_END_DATE

Table 7–1 (Cont.) Global TIME Dimension Mapping: CALENDAR Hierarchy

TIME Objects in GLOBAL GLOBAL.TIME_DIM Columns



Case Study: Creating Metadata for the GLOBAL Star Schema

7-8 Oracle OLAP Application Developer’s Guide

YEAR
QUARTER
MONTH

d. Click OK.

5. On the Attributes tab, add the Time_Span and End_Date attributes. The 
Long_Description and Short_Description attributes are already defined. On the 
Add Attribute or Edit Attribute pages, select all levels and map them to the 
columns shown in Table 7–1.

6. On the OLAP Options tab, type whatever descriptions you want to add.

7. Click OK to create the Time dimension.

When you have successfully created a dimension, it appears on the Dimensions page.

Defining a Logical Price and Cost Cube for the Global Schema
The PRICE_AND_COST_HISTORY_FACT table has a multi-column primary key, 
composed of two surrogate keys from two dimension tables, and two measures 
(UNIT_COST and UNIT_PRICE), as shown in Table 7–2. 

These are the steps to define a logical Price cube, using the basic steps listed in 
"Procedure: Defining a Logical Cube in the OLAP Catalog" on page 7-6

1. On the Cubes page, choose Create.

The Create Cube page is displayed.

2. On the General tab, do the following:

a. For Cube Name, type PRICE_CUBE.

b. For Display Name, type Price Cube.

c. For Schema, type GLOBAL.

d. For Description, type your own description.

e. For Fact Type, choose Table.

f. For Fact Schema, type GLOBAL.

g. For Fact Table, type PRICE_AND_COST_HISTORY_FACT.

3. On the Dimension tab, add the PRODUCT and TIME dimensions. Identify the 
appropriate foreign key columns in the fact tables, as shown in Table 7–2.

4. On the Measure tab, add the UNIT_PRICE and UNIT_COST measures. 

5. On the Aggregation tab, choose MAX or another aggregation operator of your 
own choosing for both dimensions.

Table 7–2 Global PRICE_AND_COST_CUBE Mapping

PRICE_AND_COST_HISTORY_FACT 
Columns Logical Objects

ITEM_ID PRODUCT dimension

MONTH_ID TIME dimension

UNIT_PRICE UNIT_PRICE measure

UNIT_COST UNIT_COST measure



Creating Metadata Using PL/SQL

Using the OLAP Catalog 7-9

Creating Metadata Using PL/SQL
The CWM2 PL/SQL packages contain stored procedures that can create OLAP 
metadata for a variety of schema designs, as described in "Choosing a Method for 
Creating OLAP Catalog Metadata" on page 7-1. 

Before using these packages, make sure that you have performed any required 
preprocessing steps.

CWM2 Packages for Creating OLAP Dimensions
The following packages contain procedures that create metadata for dimension tables:

■ CWM2_OLAP_DIMENSION contains procedures for creating dimensions.

■ CWM2_OLAP_HIERARCHY contains procedures for creating hierarchies for 
dimensions. 

■ CWM2_OLAP_LEVEL contains procedures for creating levels for dimensions and 
for associating levels with hierarchies.

■ CWM2_OLAP_LEVEL_ATTRIBUTE contains procedures for creating level attributes 
and associating them with levels.

■ CWM2_OLAP_DIMENSION_ATTRIBUTE contains procedures for creating 
dimension attributes and associating them with dimensions.

CWM2 Packages for Creating Cubes
The following packages contain procedures that create metadata for fact tables:

■ CWM2_OLAP_CUBE contains procedures for creating the dimensional structure of 
cubes.

■ CWM2_OLAP_MEASURE contains procedures for creating measures and associating 
them with cubes.

CWM2 Package for Mapping Metadata
The CWM2_OLAP_TABLE_MAP package contains procedures that map logical metadata 
entities to their physical data source. The data may be stored in relational tables, or it 
may be represented by relational views.

CWM2 Package for Creating Level-Based Dimension Tables 
The CWM2_OLAP_PC_TRANSFORM package contains a procedure for transforming 
symmetrical parent-child dimension tables to level-based dimension tables. This 
conversion is necessary if the dimension will be accessed by OracleBI Beans.

CWM2 Packages for Classification and Validation
The following packages contain procedures for creating measure folders and 
validating OLAP metadata:

■ CWM2_OLAP_CATALOG provides procedures for creating and maintaining measure 
folders.

See Also: Oracle OLAP Reference for the comprehensive syntax of 
the CWM2 packages.



Creating Metadata Using PL/SQL

7-10 Oracle OLAP Application Developer’s Guide

■ CWM2_OLAP_VALIDATE provides procedures for validating OLAP Catalog 
metadata.

■ CWM2_OLAP_METADATA_REFRESH provides procedures for refreshing metadata 
tables that support queries by OracleBI Beans against relational schemas. 



Materialized Views for the OLAP API 8-1

8
Materialized Views for the OLAP API

This chapter explains how to create materialized views specific to the requirements of 
the OLAP API and OracleBI Beans. If you are using analytic workspaces, then you can 
skip this information because an analytic workspace generates and stores aggregate 
data so that materialized views are unnecessary. However, if you are developing a 
strictly relational application, then you must create materialized views using the 
methods described here. Otherwise, the SQL used to create the materialized views will 
not match the SQL generated by the OLAP API, and query rewrite will not use the 
materialized views to formulate the answer set to a query. 

This chapter includes the following topics:

■ Summary Management with Oracle OLAP

■ Overview and Requirements

■ A Dimension Materialized View

■ A Fact Materialized View

■ Using the DBMS_ODM Package

■ Example: Automatically Generate the Materialized Views for a Price Cube

■ Example: Manually Generate the Materialized Views for a Sales Cube

Summary Management with Oracle OLAP
A basic feature of online analytical processing (OLAP) is the ability to analyze and 
view various levels of aggregate data. With Oracle OLAP, you can choose to store 
aggregate data within analytic workspaces or within materialized views.

Summary management for relational warehouses is managed by Oracle's query 
rewrite facility. Query rewrite enables a query to fetch aggregate data from 
materialized views rather than recomputing the aggregates at runtime.

See Also:

■ Oracle OLAP Reference for the syntax of the DBMS_ODM package

■ Oracle Data Warehousing Guide for information on managing 
materialized views

■ Best Practices for Tabular Cube Aggregation and Query Operations 
for optimizations to the Oracle Database environment and 
schema design



Overview and Requirements

8-2 Oracle OLAP Application Developer’s Guide

When the OLAP API queries a warehouse stored in relational tables, it uses query 
rewrite whenever possible. To prepare your relational warehouse for access by the 
OLAP API, you need to establish materialized views according to the guidelines 
described in this chapter.

Overview and Requirements
The OLAP API requires a specific set of materialized views for each OLAP Catalog 
cube that maps to a star schema. The cube must be mapped to a single fact table, and 
the fact table may contain only lowest-level data.

For each cube, there must be a separate dimension materialized view for each 
hierarchy of each of the cube's dimensions. For the cube's fact table, there must be a 
single materialized view, created with GROUP BY GROUPING SETS syntax.

Use the Oracle Data Management package, DBMS_ODM, to create materialized views.

Materialized Views Required for a Cube
The OLAP API requires a dimension materialized view for each hierarchy associated 
with a cube. For example, the SALES_CUBE cube in the Sales History (SH) schema 
requires seven dimension materialized views, as illustrated in Table 8–1.

For the cube's fact table, the OLAP API requires a single grouping set materialized 
view.

Materialized Views and OLAP Metadata
Before creating materialized views, you must create OLAP metadata for the star 
schema. You can use Oracle Enterprise Manager, or you can write a script using the 
CWM2 packages. Refer to Chapter 7 for information about the OLAP Catalog.

Important: Do not use the DBMS_OLAP package to create 
materialized views for the OLAP API. Query rewrite will not map 
the SQL generated by the OLAP API to the materialized views 
generated by this package. 

The DBMS_OLAP package is described in the Oracle Data 
Warehousing Guide. 

Table 8–1 Number of Dimension Materialized Views for SH.SALES_CUBE

SALES_CUBE Dimensions Hierarchies Number of MVs

SH.CHANNELS_DIM CHANNEL_ROLLUP 1

SH.CUSTOMERS_DIM CUST_ROLLUP

GEOG_ROLLUP

2

SH.PRODUCTS_DIM PROD_ROLLUP 1

SH.PROMOTIONS_DIM PROMO_ROLLUP 1

SH.TIMES_DIM CAL_ROLLUP

FIS_ROLLUP

2



A Dimension Materialized View

Materialized Views for the OLAP API 8-3

A Dimension Materialized View
The SQL script for creating dimension materialized views includes a CREATE 
MATERIALIZED VIEW statement, and statements for generating statistics and bitmap 
indexes. 

CREATE Materialized View for a Dimension Hierarchy 
The basic syntax of the CREATE MATERIALIZED VIEW statement for a dimension 
hierarchy is as follows.

CREATE MATERIALIZED VIEW mv_name
PARTITION BY RANGE (gid) 
   (partition values less than(1) , 
     .
     .
     partition values less than(MAXVALUE))
TABLESPACE tblspace_name
BUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT 
   COUNT(*) COUNT_STAR, 
   GROUPING_ID(level_columns) gid,
   MAX(attribute_column_1)
   .
   .
   MAX(attribute_column_n)
   level_cols 
FROM
   dimension_tables
GROUP BY
   hierarchy1_level1, ROLLUP(hierarchy1_level2,... hierarchy1_leveln),
   hierarchy2_level1, ROLLUP(hierarchy2_level2,... hierarchy2_leveln),
     .
     .
   hierarchyn_level1, ROLLUP(hierarchyn_level2,... hierarchyn_leveln);

In the GROUP BY clause, level columns are listed in order from most aggregate (level1) 
to least aggregate (leveln). The least aggregate level, or "leaf node", is also the key 
column. Note that level1 is excluded from the ROLLUP list.

Bitmap Indexes for a Dimension Hierarchy
The script includes statements like the following to generate bitmap indexes for the 
level columns and the GID column. It also calculates a bitmap index for the parent GID 
and parent ET key.

CREATE BITMAP INDEX index_name ON mv_name(level_column)
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;



A Fact Materialized View

8-4 Oracle OLAP Application Developer’s Guide

Statistics for a Dimension Hierarchy
The script includes statements like the following to generate statistics.

execute dbms_stats.gather_table_stats(mv_owner, mv_name,  
            degree=>dbms_stats.default_degree,
            estimate_percent=>dbms_stats.auto_sample_size, 
            method_opt=>'for all hidden columns size 254') ;
method_opt=>
  'for all columns size skewonly') ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ; 

A Fact Materialized View
The SQL script generated by the DBMS_ODM package for creating fact materialized 
views includes a CREATE MATERIALIZED VIEW statement and statements for 
generating statistics and bitmap indexes.

CREATE Fact Materialized View
The basic syntax of the CREATE MATERIALIZED VIEW statement with grouping sets 
for a fact table is as follows.

CREATE MATERIALIZED VIEW mv_name
PARTITION BY RANGE (gid) 
   (partition values less than(1) , 
     .
     .
     partition values less than(MAXVALUE))
PCTFREE x PCTUSED y
BUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT 
   GROUPING_ID(level_columns) gid,
   agg_method(measure_1),
    .
    .
   agg_method(measure_n),
   COUNT(*) COUNT_OF_STAR,
   level_columns 
FROM
   dimension_tables, fact_table
WHERE 
   (dimension_primary_key_1 = fact_foreign_key_1) AND
    .
    .
   (dimension_primary_key_n = fact_foreign_key_n) 
GROUP BY GROUPING SETS (
   (level columns in grouping set_1),
   .
   .
   (level columns in grouping set_n);

Each grouping set contains a combination of levels specified for aggregation. For 
example, a grouping set could specify that the cube's data be aggregated by month for 
all products in each region.



Using the DBMS_ODM Package

Materialized Views for the OLAP API 8-5

The SELECT clause lists the levels from the dimension tables and the measures from 
the fact table. The selected measures will be aggregated over each combination of these 
levels that has been specified for aggregation. The aggregation method is typically 
addition (SUM), but it may be a method such as average or weighted average. If you 
want to use a different aggregation operator, you must specify it in the OLAP Catalog 
metadata for each of the cube’s dimensions.

Bitmap Indexes for Fact Materialized Views
The script includes statements like the following to generate bitmap indexes for each 
level chosen for inclusion in the materialized view. It also creates a bitmap index for all 
higher aggregate levels within the dimension. For example, if you chose to aggregate 
to the quarter level of a time calendar hierarchy, a bitmap index would be created for 
year and quarter. 

CREATE BITMAP INDEX index_name ON mv_name(level_col)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

Statistics for Fact Materialized Views
The script includes statements like the following to generate statistics.

EXECUTE dbms_stats.gather_table_stats(mv_owner, mv_name,  
   degree=>dbms_stats.default_degree, estimate_percent=>
   dbms_stats.auto_sample_size, method_opt=>
  'for all columns size 1 for columns size 254 GID' , granularity=>'GLOBAL') ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ; 

Using the DBMS_ODM Package
The procedures in the OLAP Data Management package, DBMS_ODM, generate scripts 
that create dimension materialized views and fact materialized views in grouping set 
form. You can run these scripts in their original form, modify the scripts before 
executing them, or use them simply as models for writing your own SQL scripts. 

DBMS_ODM supports several approaches to creating the grouping set materialized view 
for the cube's fact table. You can choose from the following options:

■ Automatically generate a materialized view that includes every level combination 
in the cube. 

This option may potentially generate a very large materialized view, depending on 
the size of the fact table. In general, you should use this option only if disk space is 
plentiful.

■ Automatically generate a materialized view that includes some of the level 
combinations in the cube. 

This option will generate a materialized view of moderate size, depending on the 
size of the fact table. The summarization will be symmetric.

Important: If you choose to modify the scripts, take care to 
generate materialized views with the same structure as those 
generated by DBMS_ODM. Otherwise the materialized views may 
not be accessible to the OLAP API.



Using the DBMS_ODM Package

8-6 Oracle OLAP Application Developer’s Guide

■ Automatically generate a materialized view that includes a percentage of the level 
combinations in the cube.

This option may generate a materialized view of moderate size, depending on the 
size of the fact table and the percentage that you specify. The level combinations 
included in the materialized view will be random. The summarization will 
typically be asymmetric.

■ Manually choose the level combinations to be included in the materialized view 
for the cube.

With this option, you can finely tune both the content and the size of the 
materialized view. The summarization may be symmetric or asymmetric.

Procedure: Automatically Generate the Materialized Views
Follow these steps to automatically create the materialized views for a cube:

1. Create a cube in the OLAP Catalog. You can use Enterprise Manager or you can 
use the CWM2 procedures. If you use the CWM2 procedures, be sure to map the cube 
to a star schema.

2. Configure the database to write to files. The DBMS_ODM procedures accept either a 
directory object to which your user ID has been granted the appropriate access, or 
a directory path specified by the UTL_FILE_DIR initialization parameter for the 
instance.

3. Log into SQL*Plus using the identity of the metadata owner. 

4. Delete any materialized views that currently exist for the cube. Execute DROP 
MATERIALIZED VIEW mv_name for each materialized view you wish to delete.

5. Create scripts to generate the dimension materialized views. Execute DBMS_
ODM.CREATEDIMMV_GS for each of the cube's dimensions. 

6. Create a script to generate the fact materialized view. Execute DBMS_
ODM.CREATESTDFACTMV and choose one of the following values for the 
materialization level parameter: 

■ FULL — Fully materialize the cube's data. Include every level combination in 
the materialized view. See "Example: Automatically Generate the Materialized 
Views for a Price Cube" on page 8-7.

■ MINIMUM — Minimally materialize the cube's data. Include a subset of the 
level combinations in the materialized view. See Oracle OLAP Reference for 
more information.

■ PERCENT — Materialize the cube's data based on a percentage of the cube's 
level combinations. See Oracle OLAP Reference for more information.

7. Run the scripts in SQL*Plus, using commands such as the following:

@/users/oracle/OraHome1/olap/mvscript.sql;

For an example of this process, see "Example: Automatically Generate the Materialized 
Views for a Price Cube" on page 8-7.



Example: Automatically Generate the Materialized Views for a Price Cube

Materialized Views for the OLAP API 8-7

Procedure: Manually Generate the Materialized Views
Follow these steps to create the materialized views with specific level combinations:

1. Follow the first five steps in "Procedure: Automatically Generate the Materialized 
Views" on page 8-6.

2. Use the following three step procedure to create a script to generate the fact 
materialized view:

a. Execute DBMS_ODM.CREATEDIMLEVTUPLE to create the table 
sys.olaptablevels. This table lists all the dimensions of the cube and all 
the levels of each dimension. Edit the table to deselect any levels that you do 
not want to include. 

b. Execute DBMS_ODM.CREATECUBELEVELTUPLE to create the table 
sys.olaptableveltuples. This table lists all the possible combinations 
(grouping sets) of the levels you chose in the previous step. Edit the table to 
deselect any level combinations that you do not want to include. 

c. Execute DBMS_ODM.CREATEFACTMV_GS to create the script.

3. Run the scripts in SQL*Plus, using commands such as the following:

@/users/oracle/OraHome1/olap/mvscript_fact.sql;

For an example of this process, see "Example: Manually Generate the Materialized 
Views for a Sales Cube" on page 8-8.

Example: Automatically Generate the Materialized Views for a Price Cube
This example creates materialized views for the PRICE_CUBE in the GLOBAL schema. 

This cube contains unit costs and unit prices for different products over time. The 
dimensions are PRODUCT, with levels for products, families of products, classes of 
products, and totals, and TIME with levels for months, quarters, and years.

1. Generate the scripts for the dimension materialized views. The following 
statements create the scripts prodmv and timemv in the directory 
/users/global/scripts.

exec dbms_odm.CreateDimmv_gs 
     ('global', 'product','prodmv','/users/global/scripts');
exec dbms_odm.CreateDimmv_gs 
     ('global', 'time','timemv','/users/global/scripts');

2. Run the prodmv and timemv scripts to create the dimension materialized views in 
the default tablespace for the GLOBAL schema.

3. Generate the script for the fact materialized view. The following statement creates 
the script price_cost_mv in the same script directory. 

execute dbms_odm.CreateStdFactmv 
            ('global', 'units_cube', 
             'price_cost_mv','/users/global/scripts', 
              false, 'FULL');                                 

4.  Run the price_cost_mv script to create the fact materialized view.

The materialized view is created in the default table space for the GLOBAL schema. 
It does not use index partitioning.



Example: Manually Generate the Materialized Views for a Sales Cube

8-8 Oracle OLAP Application Developer’s Guide

The CREATE MATERIALIZED VIEW statement in the script specifies grouping 
sets for every level combination in UNITS_CUBE. 

Example: Manually Generate the Materialized Views for a Sales Cube
This example creates materialized views for the DRUGSTORE cube in the DRUG_DEPOT 
schema. The cube contains sales, cost, quantity, and forecasting data. It is mapped to a 
fact table containing only lowest-level data and to dimension tables for CHANNEL, 
GEOGRAPHY, PRODUCT, and TIME. Each dimension has a single hierarchy.

1. First generate the scripts for the dimension materialized views. The following 
statements create the scripts chanmv, prodmv, geogmv, and timemv in 
/dat1/scripts/drug_depot.

EXEC DBMS_ODM.CREATEDIMMV_GS
   ('drug_depot', 'channel','chanmv','/dat1/scripts/drug_depot');
EXEC DBMS_ODM.CREATEDIMMV_GS 
   ('drug_depot', 'product','prodmv','/dat1/scripts/drug_depot');
EXEC DBMS_ODM.CREATEDIMMV_GS 
   ('drug_depot', 'geography','geogmv','/dat1/scripts/drug_depot');
EXEC DBMS_ODM.CREATEDIMMV_GS 
   ('drug_depot', 'time','timemv','/dat1/scripts/drug_depot');

2. Run the scripts to create the dimension materialized views.

3. Next create the table of dimension levels for the fact materialized view.

EXEC DBMS_ODM.CREATEDIMLEVTUPLE('drug_depot', 'drugstore');

The table of levels, SYS.OLAPTABLEVELS, is a temporary table specific to your 
session. You can view the table as follows.

select * from SYS.OLAPTABLEVELS;

SCHEMA_NAME    DIMENSION_NAME  CUBE_NAME     LEVEL_NAME       SELECTED
-----------    --------------  ----------    ----------       --------
DRUG_DEPOT     CHANNEL         DRUGSTORE     TOTAL               1
DRUG_DEPOT     CHANNEL         DRUGSTORE     CHANNEL_CLASS       1
DRUG_DEPOT     CHANNEL         DRUGSTORE     CHANNEL_ID          1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     TOTAL               1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     REGION              1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     SUB_REGION          1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     COUNTRY             1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     STATE_PROVINCE      1
DRUG_DEPOT     PRODUCT         DRUGSTORE     TOTAL               1
DRUG_DEPOT     PRODUCT         DRUGSTORE     PROD_CATEGORY       1
DRUG_DEPOT     PRODUCT         DRUGSTORE     PROD_SUBCATEGORY    1
DRUG_DEPOT     PRODUCT         DRUGSTORE     ID                  1
DRUG_DEPOT     TIME            DRUGSTORE     Year                1
DRUG_DEPOT     TIME            DRUGSTORE     Quarter             1
DRUG_DEPOT     TIME            DRUGSTORE     Month               1

All the levels in SYS.OLAPTABLEVELS are initially selected with "1" in the 
SELECTED column. 

4. Let's assume that you want to store aggregate data for each region and sub-region, 
across all channels and all categories of products. You do not care about data at the 
month level, you only want to store quarter and year data in the materialized 
view.



Example: Manually Generate the Materialized Views for a Sales Cube

Materialized Views for the OLAP API 8-9

Edit SYS.OLAPTABLEVELS to deselect all CHANNEL levels except total, the 
state-province level of GEOGRAPHY, sub-categories and individual product IDs in 
PRODUCT, and month in TIME.

update SYS.OLAPTABLEVELS set selected = 0 
   where LEVEL_NAME in ('CHANNEL_ID','CHANNEL_CLASS', 'STATE_PROVINCE',
                        'ID','PROD_SUBCATEGORY','Month');  
select * from sys.olaptablevels;

SCHEMA_NAME    DIMENSION_NAME  CUBE_NAME     LEVEL_NAME       SELECTED
-----------    --------------  ----------    ----------       --------
DRUG_DEPOT     CHANNEL         DRUGSTORE     TOTAL               1
DRUG_DEPOT     CHANNEL         DRUGSTORE     CHANNEL_CLASS       0
DRUG_DEPOT     CHANNEL         DRUGSTORE     CHANNEL_ID          0
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     TOTAL               1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     REGION              1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     SUB_REGION          1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     COUNTRY             1
DRUG_DEPOT     GEOGRAPHY       DRUGSTORE     STATE_PROVINCE      0
DRUG_DEPOT     PRODUCT         DRUGSTORE     TOTAL               1
DRUG_DEPOT     PRODUCT         DRUGSTORE     PROD_CATEGORY       1
DRUG_DEPOT     PRODUCT         DRUGSTORE     PROD_SUBCATEGORY    0
DRUG_DEPOT     PRODUCT         DRUGSTORE     ID                  0
DRUG_DEPOT     TIME            DRUGSTORE     Year                1
DRUG_DEPOT     TIME            DRUGSTORE     Quarter             1
DRUG_DEPOT     TIME            DRUGSTORE     Month               0

5. Next create the table SYS.OLAPTABLEVELTUPLES. This table, which is also a 
session-specific temporary table, contains all the possible combinations of the 
cube's levels. Each combination of four levels, or grouping set, has an 
identification number. The grouping sets that include the levels you selected in 
SYS.OLAPTABLEVELS are marked with a 1 in the SELECTED column.

exec dbms_odm.createcubeleveltuple('drug_depot','drugstore');

select * from sys.olaptableveltuples;

ID       SCHEMA_NAME CUBE_NAME  DIMENSION_NAME   LEVEL_NAME         SELECTED
--       ----------- ---------  --------------   -----------        --------
1        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY        STATE_PROVINCE         0  
1        DRUG_DEPOT  DRUGSTORE  PRODUCT          ID                     0  
1        DRUG_DEPOT  DRUGSTORE  CHANNEL          CHANNEL_ID             0  
1        DRUG_DEPOT  DRUGSTORE  TIME             Month                  0  
2        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY        COUNTRY                0  
2        DRUG_DEPOT  DRUGSTORE  PRODUCT          ID                     0  
2        DRUG_DEPOT  DRUGSTORE  CHANNEL          CHANNEL_ID             0  
2        DRUG_DEPOT  DRUGSTORE  TIME             Month                  0  
.
.
.
112        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                1  
112        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY          1  
112        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                  1  
112        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                1  
113        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      SUB_REGION             1  
113        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY          1  
113        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                  1  
113        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                1  
.
.
.
179        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                 1  



Example: Manually Generate the Materialized Views for a Sales Cube

8-10 Oracle OLAP Application Developer’s Guide

179        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                  1  
179        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                  1  
179        DRUG_DEPOT  DRUGSTORE  TIME           Year                   1  
180        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      TOTAL                  1  
180        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                  1  
180        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                  1  
180        DRUG_DEPOT  DRUGSTORE  TIME           Year                   1  

The SYS.OLAPTABLEVELTUPLES table has 720 rows, identifying 180 unique level 
tuples, or grouping sets. 180 is the product of the number of levels for each of the 
cube's dimensions, 3*5*4*3. There are 3 levels in CHANNEL, 5 levels in GEOGRAPHY, 4 
levels in PRODUCT, and 3 levels in TIME

Of the 180 grouping sets, only 16 are selected for inclusion in the materialized view. 
You can display the 64 selected rows (16*4) with the following statement.

select * from sys.olaptableveltuples where SELECTED = 1;

ID       SCHEMA_NAME CUBE_NAME  DIMENSION_NAME   LEVEL_NAME         SELECTED
--       ----------- ---------  --------------   -----------        --------
112        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                 1  
112        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
112        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
112        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
113        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      SUB_REGION              1  
113        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
113        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
113        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
114        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                  1  
114        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
114        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
114        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
115        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      TOTAL                   1  
115        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
115        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
115        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
117        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                 1  
117        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
117        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
117        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
118        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      SUB_REGION              1  
118        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
118        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
118        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
119        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                  1  
119        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
119        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
119        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
120        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      TOTAL                   1  
120        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
120        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
120        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
172        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                 1  
172        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
172        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
172        DRUG_DEPOT  DRUGSTORE  TIME           Year                    1  
173        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      SUB_REGION              1  
173        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
173        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
173        DRUG_DEPOT  DRUGSTORE  TIME           Year                    1  
174        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                  1  



Example: Manually Generate the Materialized Views for a Sales Cube

Materialized Views for the OLAP API 8-11

174        DRUG_DEPOT  DRUGSTORE  PRODUCT       PROD_CATEGORY            1  
174        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
174        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
175        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     TOTAL                    1  
175        DRUG_DEPOT  DRUGSTORE  PRODUCT       PROD_CATEGORY            1  
175        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
175        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
177        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     COUNTRY                  1  
177        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
177        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
177        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
178        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     SUB_REGION               1  
178        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
178        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
178        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
179        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     REGION                   1  
179        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
179        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
179        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
180        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     TOTAL                    1  
180        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
180        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
180        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  

6. Suppose you want to store product totals by year for each sub-region. You do not 
want to store aggregates for any other grouping sets that contain the sub-region 
level. 

Grouping sets 113, 118, 173, and 178 all use the SUB_REGION level of GEOGRAPHY. 

ID      GEOGRAPHY       PRODUCT            CHANNEL      TIME
--      ----------      -------            ------       -----
113     SUB_REGION      PROD_CATEGORY      TOTAL        Quarter
118     SUB_REGION      TOTAL              TOTAL        Quarter
173     SUB_REGION      PROD_CATEGORY      TOTAL        Year
178     SUB_REGION      TOTAL              TOTAL        Year

You could edit the SYS.OLAPTABLEVELTUPLES table with a statement like the 
following.

update SYS.OLAPTABLEVELTUPLES set selected = 0 
        where ID in ('113','118', '173');  
select * from sys.olaptableveltuples where SELECTED = 1;

ID       SCHEMA_NAME CUBE_NAME  DIMENSION_NAME   LEVEL_NAME         SELECTED
--       ----------- ---------  --------------   -----------        --------
112        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                 1  
112        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
112        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
112        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
114        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                  1  
114        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
114        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
114        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
115        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      TOTAL                   1  
115        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
115        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
115        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
117        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                 1  
117        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
117        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  



Example: Manually Generate the Materialized Views for a Sales Cube

8-12 Oracle OLAP Application Developer’s Guide

117        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
119        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                  1  
119        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
119        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
119        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
120        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      TOTAL                   1  
120        DRUG_DEPOT  DRUGSTORE  PRODUCT        TOTAL                   1  
120        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
120        DRUG_DEPOT  DRUGSTORE  TIME           Quarter                 1  
172        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      COUNTRY                 1  
172        DRUG_DEPOT  DRUGSTORE  PRODUCT        PROD_CATEGORY           1  
172        DRUG_DEPOT  DRUGSTORE  CHANNEL        TOTAL                   1  
172        DRUG_DEPOT  DRUGSTORE  TIME           Year                    1  
174        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY      REGION                  1  
174        DRUG_DEPOT  DRUGSTORE  PRODUCT       PROD_CATEGORY            1  
174        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
174        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
175        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     TOTAL                    1  
175        DRUG_DEPOT  DRUGSTORE  PRODUCT       PROD_CATEGORY            1  
175        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
175        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
177        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     COUNTRY                  1  
177        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
177        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
177        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
178        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     SUB_REGION               1  
178        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
178        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
178        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
179        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     REGION                   1  
179        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
179        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
179        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  
180        DRUG_DEPOT  DRUGSTORE  GEOGRAPHY     TOTAL                    1  
180        DRUG_DEPOT  DRUGSTORE  PRODUCT       TOTAL                    1  
180        DRUG_DEPOT  DRUGSTORE  CHANNEL       TOTAL                    1  
180        DRUG_DEPOT  DRUGSTORE  TIME          Year                     1  

7. To create the script that will generate the fact materialized view, run the 
CREATEFACTMV_GS procedure. 

exec dbms_odm.createfactmv_gs
      ('drug_depot','drugstore',
       'drugstore_mv','/dat1/scripts/drug_depot',TRUE);

The CREATE MATERIALIZED VIEW statement in the script contains the following 
grouping sets in the GROUP BY GROUPING SETS clause.

(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
    PRODUCTS.TOTAL, PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL,
    GEOGRAPHIES.REGION, GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY ),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
    PRODUCTS.TOTAL, PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL,
    GEOGRAPHIES.REGION), 
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
    PRODUCTS.TOTAL, PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL),
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
    PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL , GEOGRAPHIES.REGION, 
    GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY), 
(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
    PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL, GEOGRAPHIES.REGION),



Example: Manually Generate the Materialized Views for a Sales Cube

Materialized Views for the OLAP API 8-13

(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER, CHANNELS.TOTAL,
    PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, 
    PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL, GEOGRAPHIES.REGION,
    GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, 
    PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL, GEOGRAPHIES.REGION), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, 
    PRODUCTS.PROD_CATEGORY, GEOGRAPHIES.TOTAL), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL,
    GEOGRAPHIES.REGION, GEOGRAPHIES.SUB_REGION, GEOGRAPHIES.COUNTRY), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL,
    GEOGRAPHIES.REGION, GEOGRAPHIES.SUB_REGION), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL,
    GEOGRAPHIES.REGION), 
(TIMES.CALENDAR_YEAR, CHANNELS.TOTAL, PRODUCTS.TOTAL, GEOGRAPHIES.TOTAL) 

The following statement at the end of the script sets the MV_SUMMARY_CODE 
associated with the cube in the OLAP Catalog. This setting indicates that the 
materialized view associated with this cube is in grouping set form.

execute cwm2_olap_cube.set_mv_summary_code
     ('DRUG_DEPOT', 'DRUGSTORE', 'GROUPINGSET') ;

8. Run the drugstore_mv script to create the fact materialized view.



Example: Manually Generate the Materialized Views for a Sales Cube

8-14 Oracle OLAP Application Developer’s Guide



Database Standard Form for Analytic Workspaces A-1

A
Database Standard Form for

Analytic Workspaces

An analytic workspace that conforms to database standard form has objects that 
implement a logical model for cubes, dimensions, and measures. Database standard 
form is a set of conventions describing the objects in an analytic workspace that can be 
managed by various Oracle OLAP utilities. This appendix describes database standard 
form conventions for users who want to add objects manually to a standard form 
analytic workspace. It has the following sections:

■ Overview of Database Standard Form

■ Querying a Standard Form Analytic Workspace

■ Object Naming Conventions

■ Workspace Object Properties

■ Implementation Class Objects

■ Catalogs Class Objects

■ Features Class Objects

■ Extensions Class Objects

Overview of Database Standard Form
Just as a relational schema can be set up in countless ways, the design of an analytic 
workspace can be structured in as many ways as there are application developers. 
However, when an application is created to run against analytic workspaces, it 
requires one particular design so that it can locate particular objects and identify their 
role within the workspace. The design for the tools available through Analytic 
Workspace Manager is called database standard form.

Analytic Workspace Manager and the current generation of tools can only be used 
with database standard form analytic workspaces. Database standard form (or simply, 
standard form) stipulates:

■ Certain objects must exist in the analytic workspace. These objects and properties 
are used by tools in Analytic Workspace Manager that perform tasks such as 
aggregation, data refresh, and applications enablement. The Active Catalogs and 

Note: Database Standard Form 10g has a large Extensions class, 
which is not documented nor supported for public use. Nonetheless, 
these Extensions class objects are required to support OLAP tools. 
Customizing is thus more difficult than in Oracle9i.



Querying a Standard Form Analytic Workspace

A-2 Oracle OLAP Application Developer’s Guide

the DBMS_AWM PL/SQL package, described in the Oracle OLAP Reference, require 
database standard.

■ Specific OLAP DML properties must be defined on these analytic workspace 
objects. The property values are metadata for the object, and provide information 
about its role in the logical model, its logical name, its relationships with other 
objects, and so forth. Standard form properties begin with AW$.

■ Objects must be registered in workspace catalogs. OLAP tools query these 
metadata catalogs to get information about how the logical cubes, measures, and 
dimensions are instantiated in the analytic workspace. When you define objects 
using the tools in Analytic Workspace Manager, the tools also maintain the 
catalogs. However, when you define objects manually, as described in some 
chapters of this guide, you must also maintain the properties and the catalogs for 
the tools to be aware of the new objects.

These rules impose the logical dimensional model of cubes, measures, dimensions, 
levels, hierarchies, and attributes on an analytic workspace.

Standard form analytic workspaces are created by all of the methods described in 
Chapter 3. By using the Object View to browse the workspace objects, you can gain 
familiarity with standard form.

Terminology: Using Role Names to Identify Objects
Standard form conventions do not govern the names of workspace objects, so 
documentation cannot refer to the objects by name. Instead, the objects are discussed 
using the values of their AW$ROLE properties as descriptors.

For example, this guide refers to the cubedef dimension, the aw_names variable, and the 
default_hier relation. These references are to the workspace objects whose AW$ROLE 
property is set to CUBEDEF, AW_NAMES, and DEFAULT_HIER, respectively. The actual 
names of the workspace objects for most classes are typically similar, but not identical, 
to their roles. Roles and the AW$ROLE property are discussed under each logical object 
type.

Querying a Standard Form Analytic Workspace
Standard form enables you to discover the names of logical objects and the names of 
the physical workspace objects that implement the logical model.

Querying the Standard Form Catalogs
You can acquire information about an analytic workspace by querying its standard 
form catalogs. These catalogs are implemented as dimensions, variables, relations, and 
valuesets in the analytic workspace. Some of these objects are in the Catalogs class, 
and others are in the Extensions class.

The ALL_OBJECTS dimension is a catalog that contains the names of all logical objects. 
ALL_OBJECTS is a concat dimension, that is, it is a concatenated list of the members of 
other simple dimensions. Separate dimensions for each logical object type contain the 
names of logical objects, for example, the ALL_HIERARCHIES dimension contains the 
names of all hierarchies, and the ALL_LEVELS dimension contains the names of all 
levels. You can query these dimensions to discover the logical model implemented by 
an analytic workspace.

For example, the following command displays the names of all measures in the 
analytic workspace.



Querying a Standard Form Analytic Workspace

Database Standard Form for Analytic Workspaces A-3

REPORT W 40 all_measures
 
ALL_MEASURES
----------------------------------------
PRICE_AND_COST_CUBE.UNIT_PRICE.MEASURE
PRICE_AND_COST_CUBE.UNIT_COST.MEASURE
UNITS_CUBE.UNITS.MEASURE
UNITS_CUBE.SALES.MEASURE

ALL_OBJECTS and its simple dimensions (such as ALL_LEVELS) are used in 
dimensional catalogs that are implemented as variables, relations, and valuesets. 

Refer to "Catalogs Class Objects" on page A-19 for more information about standard 
form catalogs.

Querying Properties
By querying the standard form properties attached to workspace objects, you can 
discover the relationship between the logical model and the physical objects that 
implement the model. 

You can query the properties on a particular object, or limit the NAME dimension to 
objects with particular properties or property values. The NAME dimension contains 
the names of all objects in an analytic workspace. By limiting the status of the NAME 
dimension, you can limit the scope of commands that otherwise act on all objects.

All objects have the following properties, which are described in Table A–1 on 
page A-6.

AW$CLASS
AW$CREATEDBY
AW$LASTMODIFIED
AW$ROLE

The following commands show how you can use the AW$ROLE property to discover 
the names of measuredef objects:

LIMIT name TO OBJ(PROPERTY 'AW$ROLE') EQ 'MEASUREDEF'
REPORT W 40 name
 
NAME
----------------------------------------
PRICE_AND_COST_CUBE_UNIT_PRICE
PRICE_AND_COST_CUBE_UNIT_COST
UNITS_CUBE_UNITS
UNITS_CUBE_SALES

The FULLDSC command lists all the properties and their values.

FULLDSC units_cube_units
 
DEFINE UNITS_CUBE_UNITS FORMULA DECIMAL <TIME CUSTOMER PRODUCT CHANNEL>
EQ aggregate(this_aw!UNITS_CUBE_UNITS_STORED using this_aw!OBJ1176965843)
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:05:51'
PROPERTY 'AW$LOGICAL_NAME' 'UNITS'
PROPERTY 'AW$MEASUREDEF' NA
PROPERTY 'AW$PARENT_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'MEASUREDEF'
PROPERTY 'AW$STATE' 'VALID_MEMBER'



Standard Form Implementation of the Logical Model

A-4 Oracle OLAP Application Developer’s Guide

PROPERTY 'COLUMN_NAME' 'MEASURE_51'
PROPERTY 'DATA_TYPE' 'DECIMAL'
PROPERTY 'DESCRIPTION' -
  'LANG=AMERICAN:Units Sold-
  LANG=FRENCH:Unités Vendues -
  LANG=DUTCH:Verkochte Eenheden '
PROPERTY 'DISPLAYNAME' -
  'LANG=AMERICAN:Units Sold-
  LANG=FRENCH:Unités Vendues -
  LANG=DUTCH:Verkochte Eenheden '
PROPERTY 'IS_SOLVETARGET' yes

Or you can use the OBJ function to get the value of a specific property:

SHOW OBJ(PROPERTY 'AW$PARENT_NAME', 'UNITS_CUBE_UNITS')

UNITS_CUBE

Standard Form Implementation of the Logical Model
The standard form logical model includes cubes, measures, and dimensions, as well as 
the hierarchies, levels, and attributes that are associated with dimensions. A cube is 
considered to be the parent of the measures that it contains, and a dimension is 
considered to be the parent of its hierarchies, levels, and attributes. A cube has 
dimensionality; that is, it is associated with its list of dimensions.

It is important to remember that this appendix describes a logical metadata model that 
is imposed on an analytic workspace. It does not describe the inherent relationships 
among workspace objects, such as the relationship between variables and formulas 
and their dimensions, or among dimensions in a workspace relation.

Relationships Among Logical Objects
Within the logical model of standard form are parent-child relationships among 
objects. Only cubes (cubedef objects) and dimensions (dimdef objects) have no parents 
other than the analytic workspace itself. All other objects in the logical model are 
descendants of these objects. 

Classes of Workspace Objects
Each standard form workspace object belongs to one of four classes:

■ Implementation class. Objects in this class implement the logical model. They 
include all the workspace objects described in the section "Role Property Values 
for Implementation Class Objects" on page A-7, for example the cubedef, measuredef, 
dimdef, and hierlist objects.

■ Catalogs class. Objects in this class hold information about the logical model. They 
include a list of all the cubes in the workspace, a list of all the measures in the 
workspace, a list of all the dimensions in the workspace, and other lists that can 
facilitate the work of various utilities.

■ Features class. Objects in this class hold information about specific objects in the 
logical model. For example, one object stores the descriptions of all the logical 
objects, while another indicates whether the object is intended to be visible to the 
user.



Object Naming Conventions

Database Standard Form for Analytic Workspaces A-5

■ Extensions class. Objects in this class are defined and maintained by the Oracle 
OLAP utilities. They are proprietary extensions to the standard form, and there is 
no commitment on the part of Oracle to maintain them from release to release.

Object Naming Conventions
There are no restrictions on the names of the workspace objects that implement a 
standard form logical model, other than the rules imposed by the OLAP DML. For 
logical objects, however, standard form imposes strict naming rules. This is because 
the utilities that depend on standard form reference objects by their logical names.

Standard form naming conventions for logical names are consistent with those of the 
Oracle Database. They establish name spaces within which logical names must be 
unique, and they provide rules for constructing full names to reflect the name space 
organization. Logical names are sometimes referred to as "simple logical names" in 
order to distinguish them from full names.

Logical Names
In general, the simple logical name for an object, such as a cube or dimension, 
conforms to the rules for a SQL simple expression, with minor differences. The rules 
for standard form logical names require that a name:

■ Have 1 to 30 bytes.

■ Cannot be an Oracle reserved word.

■ Is not case-sensitive.

■ Cannot contain quotation marks.

■ Must begin with an alphabetic character from your database character set.

■ Must contain only alphanumeric characters from your database character set and 
the underscore (_), dollar sign ($), and pound sign (#). However, Oracle strongly 
discourages you from using the dollar or pound sign. If your database character 
set contains multi byte characters, Oracle recommends that you include at least 
one single-byte character in each logical name.

The AW$LOGICAL_NAME property of a workspace object contains the simple logical 
name of the object that it implements. An example of a simple logical name is 
PRODUCT.

Simple Logical Names and Full Names
Because simple logical names are not unique outside their name space, standard form 
conventions specify a full name for each logical object. This full name includes the 
simple logical name, but also indicates the parent object and the role. The following is 
an example of a full name for an attribute whose simple name is TIME_SPAN and 
whose parent object is a logical dimension named TIME.

TIME.TIME_SPAN.ATTRIBUTE

The final component of a full name is the object type. In this example, it is ATTRIBUTE.

Full names are used in the catalog class objects that list various object types. For 
example, the values of the all_dimensions, all_cubes, and all_attributes dimensions are 
the full names of logical objects.



Workspace Object Properties

A-6 Oracle OLAP Application Developer’s Guide

Name Space Organization
Standard form naming conventions impose an organization of logical objects that 
defines the following name spaces:

■ Schema. The logical names of cubes and dimensions must be unique within a 
schema.

■ Cube. The logical names of measures must be unique within a cube.

■ Dimension. The logical names of hierarchies, levels, and attributes must be 
unique within a dimension. Within a given dimension, a hierarchy can have the 
same name as a level or attribute.

The name space organization reflects an ownership, or parent, relationship among the 
logical objects. For example, a measure has a cube as its parent object, and an attribute 
has a dimension as its parent object. The AW$PARENT_NAME property on workspace 
objects records these relationships.

Workspace Object Properties
Properties are the primary method by which logical objects are implemented by 
workspace objects. The properties are created on the workspace objects using the 
OLAP DML PROPERTY command.

Workspace objects in the standard form have well-defined properties that fall into 
three groups:

■ System properties on all workspace objects. 

These properties are created and given values by Oracle OLAP utilities, either 
DBMS_AWM or the utilities offered by Analytic Workspace Manager. You must 
never modify or delete these properties.

■ Properties specific to implementation class objects. 

■ Role property on all workspace objects. 

All objects that are in the standard form have a property called AW$ROLE. It 
indicates the role (or function) that is played by the object in the standard form. 

System Properties on All Workspace Objects
All workspace objects that are part of the standard form have four system properties.

Table A–1 lists the system properties and describes each one.

Table A–1 System Properties

Property Description

AW$CLASS The class of the workspace object. Possible values are 
IMPLEMENTATION, CATALOGS, FEATURES, and EXTENSIONS. 
For a description of these classes, see "Classes of Workspace 
Objects" on page A-4.

AW$CREATEDBY The entity that created the workspace object. For example, if it 
was created by DBMS_AWM, then the value is AW$XML.

AW$LASTMODIFIED The date and time when the workspace object was last registered.



Workspace Object Properties

Database Standard Form for Analytic Workspaces A-7

Properties Specific to Implementation Class Objects
Properties for the logical name and parent name are on all implementation class 
objects. Three additional properties might or might not be present depending on the 
role of the object.

Table A–2 lists the implementation class properties and describes each one.

Role Property Values for Implementation Class Objects
The AW$ROLE property indicates the function (that is, role) that is performed by the 
workspace object. For implementation class objects, roles indicate fundamental 
building blocks of the logical model, such as cubes, measures, and dimensions.

There can be several implementation class objects that have the same role in a 
standard form workspace. For example, there are several objects with the role of 
DIMDEF because there is one such object for each dimension in the logical model.

Table A–3 lists the possible values and describes each role.

AW$ROLE The role (that is, function) that is performed by this object. The 
possible values are different for each object class. For information 
on property values, see "Role Property Values for 
Implementation Class Objects" on page A-7, "Role Property 
Values for Catalogs Class Objects" on page A-8, "Role Property 
Values for Features Class Objects" on page A-10, and "Role 
Property Values for Extensions Class Objects" on page A-10. 

AW$STATE The state of the workspace object with respect to the standard 
form, for example, VALID_MEMBER.

Table A–2 Implementation Class Properties

Property Description

AW$LOGICAL_NAME The simple logical name of the logical object that is implemented 
by this workspace object. The value is set only for objects whose 
role is CUBEDEF, MEASUREDEF, DIMDEF, and ATTRDEF. The 
property exists, but the value is NA, for all other roles in the 
implementation class.

AW$PARENT_NAME The simple logical name of the parent of the logical object that is 
implemented by this workspace object. The value is set for all 
implementation class objects except for those whose roles are 
CUBEDEF and DIMDEF. The value is NA for these two, because they 
have no parent.

AW$TYPE For objects with role DIMDEF and ATTRDEF, the type of the 
dimension or attribute. For all other roles, this property is missing.

If the role is DIMDEF, this property indicates whether the 
dimension is a time dimension. Values are TIME or NA.

If the role is ATTRDEF, this property indicates a special use for the 
attribute by Oracle OLAP. Values that indicate special use are 
END_DATE, TIME_SPAN, MEMBER_LONG_DESCRIPTION, 
MEMBER_SHORT_DESCRIPTION. If the value is USER or NA, then 
the attribute has no special meaning for Oracle OLAP.

Table A–1 (Cont.) System Properties

Property Description



Workspace Object Properties

A-8 Oracle OLAP Application Developer’s Guide

Role Property Values for Catalogs Class Objects
The AW$ROLE property indicates the function (or role) that is performed by the 
workspace object. For catalogs class objects, the objects with various roles provide 
information about the logical model such as a list of cubes, a list of object types, or a 
list of measures. 

There is only one catalogs class object with a given role in a standard form workspace. 
For example, there is only one object that lists all the dimensions in the workspace.

Table A–4 lists the possible values and describes each role.

Table A–3 Role Property Values: Implementation Class

Role Property Value Role Description

CUBEDEF Implements a cube whose logical name is in the AW$LOGICAL_
NAME property. For information about objects with this role, see 
"Cubedef Dimension" on page A-12.

MEASUREDEF Implements a measure whose logical name is in the 
AW$LOGICAL_NAME property. For information about objects with 
this role, see "Measuredef Object" on page A-13.

DIMDEF Implements a dimension whose logical name is in the 
AW$LOGICAL_NAME property. For information about objects with 
this role, see "Dimdef Dimension" on page A-15.

HIERLIST Lists the names of the hierarchies of the dimension whose name is 
in the AW$PARENT_NAME property. For information about objects 
with this role, see "Hierlist Dimension" on page A-16.

LEVELLIST Lists the names of the levels of the dimension whose name is in 
the AW$PARENT_NAME property. For information about objects 
with this role, see "Levellist Dimension" on page A-16.

MEMBER_LEVELREL Records the level for each member of the dimension whose name 
is in the AW$PARENT_NAME property. For information about 
objects with this role, see "Member_Levelrel Relation" on 
page A-17.

MEMBER_PARENTREL Records the parent for each member of the dimension whose 
name is in the AW$PARENT_NAME property. For information about 
objects with this role, see "Member_Parentrel Relation" on 
page A-17.

HIER_LEVELS Lists the levels that are included in each hierarchy of the 
dimension whose name is in the AW$PARENT_NAME property. For 
information about objects with this role, see "Hier_Levels 
Valueset" on page A-18.

ATTRDEF Implements an attribute whose logical name is in the 
AW$LOGICAL_NAME property. For information about objects with 
this role, see "Attrdef Object" on page A-18.

Table A–4 Role Property Values: Catalogs Class

Role Property Value Role Description

ALL_OBJECTS Lists the full names of all the objects that have been registered 
with the standard form in this workspace. For information 
about the object with this role, see "ALL_OBJECTS Dimension" 
on page A-22.

ALL_CUBES Lists the full names of all the cubes that have been registered 
with the standard form in this workspace. For information 
about the object with this role, see "ALL_CUBES Dimension" 
on page A-20.



Workspace Object Properties

Database Standard Form for Analytic Workspaces A-9

ALL_MEASURES Lists the full names of all the measures that have been 
registered with the standard form in this workspace. For 
information about the object with this role, see "ALL_
MEASURES Dimension" on page A-20.

ALL_DIMENSIONS Lists the full names of all the dimensions that have been 
registered with the standard form in this workspace. For 
information about the object with this role, see "ALL_
DIMENSIONS Dimension" on page A-20

ALL_HIERARCHIES Lists the full names of all the hierarchies that have been 
registered with the standard form in this workspace. For 
information about the object with this role, see "ALL_
HIERARCHIES Dimension" on page A-21.

ALL_LEVELS Lists the full names of all the levels that have been registered 
with the standard form in this workspace. For information 
about the object with this role, see "ALL_LEVELS Dimension" 
on page A-21.

ALL_ATTRIBUTES Lists the full names of all the attributes that have been 
registered with the standard form in this workspace. For 
information about the object with this role, see "ALL_
ATTRIBUTES Dimension" on page A-22.

ALL_DESCTYPES Lists the types of descriptions currently supported by the 
standard form: SHORT, LONG, and PLURAL. For information 
about the object with this role, see "ALL_DESCTYPES 
Dimension" on page A-23.

ALL_ATTRTYPES Lists all the attribute types that are currently supported by the 
standard form. These are valid values for the AW$TYPE 
property of an object with the ATTRDEF role. For information 
about the object with the ALL_ATTRTYPES role, see "ALL_
ATTRTYPES Dimension" on page A-23.

ALL_LANGUAGES Lists the language_territory for the analytic workspace. For 
information about the object with this role, see "ALL_
LANGUAGES Dimension" on page A-23.

CUBE_MEASURES Lists the full names of the measures that belong to each cube in 
the workspace. For information about the object with this role, 
see "CUBE_MEASURES Relation" on page A-24.

DIM_HIERARCHIES Lists the full names of the hierarchies that belong to each 
dimension in the workspace. For information about the object 
with this role, see "DIM_HIERARCHIES Relation" on 
page A-24.

DIM_LEVELS Lists the full names of the levels that belong to each dimension 
in the workspace. For information about the object with this 
role, see "DIM_LEVELS Relation" on page A-25.

DIM_ATTRIBUTES Lists the full names of the attributes that belong to each 
dimension in the workspace. For information about the object 
with this role, see "DIM_ATTRIBUTES Relation" on page A-25.

AW_NAMES Records the name of the workspace object that implements 
each logical cube, measure, dimension, and attribute. For other 
logical objects, there is no single corresponding workspace 
object, so the value is NA. For information about the object with 
this role, see "AW_NAMES Variable" on page A-26.

Table A–4 (Cont.) Role Property Values: Catalogs Class

Role Property Value Role Description



Workspace Object Properties

A-10 Oracle OLAP Application Developer’s Guide

Role Property Values for Features Class Objects
The AW$ROLE property indicates the function (or role) that is performed by the 
workspace object. For features class objects, roles provide various types of 
supplementary data for logical objects such as descriptions.

For many roles, there is a single features class object in a standard form workspace. 
However, for the roles that have MEMBER in their names, there is one object for each 
dimension.

Table A–5 lists the possible values and describes each role that applies to features class 
objects.

Role Property Values for Extensions Class Objects
The AW$ROLE property indicates the function (or role) that is performed by the 
workspace object. For Extensions class objects, roles are for internal use of Oracle 
OLAP utilities such as DBMS_AWM and the enablers.

DBAs and users must not create, modify, or depend on objects that are in the 
Extensions class. The AW$ROLE property, and all properties, for objects in this class are 
for proprietary use only. Oracle makes no commitment to maintain the roles and 
relationships of these objects.

Table A–5 Role Property Values: Features Class

Role Property Value Role Description

ALL_DESCRIPTIONS Records short, long, and plural descriptions for all objects. For 
information about the object with this role, see "ALL_
DESCRIPTIONS Variable" on page A-27.

DEFAULT_HIER Records the full name of the default hierarchy for each dimension. 
For information about the object with this role, see "DEFAULT_
HIER Relation" on page A-27.

MEMBER_CREATEDBY Records the entity that created each member of a given dimension. 
For information about the object with this role, see "Member_
Createdby Variable" on page A-29.

MEMBER_FAMILYREL Records the family relation for each hierarchy of a given 
dimension. For information about the object with this role, see 
"Member_Familyrel Relation" on page A-29.

MEMBER_GID Records the grouping id for each hierarchy of a given dimension. 
For information about the object with this role, see "Member_Gid 
Variable" on page A-29.

MEMBER_INHIER Indicates whether a given member of a dimension is in a given 
hierarchy. For information about the object with this role, see 
"Member_Inhier Valueset" on page A-28.

OBJ_CREATEDBY Records the entity that created each object. For information about 
the object with this role, see "OBJ_CREATEDBY Variable" on 
page A-30.

VERSION Records the number of the standard form version under which the 
workspace is being managed. For information about the object 
with this role, see "VERSION Variable" on page A-30.

VISIBLE Indicates whether a given object should be made visible to the 
user by Oracle OLAP enabling utilities. For information about the 
object with this role, see "VISIBLE Variable" on page A-28.



Implementation Class Objects

Database Standard Form for Analytic Workspaces A-11

Implementation Class Objects
The objects in the implementation class provide the implementation for the logical 
objects in a given workspace. In general, they hold the data that users see as 
dimensions and measures. Implementation class objects differ from workspace to 
workspace. For example, one workspace might have measures called SALES and 
COST, while another workspace might have measures called BUDGET and ACTUAL.

The cubedef, measuredef, and dimdef objects implement cubes, measures, and dimensions 
respectively. In addition, each of these objects have implementation class helper 
objects. An overview of the objects is provided in the section "Standard Form 
Implementation of the Logical Model" on page A-4.

The rest of this section describes each of the implementation class objects. Note that 
the examples in this section show the properties required by the standard form. If you 
examine a workspace that was created by Analytic Workspace Manager or the DBMS_
AWM package, you might find some additional properties on various objects. These are 
not required for compliance with the standard form.

For information about the values that should be assigned to the properties, see 
Table A–1 and Table A–2.

To list all the objects that have a given role, limit the NAME dimension to all the objects 
that have that role and then report the values of the NAME dimension. For example, 
execute the following OLAP DML commands to list all the cubedef objects.

LIMIT name TO OBJ(PROPERTY 'AW$ROLE') EQ 'CUBEDEF'
REPORT W 20 name
 
NAME
--------------------
PRICE_AND_COST_CUBE
UNITS_CUBE

Be sure to reset NAME afterward:

LIMIT name TO ALL

Cube Objects
A cube is implemented by a cubedef dimension. It is owned by the analytic workspace; 
it has no parent objects. 

A cubedef dimension is the parent of one or more measuredef objects, and is typically the 
parent of two Extensions class objects:

■ composite. A composite that dimensions the measure_stored variable.

■ aggregationdfn. An aggmap that stores the aggregation rules for the cube.

Figure A–1 shows the relationships among the primary objects that compose a cube.



Implementation Class Objects

A-12 Oracle OLAP Application Developer’s Guide

Figure A–1 Parent-Child Relationships in a Cube

Cubedef Dimension
A logical cube is implemented by a workspace dimension that has the value CUBEDEF 
in its AW$ROLE property. The values of a given cubedef dimension are the names of the 
logical dimensions of the cube.

A cubedef dimension has no parent, so its AW$PARENT_NAME property is set to NA. A 
logical cube is the parent of the measures that belong to it.

The following is a full description of a cubedef dimension called UNITS_CUBE.

FULLDSC units_cube
 
DEFINE UNITS_CUBE DIMENSION TEXT
PROPERTY 'ALLDIMENSIONS' -
  'TIME-
  CUSTOMER-
  PRODUCT-
  CHANNEL'
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$CUBEDEF' NA
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:05:51'
PROPERTY 'AW$LOGICAL_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'CUBEDEF'
PROPERTY 'AW$STATE' 'VALID_MEMBER'
PROPERTY 'DENSEDIMENSIONS' -
  'TIME-
  CUSTOMER-
  PRODUCT-
  CHANNEL'
PROPERTY 'DESCRIPTION' -
  'LANG=AMERICAN:Units Cube-
  LANG=FRENCH:Cube en Unités -
  LANG=DUTCH:Kubus van Eenheden '



Implementation Class Objects

Database Standard Form for Analytic Workspaces A-13

PROPERTY 'DISPLAYNAME' -
  'LANG=AMERICAN:Units Cube-
  LANG=FRENCH:Cube en Unités -
  LANG=DUTCH:Kubus van Eenheden '

The following report shows the values of the UNITS_CUBE dimension. The values are 
the names of the dimdef dimensions that implement the cube's logical dimensions.

REPORT units_cube

UNITS_CUBE
--------------
TIME
CUSTOMER
PRODUCT
CHANNEL

Measure Objects
A measure is implemented by a measuredef object. Every measure has one cubedef as its 
parent.

A measuredef object is typically the parent of two Extensions class objects:

■ measure_countvar. A variable used by some aggregation operators.

■ measure_stored. A variable used to store the data for the measure.

Measuredef Object
A logical measure is implemented by a workspace object that has the value 
MEASUREDEF in its AW$ROLE property. The measuredef object can be a variable, 
formula, or relation.

The values of the measuredef object are the values of the logical measure, and its parent 
is the logical cube. 

The following is a full description of a measuredef object for the logical measure called 
UNITS. The object is a formula that is dimensioned by the dimensions of the parent 
cube, which is called UNITS_CUBE. The formula calculates fully solved data that is 
stored in a variable named UNITS_CUBE_UNITS_STORED.

FULLDSC units_cube_units
 
DEFINE UNITS_CUBE_UNITS FORMULA DECIMAL <TIME CUSTOMER PRODUCT CHANNEL>
EQ aggregate(this_aw!UNITS_CUBE_UNITS_STORED using this_aw!OBJ1176965843)
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:05:51'
PROPERTY 'AW$LOGICAL_NAME' 'UNITS'
PROPERTY 'AW$MEASUREDEF' NA
PROPERTY 'AW$PARENT_NAME' 'UNITS_CUBE'
PROPERTY 'AW$ROLE' 'MEASUREDEF'
PROPERTY 'AW$STATE' 'VALID_MEMBER'
PROPERTY 'COLUMN_NAME' 'MEASURE_51'
PROPERTY 'DATA_TYPE' 'DECIMAL'
PROPERTY 'DESCRIPTION' -
  'LANG=AMERICAN:Units Sold-
  LANG=FRENCH:Unités Vendues -
  LANG=DUTCH:Verkochte Eenheden '
PROPERTY 'DISPLAYNAME' -
  'LANG=AMERICAN:Units Sold-



Implementation Class Objects

A-14 Oracle OLAP Application Developer’s Guide

  LANG=FRENCH:Unités Vendues -
  LANG=DUTCH:Verkochte Eenheden '
PROPERTY 'IS_SOLVETARGET' yes

Dimension Objects
A dimension is implemented by a dimdef object. The dimdef object is the parent of one 
each of the following supporting objects:

■ hierlist dimension

■ levellist dimension

■ member_levelrel relation

■ member_parentrel relation

■ hier_levels valueset

For each of these objects, its AW$ROLE property records the object's function. For 
example, the AW$ROLE property of a hierlist dimension is set to HIERLIST. In 
addition, the AW$PARENT property for each of these objects contains the name of the 
logical dimension to which the object belongs. If a dimension does not have a 
hierarchy, or it does not have levels, or it has neither, then these supporting objects 
exist but they are not populated.

Optionally, a dimdef object can have one or more attrdef objects as its children.

For enablement for OracleBI Beans, a dimdef object requires one each of these Features 
class objects as its children:

■ member_inhier

■ member_familyrel

■ member_gid

A data refresh uses the Features class member_createdby object.

Figure A–2 shows the relationships among the primary objects that compose 
dimensions.

Figure A–2 Parent-Child Relationships in a Dimension



Implementation Class Objects

Database Standard Form for Analytic Workspaces A-15

Dimdef Dimension
A logical dimension is implemented by a workspace dimension that has the value 
DIMDEF in its AW$ROLE property. The values of a given dimdef dimension are the 
values of the logical dimension. 

A dimdef dimension has no parent, so its AW$PARENT_NAME property is set to NA. The 
AW$TYPE property is set to TIME for time dimensions, and it is set to NA for all other 
dimensions.

The following is a full description of a dimdef dimension for the logical dimension 
called TIME.

FULLDSC time

DEFINE TIME DIMENSION TEXT
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$DIMDEF' NA
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:05:29'
PROPERTY 'AW$LOGICAL_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'DIMDEF'
PROPERTY 'AW$STATE' 'VALID_MEMBER'
PROPERTY 'AW$TYPE' 'TIME'
PROPERTY 'COLUMN_NAME_ET' 'ET_COL_25'
PROPERTY 'COLUMN_NAME_GID' 'GID_COL_27'
PROPERTY 'COLUMN_NAME_PRNTET' 'PET_COL_26'
PROPERTY 'COLUMN_NAME_PRNTGID' 'PGID_COL_28'
PROPERTY 'DATA_TYPE' 'TEXT'
PROPERTY 'DEFAULT_HIERARCHY' 'CALENDAR_YEAR'
PROPERTY 'DESCRIPTION' -
  'LANG=AMERICAN:Time-
  LANG=FRENCH:Temps -
  LANG=DUTCH:Tijd '
PROPERTY 'DISPLAYNAME' -
  'LANG=AMERICAN:Time-
  LANG=FRENCH:Temps -
  LANG=DUTCH:Tijd '
PROPERTY 'PLURAL_DESCRIPTION' -
  'LANG=AMERICAN:Time-
  LANG=FRENCH:Temps -
  LANG=DUTCH:Tijd '
PROPERTY 'SORT_ATTRIBUTE' 'END_DATE'

The following report shows sample values of this dimdef dimension from all the levels. 
This is an embedded totals dimension. In this example, the use of surrogate keys 
ensures uniqueness among the values from all levels. When surrogate keys are not 
used, another strategy must be used to insure uniqueness. For example, you can use 
the level as a prefix, such as QUARTER.142 and YEAR.145. The example includes an 
attrdef variable and member_levelrel relation to describe the selected dimension 
members.

LIMIT time TO '131'
LIMIT time ADD ANCESTORS USING time_parentrel
REPORT DOWN time W 25 <time_long_description time_levelrel>
 



Implementation Class Objects

A-16 Oracle OLAP Application Developer’s Guide

               -------------------ALL_LANGUAGES-------------------
               ---------------------AMERICAN----------------------
TIME             TIME_LONG_DESCRIPTION         TIME_LEVELREL
-------------- ------------------------- -------------------------
131            May-05                    MONTH
142            Q2-05                     QUARTER
145            2005                      YEAR

Hierlist Dimension
A hierlist dimension lists the names of the hierarchies of its parent dimension. That is, 
the values of the hierlist dimension are the names of hierarchies, such as the CALENDAR 
and FISCAL hierarchies for a time dimension. The hierarchies do not have one-to-one 
implementations as workspace objects, so the names refer to logical hierarchies, not to 
workspace objects.

The following is a full description of a hierlist dimension called TIME_HIERLIST.

FULLDSC time_hierlist

DEFINE TIME_HIERLIST DIMENSION TEXT 
PROPERTY 'AW$CLASS' 'IMPLEMENTATION' 
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$HIERLIST' NA 
PROPERTY 'AW$LASTMODIFIED' '18MAR04_10:40:51' 
PROPERTY 'AW$PARENT_NAME' 'TIME' 
PROPERTY 'AW$ROLE' 'HIERLIST' 

The following report shows the values of this hierlist dimension. TIME has one 
hierarchy, which is named CALENDAR_YEAR.

REPORT time_hierlist

TIME_HIERLIST
--------------
CALENDAR_YEAR

Levellist Dimension
A levellist dimension lists the names of the levels of its parent dimension. That is, the 
values of the levellist dimension are the names of levels, such as the CITY, STATE, and 
COUNTRY levels for a geography dimension. The levels do not have one-to-one 
implementations as workspace objects, so the names refer to logical levels, not to 
workspace objects. The logical level for each dimension value is identified in the 
dimension's MEMBER_LEVELREL relation.

The following is a full description of a levellist dimension called TIME_LEVELLIST. 

FULLDSC time_levellist

DEFINE TIME_HIERLIST DIMENSION TEXT 
PROPERTY 'AW$CLASS' 'IMPLEMENTATION' 
PROPERTY 'AW$CREATEDBY' 'AW$XML' 
PROPERTY 'AW$LASTMODIFIED' '18MAR04_10:40:51' 
PROPERTY 'AW$LEVELLIST' NA
PROPERTY 'AW$LEVEL_MONTH' 'MONTH'
PROPERTY 'AW$LEVEL_QUARTER' 'QUARTER'
PROPERTY 'AW$LEVEL_YEAR' 'YEAR'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'LEVELLIST'

The following report shows the values of this levellist dimension. 



Implementation Class Objects

Database Standard Form for Analytic Workspaces A-17

REPORT time_levellist

TIME_LEVELLIST
--------------
YEAR
QUARTER
MONTH

Member_Levelrel Relation
A member_levelrel relation records the level for each value of the relation's parent 
dimension. For example, for a geography dimension, the member_levelrel relation 
might record the fact that BOSTON belongs to the CITY level and IOWA belongs to the 
STATE level.

The following is a full description of a member_levelrel relation called TIME_
LEVELREL. 

FULLDSC time_levelrel

DEFINE TIME_LEVELREL RELATION TIME_LEVELLIST <TIME>
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_LEVELREL'

The following report shows sample values of a member_levelrel relation. The levels are 
MONTH, QUARTER, and YEAR.

LIMIT time TO '75'
LIMIT time ADD ANCESTORS USING time_parentrel
REPORT DOWN time W 15 time_levelrel
 
TIME            TIME_LEVELREL
-------------- ---------------
75             MONTH
83             QUARTER
85             YEAR

Member_Parentrel Relation
A member_parentrel relation records the parent dimension value for each value of the 
relation's parent dimension. For example, for a geography dimension, the member_
parentrel relation might record the fact that the parent of BOSTON is MASSACHUSETTS, 
and the parent of MASSACHUSETTS is USA.

The following is a full description of a member_parentrel relation called TIME_
PARENTREL. 

FULLDSC time_parentrel

DEFINE TIME_PARENTREL RELATION TIME <TIME TIME_HIERLIST>
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$MEMBER_PARENTREL' NA
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_PARENTREL'

The following report shows the values of a member_parentrel relation. The parent of a 
given value can be different, depending on which hierarchy is being considered.



Implementation Class Objects

A-18 Oracle OLAP Application Developer’s Guide

REPORT DOWN time W 20 time_parentrel
 
               ---TIME_PARENTREL---
               ---TIME_HIERLIST----
TIME                 CALENDAR
-------------- --------------------
75             83
83             85
85             NA

Hier_Levels Valueset
A hier_levels valueset lists the levels that are included in each hierarchy of the parent 
dimension.

The following is a full description of a hier_levels valueset called TIME_HIER_LEVELS. 

FULLDSC time_hier_levels

DEFINE TIME_HIER_LEVELS VALUESET TIME_LEVELLIST <TIME_HIERLIST>
LD IMPLEMENTATION Ordered from Bottom to Top list of levels in a hierarchy for 
TIME
PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'HIER_LEVELS'

The following report shows the list of levels for each hierarchy in the TIME dimension.

REPORT W 25 VALUES(time_hier_levels)
 
TIME_HIERLIST  VALUES(TIME_HIER_LEVELS)
-------------- -------------------------
CALENDAR_YEAR  MONTH
               QUARTER
               YEAR

Attrdef Object
A logical attribute is implemented by a workspace object that has the value attrdef in 
its AW$ROLE property. The attrdef object can be a variable, formula, or relation. The 
values of the attrdef object are the values of the logical attribute, and its parent is the 
logical dimension to which it belongs.

The AW$TYPE property indicates whether Oracle OLAP has a special use for the 
attribute. Property values that indicate such a special use are DEFAULT_ORDER, END_
DATE, TIME_SPAN, MEMBER_LONG_DESCRIPTION, MEMBER_SHORT_DESCRIPTION, 
and MEMBER_VISIBLE. If the value is USER or NA, then the attribute has no special 
meaning for Oracle OLAP.

An attrdef object must be dimensioned by its parent dimdef dimension. In addition, it 
can be dimensioned by the hierlist dimension or the ALL_LANGUAGES dimension, or 
both.

The following is a full description of an attrdef object called TIME_LONG_
DESCRIPTION. This long description attribute is implemented as a variable. 

DEFINE TIME_LONG_DESCRIPTION VARIABLE TEXT <TIME ALL_LANGUAGES>
PROPERTY '$NATRIGGER' 'if this_aw!ALL_LANGUAGES eq \'AMERICAN\' then NA 
  else this_aw!TIME_LONG_DESCRIPTION(this_aw!ALL_LANGUAGES \'AMERICAN\')'
PROPERTY 'AW$ATTRDEF' NA



Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-19

PROPERTY 'AW$CLASS' 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:05:30'
PROPERTY 'AW$LNG_ATTRIBUTE' yes
PROPERTY 'AW$LOGICAL_NAME' 'LONG_DESCRIPTION'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'ATTRDEF'
PROPERTY 'AW$STATE' 'VALID_MEMBER'
PROPERTY 'AW$TYPE' 'MEMBER_LONG_DESCRIPTION'
PROPERTY 'COLUMN_NAME' 'ATTRIBUTE_29'
PROPERTY 'DATA_TYPE' 'TEXT'
PROPERTY 'DESCRIPTION' -
  'LANG=AMERICAN:Long Description-
  LANG=FRENCH:Description Longue -
  LANG=DUTCH:Lange Beschrijving '
PROPERTY 'DISPLAYNAME' -
  'LANG=AMERICAN:Long Description-
  LANG=FRENCH:Description Longue -
  LANG=DUTCH:Lange Beschrijving '

The following is a report that shows selected values of this attrdef object at each level. 

LIMIT time TO time_levelrel EQ 'YEAR'
LIMIT time KEEP LAST 1
LIMIT time ADD DESCENDANTS USING time_parentrel
REPORT DOWN time W 25 time_long_description
 
               --TIME_LONG_DESCRIPTION--
               ------ALL_LANGUAGES------
TIME                   AMERICAN
-------------- -------------------------
145            2005
141            Q1-05
142            Q2-05
143            Q3-05
144            Q4-05
127            Jan-05
128            Feb-05
129            Mar-05
        .
        .
        .

Catalogs Class Objects
Catalogs class objects hold information about the logical objects in the workspace. 
Catalog class objects include a list of all the cubes in the workspace, a list of all the 
measures in the workspace, a list of all the dimensions in the workspace, and other 
lists that can facilitate the work of various utilities. A given workspace has a single 
instance of each Catalog class object. DBMS_AWM creates these objects using the role as 
the name, so that the all_languages dimension is named ALL_LANGUAGES. For this 
reason, the names of objects in the CATALOGS class are shown here in capital letters to 
indicate actual names. 

In this section, Catalogs class objects are discussed in the following groups:

■ Lists of Objects

■ Lists of Types and Languages



Catalogs Class Objects

A-20 Oracle OLAP Application Developer’s Guide

■ Lists of Cube and Dimension Objects

■ Supporting Object Information

Lists of Objects
The Catalogs class includes a set of dimensions, each of which lists all the objects of a 
given kind. For example, the ALL_MEASURES dimension lists all the logical measures.

ALL_CUBES Dimension
The ALL_CUBES dimension lists the full names of all the logical cubes in the 
workspace. The following is a full description of an ALL_CUBES dimension.

FULLDSC all_cubes

DEFINE ALL_CUBES DIMENSION TEXT
LD CATALOGS List of all cubes in the aw
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'ALL_CUBES'

The following report shows the values of this ALL_CUBES dimension.

REPORT W 20 all_cubes

ALL_CUBES
--------------------
PRICE_CUBE.CUBE
UNITS_CUBE.CUBE

ALL_MEASURES Dimension
The ALL_MEASURES dimension lists the full names of all the logical measures in the 
workspace. 

A full description for this dimension is similar to those presented for the ALL_CUBES 
dimension in "ALL_CUBES Dimension" on page A-20. The following report shows the 
values of an ALL_MEASURES dimension.

REPORT W 40 all_measures
 
ALL_MEASURES
----------------------------------------
PRICE_AND_COST_CUBE.UNIT_PRICE.MEASURE
PRICE_AND_COST_CUBE.UNIT_COST.MEASURE
UNITS_CUBE.UNITS.MEASURE
UNITS_CUBE.SALES.MEASURE

ALL_DIMENSIONS Dimension
The ALL_DIMENSIONS dimension lists the full names of all the logical dimensions in 
the workspace. 

A full description for this dimension is similar to those presented for the ALL_CUBES 
dimension in "ALL_CUBES Dimension" on page A-20. The following report shows the 
values of an ALL_DIMENSIONS dimension.

REPORT W 20 all_dimensions
 
ALL_DIMENSIONS



Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-21

--------------------
PRODUCT.DIMENSION
TIME.DIMENSION
CHANNEL.DIMENSION
CUSTOMER.DIMENSION

ALL_HIERARCHIES Dimension
The ALL_HIERARCHIES dimension lists the full names of all the hierarchies in the 
workspace. 

A full description for this dimension is similar to those presented for the ALL_CUBES 
dimension in "ALL_CUBES Dimension" on page A-20. The following report shows the 
values of an ALL_HIERARCHIES dimension.

REPORT W 35 all_hierarchies
 
ALL_HIERARCHIES
-----------------------------------
CUSTOMER.AW$NONE.HIERARCHY
CUSTOMER.SHIPMENTS.HIERARCHY
CUSTOMER.MARKET_SEGMENT.HIERARCHY
PRODUCT.AW$NONE.HIERARCHY
PRODUCT.PRIMARY.HIERARCHY
TIME.AW$NONE.HIERARCHY
TIME.CALENDAR_YEAR.HIERARCHY
CHANNEL.AW$NONE.HIERARCHY
CHANNEL.PRIMARY.HIERARCHY

Hierarchies with a simple name of AW$NONE indicate that a dimension has no 
hierarchy.

ALL_LEVELS Dimension
The ALL_LEVELS dimension lists the full names of all the levels in the workspace. 

A full description for this dimension is similar to those presented for the ALL_CUBES 
dimension in "ALL_CUBES Dimension" on page A-20. The following report shows the 
values of an ALL_LEVELS dimension.

REPORT W 30 all_levels
 
ALL_LEVELS
------------------------------
CUSTOMER.AW$NONE.LEVEL
CUSTOMER.TOTAL_CUSTOMER.LEVEL
CUSTOMER.REGION.LEVEL
CUSTOMER.WAREHOUSE.LEVEL
CUSTOMER.TOTAL_MARKET.LEVEL
CUSTOMER.MARKET_SEGMENT.LEVEL
CUSTOMER.ACCOUNT.LEVEL
CUSTOMER.SHIP_TO.LEVEL
PRODUCT.AW$NONE.LEVEL
TIME.AW$NONE.LEVEL
TIME.YEAR.LEVEL
TIME.QUARTER.LEVEL
       .
       .
       .



Catalogs Class Objects

A-22 Oracle OLAP Application Developer’s Guide

ALL_ATTRIBUTES Dimension
The ALL_ATTRIBUTES dimension lists the full names of all the attributes in the 
workspace. 

A full description for this dimension is similar to those presented for the ALL_CUBES 
dimension in "ALL_CUBES Dimension" on page A-20. The following report shows the 
values of an ALL_ATTRIBUTES dimension.

REPORT W 40 all_attributes
 
ALL_ATTRIBUTES
----------------------------------------
CUSTOMER.LONG_DESCRIPTION.ATTRIBUTE
CUSTOMER.SHORT_DESCRIPTION.ATTRIBUTE
PRODUCT.SHORT_DESCRIPTION.ATTRIBUTE
PRODUCT.PACKAGE.ATTRIBUTE
PRODUCT.BUYER.ATTRIBUTE
PRODUCT.MARKETING_MANAGER.ATTRIBUTE
PRODUCT.LONG_DESCRIPTION.ATTRIBUTE
TIME.END_DATE.ATTRIBUTE
TIME.TIME_SPAN.ATTRIBUTE
TIME.LONG_DESCRIPTION.ATTRIBUTE
       .
       .
       .

ALL_OBJECTS Dimension
The ALL_OBJECTS dimension lists the full names of all the logical objects in the 
workspace. 

The following is a full description of an ALL_OBJECTS dimension. 

FULLDSC all_objects

DEFINE ALL_OBJECTS DIMENSION CONCAT (ALL_DIMENSIONS ALL_CUBES ALL_MEASURES 
  ALL_ATTRIBUTES ALL_HIERARCHIES ALL_LEVELS -
  ALL_SOLVES ALL_SOLVEDFNS ALL_SOLVEGROUPS ALL_MODELS ALL_MEASUREFOLDERS) UNIQUE
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:04:57'
PROPERTY 'AW$ROLE' 'ALL_OBJECTS'
PROPERTY 'LAST_COLUMN_ID' 78

ALL_OBJECTS is a concat dimension of the ALL_CUBES, ALL_MEASURES, ALL_
HIERARCHIES, ALL_LEVELS, and ALL_ATTRIBUTES dimensions from the Catalogs 
class. It also includes dimensions from the Extensions class. Its dimension members 
are a concatenated list of the members of those dimensions, as shown by this example.

LIMIT all_cubes TO FIRST 2
LIMIT all_measures TO FIRST 2
LIMIT all_hierarchies TO FIRST 2
LIMIT all_levels TO FIRST 2
LIMIT all_attributes TO FIRST 2
LIMIT all_objects TO all_cubes
LIMIT all_objects ADD all_measures
LIMIT all_objects ADD all_hierarchies
LIMIT all_objects ADD all_levels
LIMIT all_objects ADD all_attributes
REPORT W 40 all_objects
 



Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-23

ALL_OBJECTS
----------------------------------------
PRICE_AND_COST_CUBE.CUBE
UNITS_CUBE.CUBE
PRICE_AND_COST_CUBE.UNIT_PRICE.MEASURE
PRICE_AND_COST_CUBE.UNIT_COST.MEASURE
CUSTOMER.AW$NONE.HIERARCHY
CUSTOMER.SHIPMENTS.HIERARCHY
CUSTOMER.AW$NONE.LEVEL
CUSTOMER.TOTAL_CUSTOMER.LEVEL
CUSTOMER.LONG_DESCRIPTION.ATTRIBUTE
CUSTOMER.SHORT_DESCRIPTION.ATTRIBUTE

Lists of Types and Languages
The Catalogs class includes dimensions that list types and languages that are 
supported by the current version of the standard form.

ALL_DESCTYPES Dimension
The ALL_DESCTYPES dimension lists all the description types that are recognized in 
the current version of the standard form. The following report lists the types.

REPORT all_desctypes

ALL_DESCTYPES
--------------
SHORT
LONG
PLURAL

ALL_ATTRTYPES Dimension
The ALL_ATTRTYPES dimension lists all the attribute types that are recognized in the 
current version of standard form. The following report lists the types.

REPORT W 40 all_attrtypes

ALL_ATTRTYPES
----------------------------------------
END_DATE
TIME_SPAN
MEMBER_LONG_DESCRIPTION
MEMBER_SHORT_DESCRIPTION
USER

ALL_LANGUAGES Dimension
The ALL_LANGUAGES dimension lists the language that is implemented in the current 
analytic workspace. ALL_LANGUAGES by default contains the value of the database 
language. You can add support for any number of additional languages, as allowed by 
the database character set.

Your ability to change the status of ALL_LANGUAGES is controlled by the LOCK_
LANGUAGE_DIMS option, which must set to NO for the status to change. By default, it is 
set to YES. 

LOCK_LANGUAGE_DIMS=NO
LIMIT all_languages TO ALL
REPORT all_languages



Catalogs Class Objects

A-24 Oracle OLAP Application Developer’s Guide

ALL_LANGUAGES
--------------
AMERICAN
FRENCH
DUTCH

LIMIT all_languages TO 1
LOCK_LANGUAGE_DIMS=YES

Lists of Cube and Dimension Objects
The Catalogs class includes relations that indicate the parent-child relationships 
among various logical objects. These lists are specific to a given workspace.

CUBE_MEASURES Relation
The CUBE_MEASURES relation identifies the cube to which each measure belongs. The 
values of the relation must be listed in the ALL_CUBES dimension. The following is a 
full description of a CUBE_MEASURES relation in a sample analytic workspace.

FULLDSC cube_measures

DEFINE CUBE_MEASURES RELATION ALL_CUBES <ALL_MEASURES>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$ROLE' 'CUBE_MEASURES'

The following report identifies the measures associated with each cube.

REPORT W 40 DOWN all_measures W 30 cube_measures
 
ALL_MEASURES                                     CUBE_MEASURES
---------------------------------------- ------------------------------
PRICE_AND_COST_CUBE.UNIT_PRICE.MEASURE   PRICE_AND_COST_CUBE.CUBE
PRICE_AND_COST_CUBE.UNIT_COST.MEASURE    PRICE_AND_COST_CUBE.CUBE
UNITS_CUBE.UNITS.MEASURE                 UNITS_CUBE.CUBE
UNITS_CUBE.SALES.MEASURE                 UNITS_CUBE.CUBE

DIM_HIERARCHIES Relation
The DIM_HIERARCHIES relation identifies the dimension to which each hierarchy 
belongs. The values of the relation must be listed in the ALL_DIMENSIONS dimension. 
The following is a full description of the DIM_HIERARCHIES relation in a sample 
analytic workspace.

FULLDSC dim_hierarchies

DEFINE DIM_HIERARCHIES RELATION ALL_DIMENSIONS <ALL_HIERARCHIES>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '16AUG04_09:43:27'
PROPERTY 'AW$ROLE' 'DIM_HIERARCHIES'

The following report identifies the dimension for each hierarchy.

REPORT W 35 DOWN all_hierarchies W 20 dim_hierarchies
 



Catalogs Class Objects

Database Standard Form for Analytic Workspaces A-25

ALL_HIERARCHIES                       DIM_HIERARCHIES
----------------------------------- --------------------
CUSTOMER.AW$NONE.HIERARCHY          CUSTOMER.DIMENSION
CUSTOMER.SHIPMENTS.HIERARCHY        CUSTOMER.DIMENSION
CUSTOMER.MARKET_SEGMENT.HIERARCHY   CUSTOMER.DIMENSION
PRODUCT.AW$NONE.HIERARCHY           PRODUCT.DIMENSION
PRODUCT.PRIMARY.HIERARCHY           PRODUCT.DIMENSION
TIME.AW$NONE.HIERARCHY              TIME.DIMENSION
TIME.CALENDAR_YEAR.HIERARCHY        TIME.DIMENSION
CHANNEL.AW$NONE.HIERARCHY           CHANNEL.DIMENSION
CHANNEL.PRIMARY.HIERARCHY           CHANNEL.DIMENSION

DIM_LEVELS Relation
The DIM_LEVELS relation identifies the dimension to which each level belongs. The 
values of the relation must be listed in the ALL_DIMENSIONS dimension. The 
following is a full description of the DIM_LEVELS relation in a sample analytic 
workspace.

FULLDSC dim_levels

DEFINE DIM_LEVELS RELATION ALL_DIMENSIONS <ALL_LEVELS>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '16AUG04_09:43:27'
PROPERTY 'AW$ROLE' 'DIM_LEVELS'

The following report identifies the dimension for each level.

REPORT W 35 DOWN all_levels W 20 dim_levels
 
ALL_LEVELS                               DIM_LEVELS
----------------------------------- --------------------
CUSTOMER.AW$NONE.LEVEL              CUSTOMER.DIMENSION
CUSTOMER.TOTAL_CUSTOMER.LEVEL       CUSTOMER.DIMENSION
CUSTOMER.REGION.LEVEL               CUSTOMER.DIMENSION
CUSTOMER.WAREHOUSE.LEVEL            CUSTOMER.DIMENSION
CUSTOMER.TOTAL_MARKET.LEVEL         CUSTOMER.DIMENSION
CUSTOMER.MARKET_SEGMENT.LEVEL       CUSTOMER.DIMENSION
CUSTOMER.ACCOUNT.LEVEL              CUSTOMER.DIMENSION
CUSTOMER.SHIP_TO.LEVEL              CUSTOMER.DIMENSION
PRODUCT.AW$NONE.LEVEL               PRODUCT.DIMENSION
TIME.AW$NONE.LEVEL                  TIME.DIMENSION
TIME.YEAR.LEVEL                     TIME.DIMENSION
TIME.QUARTER.LEVEL                  TIME.DIMENSION
TIME.MONTH.LEVEL                    TIME.DIMENSION
CHANNEL.AW$NONE.LEVEL               CHANNEL.DIMENSION
CHANNEL.TOTAL_CHANNEL.LEVEL         CHANNEL.DIMENSION
CHANNEL.CHANNEL.LEVEL               CHANNEL.DIMENSION

DIM_ATTRIBUTES Relation
The DIM_ATTRIBUTES relation identifies the dimension to which each attribute 
belongs. The values of the relation must be listed in the ALL_DIMENSIONS dimension. 
The following is a full description of the DIM_ATTRIBUTES relation in a sample 
analytic workspace.

FULLDSC dim_attributes
 



Catalogs Class Objects

A-26 Oracle OLAP Application Developer’s Guide

DEFINE DIM_ATTRIBUTES RELATION ALL_DIMENSIONS <ALL_ATTRIBUTES>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '16AUG04_09:43:27'
PROPERTY 'AW$ROLE' 'DIM_ATTRIBUTES'

The following report identifies the dimension for each attribute.

REPORT W 40 DOWN all_attributes W 20 dim_attributes
 
ALL_ATTRIBUTES                              DIM_ATTRIBUTES
---------------------------------------- --------------------
CUSTOMER.LONG_DESCRIPTION.ATTRIBUTE      CUSTOMER.DIMENSION
CUSTOMER.SHORT_DESCRIPTION.ATTRIBUTE     CUSTOMER.DIMENSION
PRODUCT.SHORT_DESCRIPTION.ATTRIBUTE      PRODUCT.DIMENSION
PRODUCT.PACKAGE.ATTRIBUTE                PRODUCT.DIMENSION
PRODUCT.BUYER.ATTRIBUTE                  PRODUCT.DIMENSION
PRODUCT.MARKETING_MANAGER.ATTRIBUTE      PRODUCT.DIMENSION
PRODUCT.LONG_DESCRIPTION.ATTRIBUTE       PRODUCT.DIMENSION
TIME.END_DATE.ATTRIBUTE                  TIME.DIMENSION
TIME.TIME_SPAN.ATTRIBUTE                 TIME.DIMENSION
TIME.LONG_DESCRIPTION.ATTRIBUTE          TIME.DIMENSION
TIME.SHORT_DESCRIPTION.ATTRIBUTE         TIME.DIMENSION
TIME.TIME_DSO_1.ATTRIBUTE                TIME.DIMENSION
TIME.MONTH_OF_QUARTER.ATTRIBUTE          TIME.DIMENSION
TIME.MONTH_OF_YEAR.ATTRIBUTE             TIME.DIMENSION
TIME.QUARTER_OF_YEAR.ATTRIBUTE           TIME.DIMENSION
TIME.TIME_DSO_2.ATTRIBUTE                TIME.DIMENSION
TIME.TIME_DSO_3.ATTRIBUTE                TIME.DIMENSION
TIME.TIME_DSO_4.ATTRIBUTE                TIME.DIMENSION
CHANNEL.LONG_DESCRIPTION.ATTRIBUTE       CHANNEL.DIMENSION
CHANNEL.SHORT_DESCRIPTION.ATTRIBUTE      CHANNEL.DIMENSION

Supporting Object Information
The Catalogs class includes variables and formulas that list the objects that support 
various other objects.

AW_NAMES Variable
The AW_NAMES variable is dimensioned by ALL_OBJECTS. It contains the name of the 
workspace object that implements each logical object. If no workspace object 
implements a given logical object, the value is NA.

The following is a full description of an AW_NAMES variable.

FULLDSC aw_names

DEFINE AW_NAMES VARIABLE TEXT <ALL_OBJECTS>
PROPERTY 'AW$CLASS' 'CATALOGS'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'AW_NAMES'

The following report identifies the analytic workspace name of each logical dimension.

LIMIT all_objects TO all_dimensions
REPORT W 20 DOWN all_objects aw_names
 



Features Class Objects

Database Standard Form for Analytic Workspaces A-27

ALL_OBJECTS           AW_NAMES
-------------------- ----------
PRODUCT.DIMENSION    PRODUCT
TIME.DIMENSION       TIME
CHANNEL.DIMENSION    CHANNEL
CUSTOMER.DIMENSION   CUSTOMER

Features Class Objects
Features class objects hold information about specific logical objects and the 
workspace objects that implement them. For example, one object stores the 
descriptions of all the logical objects, while another indicates whether the object is 
intended to be visible to users.

ALL_DESCRIPTIONS Variable
The ALL_DESCRIPTIONS variable contains the short, long, and plural descriptions of 
various logical objects. For search convenience it is dimensioned by a composite.

The following is a full description of an ALL_DESCRIPTIONS variable.

FULLDSC all_descriptions

DEFINE ALL_DESCRIPTIONS VARIABLE TEXT <SPARSE <ALL_OBJECTS ALL_DESCTYPES ALL_LANGUAGES>>
LD FEATURES Descriptions for all objects
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'ALL_DESCRIPTIONS'

The following report shows the display names of the dimensions.

LIMIT all_objects TO all_dimensions
REPORT W 20 DOWN all_objects all_descriptions
 
ALL_LANGUAGES: AMERICAN
                     --------ALL_DESCRIPTIONS--------
                     ---------ALL_DESCTYPES----------
ALL_OBJECTS            SHORT       LONG      PLURAL
-------------------- ---------- ---------- ----------
CUSTOMER.DIMENSION   Customer   Customer   Customer
PRODUCT.DIMENSION    Product    Product    Product
TIME.DIMENSION       Time       Time       Time
CHANNEL.DIMENSION    Channel    Channel    Channel

DEFAULT_HIER Relation
The DEFAULT_HIER relation records the full name of the default hierarchy for each 
dimension. The base dimension for the relation is ALL_DIMENSIONS.

The following is a full description of a DEFAULT_HIER relation.

FULLDSC default_hier

DEFINE DEFAULT_HIER RELATION ALL_HIERARCHIES <ALL_DIMENSIONS>
LD FEATURES Default hierarchy for each dimension
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'DEFAULT_HIER'



Features Class Objects

A-28 Oracle OLAP Application Developer’s Guide

The following report shows the default hierarchy for each dimension.

REPORT W 20 DOWN all_dimensions W 40 default_hier
 
ALL_DIMENSIONS                     DEFAULT_HIER
-------------------- ----------------------------------------
CUSTOMER.DIMENSION   CUSTOMER.SHIPMENTS.HIERARCHY
PRODUCT.DIMENSION    PRODUCT.PRIMARY.HIERARCHY
TIME.DIMENSION       TIME.CALENDAR_YEAR.HIERARCHY
CHANNEL.DIMENSION    CHANNEL.PRIMARY.HIERARCHY

VISIBLE Variable
The VISIBLE variable is a boolean that indicates whether the Oracle OLAP 
enablement utilities should expose or ignore the objects that are registered. The 
variable is dimensioned by ALL_OBJECTS so that each object has its own setting.

The following is a full description of a VISIBLE variable.

FULLDSC visible

DEFINE VISIBLE VARIABLE BOOLEAN <ALL_OBJECTS>
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '10MAY05_11:04:57'
PROPERTY 'AW$ROLE' 'VISIBLE'

The following report shows the visibility of objects in a sample analytic workspace.

REPORT W 40 DOWN all_objects visible
 
ALL_OBJECTS                               VISIBLE
---------------------------------------- ----------
CUSTOMER.DIMENSION                              yes
CUSTOMER.AW$NONE.LEVEL                           no
CUSTOMER.AW$NONE.HIERARCHY                       no
CUSTOMER.LONG_DESCRIPTION.ATTRIBUTE             yes
CUSTOMER.SHORT_DESCRIPTION.ATTRIBUTE            yes
CUSTOMER.TOTAL_CUSTOMER.LEVEL                   yes
CUSTOMER.REGION.LEVEL                           yes
CUSTOMER.WAREHOUSE.LEVEL                        yes
                      .
                      .
                      .

Member_Inhier Valueset
The member_inhier valueset stores lists of the dimension members that are in each 
hierarchy. There is one of these valuesets for each dimension in the workspace, and 
that dimension is the valueset's parent.

The following is a full description of a member_inhier valueset for the TIME dimension.

FULLDSC time_inhier

DEFINE TIME_INHIER VALUESET TIME <TIME_HIERLIST> 
PROPERTY 'AW$CLASS' 'FEATURES' 
PROPERTY 'AW$CREATEDBY' 'AW$XML' 
PROPERTY 'AW$LASTMODIFIED' '18MAR04_14:46:51' 
PROPERTY 'AW$MEMBER_INHIER' NA
PROPERTY 'AW$PARENT_NAME' 'TIME' 
PROPERTY 'AW$ROLE' 'MEMBER_INHIER' 



Features Class Objects

Database Standard Form for Analytic Workspaces A-29

Member_Createdby Variable
The member_createdby variable records the entity that created each member of a given 
dimension. There is one of these variables for each dimension in the workspace, and 
that dimension is the variable's parent.

The following is a full description of a member_createdby variable for a dimension 
called TIME.

FULLDSC time_createdby

DEFINE TIME_CREATEDBY VARIABLE TEXT <TIME>
LD FEATURES Creator of each dimension member for TIME
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_CREATEDBY'

Member_Familyrel Relation
The member_familyrel relation records the ancestors of a given member of a dimension. 
There is one of these relations for each dimension in the workspace, and that 
dimension is the variable's parent. These relations are for internal use. 

The following is a full description of a member_familyrel relation for the TIME 
dimension.

FULLDSC time_familyrel

DEFINE TIME_FAMILYREL RELATION TIME <TIME TIME_LEVELLIST TIME_HIERLIST>
LD FEATURES Family/Ancestry structure for  TIME
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '03SEP03_15:27:47'
PROPERTY 'AW$MEMBER_FAMILYREL' NA
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_FAMILYREL'

Member_Gid Variable
The member_gid variable records the level depth of a given member of a dimension, 
within a given hierarchy. There is one of these relations for each dimension in the 
workspace, and that dimension is the variable's parent. These relations are for internal 
use. 

The following is a full description of a member_gid relation for the TIME dimension.

FULLDSC time_gid

DEFINE TIME_GID RELATION GID_DIMENSION <TIME TIME_HIERLIST>
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '16AUG04_09:45:07'
PROPERTY 'AW$MEMBER_GID' NA
PROPERTY 'AW$PARENT_NAME' 'TIME'
PROPERTY 'AW$ROLE' 'MEMBER_GID'



Extensions Class Objects

A-30 Oracle OLAP Application Developer’s Guide

OBJ_CREATEDBY Variable
The OBJ_CREATEDBY variable records the entity that created each object that is 
registered in the standard form. The variable is dimensioned by ALL_OBJECTS.

The following is a full description of the OBJ_CREATEDBY variable.

FULLDSC obj_createdby

DEFINE OBJ_CREATEDBY VARIABLE TEXT <ALL_OBJECTS>
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '04DEC02_13:09:14'
PROPERTY 'AW$ROLE' 'OBJ_CREATEDBY'

VERSION Variable
The VERSION variable records the version number of the standard form convention 
under which the analytic workspace is being managed.

The following is a full description of the VERSION variable.

FULLDSC ___xml_user_aw_version
DEFINE ___XML_USER_AW_VERSION VARIABLE TEXT
PROPERTY 'AW$CLASS' 'FEATURES'
PROPERTY 'AW$CREATEDBY' 'AW$XML'
PROPERTY 'AW$LASTMODIFIED' '16MAY05_12:28:55'
PROPERTY 'AW$NEWTIMECALCS' yes
PROPERTY 'AW$ROLE' 'VERSION'
PROPERTY 'AW$VERSION10.1.0.3' NA
PROPERTY 'AW$VERSION10.2' NA

The following command shows the current standard form version number.

SHOW ___xml_user_aw_version
10.2

Extensions Class Objects
Extensions class objects are defined and maintained by the Oracle OLAP utilities. They 
are proprietary extensions to the standard form, and there is no commitment on the 
part of Oracle to maintain them from release to release.



Upgrading From Express Server B-1

B
Upgrading From Express Server

This appendix provides upgrade instructions and identifies some of the major 
differences between Oracle Express Server 6 and Oracle OLAP. It is intended to 
provide a frame of reference to help you understand the material presented in this 
guide.

This appendix includes the following topics:

■ Administration

■ Applications Support

■ Programming Language Changes

■ Transforming Oracle Express Databases to Standard Form

Administration
Oracle OLAP is installed as an option in Oracle Enterprise Edition, and it is now 
integrated with Oracle Database. While Express Server runs in a service environment, 
Oracle OLAP runs within the Oracle kernel. 

In Oracle, the term database refers only to the relational database. An Express 
database is now called an analytic workspace. In Oracle OLAP, an analytic workspace 
can be used either as a persistent data repository or as a transient data cache. A 
persistent analytic workspace is stored in a relational table, which in turn is stored in a 
tablespace. There are no ".db" files.

The administrative tasks for Oracle OLAP are merged with the database tool set.

Management Tools
Oracle Enterprise Manager encompasses the tools for administering Oracle databases, 
providing a common user interface across all platforms. Performance data for OLAP 
can be collected in system tables the same as any other Oracle database performance 
statistics. Oracle Enterprise Manager provides a graphical interface to SQL. Because 
OLAP now runs within the Oracle Database kernel, many of the basic administrative 
tasks (such as starting, stopping, and configuring the process) are subsumed into 
database management.

Analytic Workspace Manager is the tool for creating and managing analytic 
workspaces.

OLAP Instance Manager, oesmgr, and oescmd are not available. 



Administration

B-2 Oracle OLAP Application Developer’s Guide

Authentication of Users
Oracle OLAP does not use operating system identities, except for the installation user 
under whose identity Oracle Database is installed. You can delete other operating 
system identities created for use by Express Server (such as the DBA user, the Initialize 
user, the Default user, and individual user names) if they have no other purpose.

All authentication is performed by Oracle Database. Applications must always present 
credentials before opening a session, and those credentials must match a user name 
and password stored in the relational database. Before users can access Oracle OLAP, 
you must define user names and passwords in the database.

For users to access operating system files, they must have access rights to a directory 
object that is mapped to the physical directory path. This access is granted either to an 
individual user ID or to a database role.

Data Transfer
An Oracle OLAP session is always connected to the database. You do not open a 
connection with the database as a separate or optional step. 

You can copy data between an analytic workspace objects (such as variables and 
dimensions) and relational tables in the following ways:

■ A Java package named AWXML provides procedures for creating analytic 
workspaces from relational tables. Analytic Workspace Manager provides a 
graphical interface to this package.

■  A PL/SQL package named DBMS_AWM provides procedures for creating analytic 
workspaces from OLAP Catalog metadata mapped to a star or snowflake schema. 
Earlier versions of Analytic Workspace Manager provided a graphical interface to 
this package.

■ The OLAP DML SQL command fetches data into dimensions and variables for 
further manipulation. A new SQL IMPORT command facilitates bulk data transfer 
from relational tables into the analytic workspace, and a new SQL INSERT 
DIRECT command facilitates data transfer from the analytic workspace into 
relational tables.

■ Using SQL table functions, it is now possible for a SQL-based application to 
manipulate and extract data from an analytic workspace. Express Server did not 
permit a data transfer to be initiated externally. The SQL OLAP_TABLE function 
provides this capability.

ODBC is not available, and thus access to third-party databases is not available 
directly from Oracle OLAP. However, Oracle Database supports bridges to all major 
third-party databases. 

Oracle Express Relational Access Administrator and Oracle Express Relational Access 
Manager are not available.

Localization
The Express Server language support has been replaced by Oracle Globalization 
Technology, which provides more extensive localization support and is much easier to 
administer than the localization features of Express Server. Oracle Database and 
Oracle OLAP use the same character set, which is selected during installation. 

See Also: Chapter 6 for more information about OLAP 
administration tasks



Applications Support

Upgrading From Express Server B-3

If you are upgrading Express databases that use translation tables, then you can delete 
those tables because they are not needed by Oracle OLAP. Likewise, you should check 
your Express programs for use of obsolete commands and keywords that supported 
translation tables. 

Support for Globalization Technology has been added to the OLAP DML. These 
options enable an application to query the current localization settings and override 
the behaviors controlled by the default language and territory. 

Table B–1 identifies the Unicode character sets available in Oracle that are equivalent 
to the Express Server character sets. If you plan to import Express databases or to use 
Oracle OLAP to access multibyte data in external files, then you might find this 
information helpful in identifying an appropriate database character set. Note that the 
Express CHARSET option is now obsolete.

Applications Support
Oracle OLAP enables applications to access its dimensional data directly through 
either a Java API or SQL. Express SPL programs can be executed using either 
programming method. Be sure to review all SPL programs to remove commands that 
are no longer available and to take advantage of new functionality.

Analytic Workspace Manager provides a user interface for creating a database 
standard form analytic workspace, loading data from relational tables, and 
aggregating the data. 

You cannot run Windows C++, HTML, or Java applications that were developed for 
use with Express Server.

Programming Environment
Applications for Oracle OLAP can be developed in Java using OracleBI Beans. 
SQL-based applications can access OLAP data through views or manipulate it directly 
through the OLAP_TABLE function.

OLAP Worksheet provides an interactive environment for developing stored 
procedures in either the OLAP DML or SQL. The PL/SQL DBMS_AW procedure 
executes OLAP DML commands from a SQL environment.

You cannot connect to Oracle OLAP using Express Administrator, Personal Express, 
or the Express Connection Utility.

Table B–1 Multibyte Character Set Equivalents

Express Server Unicode Character Set

EUC JA16EUC

SHIFTJIS JA16SJIS

HANGEUL KO16KSC5601

SCHINESE ZHS16GBK

TCHINESE ZHT16BIG5

See Also: Chapter 3 for methods of creating standard form 
analytic workspaces from data in relational tables

See Also: Chapter 5 for information about OracleBI Beans



Programming Language Changes

B-4 Oracle OLAP Application Developer’s Guide

Communications
Oracle OLAP provides communications through Oracle Call Interface (OCI) and Java 
Database Connectivity (JDBC). 

XCA and SNAPI are no longer available. Session sharing is not supported.

Metadata
OracleBI Beans can query data that is stored either in an analytic workspace or in 
relational tables. Analytic workspaces require standard form metadata, which is stored 
in the same analytic workspace as the business measures. This metadata is stored in 
properties on workspace objects and in catalogs, which are implemented as special 
dimensions, variables, and valuesets. Relational data sources require OLAP Catalog 
metadata, which is stored in relational tables.

Oracle Express Administrator is not available in Oracle OLAP, and the Oracle Express 
Objects metadata that it generated is not used by OracleBI Beans. Instructions for 
transforming Express metadata to standard form metadata are provided in this 
appendix. 

Programming Language Changes
Numerous changes have been made to the Express Stored Procedure Language (now 
called the OLAP Data Manipulation Language or OLAP DML).

New Commands
Support in the following areas has been added to the OLAP DML:

Partitioned variables
Compressed composites
Allocation
Dynamic model execution
Bulk data transfers between analytic workspaces and relational tables
Byte manipulation functions
Data conversion functions
New data types

Obsolete Commands
Support in the following areas has been dropped:

EXTCALL
ODBC
SNAPI
XCA
Operating system commands

Conjoint dimensions and the ROLLUP command are still available, but composite 
dimensions and aggmaps are strongly recommended instead, because they are easier 
to manage and perform better.

See Also:

■ Chapter 7 for information about the OLAP Catalog

■ Appendix A for information about standard form



Transforming Oracle Express Databases to Standard Form

Upgrading From Express Server B-5

UPDATE and COMMIT
The UPDATE command moves analytic workspace changes from a temporary 
tablespace to a permanent tablespace. Your changes are not saved permanently until 
you execute a COMMIT command, either from your Oracle OLAP session or from SQL. 
A COMMIT makes the changes permanent. 

Changes that have not been moved to the permanent tablespace are not committed. If 
you issue a COMMIT without first updating your analytic workspace, then no changes 
to the analytic workspace that you made after your last UPDATE are committed to disk.

The COMMIT command executes a SQL COMMIT command. All changes made during 
your session are committed, whether they were made through Oracle OLAP or 
through another form of access (such as SQL) to the database.

Transforming Oracle Express Databases to Standard Form
EIF files are used to transfer the contents of an analytic workspace from one database 
to another and to upgrade from an Express database. You can create an analytic 
workspace from an Express database simply by using EIF files to transfer the objects.

The more complex task is to create an analytic workspace in database standard form, 
so that you can use the current generation of Oracle OLAP tools. You may be able to 
leverage your investment in Express metadata to create standard form metadata. 
Otherwise, you must define a new logical metadata model.

Who Should Use the Transformation Tool
If your Express database contains Oracle Express Objects metadata (such as an Oracle 
Sales Analyzer, Oracle Financial Analyzer, or Oracle Express Administrator database), 
then you can use the transformation tool in Analytic Workspace Manager. Without 
Oracle Express Objects metadata, the transformation tool may not generate sufficient 
standard form metadata for the OLAP tools to work.

If your source data is in tables or views, then you have a choice of using the 
transformation tool to convert an Express database, or using other tools to create an 
analytic workspace directly from the source data. If your source data is in flat files, 
then you can define them as external tables first, then handle them the same as tables 
stored in the database. 

The transformation tool enables you to use your Oracle Express Objects metadata 
instead of redefining the logical model in Analytic Workspace Manager. However, 
you must perform other steps manually, as described in "What the Transformation 
Tool Does Not Do For You" on page B-6. You can choose which method best suits your 
needs.

 Table B–2 identifies the upgrade options.

See Also: OLAP DML Reference for comprehensive lists of new, 
obsolete, and significantly revised commands

Table B–2 Choosing an Upgrade Path for Express Databases

If you have Oracle 
Express Objects 
metadata...

And your source data is 
located in... 

THEN create a standard form 
analytic workspace using...

Yes Tables or views Transformation tool 

Yes Flat files Transformation tool



Transforming Oracle Express Databases to Standard Form

B-6 Oracle OLAP Application Developer’s Guide

What the Transformation Tool Does For You
The transformation tool enables you to start using OracleBI Beans with your data in a 
matter of minutes. The transformation step from Oracle Express Objects metadata to 
database standard form metadata involves a single menu choice in Analytic 
Workspace Manager. The entire process, from importing the EIF file to querying views 
of the analytic workspace using a OracleBI Beans application, is very quick and fully 
automated.

If you load data only at the base level, then you can create an aggregation plan in 
Analytic Workspace Manager. Aggregation plans, which use the AGGREGATE 
subsystem, are faster and more flexible than the ROLLUP command.

If you are running Oracle Database in 9i compatibility mode, then your analytic 
workspace will be converted to version 9i standard form. You can upgrade your 
analytic workspace to 10g standard form at a later time. If you are running Oracle 
Database in 10g compatibility mode, then your analytic workspace will be converted 
to version 10g standard form.

What the Transformation Tool Does Not Do For You
The transformation process circumvents the usual first step in creating an analytic 
workspace, which is developing a logical data model and mapping the logical objects 
to the data source. The tools make the appropriate changes to the standard form 
catalogs. This maintenance process is not available to converted analytic workspaces. 
Thus, you must do the following tasks manually:

■ If you want to perform time-based analysis on your data, you must identify all 
time dimensions and populate end date and time span attributes before 
transformation. A sample program is provided in this appendix. 

■ Your analytic workspace may contain programs with references to obsolete 
commands. You must revise them. You may also want to use some of the new 
features in the OLAP DML. For example, you can handle sparse data with 
composites (instead of conjoints) and partition large variables. You must define 
new variables and copy the data from the old variables (or reload it from the data 
source) to make these changes.

■ If your source data is in relational tables, then you can map the logical objects 
(cubes, measures, dimensions, and so forth) to the appropriate columns. Then you 
can use the Build Wizard in Analytic Workspace Manager to refresh the data.

or

No Tables or views Analytic Workspace Manager Model 
View (you may try the transformation 
tool first)

No Flat files Oracle Warehouse Builder or Analytic 
Workspace Manager Model View 
using the database external tables 
feature

No Third-party databases or 
other sources outside of 
Oracle Database

Oracle Warehouse Builder

Table B–2 (Cont.) Choosing an Upgrade Path for Express Databases

If you have Oracle 
Express Objects 
metadata...

And your source data is 
located in... 

THEN create a standard form 
analytic workspace using...



Transforming Oracle Express Databases to Standard Form

Upgrading From Express Server B-7

If your source data is not in relational tables, then you must revise your data load 
programs and run them manually to refresh the data.

Converting From Oracle Express Objects Metadata
The transformation tool operates on an analytic workspace. It uses the existing 
metadata to identify the roles of various objects, and then does the following:

■ Populates existing objects with the appropriate standard form properties. For 
example, the Oracle Express Objects language dimension is given the AW$ROLE 
value of ALL_LANGUAGES.

■ Creates and populates standard form metadata objects, such as the standard form 
catalogs, member_gid and member_inhier variables, and member_familyrel and 
member_levelrel relations. For descriptions of these standard form objects, refer to 
Appendix A.

The transformation tool adds standard form objects and properties; it does not delete 
any previously existing objects or properties. You can delete them manually if you 
wish.

OracleBI Beans requires a level-sorted Time dimension with period end dates and time 
span attributes in order to support time-based analysis.

Procedure: Converting From Oracle Express Objects to Standard Form
Most of the steps for converting to standard form (such as creating a new analytic 
workspace and importing the EIF file) can be done using the Object View in Analytic 
Workspace Manager. However, this procedure uses the command-line interface 
provided by OLAP Worksheet, on the basis that users making this transformation are 
already familiar with OLAP DML commands. 

Follow these steps to use the Oracle Express Objects metadata transformation tool to 
create a standard form analytic workspace.

1. Create an EIF file from your Oracle Express Objects database, and copy the file to a 
physical directory that is mapped to a directory object.

For information about database directories, refer to "Permitting Access to External 
Files" on page 6-7. 

2. Open Analytic Workspace Manager and attach to Oracle Database, as described in 
"Introduction to Analytic Workspace Manager" on page 3-1.

3. From the Tools menu, choose OLAP Worksheet.

OLAP Worksheet opens in a separate window.

4. Create a new analytic workspace from the EIF file using commands like these:

AW CREATE aw
IMPORT ALL FROM EIF FILE 'directory/filename.eif' DATA DFNS
UPDATE
COMMIT

5. Identify the Time dimensions:

LIMIT name TO OBJ(PROPERTY 'DIMTYPE') EQ 1
REPORT name

6. Identify the hierarchy dimension for each Time dimension:

SHOW OBJ(PROPERTY 'HIERDIM' timedim)



Transforming Oracle Express Databases to Standard Form

B-8 Oracle OLAP Application Developer’s Guide

Note: The Oracle Express Objects metadata identifies all of the objects that support 
hierarchies and levels for a dimension. You can use the FULLDSC command to see 
all of the properties of a dimension, or use the OBJ function as shown here to 
obtain the value of particular properties, such as HIERDIM, LEVELDIM, and 
LEVELREL.

7. Create date and time span attributes for each Time dimension.

DEFINE TIME_TIME_SPAN VARIABLE INTEGER <timedim hierdim>
PROPERTY 'USERDATA' FALSE

DEFINE TIME_END_DATE VARIABLE DATE <timedim hierdim>
PROPERTY 'USERDATA' FALSE

8. Populate the end date and time span attributes, as described in "Populating Time 
Attributes" on page B-8.

9. Set properties on the Time dimension:

CONSIDER timedim
PROPERTY 'END_DATE' attribute_name
PROPERTY 'TIME_SPAN' attribute_name

The END_DATE and TIME_SPAN (attribute_name) values identify the names of the 
variables that you just created.

10. Save these changes.

UPDATE; COMMIT

11. Return to the Analytic Workspace Manager window, and choose View > Object 
View.

12. In the navigation tree, expand the Analytic Workspaces folder for your schema.

13. Right-click the analytic workspace, then choose Transform Analytic Workspace to 
Standard Form.

A message appears to advise you to follow these directions. You can continue.

14. Review the output from the transformation tool to assure that all measures and 
dimensions have been identified properly.

15. To refresh the data from relational tables or views, map the logical objects and run 
the Build Wizard as described in Chapter 3.

To refresh the analytic workspace from other sources, revise and run the data load 
programs, as described in "Revising the Load Programs" on page B-9.

Populating Time Attributes
A standard form Time dimension has the following characteristics:

■ Dimension members are sorted chronologically within level.

■ The AW$TYPE property has a value of 'Time'.

■ Period end date and time span attributes are defined and populated.

The transformation process sets the AW$TYPE property, defines standard form 
attributes for period end dates and time span, and registers this information in the 
standard form catalogs. It does not change the order of the Time dimension members 
nor populate the attributes.



Transforming Oracle Express Databases to Standard Form

Upgrading From Express Server B-9

Sorting Time Dimension Members
If the Time members are not already sorted in chronological order within levels, then 
commands like the ones shown in Example B–1 to sort them correctly. Refer to 
Appendix A for information about the standard form objects used in the example. 

Example B–1 Template for Sorting the Time Dimension

LIMIT time_dim TO ALL
"Sort levels in descending order and time periods in ascending order
SORT time_dim D time_dim_LEVELREL A time_dim_END_DATE
LIMIT member_inhier TO time_dim
MAINTAIN time_dim MOVE VALUES(valueset) FIRST

"Save these changes
UPDATE
COMMIT

Creating and Populating End Date and Time Span Attributes
The end date and time span attributes are variables dimensioned by Time. The end 
date variable must be defined as a DATE data type. The time span variable is typically 
defined as an INTEGER data type, but any numeric data type is acceptable.

The method that you use to populate the end date and time span attributes depends 
on your data source and the format of your Time dimension members. If the 
information is available from your original data source (that is, the source from which 
you populated the Express database), then you can load the information using the 
OLAP DML. Otherwise, you must derive the information from the dimension 
members or their descriptions. An example of this method is shown in "Populating the 
XADEMO Time Attributes" on page B-13.

Setting Properties on Time Objects
You must define and set the following properties before running CREATE_DB_
STDFORM:

■ On the Time dimension, set the END_DATE and TIME_SPAN properties to the 
object names for these attributes. The DIMTYPE property should be set to 1 
already.

■ On the end-date and time-span attributes, set the USERDATA property to FALSE.

Revising the Load Programs
If the source data is stored in relational tables or views in Oracle Database, then you 
can map the logical objects of your analytic workspace to the appropriate columns, 
using the Model View in Analytic Workspace Manager. After mapping the objects, 
you can run the Build Wizard to refresh the data.

If your source data is stored in a different format, such as flat files, your analytic 
workspace probably contains programs generated by Express Administrator for 
refreshing your Express database. You can begin by modifying these programs for use 
in your analytic workspace; they are unusable in their current state.

Delete the following code from your load programs:

■ Calls to EDDE.MSG. This program displayed Express error messages in the 
Administrator graphical interface, and deleting calls to it does not affect the 
operation of your program.



Transforming Oracle Express Databases to Standard Form

B-10 Oracle OLAP Application Developer’s Guide

■ Calls to EDDE.HIERMNT. This program managed the metadata associated with 
dimension hierarchies. It is not available for use in analytic workspaces, nor is any 
of the information about your data that was stored in an XPDDDATA database.

■ Code to establish a connection with Oracle. Since the analytic workspace is part of 
Oracle Database, a connection to relational tables and views is always open.

The load programs only refresh the dimensions and measures. They do not refresh the 
dimension attributes, the hierarchy and level objects, or the standard form catalogs. 

Example: Converting the XADEMO Database to Standard Form
This example uses an EIF file that contains objects and Oracle Express Objects 
metadata from an Express database named XADEMO. If you are converting an Express 
database, you are probably already familiar with XADEMO.

Creating a Standard Form XADEMO Analytic Workspace
Suppose that an EIF file named xademo.eif is located in a system directory named 
\users\oracle\xademo_files. Take these steps to create a standard form analytic 
workspace from this file.

1. Log in to your Oracle database as the SYSTEM user and create the XADEMO user, 
permanent and temporary tablespaces, and a directory object for access to the EIF 
file.

CREATE TABLESPACE olapdata DATAFILE '$ORACLE_HOME/oradata/olapdata.dbf'
   SIZE 5M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
   EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

CREATE TEMPORARY TABLESPACE olaptmp TEMPFILE '$ORACLE_HOME/oradata/olaptmp.tmp'
   SIZE 5M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
   EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

CREATE USER xademo IDENTIFIED BY 'xademo'
   DEFAULT TABLESPACE olapdata 
   TEMPORARY TABLESPACE olaptmp
   QUOTA UNLIMITED ON olapdata
   ACCOUNT UNLOCK;

CREATE DIRECTORY xademo_dir as '/users/oracle/OraHome1/xademo_files';
GRANT READ ON DIRECTORY xademo_dir TO xademo;

Refer to Chapter 6 for information about performing these tasks.

2. Open Analytic Workspace Manager and connect to Oracle Database as the 
XADEMO user. 

3. Open OLAP Worksheet.

4. Create an analytic workspace from the EIF file:

AW CREATE xademo
IMPORT ALL FROM EIF FILE 'xademo_dir/xademo.eif' DATA DFNS
UPDATE
COMMIT

See Also: ■Appendix A for information about the standard form 
catalogs

■ Oracle OLAP DML Reference



Transforming Oracle Express Databases to Standard Form

Upgrading From Express Server B-11

5. Identify the Time dimensions:

LIMIT name TO OBJ(PROPERTY 'DIMTYPE') EQ 1
REPORT name

NAME
--------------
TIME
QUARTER
YEAR
MONTH

This example shows how to provide support to the TIME dimension. Repeat these 
procedures for the other Time dimensions.

6. Identify the HIERDIM dimension for TIME.

SHOW OBJ(PROPERTY 'HIERDIM' 'TIME')

T0.HIERDIM

7. Create the TIME_END_DATE and TIME_TIME_SPAN variables.

DEFINE TIME_END_DATE VARIABLE DATE <TIME>
PROPERTY 'USERDATA' FALSE
DEFINE TIME_TIME_SPAN VARIABLE INTEGER <TIME>
PROPERTY 'USERDATA' FALSE

8. Populate the TIME_END_DATE and TIME_TIME_SPAN variables, as described in 
the following sections.

9. Set the properties on TIME.

CONSIDER time
PROPERTY 'END_DATE' 'TIME_END_DATE'
PROPERTY 'TIME_SPAN' 'TIME_TIME_SPAN'

10. In the Object View, right-click XADEMO, then choose Transform Analytic 
Workspace to Standard Form.

Figure B–1 shows a report generated by Discoverer Plus OLAP with data from the 
transformed XADEMO analytic workspace.



Transforming Oracle Express Databases to Standard Form

B-12 Oracle OLAP Application Developer’s Guide

Figure B–1 Report of XADEMO Measures

About the Time Dimension in XADEMO
Oracle Express Objects metadata stores the names of supporting objects in properties 
on the TIME dimension, as shown in Table B–3. 

By using the OBJ function, you can discover the names of objects that support the 
TIME dimension:

SHOW OBJ(PROPERTY 'LEVELDIM' 'TIME')
T0.LEVELDIM

SHOW OBJ(PROPERTY 'LEVELLABELFRM' 'TIME')
T0.LVLLABFRM

The TIME dimension has two hierarchies, which are listed in the T0.LEVELDIM 
dimension. They are named STANDARD and YTD. The following report shows sample 
TIME members at each level.

LIMIT time TO FIRST 2
LIMIT time ADD ANCESTORS
REPORT DOWN time W 12 t0.levelrel W 20 t0.lvllabfrm
 

Table B–3 Oracle Express Objects Properties for Hierarchy and Level Support

Property Description

HIERDIM List of hierarchies (dimension)

LEVELDIM List of levels (dimension)

LEVELREL Level associated with each dimension member (relation)

LEVELLABELFRM Description of each level (formula)



Transforming Oracle Express Databases to Standard Form

Upgrading From Express Server B-13

               ----------------------------T0.HIERDIM-----------------------------
               ------------STANDARD------------- ---------------YTD---------------
TIME           T0.LEVELREL      T0.LVLLABFRM     T0.LEVELREL      T0.LVLLABFRM
-------------- ------------ -------------------- ------------ --------------------
JAN96          L3           Month(s)             L5           YTD Month(s) Detail
FEB96          L3           Month(s)             L5           YTD Month(s) Detail
Q1.96          L2           Quarter(s)           NA           NA
LAST.YTD       NA           NA                   L4           YTD Summaries
1996           L1           Year(s)              NA           NA

Populating the XADEMO Time Attributes
The POP_TIME_ATTRS program shown in Example B–2 populates the TIME_END_
DATE and TIME_TIME_SPAN variables. 

For TIME_END_DATE, the program uses the ENDDATE function to identify the last day 
of each time period. The ENDDATE function only operates on dimensions with a time 
data type (such as MONTH and YEAR). However, the XADEMO TIME dimension has a 
TEXT data type. Several transformations are needed before the ENDDATE function can 
be used. The program takes these steps:

1. For each level, defines a dimension with the appropriate data type (MONTH, 
QUARTER, or YEAR). In the example, the dimensions are named M_TEMP, Q_TEMP, 
and Y_TEMP.

2. Stores the names of the dimension members for particular level in a valueset. In 
the example, the valueset is named T_LIST.

3. Uses the current status of the T_LIST valueset to add members to the new 
dimensions (M_TEMP, Q_TEMP, and Y_TEMP).

For TIME_TIME_SPAN, the program extracts the first two characters from TIME_END_
DATE at the month level, which has values like 30APR96, to get the number of days in 
each month.

The program then uses the ROLLUP command to calculate the number of days in each 
quarter and year. T0.PARENT is a self-relation that identifies the parent-child 
relationships among dimension members. However, T0.PARENT is dimensioned by 
T0.HIERDIM, so ROLLUP cannot use T0.PARENT. Instead, the program creates a 
relation named TIME_PARENTREL dimensioned only by TIME, populates it from 
T0.PARENT, and uses the new relation in the ROLLUP command.

Note that AGGREGATE is more efficient than ROLLUP, but since this case involves just a 
single dimension in which all aggregate values are stored, ROLLUP is slightly more 
convenient and the performance differences are negligible. 

Example B–2 OLAP DML Program for Populating TIME Attributes

DEFINE POP_TIME_ATTRS PROGRAM
PROGRAM
VARIABLE _ytd TEXT         " Stores YTD time members
TRAP ON cleanup            " Divert processing on error to CLEANUP label

" Define dimensions for each level with date data types
IF NOT EXISTS('m_temp')
  THEN DEFINE m_temp DIMENSION MONTH
  ELSE MAINTAIN m_temp DELETE ALL

IF NOT EXISTS('q_temp')
  THEN DEFINE q_temp DIMENSION QUARTER
  ELSE MAINTAIN q_temp DELETE ALL



Transforming Oracle Express Databases to Standard Form

B-14 Oracle OLAP Application Developer’s Guide

" Format years like TIME year members (1997 instead of YR97)
IF NOT EXISTS('y_temp')
  THEN DO
  DEFINE y_temp DIMENSION YEAR
  CONSIDER y_temp
  VNF <YYYY> 
  DOEND
  ELSE MAINTAIN y_temp DELETE ALL
  
" Define a valueset to store time members
IF NOT EXISTS('t_list')
  THEN DEFINE t_list VALUESET TIME
  ELSE LIMIT t_list TO NA
  
" Initialize target variables
ALLSTAT
time_time_span = NA
time_end_date = NA
" *******************************************  
"    Set values for the STANDARD hierarchy
" *******************************************
LIMIT t0.hierdim TO 'STANDARD'
" Select all time members at the month level
LIMIT time TO t0.levelrel 'L3'
" Store months in the valueset
LIMIT t_list TO time
" Populate M_TEMP so all months have a MONTH data type
MAINTAIN m_temp MERGE values(t_list)
" Calculate the end date
FOR m_temp
   time_end_date(time, m_temp) = ENDDATE(m_temp)
" Extract the number of days in each month
time_time_span = CONVERT(EXTCHARS(time_end_date, 1, 2), DECIMAL)
 
" Store quarters in q_temp
LIMIT time TO t0.levelrel 'L2'
LIMIT t_list TO time
MAINTAIN q_temp MERGE VALUES(t_list)
FOR q_temp
   time_end_date(time, q_temp) = ENDDATE(q_temp) 
 
" Store years in y_temp
LIMIT time TO t0.levelrel 'L1'
LIMIT t_list TO time
MAINTAIN y_temp MERGE VALUES(t_list)
FOR y_temp
   time_end_date(time, y_temp) = ENDDATE(y_temp)   
" *******************************************  
"    Set values for the YTD hierarchy
" *******************************************
LIMIT t0.hierdim TO 'YTD'
" Limit status of months to YTD
LIMIT time TO t0.levelrel 'L5'  
LIMIT t_list TO time
LIMIT m_temp TO t_list
 
" Calculate end date and time span for months
FOR m_temp
   time_end_date(time, m_temp) = ENDDATE(m_temp)
time_time_span = CONVERT(EXTCHARS(time_end_date, 1, 2), DECIMAL)



Transforming Oracle Express Databases to Standard Form

Upgrading From Express Server B-15

 
" Get current and previous YTD
LIMIT time TO t0.parent EQ 'LAST.YTD'
LIMIT time KEEP LAST 1
_ytd = time
time_end_date(time, 'LAST.YTD') = time_end_date(time, _ytd)
LIMIT time TO t0.parent EQ 'CURRENT.YTD'
LIMIT time KEEP LAST 1
_ytd = time
time_end_date(time, 'CURRENT.YTD') = time_end_date(time, _ytd)
 
" Rollup time span for quarters and years
LIMIT t0.hierdim TO ALL
LIMIT time TO ALL
FOR t0.hierdim
  DO
  time_parentrel = t0.parent
  ROLLUP time_time_span OVER time USING time_parentrel
  DOEND
 
CLEANUP:
" Delete temporary objects
DELETE m_temp q_temp y_temp t_list time_parentrel
END



Transforming Oracle Express Databases to Standard Form

B-16 Oracle OLAP Application Developer’s Guide



Glossary-1

Glossary

Active Catalog

A set of relational views that expose the standard form metadata stored in analytic 
workspaces, where it can be accessed by SQL. Applications that use OracleBI Beans 
query the Active Catalog.

See also database standard form.

abstract data type (ADT)

See object type.

additive

Describes a fact (or measure) that can be summarized through addition. An additive 
fact is the most common type of fact. Examples include sales, cost, and profit. 

Contrast with nonadditive, semi-additive.

aggregation

The process of consolidating data values into a single value. For example, sales data 
could be collected on a daily basis and then be aggregated to the week level, the week 
data could be aggregated to the month level, and so on. The data can then be referred 
to as aggregate data. Aggregation is synonymous with summarization, and aggregate 
data is synonymous with summary data.

analytic workspace

A dimensional schema stored in a LOB table in the relational database. An analytic 
workspace can contain a variety of objects. Some of these objects may be integrally 
connected to other objects, while others are totally independent. Some objects store 
data that is useful to applications, and other objects may only exist for the purposes of 
the DBA or developer. There are several basic types of objects which play a variety of 
roles in the dimensional model. In these respects, an analytic workspace is very similar 
to a relational schema.

The OLAP DML is the basic, low-level language for working in an analytic workspace. 
Tools are available in PL/SQL and Java that provide an interface to the OLAP DML 
for users already familiar with those languages.

See also OLAP DML.

ancestor

A value at any level higher than a given value in a hierarchy. For example, in a Time 
dimension, the value 2002 might be the ancestor of the values Q1-02 and Jan-02. In a 



Glossary-2

dimension hierarchy, the data value of the ancestor is the aggregated value of the data 
values of its descendants.

Contrast with descendant. See also hierarchy, level, parent.

attribute

A descriptive characteristic of either a single dimension member or a group of 
dimension members. When applied to a single member, attributes provide 
supplementary information that can be used for display (such as a descriptive name) 
or in analysis (such as the number of days in a time period). When applied to a group, 
attributes represent logical groupings that enable users to select data based on like 
characteristics. For example, in a database representing footwear, you can use a shoe 
color attribute to select all boots, sneakers, and slippers that share the same color.

base level data

Data at the lowest level, often acquired from another source, such as a transactional 
database. 

Contrast with aggregation.

cell

A single data value of an expression. In a dimensioned expression, a cell is identified 
by one value from each of the dimensions of the expression. For example, if you have a 
variable with the dimensions MONTH and DISTRICT, then each combination of a 
month and a district identifies a separate cell of that variable.

See also dimension, variable.

child

A value at the level under a given value in a hierarchy. For example, in a Time 
dimension, the value Jan-02 might be the child of the value Q1-2002. A value can be a 
child for more than one parent if the child value belongs to multiple hierarchies. 

Contrast with parent. See also descendant, hierarchy, level.

composite

An analytic workspace object that lists dimension-value combinations (also called a 
tuple) for which there is data. When a data value is added to a variable dimensioned 
by a composite, that action triggers the creation of a composite tuple. A composite is 
an index into one or more sparse data variables, and is used to store sparse data in a 
compact form.

See also dimension, sparsity, variable.

container

See object.

cube

A logical organization of measures with identical dimensions. The edges of the cube 
contain dimension members and the body of the cube contains data values. For 
example, sales data can be organized into a cube, whose edges contain values from the 
time, product, and customer dimensions and whose body contains Volume Sales and 
Dollar Sales data. In a star schema, a cube is represented by a fact table.



Glossary-3

custom measure

A measure that is calculated at run-time and presented as one or more additional 
columns of data added to a result set. The result set includes a value for each 
dimension member currently in status. For example, a custom measure might calculate 
the difference in costs from the prior period by using the OLAP DML LAGDIF function 
on the COSTS measure. Another custom measure might calculate profits by 
subtracting the COSTS measure from the SALES measure. 

See also dimension member, OLAP DML, measure, status.

custom member

A member of a dimension created at run-time and defined as the parent of one or 
more existing dimension members. The values of a measure for a custom member are 
calculated using the aggregation rules for that dimension.

See also aggregation, dimension member, parent.

data source

A database, application, repository, or file that provides data.

data warehouse

A relational database that is designed for query and analysis rather than transaction 
processing. A data warehouse usually contains historical data that is derived from 
transaction data, but it can include data from other sources. It separates analysis 
workload from transaction workload and enables a business to consolidate data from 
several sources.

database standard form

An analytic workspace that has been constructed with a specific set of objects, such as 
hierarchy dimensions, level dimensions, parent relations, and level relations. Each 
object must be defined with a set of properties that identify its role and its 
relationships with other objects in the analytic workspace. The standard form is 
required for an analytic workspace to be accessible to OLAP tools, however, it is not a 
prerequisite for multidimensional analysis.

derived measure

A measure that is calculated from one or more stored measures. The calculated data 
may be stored in the analytic workspace, or it may be calculated entirely in response to 
a query.

See also custom measure.

DBA

Database administrator. The person responsible for creating, installing, configuring 
and maintaining Oracle Databases.

definition

The description of an analytic workspace object. An object definition includes 
characteristics such as the object's name, type (for example, dimension or variable), 
data type, dimensions, long description, permission specifications, and properties.

See also dictionary, object, property.

denormalized

Permit redundancy in a table. Contrast with normalize.



Glossary-4

derived fact (or measure)

A fact (or measure) that is generated from existing data using a mathematical 
operation or a data transformation. Examples include averages, totals, percentages, 
and differences.

descendant

A dimension member at any level below a particular member in a hierarchy. The level 
immediately below is the child.

Contrast with ancestor. See also aggregation, child, hierarchy, level.

dictionary

The collection of object definitions in an analytic workspace. The dictionary is also 
called the workspace dictionary.

See also definition, object.

dimension

A structure that categorizes data. Among the most common dimensions for 
sales-oriented data are time, geography, and product. Most dimensions have 
hierarchies.

In an analytic workspace, a dimension is a container for a list of values. A dimension 
acts as an index for identifying the values of a variable. For example, if sales data has a 
separate sales figure for each month, then the data has a month dimension; that is, the 
data is organized by month. 

In SQL, a dimension is a type of object that defines hierarchical (parent/child) 
relationships between pairs of column sets.

See also hierarchy.

dimension member

One element in the list that makes up a dimension. Also called a dimension value. A 
computer company might have dimension members in the product dimension called 
LAPPC and DESKPC. Members in the geography dimension might include Boston 
and Paris. Members in the time dimension might include NOV02, DEC02, JAN03, 
FEB03, MAR03, and so forth. 

dimension table

A relational table that stores all or part of the values for a logical dimension in a star or 
snowflake schema. Dimension tables describe the business entities of an enterprise, 
represented as hierarchical, categorical information such as time, departments, 
locations, and products. They are sometimes called lookup or reference tables.

dimension value

See dimension member.

dimension view

A relational view of data in an analytic workspace that contains the same types of data 
as a dimension table in a star schema, that is, columns for dimension members and 
attributes. A dimension view typically lists all dimension members in the key column, 
regardless of their level in the dimension hierarchy.

See also dimension table, star schema. 



Glossary-5

drill

To navigate from one item to a set of related items. Drilling typically involves 
navigating up and down through the levels in a hierarchy. When selecting data, you 
can expand or collapse a hierarchy by drilling down or up in it, respectively.

drill down

To expand the view to include child values that are associated with parent values in 
the hierarchy.

drill up

To collapse the list of descendant values that are associated with a parent value in the 
hierarchy.

edge

A set of one or more dimensions that are displayed together in a cube or document. 
Although there is no limit to the number of edges in a cube, data is often organized for 
display purposes along three edges, which are referred to as the row edge, the column 
edge, and the page edge. 

In a cross-tab report, dimension members on the row edge appear in the first column 
and identify the rows, dimension members on the column edge appear in the first row 
and identify the columns, and dimension members on the page edge label the 
individual pages of the report.

See also cube.

EIF file

A specially formatted file for transferring data between analytic workspaces. Using the 
OLAP DML, you can create an EIF file using the EXPORT command and read an EIF 
file using the IMPORT command. 

embedded total

A predefined level of aggregation built into a dimension for which a hierarchy exists. 
For example, in a time dimension, each quarter represents the total for the months in 
the quarter. Data for embedded totals is calculated in the analytic workspace by the 
aggregation system.

See also aggregation, dimension, hierarchy.

fact

See measure. See also additive, derived fact (or measure).

fact table

A table in a star schema that contains facts. A fact table typically has two types of 
columns: those that contain facts and those that are foreign keys to dimension tables. 
The primary key of a fact table is usually a composite key that is made up of all of its 
foreign keys.

A fact table might contain either detail level facts or facts that have been aggregated. 
Fact tables that contain aggregated facts are typically called summary tables or 
materialized views. A fact table usually contains facts with the same level of 
aggregation.

family relation

An analytic workspace relation object that identifies the complete parentage of each 
dimension member. A family relation has at least two dimensions: the data dimension 



Glossary-6

and a level dimension. The contents of the relation identify, for each dimension 
member, the ancestor at each level of the hierarchy. 

See also ancestor, level, relation.

formula

A type of workspace object that represents a stored calculation, expression, or 
procedure that produces a value. A formula provides a way to define and save 
complex or frequently used relationships within the data without storing the result set. 
Each time you query a formula, the OLAP engine performs the calculation or 
procedure that is required to produce the value.

hierarchy

A logical structure that uses ordered levels as a means of organizing data. A hierarchy 
can be used to define data aggregation; for example, in a time dimension, a hierarchy 
might be used to aggregate data from the month level to the quarter level to the year 
level. A hierarchy can be used to define a navigational drill path, regardless of 
whether the levels in the hierarchy represent aggregated totals.

In PL/SQL, hierarchies can be defined as part of a dimension object.

level

A position in a hierarchy. For example, a time dimension might have a hierarchy that 
represents data at the month, quarter, and year levels.

level relation

An analytic workspace relation object that identifies the level of each dimension 
member.

See also level, relation.

mapping

The definition of the relationship and data flow between source and target objects.

materialized view

A precomputed relational table comprising aggregated or joined data from fact and 
possibly dimension tables. Also known as a summary or aggregate table.

measure

Data that can be examined and analyzed, such as sales or cost data. You can select and 
display the data in a measure. Measures can be stored as variables or relations, or 
measures can be calculated by means of formulas. The terms measure and fact are 
synonymous; measure is more commonly used in a dimensional environment and fact 
is more commonly used in a relational environment.

There are both base measures and custom measures. Base measures, such as Volume 
Sales and Dollar Sales, are stored. Custom measures, such as Volume Share Year Ago, 
are calculated from base measures.

See also formula, relation, variable.

measure view

A relational view of data in analytic workspace that contains the same types of data as 
a fact table in a star schema. However, in addition to the base-level facts, a measure 
view also contains derived data, such as aggregates and inter-row calculations.

See also fact table, star schema. 



Glossary-7

metadata

Data that describes data and other structures, such as objects, business rules, and 
processes. 

See also OLAP Catalog.

model

A type of analytic workspace object that contains a set of interrelated equations, which 
are used to calculate data and assign it to a variable or dimension value. Models are 
used frequently when working with financial data.

See also dimension member, object, variable.

NA value

A special data value that indicates that data is "not available" (NA). It is the value of 
any cell to which a specific data value has not been assigned or for which data cannot 
be calculated.

See also cell, sparsity.

nonadditive

Describes a fact (or measure) that cannot be summarized through addition, such as 
average. Contrast with additive, semi-additive.

normalize

In a relational database, the process of removing redundancy in data by separating the 
data into multiple tables. Contrast with denormalized.

object

In an analytic workspace, a distinct item in the workspace dictionary. Analytic 
workspaces consist of one or more objects, such as variables, formulas, dimensions, 
relations, and programs, which are used to organize, store, and retrieve data. Each 
object is created with a particular object type and stores a particular type of 
information. Objects that are the same type (for example, three variables) can have 
different roles within the analytic workspace.

See also role.

object type

In Oracle object technology, a form of user-defined data type that is an abstraction of a 
real-world entity. An object type is a schema object with the following components:

■ A name, which identifies the object type uniquely within a schema 

■ Attributes, which model the structure and state of the real-world entity 

■ Methods, which implement the behavior of the real-world entity, in either 
PL/SQL or Java

OLAP Catalog

A metadata package consisting of a set of read and write APIs that describe data in 
dimensional terms, such as cubes, measures, dimensions, and attributes. 

See also metadata.

OLAP DML

The low-level data definition and manipulation language for analytic workspaces.



Glossary-8

on the fly

Calculated at run-time in response to a specific query. In an analytic workspace, 
custom measures and custom members are typically calculated on the fly. Aggregate 
data can be precalculated, calculated on the fly, or a combination of the two methods. 

Contrast with precalculate.

online analytical processing (OLAP)

Functionality characterized by dynamic, dimensional analysis of historical data, which 
supports activities such as the following: 

■ Calculating across dimensions and through hierarchies

■ Analyzing trends

■ Drilling up and down through hierarchies

■ Rotating to change the dimensional orientation

online transaction processing (OLTP)

Systems optimized for fast and reliable transaction handling. Compared to data 
analysis systems, most OLTP interactions involve a relatively small number of rows, 
but a larger group of tables.

parent

A dimension member at the level immediately above a particular member in a 
hierarchy. In a dimension hierarchy, the data value of the parent is the aggregated 
total of the data values of its children. 

Contrast with child. See also hierarchy, level.

parent-child relation

A one-to-many relationship between one parent and one or more children in a 
hierarchical dimension. For example, New York (at the state level) might be the parent 
of Albany, Buffalo, Poughkeepsie, and Rochester (at the city level).

See also child, parent.

parent relation

An analytic workspace relation object that defines a dimension's hierarchies by storing 
the parent of each dimension member.

See also parent, relation.

precalculate

Calculated and stored as a data maintenance procedure. In an analytic workspace, 
aggregate data can be precalculated, calculated on the fly, or a combination of the two 
methods. 

Contrast with on the fly.

program

A type of database object that contains a series of OLAP DML commands. A program 
executes a set of related commands. Programs can be nested, with one calling another. 
A program can return a value; in this case, it is called a user-defined function. 

See also object.



Glossary-9

property

A characteristic of an object or component. Properties provide identifiers and 
descriptions, define object features (such as the number of decimal places or the color), 
or define object behaviors (such as whether an object is enabled). Properties are used 
extensively in standard form analytic workspaces. 

See also object.

QDR

See qualified data reference.

qualified data reference

A qualifier that limits one or more dimensions to a single value for the duration of an 
OLAP DML command. A QDR is useful when you want to temporarily reference a 
value without affecting the current status. In the following example of an OLAP DML 
command, the QDR limits the MONTH dimension to JUN02.

SHOW sales(month 'JUN02')

See also dimension, dimension member, status.

relation

A type of workspace object that is similar to a variable, except that it restricts its data 
values to the members of a particular dimension (such as PRODUCT) instead of to a 
particular data type (such as NUMBER). A relation establishes a correspondence 
between the values of a given dimension and the values of that dimension or other 
dimensions in the database. 

For example, you might have a relation between cities and sales regions, such that 
each city belongs to a particular region. In a relation between cities and sales regions, 
the relation is dimensioned by CITY. Each cell holds the corresponding value of the 
REGION dimension.

See also cell, dimension, dimension member, variable.

role

The function of a workspace object within its broader categorization of object type. For 
example, a variable that stores numeric business measures has a role of measure. A 
variable that stores descriptive product names has a role of attribute. Both are 
variables, but they contain different types of information and play different roles in 
the dimensional model.

See also object.

rollup form

A table that displays the full ancestry of each dimension member within a row. The 
table provides a column for each level of the hierarchy. 

For example, a row for base-level dimension member Florence has FLORENCE in the 
City column, ITALY in the Country column, and EUROPE in the Region column. A row 
for Italy has null in the City column, ITALY in the Country column, and EUROPE in 
the Region column.

Contrast with embedded total. See also ancestor, dimension member, hierarchy.

schema

A collection of related database objects. Relational schemas are grouped by database 
user ID and include tables, views, and other objects. Multidimensional schemas are 



Glossary-10

called analytic workspaces and include dimensions, relations, variables, and other 
objects.

See also analytic workspace, snowflake schema, star schema.

semi-additive

Describes a fact (or measure) that can be summarized through addition along some, 
but not all, dimensions. Examples include head count and on-hand stock. 

Contrast with additive, nonadditive.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized. 

See also normalize, schema, star schema.

solved data

A result set in which all derived data has been calculated. Data fetched from an 
analytic workspace is always fully solved, because all of the data in the result set is 
calculated before it is returned to the SQL-based application. The result set from the 
analytic workspace is the same whether the data was precalculated or calculated on 
the fly.

See also on the fly, precalculate.

source

A database, application, file, or other storage facility from which the data in a data 
warehouse is derived.

sparsity

A concept that refers to multidimensional data in which a relatively high percentage of 
the combinations of dimension values do not contain actual data. Such "empty," or NA, 
values can take up storage space in an analytic workspace. To handle sparse data 
efficiently, you can create a composite. 

There are two types of sparsity.

■ Controlled sparsity occurs when a range of values of one or more dimensions has 
no data; for example, a new variable dimensioned by month for which you do not 
have data for past months. The cells exist because you have past months in the 
month dimension, but the cells contain NA values.

■ Random sparsity occurs when NA values are scattered throughout the variable, 
usually because some combinations of dimension values never have any data. For 
example, a district might only sell certain products and never have data for other 
products. Other districts might sell some of those products and other ones, too.

See also composite, NA value.

standard form

See database standard form.

star query

A join between a fact table and a number of dimension tables. Each dimension table is 
joined to the fact table using a primary key to foreign key join, but the dimension 
tables are not joined to each other.



Glossary-11

star schema

A relational schema whose design represents a dimensional data model. The star 
schema consists of one or more fact tables and one or more dimension tables that are 
related through foreign keys.

See also schema, snowflake schema

status

The list of currently accessible values for a given dimension. If the status of a given 
dimension is limited to a subset of its stored values, then all expressions that are based 
on that dimension will be limited to the corresponding subset of data. The status of a 
dimension persists within a particular session, and does not change until it is changed 
deliberately. When an analytic workspace is first attached to a session, all members are 
in status.

See also dimension, dimension member.

summary

See aggregation, materialized view.

update window

The length of time available for loading new data into your database.

valueset

A type of workspace object. A valueset contains a list of dimension members for a 
particular dimension. After defining a valueset, you use the LIMIT command to assign 
members from the dimension to the valueset. The values in a valueset can be saved 
across Oracle OLAP sessions.

When you begin a new Oracle OLAP session or start up a workspace, each dimension 
has all values in status. You can then limit a dimension to the values stored in the 
valueset for that dimension.

See also dimension.

variable

A type of workspace object that stores data. The data type of a variable indicates the 
kind of data that it contains, such as numeric or text data.

If a variable has dimensions, then those dimensions organize its data, and there is one 
cell for each combination of dimension members. A dimensioned variable is an array 
whose cells are individual data values. If a variable has no dimensions, then it is a 
single-cell variable, which contains one data value.

See also cell, dimension, dimension member, object.



Glossary-12



Index-1

Index

A
access rights, 6-5
active catalogs, 5-3
ALL_ATTRIBUTES dimension, A-22
ALL_ATTRTYPES dimension, A-23
ALL_CUBES dimension, A-20
ALL_DESCRIPTIONS variable, A-27
ALL_DESCTYPES dimension, A-23
ALL_DIMENSIONS dimension, A-20
ALL_HIERARCHIES dimension, A-21
ALL_LANGUAGES dimension, A-23
ALL_LEVELS dimension, A-21
ALL_MEASURES dimension, A-20
ALL_OBJECTS dimension, A-22
allocation, B-4
ALTER SESSION commands, 6-7
analysis tools

described, 1-3
analytic capabilities

compared, 1-10
Analytic Workspace Java API, 5-7, 7-3
Analytic Workspace Manager, 3-1 to 3-11
analytic workspaces

basic process overview, 1-13
basic steps for creating, 3-11
best practices, 1-9
database storage, 6-9
defined, 1-7, 1-11
standard form, 3-10

applications
differences from Express, B-3

ATTRDEF object, A-18
attributes

 See Also dimension attributes
 See Also level attributes
creating logical, 7-5, 7-9
logical, 1-7

authentication, 6-4
AW$ tables, 6-11
AW$CLASS property, A-6
AW$CREATEDBY property, A-6
AW$LASTMODIFIED property, A-6
AW$STATE property, A-7
AW_NAMES variable, A-26
AWXML package, 5-7, 7-3

B
BFILE security, 6-8
BI Beans

described, 5-2, 5-3
relational data source, 5-7
relational data sources, 5-7
See also OLAP API

C
caches

use in iterative queries, 5-7
calculation engine

defined, 1-11
catalogs class

database standard form, A-19
character sets, B-2
CHARSET option, B-3
classes

database standard form, A-4
COMMIT command, B-5
configuration procedures, 6-1
conjoints, B-4
CONNECT role, 6-5
connect string

for Analytic Workspace Manager, 3-5
CREATE_DB_STDFORM program, B-5
crosstab bean, 5-4
CUBE_MEASURES valueset, A-24
CUBEDEF dimension, A-12
cubes, 1-8

defined, 7-5
cursors, 5-7
custom measures

BI Beans support, 5-5
CWM2

write APIs, 7-9
CWM2_OLAP_CATALOG package, 7-9
CWM2_OLAP_CUBE package, 7-9
CWM2_OLAP_DIMENSION package, 7-9
CWM2_OLAP_HIERARCHY package, 7-9
CWM2_OLAP_LEVEL package, 7-9
CWM2_OLAP_LEVEL_ATTRIBUTE package, 7-9
CWM2_OLAP_MEASURE package, 7-9



Index-2

CWM2_OLAP_PC_TRANSFORM package, 7-9
CWM2_OLAP_VALIDATE package, 7-10

D
data formatting, 5-4
data models, 1-5
data stores

described, 1-9
data striping, 6-2
database configuration, 6-1
database security, 6-4
database standard form

described, A-1
specification, A-1 to A-30

DEFAULT_HIER relation, A-27
demand planning systems, 1-3
DIM_ATTRIBUTES relation, A-25
DIM_HIERARCHIES relation, A-24
DIM_LEVELS relation, A-25
DIM_LEVELS valueset, A-25
DIMDEF dimension, A-15
dimension hierarchies

 See hierarchies
dimension order

basic rules, 3-19
dimension tables

defining metadata, 7-5
dimensions

creating logical, 7-5
logical, 1-6, 7-5
time, 7-5

directories
database, 6-7

directory object, 8-6
drilling, 5-3
dynamic performance tables, 6-11

E
EDDE.HIERMNT program (obsolete), B-10
EDDE.MSG program (obsolete), B-9
EIF files, B-5
Excel add-in, 1-3
Express Connection Utility (obsolete), B-3
Express databases

converting to standard form, B-5
Express Relational Access Administrator 

(obsolete), B-2
Express Relational Access Manager (obsolete), B-2
EXTCALL (obsolete), B-4
extensions class

database standard form, A-30

F
fact tables

defining metadata, 7-5
features class

database standard form, A-27

files
allowing access, 6-7

financial applications, 1-3
forecasting commands

OLAP DML, 4-1
formatting

data, 5-4

G
Global Computing Company

data requirements, 2-2 to 2-7
Global star schema, 2-7
GLOBAL_AW user

defining, 3-27
globalization, B-2
Globalization Technology See NLS
graph bean, 5-4

H
HIER_LEVELS valueset, A-18
hierarchies

creating logical, 7-5
logical, 1-7

HIERLIST dimension, A-16

I
IDE

defined, 5-2
implementation class

database standard form, A-11
initialization parameters, 6-7
init.ora file, 6-6

J
Java

described, 5-1
sandbox security, 5-2

Java APIs for OLAP, 5-1 to 5-8
JDeveloper, 5-2
JOB_QUEUE_PROCESSES parameter, 6-6

L
language support, B-2
LEVELLIST dimension, A-16
LEVELREL relation, A-17
levels

creating logical, 7-5
logical, 1-7

localization, B-2
login names, 6-4

M
materialized views

CWM2, 8-5, 8-6, 8-7
grouping sets, 8-5 to 8-13



Index-3

MDI
defined, 5-2

MEASUREDEF object, A-13
measures

custom, 5-5
logical, 1-6

MEMBER_CREATEDBY variable, A-29
MEMBER_FAMILYREL relation, A-29
MEMBER_INHIER variable, A-28
modeling support, B-4
MOLAP

analytic operations, 1-10
defined, 1-9

multibyte character sets
Express equivalents, B-3

multidimensional data, 1-8

N
naming conventions

database standard form, A-5
NLS_LANG configuration parameter, B-2
n-pass functions, 5-6
number formatting, 5-4

O
object-oriented programming, 5-5
ODBC (obsolete), B-4
ODBC support (obsolete), B-2
oescmd program (obsolete), B-1
oesmgr program (obsolete), B-1
OLAP

defined, 1-2
OLAP API

described, 1-12, 5-2, 5-5
relational data source, 5-7
See also BI Beans

OLAP Beans, 5-3, 5-4
OLAP Catalog

described, 1-11
metadata model tables, 7-3
read APIs, 7-3
write APIs, 7-3

OLAP DML
described, 1-12

OLAP Instance Manager (obsolete), B-1
OLAP Management tool, 7-4
OLAP metadata

creating in Enterprise Manager, 7-4
creating with CWM2 APIs, 7-9
materialized views, 8-2
steps for creating, 7-4

OLAP Worksheet
described, 3-3
session sharing, 3-1

OLTP
defined, 1-2

operating system commands (obsolete in OLAP 

DML), B-4
optimization techniques, 6-2

P
paging, 5-4
parameter file, 6-6
parent-child relations

described, 1-7
PARENTREL relation, A-17
partitioning, 6-9
performance counters, 6-11
Personal Express (obsolete), B-3
pfile settings, 6-6
PGA_AGGREGATE_TARGET parameter, 6-6
PGA_TARGET parameter, 6-6
pivoting, 5-3
predictive analysis applications, 1-3
Presentation Beans, 5-3
PS$ tables, 6-11

Q
query builder, 5-5
QUERY REWRITE system privilege, 6-5
query tools

described, 1-3

R
random sparsity, definition, 3-17
regressions

OLAP DML, 4-1
Relational Access Administrator (obsolete), B-2
Relational Access Manager (obsolete), B-2
relational data sources, 5-7, 8-1
relational schema

best practices, 1-9
result sets, 5-7
ROLAP

analytic operations, 1-10
defined, 1-9

roles, 6-5
ROLLUP command, B-4, B-6

S
schemas

star, snowflake, 7-4, 8-2
SELECT privilege, 6-5
server parameter file, 6-6
session sharing, B-4
SESSIONS parameter, 6-6
SNAPI (obsolete), B-4
SNAPI communications (obsolete), B-4
sparsity characteristics, 3-28
sparsity pattern, definition, 3-17
Spreadsheet Add-In

described, 1-3
SQL analytic operations, 1-10
SQL command (OLAP DML), B-2



Index-4

SQL interface, 1-12
standard form

see database standard form
startup parameters

database, 3-35
stoplight formatting, 5-4
striping, 6-2
summary data

creating, 1-8
summary data methods

compared, 1-10
system properties

database standard form, A-6

T
tablespaces

defining, 3-35
for analytic workspaces, 6-2

Time attributes
creating for converted Express databases, B-8

time dimensions, 7-5
translation tables, B-3

U
UNDO_MANAGEMENT parameter, 6-6
UNDO_TABLESPACE parameter, 6-6
Unicode, B-3
UPDATE command, B-5
user access rights, 6-5
user names, 6-4
UTL_FILE_DIR parameter, 6-6, 8-6

V
VISIBLE variable, A-28

W
wizards

BI Beans, 5-4

X
XCA (obsolete), B-4
XML metadata, 5-7, 7-3
XPDDDATA database (obsolete), B-10


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle OLAP Applications Development?
	Oracle Database 10g Release 10.2 Oracle OLAP
	Oracle Database 10g Release 10.1.0.4 Oracle OLAP

	Part I Fundamentals
	1 Overview
	OLAP Technology Within Oracle Database
	Problems Maintaining Two Distinct Systems
	Full Integration of Multidimensional Technology

	Using OLAP to Answer Business Questions
	Common Analytical Applications
	Tools for Querying OLAP Data Stores
	Formulating Queries
	Creating Custom Measures

	The Logical Dimensional Data Model
	Logical Cubes
	Logical Measures
	Logical Dimensions
	Logical Hierarchies and Levels
	Logical Attributes

	About Multidimensional Data Stores
	Creating Analytic Workspaces
	Summary Data

	Deciding When to Use Analytic Workspaces
	When to Use Analytic Workspaces
	When to Use Relational Schemas
	Structured and Unstructured Data Stores
	Processing Analytic Queries
	Creating Summary Data
	How Analytic Workspaces Store Summary Data
	How Relational Schemas Store Aggregate Data


	Components of Oracle OLAP
	OLAP Analytic Engine
	Analytic Workspaces
	Analytic Workspace Manager
	OLAP Worksheet
	SQL Interface to OLAP
	OLAP DML
	Analytic Workspace Java APIs
	OLAP API
	OLAP Catalog

	Implementing an Analytic Workspace
	Identifying Business Goals
	Identifying Data Sources
	Defining a Logical Model
	Mapping, Loading, and Aggregating the Data
	Generating Information-Rich Data

	Implementing a Relational Data Warehouse for OLAP
	Identifying Business Goals
	Identifying Data Sources
	Defining a Logical Model
	Generating Summary Data

	Upgrading Oracle Database 10g Release 1 Analytic Workspaces
	Upgrading Oracle9i Analytic Workspaces
	Upgrading the Physical Storage Format
	Upgrading the Standard Form Metadata


	2 The Sample Schema
	Case Study Scenario
	Reporting Requirements
	Business Goals
	Information Requirements
	Business Analysis Questions
	What products are profitable?
	Who are our customers, and what and how are they buying?
	What accounts are most profitable?
	What is the performance of each distribution channel?
	Is there still a seasonal variance to the business?
	Summary of Information Requirements


	Identifying Required Business Facts
	Designing a Logical Data Model for Global Computing
	Identifying Dimensions
	Identifying Levels
	Identifying Hierarchies
	Identifying Stored Measures

	The Global Schema


	Part II Creating and Managing Analytic Workspaces
	3 Creating an Analytic Workspace
	Introduction to Analytic Workspace Manager
	Model View
	Object View
	OLAP Worksheet

	Getting Started with Analytic Workspace Manager
	Installing Analytic Workspace Manager
	Opening Analytic Workspace Manager
	Defining a Database Connection
	Opening a Database Connection

	Identifying the Source Data
	Schema Requirements
	Star Schema
	Snowflake Schema
	Other
	Making Transformations in Your Source Data

	Choosing a Build Tool

	Creating a Standard Form Workspace Using Analytic Workspace Manager
	How Analytic Workspace Manager Saves Changes
	Basic Steps for Creating a Standard Form Workspace
	Adding Functionality to a Standard Form Analytic Workspace

	Creating Logical Dimensions
	Creating Dimensions
	Defining a Time Dimension
	Creating Unique Dimension Members
	Opening the Create Dimension Dialog Box

	Creating Levels
	Creating Hierarchies
	Creating Attributes
	Automatically Defined Attributes
	User Attributes


	Creating Logical Cubes
	Creating Cubes
	Creating Measures
	Creating Calculated Measures

	Making Data Storage Decisions
	What is Sparsity?
	Sparsity Patterns
	Physical Storage of Sparse Data
	Manually Calculating Sparsity in a Cube

	Ordering the Dimensions in a Cube
	Partitioning Large Measures
	Defining Rules for Summarizing Data
	Basic Strategy for Summarizing Analytic Workspace Data
	Selecting Levels to Aggregate in the Builds
	Choosing Aggregation Methods


	Mapping Logical Objects to Data Sources
	Mapping Dimensions
	Mapping Cubes

	Maintaining the Data
	Submitting Maintenance Tasks to the Oracle Job Queue
	Managing Maintenance Jobs

	Defining Measure Folders
	Supporting Multiple Languages
	Creating Calculation Plans
	Case Study: Creating the Global Analytic Workspace
	Defining the GLOBAL_AW User
	Examining Sparsity Characteristics for GLOBAL
	Identifying Levels for Precalculation
	Creating the GLOBAL Analytic Workspace
	Creating GLOBAL Dimensions and Attributes
	Creating GLOBAL Cubes and Measures
	Mapping the GLOBAL Logical Model to Data Sources
	Loading and Aggregating the Data
	Creating Calculated Measures
	Creating a Measure Folder

	Case Study: Creating the Sales History Analytic Workspace
	Creating the SH Analytic Workspace
	Defining Database Parameters
	Defining Tablespaces for Sales History
	Defining the SH_AW User
	Defining the Logical Dimensions for Sales History
	Defining TIMES_DIM
	Defining CUSTOMERS_DIM
	Defining PRODUCTS_DIM, CHANNELS_DIM, and PROMOTIONS_DIM

	Defining the Logical Sales Cube for Sales History
	About the Sparsity Advisor
	Sample Program for Evaluating Sales History Tables
	Interpreting the Results from the Sparsity Advisor

	Maintaining Sales History


	4 Predicting Future Performance
	Creating a Forecast
	Steps for Creating a Forecast
	Creating the Forecast Time Periods
	Defining a Measure for the Results
	Defining Supporting Variables (Optional)
	Developing a Forecast Program
	Generating a Forecast
	Aggregating the Forecast Data

	Case Study: Forecasting Global Sales
	Defining the Sales Forecast Measure for Global Sales
	Defining a Variable for Seasonal Adjustment
	Developing a Forecasting Program for Global Sales
	Historical and Forecast Time Periods
	The FORECAST_SALES Program
	Generating the Global Sales Forecast
	Aggregating the Sales Forecast Measure



	5 Developing Java Applications for OLAP
	Building Analytical Java Applications
	About Java
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing OracleBI Beans
	Metadata
	Navigation
	Formatting
	Graphs
	Crosstabs
	Data Beans
	Wizards
	JSP Tag Library

	Understanding the OLAP API
	How the OLAP API Accesses Dimensional Data
	Calculation Capabilities
	Intelligent Caching

	Managing Data Sources for OracleBI Beans and the OLAP API
	Building Java Applications that Manage Analytic Workspaces

	6 Administering Oracle OLAP
	Administration Overview
	Creating Tablespaces for Analytic Workspaces
	Creating an UNDO Tablespace
	Creating a Permanent Tablespace for Analytic Workspaces
	Creating a Temporary Tablespace for Analytic Workspaces
	Querying the Size of an Analytic Workspace

	Setting Up User Names
	SQL Access For DBAs and Application Developers
	SQL Access for Analysts
	Access to Database Objects Using OracleBI Beans
	Access to the Oracle JVM

	Initialization Parameters for Oracle OLAP
	Procedure: Setting System Parameters for OLAP
	About the PGA_AGGREGATE_TARGET Setting

	Initialization Parameters for OracleBI Beans
	Permitting Access to External Files
	Creating a Directory Object
	Granting Access Rights to a Directory Object
	Example: Creating and Using a Directory Object

	Understanding Data Storage
	Analytic Workspace Tables
	System Tables and Views

	Monitoring Performance
	Copying and Backing Up Analytic Workspaces


	Part III Creating a Relational Data Warehouse
	7 Using the OLAP Catalog
	Choosing a Method for Creating OLAP Catalog Metadata
	For Source Data in a Basic Star or Snowflake Schema
	For Dimension Tables with Complex Hierarchies
	For Other Schema Configurations

	Overview of the OLAP Catalog
	OLAP Catalog Components
	About CWM1
	About CWM2

	Steps for Creating OLAP Metadata

	Creating Metadata Using Enterprise Manager Database Control
	Procedure: Accessing OLAP Management
	Defining Metadata for Dimension Tables
	Information That You Supply for Dimensions
	Time Dimension
	Procedure: Defining a Logical Dimension in the OLAP Catalog

	Defining Metadata for Fact Tables
	Information That You Supply for Cubes
	Procedure: Defining a Logical Cube in the OLAP Catalog


	Case Study: Creating Metadata for the GLOBAL Star Schema
	Defining a Logical Time Dimension for the Global Schema
	Defining a Logical Price and Cost Cube for the Global Schema

	Creating Metadata Using PL/SQL
	CWM2 Packages for Creating OLAP Dimensions
	CWM2 Packages for Creating Cubes
	CWM2 Package for Mapping Metadata
	CWM2 Package for Creating Level-Based Dimension Tables
	CWM2 Packages for Classification and Validation


	8 Materialized Views for the OLAP API
	Summary Management with Oracle OLAP
	Overview and Requirements
	Materialized Views Required for a Cube
	Materialized Views and OLAP Metadata

	A Dimension Materialized View
	CREATE Materialized View for a Dimension Hierarchy
	Bitmap Indexes for a Dimension Hierarchy
	Statistics for a Dimension Hierarchy

	A Fact Materialized View
	CREATE Fact Materialized View
	Bitmap Indexes for Fact Materialized Views
	Statistics for Fact Materialized Views

	Using the DBMS_ODM Package
	Procedure: Automatically Generate the Materialized Views
	Procedure: Manually Generate the Materialized Views

	Example: Automatically Generate the Materialized Views for a Price Cube
	Example: Manually Generate the Materialized Views for a Sales Cube

	A Database Standard Form for Analytic Workspaces
	Overview of Database Standard Form
	Terminology: Using Role Names to Identify Objects

	Querying a Standard Form Analytic Workspace
	Querying the Standard Form Catalogs
	Querying Properties

	Standard Form Implementation of the Logical Model
	Relationships Among Logical Objects
	Classes of Workspace Objects

	Object Naming Conventions
	Logical Names
	Simple Logical Names and Full Names
	Name Space Organization

	Workspace Object Properties
	System Properties on All Workspace Objects
	Properties Specific to Implementation Class Objects
	Role Property Values for Implementation Class Objects
	Role Property Values for Catalogs Class Objects
	Role Property Values for Features Class Objects
	Role Property Values for Extensions Class Objects

	Implementation Class Objects
	Cube Objects
	Cubedef Dimension

	Measure Objects
	Measuredef Object

	Dimension Objects
	Dimdef Dimension
	Hierlist Dimension
	Levellist Dimension
	Member_Levelrel Relation
	Member_Parentrel Relation
	Hier_Levels Valueset
	Attrdef Object


	Catalogs Class Objects
	Lists of Objects
	ALL_CUBES Dimension
	ALL_MEASURES Dimension
	ALL_DIMENSIONS Dimension
	ALL_HIERARCHIES Dimension
	ALL_LEVELS Dimension
	ALL_ATTRIBUTES Dimension
	ALL_OBJECTS Dimension

	Lists of Types and Languages
	ALL_DESCTYPES Dimension
	ALL_ATTRTYPES Dimension
	ALL_LANGUAGES Dimension

	Lists of Cube and Dimension Objects
	CUBE_MEASURES Relation
	DIM_HIERARCHIES Relation
	DIM_LEVELS Relation
	DIM_ATTRIBUTES Relation

	Supporting Object Information
	AW_NAMES Variable


	Features Class Objects
	ALL_DESCRIPTIONS Variable
	DEFAULT_HIER Relation
	VISIBLE Variable
	Member_Inhier Valueset
	Member_Createdby Variable
	Member_Familyrel Relation
	Member_Gid Variable
	OBJ_CREATEDBY Variable
	VERSION Variable

	Extensions Class Objects

	B Upgrading From Express Server
	Administration
	Management Tools
	Authentication of Users
	Data Transfer
	Localization

	Applications Support
	Programming Environment
	Communications
	Metadata

	Programming Language Changes
	New Commands
	Obsolete Commands
	UPDATE and COMMIT

	Transforming Oracle Express Databases to Standard Form
	Who Should Use the Transformation Tool
	What the Transformation Tool Does For You
	What the Transformation Tool Does Not Do For You

	Converting From Oracle Express Objects Metadata
	Procedure: Converting From Oracle Express Objects to Standard Form

	Populating Time Attributes
	Sorting Time Dimension Members
	Creating and Populating End Date and Time Span Attributes
	Setting Properties on Time Objects

	Revising the Load Programs
	Example: Converting the XADEMO Database to Standard Form
	Creating a Standard Form XADEMO Analytic Workspace
	About the Time Dimension in XADEMO
	Populating the XADEMO Time Attributes




	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /Symbol
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


