Oracle® OLAP

Reference

10g Release 2 (10.2)
B14350-01

June 2005

ORACLE

Oracle OLAP Reference, 10g Release 2 (10.2)
B14350-01
Copyright © 2003, 2005, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... st e e xiii
AN S Lo = VLT OPRTRRTTRT Xiii
Documentation AcCesSIDIlityccooiiiiiiiiiiiiiiiii e xiii
ReElated DOCUITIEIESeevieieiieceeeeeeeeeeeeeee ettt et ettt e e et e e e te e eaaeeaeesraseseesseseseeeseseseeesesenseensessnsseseeans Xiv
CONMVEIIEIONS ..oeitteeieee ettt ettt e eeet et e e e e et ee e e e e saaeeeeeeessaaeeseesaaeaeeeeseaasseeseessaaeseesssnassaessessssesseessnssaeesessns Xiv

1 Creating Analytic Workspaces with DBMS_AWM

OVIVIBW ...ttt r et a e aea st a et 1-1
Creating OLAP Catalog Metadata for the Source Cube.........cccooovriiiniiiiie 1-3
Creating Dimensions in the Analytic WOrkspacecccccccceueiiiiiiinicinccccceeeeceeeenes 1-3
Creating Cubes in the Analytic WOrkspaceccccueuoiiiiiiiiiiiiiccccc 1-4
Aggregating the Cube's Data in the Analytic Workspace..........cccccooeiiiiiiiiiiiiiiiicenns 1-4
Enabling Access to the Analytic WOTKSpacecccovvvviviviinrinicrrcne e 1-4
Viewing Metadata Created by DBMS_AWMccccoooiiiiiiicce e 1-4
Understanding the DBMS_AWM Proceduresccocoeueiririnieriininnieiinnecineeeeeeseseneneesnenes 1-5
Methods 0n DIMENSIONSc.ccovuiiiiiiimiiiiiiii e 1-5
Methods 0N CUDESccviiiiiiiiiiiii s 1-6
Methods on Dimension Load Specifications............c.ccoueeieieiniiieiiiiiciecceceeene 1-7
Methods on Cube Load Specifications............ccccviuiiiiiiiiiiiiiiiiiiiicceee e 1-7
Methods on Aggregation Specifications..............cooeuriiiiiiciiiiiice 1-8
Methods on Composite SpecifiCations...........cceuvicrieieiiiieiiccece e 1-8
Creating and Refreshing a Workspace Dimension.............cccccoeeiiiniiiiiininiiiniciiccce 1-9
Creating and Refreshing a Workspace Cube ..o 1-10
Managing Sparse Data and Optimizing the Workspace Cube..........cccoeueicinniniinnneiccnnnee. 1-12
Aggregating the Data in an Analytic Workspace..............cccooiiiiiiinnniiicccce, 1-14
Enabling Access by the OLAP API ... 1-17
Enabling Relational ACCESS ..o 1-17
Procedure: Generate and Run the Enablement Scripts..........ccccooeeiiiiiiiiinn, 1-18
Procedure: Run the Enablement Scripts Automaticallycccoooioiiiiiiiiiiii, 1-18
The OLAP API Enabler Procedurescccccoieviecinniiicinininccreeeeeeieeese e 1-19
Disabling Relational ACCESS.........ccviiiiuiiiiiiiiiiiiiiiiiciicec s 1-19
Specifying Names for DIimension VIeWSccociiiiiiiciiiciceeccc e 1-20
Specifying Names for Fact VIEWSccccccoviiiiiiiiiiiiiiiiiiiiccccss 1-20
Column Structure of Dimension VIEWS.........ccceiiiiiiiiiiiiiiiciceees 1-21
Column Structure of Fact VIEWS ..o 1-23

Example: Enable a Workspace Cube for Relational Accessccccovvueviiiiniiininieiiiciinennnn, 1-23

Creating OLAP Catalog Metadata with CWM2

Understanding OLAP Catalog Metadata..............cccoiiiiiiiiiiiiiiicccas 2-1
OLAP Catalog Metadata Entities ..o 2-2
Creating a Dimension............cccocoiiiiiiiiiiiiiii e 2-2
Procedure: Create an OLAP Dimensionc.cccoveuiiiiiieiniiiiiiiieiiiieecece e 2-3
Example: Create a Product Dimensioncoeieiiiiicicccc e 2-3
Procedure: Create a Time DImMensionccoeeiiiiiiiiiiiiiiiice e 2-5
Example: Create a Time Dimensionccccceeeiiviiiiiiiiiiiiiiiiiccc e 2-6
Creating @ CUDE ... s 2-7
Procedure: Create @ CUDe.........ccouiviiiiiiiiiiii s 2-8
Example: Create a Costs CUDe.........ccccoviiiiiiiiiiiiic 2-8
Mapping OLAP Catalog Metadata..............cccccoviiiiiiiiiiiiii s 2-9
Mapping t0 COIUMIS.......c.ciuiiiiiiiiiiicce et 2-9
Joining Fact Tables with Dimension Tablesccccooiiiiiiii 2-9
Validating and Committing OLAP Catalog Metadatacccccoovvvniinniiinini, 2-10
Validating OLAP Catalog Metadataccccoeeueuiiiiiiiiiiiiiiiccceeeeeceeeeeeeeeee e 2-10
Viewing Validity Statusccooevoiiiioiii 2-12
Refreshing Metadata Tables for the OLAP APL.........cccccooiiiiiiicc e, 2-12
Invoking the Procedures ... 2-12
Security Checks and Error Conditions...........ccceireieiiiicieiiiciencie e 2-13
Size Requirements for Parameters..........ccooooerieiiiiciiiiicccc 2-13
Case Requirements fOr Parameters............ccccovuvueririririiieernnenenrecese s 2-13
Directing OuUtpULccooviiiiiiiii s 2-13
Viewing OLAP Catalog Metadata............cccccoovviiiiiniiiiiiiiiiis 2-14

Active Catalog Views

Understanding the Active Catalog.............cccooviviiiiiiiiiiiiiii s 3-1
Standard FOrm Classes ..o 3-1
Active Catalog and Standard Form Classes...........ccocvrueiiiriciciiiniciecc e, 3-2

Active Catalog Metadata Cache...............ccccceuiiiiiiiiiiiiiiii 3-2

Example: Query an Analytic Workspace Cube.............cccooiiiiiiiiiiis 3-3

Summary of Active Catalog VIEWScocoiiiiiiiiiiiii s 3-4

ALL_OLAP2_AWS ..ottt ettt sttt 3-4

ALL_OLAP2_AW_ATTRIBUTESccccooiiiiiiiiiiceics e 3-4

ALL_OLAP2_AW_CUBEScccooiiiiiiiiiiiiiii s 3-5

ALL_OLAP2_AW_CUBE_AGG_LVL ..ottt 3-5

ALL_OLAP2_AW_CUBE_AGG_MEASccoiiiiiiiccs s 3-6

ALL_OLAP2 AW_CUBE_AGG_OPcccoviiiiiiiiiiniiiisss s 3-6

ALL_OLAP2_AW_CUBE_AGG_SPECS ..ottt 3-6

ALL_OLAP2_AW_CUBE_DIM_USESccceoiiiiiiiicce s 3-7

ALL_OLAP2_AW_CUBE_MEASUREScccccoiiiiiiiiiii s 3-7

ALL_OLAP2_AW_DIMENSIONSccoiiiiiiiirietee ettt 3-8

ALL_OLAP2_AW_DIM_HIER_LVL_ORD........cccecouiiiiiiiiiiiiiiiic s 3-8

ALL_OLAP2_AW_DIM_LEVELS.......cccccoiiiiiiiiiiss s 3-8

ALL_OLAP2_AW_PHYS_OBJ ..ottt 3-9

ALL_OLAP2_AW_PHYS_OBJ_PROP ..ottt 3-9

Analytic Workspace Maintenance Views

Building and Maintaining Analytic Workspaces............cccccccciviiiiiinniiinnicceccs 4-1
Example: Query Load and Enablement Parameters for Workspace Dimensions........................ 4-1
Summary of Analytic Workspace Maintenance Views............ccococovniiiinniininiic, 4-2
ALL_AW_CUBE_AGG_LEVELScccccoiiiiiiiiiiiicsssa s 4-3
ALL_AW_CUBE_AGG_MEASUREScccccoiiiiiiiiiiiciicie s 4-3
ALL_AW_CUBE_AGG_PLANSc.ccoviiiinice s 4-4
ALL_AW_CUBE_ENABLED_HIERCOMBO.........ccccecviniiiiniiiiniii s 4-4
ALL_AW_CUBE_ENABLED_VIEWS........c.ccoiiiiiiiiiiiiiii v 4-4
ALL_AW_DIM_ENABLED_VIEWSccccceiiiiiiniiin s 4-5
ALL_AW_LOAD_CUBESccceoiiiiiiiiniiiii s 4-5
ALL_AW_LOAD_CUBE_DIMScocioiiiiiiiiiiiiiiiieiei s 4-6
ALL_AW_LOAD_CUBE_FILTERScccceoeiviiiiiiiiiicc s 4-6
ALL_AW_LOAD_CUBE_MEASURES..........cccceoviiiiiiiii s 4-7
ALL_AW_LOAD_CUBE_PARMScciiiiiiiiiiii ettt 4-7
ALL_AW_LOAD_DIMENSIONScccoiiiiiiiiiiiiinic s 4-8
ALL_AW_LOAD_DIM_FILTERSccooiiiiiiiiiiiniininiise s ssssans 4-8
ALL_AW_LOAD_DIM_PARMScccooiiiiiiiiiiiiii et 4-9
ALL_AW_OBJ ..ot 4-9
ALL_AW_PROP ...t s 4-10

OLAP Catalog Metadata Views

Access to OLAP Catalog VIEWSc.cccoviiiiiiiiiiiiiiiii s 5-1
OLAP Catalog Metadata Cache ..o 5-1
Views of the Dimensional Model ..., 5-2
Views of Mapping INformation.............cccccccviiiiiiiiiii e 5-3
ALL_OLAP2_AGGREGATION_USEScocooiiiiiiiiiiiciriet s 5-3
ALL_OLAP2_CATALOGS ...ttt 5-4
ALL_OLAP2_CATALOG_ENTITY_USES........cccociiiiiiiiiiiiniiiciincc e 5-4
ALL_OLAP2_CUBES ...ttt sttt sttt s 5-4
ALL_OLAP2_CUBE_DIM_USESccoiirrcrrr ettt 5-5
ALL_OLAP2_CUBE_MEASURES..........ccccoiniiiiiiiiiictc e 5-5
ALL_OLAP2_CUBE_MEASURE_MAPSccceoiiiiretrrteetettse ettt 5-5
ALL_OLAP2_CUBE_MEAS_DIM_USEScccoiiinirrre et 5-6
ALL_OLAP2_DIMENSIONS ..ot 5-6
ALL_OLAP2_DIM_ATTRIBUTESccociitiieiiietettreeeteee ettt 5-6
ALL_OLAP2_DIM_ATTR _USEScocoiiiiirrersres st 5-7
ALL_OLAP2_DIM_HIERARCHIES.........ccccoiiiiiiiiiiiiciicc s 5-7
ALL_OLAP2_DIM_HIER_LEVEL_USESccccootiiiiiiiinnneeineeetseeeeeeeee e 5-7
ALL_OLAP2_DIM_LEVELS ...t 5-8
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES.ccoiiiiiiiiiiiicc e 5-8
ALL_OLAP2_DIM_LEVEL_ATTR_MAPSccoieireeetreetee et 5-8
ALL_OLAP2_ENTITY_DESC_USES.........cccoiiirrirrrrenerresee et 5-9
ALL_OLAP2_ENTITY_EXT_PARMSccociniiiiiiiiiict s 5-9

10

11

vi

ALL_OLAP2_ENTITY_PARAMETERScoooioiiiiiiereeeecteteeteee e 5-10

ALL_OLAP2 _FACT _LEVEL_USES........ciottttiiiiieteieetetetee sttt et ettt et eae s saeaen 5-11
ALL_OLAP2_FACT_TABLE_GID.......ccocciiiiiiiiiiiiiiiiiiicte ettt 5-12
ALL_OLAP2_HIER _CUSTOM _SORTccciriiiiiiiiiiiiiiiretcesesteesee ettt 5-12
ALL_OLAP2_JOIN_KEY_COLUMN USES......ccccooiirintieneneesiesteteeeeeeee ettt saenes 5-13
ALL_OLAP2_LEVEL_KEY_COL_USEScccioiiiiiiiiiiiiinieectetectee e 5-13

OLAP Dynamic Performance Views

V8 Tables fOr OLAP ..o 6-1
Summary of OLAP Dynamic Performance VIeWS...........cccocoviiiiiiniinininiicieeeeeees 6-2
VBAW_AGGREGATE_OP......c.coiiiiiiiiiiiiiiiiiiii s 6-2
VBAW_ALLOCATE_OP ..o 6-2
VBAW _CALC ... 6-3
VBAW_LONGOPSooiiiiiiiiiir s 6-4
VBAW_OLAP ... 6-5
VBAW_SESSION_INFO......ccooiiiiiiiiiiiiic s 6-6
CWM2_OLAP_CATALOG
Understanding Measure FOIAers ... 7-1
Example: Creating a Measure Folder ... 7-1
Summary of CWM2_OLAP_CATALOG Subprogramsccccccceeiviriiiininiiiinininiicieeennes 7-3
ADD_CATALOG_ENTITY PIOCEAULEoooovvviieeeeieeeeeeeeie ettt ettt eaeessaee e saeee e 7-4
CWM2_OLAP_CLASSIFY
OLAP Catalog Metadata Descriptors ..o 8-1
Example: Creating Descriptorscccoiiiiiiiiiiiiiiiiiii s 8-2
Summary of CWM2_OLAP_CLASSIFY Subprograms.............ccccccccevniiiiininiiiinininiicieeennes 8-4
ADD_ENTITY_CARDINALITY_USE......cceceiiiiiiiiiiiiiiiiiinncsss s 8-5
CWM2_OLAP_CUBE
Understanding Cubes...........c.ccoviiiiiiiiiiiiii s 9-1
Example: Creating a Cube............cocoooiiiiiiiii 9-1
Summary of CWM2_OLAP_CUBE Subprogramscccccoviiiiininiiiininiiiccecennes 9-3
ADD_DIMENSION_TO_CUBE PrOCEAULE.....cccuveiieeeeeeiieeeeeee ettt eeeeessaeeeens 9-4
CWM2_OLAP_DELETE
Deleting OLAP Catalog Metadataccccooviiiiiiiiiiniiiics 10-1
Rebuilding OLAP Catalog Metadataccccoeuviiiiiiinirininiiiiiiiiiiicccccccces 10-1
Using Wildcards to Identify Metadata ENtitiescccccooeveeiniiiniciiiiicccicccccccenne 10-1
Using a Command RePOrt ..ot 10-2
Summary of CWM2_OLAP_DELETE Subprograms...............ccccccceiiiiiiiiiieiiiccceeenennas 10-4
DELETE_CUBE PIOCEAULE «...eeeieeeeeeeeeeeeeee et e eeeeeeeeaeeeeeneeseeeesseaeeseeneessennesssseessnseesanees 10-5
CWM2_OLAP_DIMENSION
Understanding Dimensions ..o 11-1

12

13

14

15

16

17

Example: Creating a CWM2 Dimension ... 11-1

Summary of CWM2_OLAP_DIMENSION Subprograms.............ccccccccevuiiiiiiiiiniiieninnns 11-3
CREATE_DIMENSION PrOCEAUTIE.cooeeeeieeieeeeeeeeeeeeeeeeeeeeeeee e eeeeeseeeeeeesaeeeeenaeeseeesssseeesssseesenees 11-4
CWM2_OLAP_DIMENSION_ATTRIBUTE
Understanding Dimension Attributes ... 12-1
Example: Creating a Dimension Attribute................cccccooiiiiiiiiic, 12-2
Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms............c.ccccccceeuiuennnnnen 12-3
CREATE_DIMENSION_ATTRIBUTE Procedurecccccovuviiiiiiniinriiicccicenns 12-4
CWM2_OLAP_EXPORT
Exporting and Importing OLAP Catalog Metadata..............cccccovviiiiniiiiiie, 13-1
Rebuilding OLAP Catalog Metadatac.cceueveiiiiiiiiiiicieiici 13-2
Using the Oracle Export and Import Utilitiescccooooreiiiii 13-2
Using Wildcards to Identify Metadata ENtitiescccoooveiiiiiinciiiiicccccccccccenenen 13-2
Creating a Metadata Command Script............coooiiiiiiiiii e 13-3
Creating an Export Parameter File ..o 13-5
Summary of CWM2_OLAP_Export Subprogramsccccovviininniiiiniiicccnne, 13-7
EXPORT _CUBE PIOCEAULIE.......ooooeeeieeeeeeeeeee ettt eaaee s enaee s et s saaesesnveseennnessnnees 13-8
CWM2_OLAP_HIERARCHY
Understanding Hierarchies ... 14-1
Example: Creating a Hierarchy ... 14-1
Summary of CWM2_OLAP_HIERARCHY Subprogramscccccoveiinnniinniiiiiinccnnn, 14-3
CREATE_HIERARCHY PrOCEAUIEoooeveeiieeeeieeeee ettt snaees 14-4
CWM2_OLAP_LEVEL
Understanding Levels............ccccoooiiiiiiiii s 15-1
Example: Creating a Level ... 15-1
Summary of CWM2_OLAP_LEVEL Subprograms.............cccccccevuiiiininniniiniicicecienenenenes 15-3
ADD_LEVEL_TO_HIERARCHY Procedureccooouiiiiiiiiiiiiiiiecceceeeens 15-4
CWM2_OLAP_LEVEL_ATTRIBUTE
Understanding Level Attributes...............cccccooviiiiiiii 16-1
Example: Creating Level Attributes..............cccocooooiiiiiiiiiiiiiicccccee e 16-2
Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms..............ccccccceovvinniiinininnnnnne. 16-3
CREATE_LEVEL_ATTRIBUTE Procedureccccoviiiiiiiiininiciiecieeeeeeeeeeenes 16-4
CWM2_OLAP_MANAGER
Managing Output in a SQL*Plus SeSSion ... 17-1
Example: Using a Log File ..o 17-2
Summary of CWM2_OLAP_MANAGER Subprograms.............cccevviiiinnninnniiiniienne, 17-3
BEGIIN_LOG PIrOCEAUTIE ...ttt eae e et e st e s snaesssnaeessnanessnneesnnneesennees 17-4

vii

18

19

20

21

22

23

viii

CWM2_OLAP_MEASURE

Understanding Measures..............cccovvviiiiiiiniiiiiniiiiii s 18-1
Example: Creating a MEASUTE...........ccccoiviiiiiiiiiiiiiiccc st 18-1
Summary of CWM2_OLAP_MEASURE Subprograms............ccccccccevininiiiininiiiinniiccinceenes 18-3

CREATE_MEASURE Procedure...........ccccocouviiiiiiininiiiiiiiiiiiiec s 18-4

CWM2_OLAP_METADATA_REFRESH

Views of Cached OLAP Catalog Metadata.............cccccoeuvivininiiininiiniiiiiic 19-1
Views of Cached Active Catalog Metadatacooiiiiiniiinnie 19-2
Summary of CWM2_OLAP_METADATA_REFRESH Subprogramscccccoeuiiinnnncnne. 19-3

MR_REFRESH Procedure...........cccccoviiiiiiiiiiiiiiiiiiiiin s 19-4

CWM2_OLAP_PC_TRANSFORM

PrereqUisSites ... s 20-1
Parent-Child Dimensions ... 20-1
Solved, Level-Based DimenSiONS.cccveiuiiiiiiiiiieiiieieeciee et eetee et etee v eeteeeeseeteeeaeeeveeseveesaenane s 20-2
Example: Creating a Solved, Level-Based Dimension Table.................cccccccoiiiiiiiiiiinnns 20-3
Grouping ID COIUMIc.oiiiiiiiiiicccece et seeees 20-3
Embedded Total Key COIUMIN..........cccoiiiiiiiiiicci e 20-4
Summary of CWM2_OLAP_PC_TRANSFORM Subprogramscccccceeucueinniruccninncncnnnes 20-5
CREATE_SCRIPT PrOCEAUTC...ccoeeeeeeeeeeeeeee ettt e eeeeeeeeeeeeeaeeseeaeeeseseeeesseesersessssseesssseessnnnes 20-6
CWM2_OLAP_TABLE_MAP
Understanding OLAP Catalog Metadata Mapping...........ccccocooeiiniiininniiiniicces 21-1
Example: Mapping a DImension...........ccococcoiviiiiiiniiiiin s 21-1
Example: Mapping a Cube ... 21-2
Summary of CWM2_OLAP_TABLE_MAP Subprograms.............cccccceveiininniinininiiinnnienens 21-3
MAP_DIMTBL_HIERLEVELATTR Procedurecccocoovviviiinininiiniiiiinns 21-4
CWM2_OLAP_VALIDATE
About OLAP Catalog Metadata Validation..............cccooooiiiiiiiinicce 22-1
Structural Validationcocceoiiiiiiiininiciecte et 22-1
Mapping Validation.........ccociiiiiiiiiiicceceeeeee e eeees 22-2
Validation TYPecuoviieiii 22-2
Using Wildcards to Identify Metadata Entitiesc..cocoooveieiiiiiiiiiccce, 22-2
Summary of CWM2_OLAP_VALIDATE Subprograms............ccccccevnniiiinnniinniiiin 22-4
VALIDATE_ALL_CUBES Procedure.........ccccoeovuviiiimiiniiiiniiiiiscsinsssssesssssssnnnns 22-5

CWM2_OLAP_VERIFY_ACCESS

Validating the Accessibility of an OLAP Cube.............ccccocoviiiiiiiiiiiiiiccs 23-1
Summary of CWM2_OLAP_VERIFY_ACCESS Subprogramscccccccvevereinnuereccirnnenenene 23-2
VERIFY _CUBE_ACCESS PIOCEAULIE ...ceooeveeeeeee ettt eeeeeee e eeeeaeeseeeeeeeeneeseeeeesesesssseesennes 23-3

24

25

26

27

28

DBMS_AW
Managing Analytic WOrkSpacescccccoviviviiiniiiniiiiiiiiic s 24-1
Converting an Analytic Workspace to Oracle 10g Storage Formatccccoeeuvvivrvnrneene. 24-2
Embedding OLAP DML in SQL Statementscccocoviiiiiiiiiiiccccceeeeenne 24-3
Methods for Executing OLAP DML Commandscccoeueuiiimeieieiiicieiecce e 24-4
Guidelines for Using Quotation Marks in OLAP DML Commands........ccccccccceeueueuricucuennee. 24-4
Using the Sparsity AdVISOr ... 24-4
Data Storage Options in Analytic WOrkSpaces...........ccococueueiiiicieieieicicieiicce e 24-4
Selecting the Best Data Storage Methodcccccciiiiiiiiiicccecceeeeees 24-5
Using the Sparsity AdVISOT.......ccoceuiiiiiiiiiiiic 24-6
Example: Evaluating Sparsity in the GLOBAL Schemaccccooiiiiii 24-6
Using the Aggregate AdViSOT ... 24-8
Aggregation Facilities within the Workspace..........c.cccoiiiiiiiiii, 24-8
Example: Using the ADVISE_REL Procedurecoooiiiiniiicieieiiccicecci e 24-8
Summary of DBMS_AW Subprograms ... 24-12
ADD_DIMENSION_SOURCE PrOCEAUTIE......ccoveieeeiieeeeee et eeare s svee e 24-14
DBMS_AW_XML
Analytic Workspace Java APT OVeIVIEW........ccccoevvviiiiiiiiiiiiiiiiiic s 25-1
Oracle OLAP XML SChemacooiiiiiiiiiiiiiicic s 25-1
Summary of DBMS_AW_XML Subprogramsccccviiiiinininiiinininiiiceecsnenenees 25-3
EXECUTE FUNCHON. ..ottt 25-4
DBMS_AWM
Parameters of DBMS_AWM Subprograms.............cccoccoeiiiiiiiinininiiiiniicciiescsee s 26-1
Summary of DBMS_AWM Subprogramsccccuiiiiiiiiiiiiiiiieeeieeeneeesene s 26-3
ADD_AWCOMP_SPEC_COMP_MEMBER Procedurec..oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseennes 26-6
DBMS_ODM
Materialized Views for the OLAP APL.............ccccooviviiiii s 27-1
Materialized Views Created by DBMS_OMDM..........ccccocoviiiiiiiiniiiiiiiiicisecees 27-1
Generating the Grouping Sets..........cccccociiiiiiiiiiii s 27-2
Aggregation OPETatOTS.ot s 27-2
Example: Automatically Generate the Minimum Grouping Sets for a Cube. 27-2
Example: Manually Choose the Grouping Sets for a Cubec.cccccceiiiiiiiiiiiiii, 27-4
Summary of DBMS_ODM Subprograms..............ccooiiiiiiiiiiiiniiiiecneessseenes 27-8
CREATECUBELEVELTUPLE Procedurecccoviviviiiniiiiiiiiiniicesscnennns 27-9
OLAP_API_SESSION_INIT
Initialization Parameters for the OLAP APIL ..o 28-1
Viewing the Configuration Table...............cccccccoiiiniiiiiiiiii s 28-1
ALL_OLAP_ALTER_SESSION VIEW.....ccoviiiriiriiiiiiiiiiniinieiicesci s 28-1
Summary of OLAP_API_SESSION_INIT Subprogramsccccvvuiiiinniniinniceinniieenns 28-3
ADD_ALTER_SESSION Procedurecccccceiuiiiiiiiiiiiiiiiiciicieieiciee e 28-4

29

30

31

32

33

34

OLAP_CONDITION

OLAP_CONDITION OVEIVIEWoooiiiiiiiieiieiiiieeeeeeeeieeeeeeeesareeeeeesaveeeeeessateseessssssasesessessssssesssssssssess 29-1
Entry Points in the Limit Map ... 29-1
Dynamically Modifying a Workspace during a Queryccccoeeieieiiiinicniiiccicce, 29-2

OLAP_CONDITION EXQMPLES.......coiiiiiiiiiiiiiiiiiiicicriie e 29-2

OLAP_CONDITION SYNEAX......oooririiiimiiriiiiiiinin s sas 29-6

OLAP_EXPRESSION

OLAP_EXPRESSION OVEIVIEW.......coooimiiiiiiiiiiiiciiir s 30-1
Single-ROW FUNCHONSouiviiiicicte 30-1
OLAP_EXPRESSION and OLAP_TABLE ..o 30-2

OLAP_EXPRESSION EXQMPIESc..ciriiiiiiiiiiiiicieteneeeetceeteseeesee et 30-2

OLAP_EXPRESSION SYNEAXoiiiiiiimiiiiiiiiiiiiii s ssssssans 30-5

OLAP_EXPRESSION_BOOL

OLAP_EXPRESSION_BOOL OVEIVIEW........cocouviimiiiiiiiniiiiiiiiscssssscs s 31-1
Single-ROW FUNCHONSc.ciiiiiiiiiicii s 31-1
OLAP_EXPRESSION_BOOL and OLAP_TABLE........cccccouiiniiicccccne, 31-1

OLAP_EXPRESSION_BOOL EXample..........ccccovimiiiiiiiiiiiiiiiissscsce s 31-2

OLAP_EXPRESSION_BOOL SYNaXc.cocoiiiiiiiiiiiiiiieiiiiisice e 31-5
OLAP_EXPRESSION_DATE

OLAP_EXPRESSION_DATE OVEIVIEWccceoviimiiiiiiiiiiiiiiiiciiieicse s 32-1
SINGle-ROW FUNCHONSuuiiiiiiiiiicccciccecccetete e 32-1
OLAP_EXPRESSION_DATE and OLAP_TABLEcccccoeviiiiiiiinecnes 32-1

OLAP_EXPRESSION_DATE SYNEAX.......cccceiriiiiiiiiiiiiiiiiiieiiniiieiisisssse s sessesians 32-3
OLAP_EXPRESSION_TEXT

OLAP_EXPRESSION _TEXT OVEIVIEW ...coooiuriiiiiiiiieiieeeeeeeieeeeeeteeeeeeeineeeeeesssaaaeeessessnseesssssnnsneses 33-1
SINGle-ROW FUNCHONScuiiiiiiiiiciiiccicicccececeteee e 33-1
OLAP_EXPRESSION_TEXT and OLAP_TABLEccccooeiviiiiiiicces 33-1

OLAP_EXPRESSION_TEXT SYNtAX......cccccciriiiiiiiiiiiieiieirtceeteseee e 33-3

OLAP_TABLE

OLAP _TABLE OVEIVIEW......ooiiiiiiieeieeeeeeee ettt e ettt e e seeatteessesateeesssssasessessssssssseessessssteesssssssseees 34-1
LMt IMAPS cocviiiiiiiic s 34-1
LOGICAl TADIES ...t 34-2
Using OLAP_TABLE With Predefined ADTs........cccccoviiniiiininniiiiiinnninncecnseceas 34-2
Using OLAP_TABLE With Automatic ADTS ... 34-3
Using @ MODEL CIaUSEovoiiieieiiiicieicie ittt 34-5

OLAP_TABLE EXQIMPIEScoouiiiiiiiiiiiiieciceceteet ettt e 34-6
Example: Creating Views of Embedded Total Dimensions...........cccccocccucecucciccreeccneenenee 34-6
Example: Creating Views of Embedded Total Measures...........c.ccoovrueiniinieniniciciciccie, 34-7
Example: Creating Views in Rollup FOIrm.........ccccooiiiiiiiiiiiiccccecee, 34-8
Using OLAP_TABLE with the FETCH Commandccccccoeoiiiiiiiiiiiccccenceenes 34-10

OLAP_TABLE Syntax

Index

xi

Xii

Audience

Preface

This reference manual describes the relational views, SQL functions, and PL/SQL
packages that support the OLAP option of the Oracle Database.

This preface contains the following topics:
= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This reference manual is intended for database administrators and application
developers who perform the following tasks:

= Administer a database

= Administer analytic workspaces

s Build and maintain data warehouses or data marts
s Define metadata

= Develop analytical applications

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/
Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

xiii

http://www.oracle.com/accessibility/

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information see these Oracle resources:
» Oracle OLAP Application Developer's Guide

Explains how SQL and Java applications can extend their analytic processing
capabilities by using Oracle OLAP.

s Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language
(OLAP DML) used to define and manipulate analytic workspace objects.

» Oracle OLAP Developer’s Guide to the OLAP API

Introduces the Oracle OLAP API, a Java application programming interface for
Oracle OLAP, which is used to perform OLAP queries of the data stored in an
Oracle database. Describes the APl and how to discover metadata, create queries,
and retrieve data.

» Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for querying
analytic workspaces and relational data warehouses.

» Oracle OLAP Analytic Workspace Java API Reference

Describes the classes and methods in the Oracle OLAP Analytic Workspace Java
API for building and maintaining analytic workspaces.

» Oracle Database Data Warehousing Guide

Discusses the database structures, concepts, and issues involved in creating a data
warehouse to support online analytical processing solutions.

» Oracle Database PL/SQL User's Guide and Reference

Explains the concepts and syntax of PL/SQL, Oracle's procedural extension of
SQL.

Conventions

The following text conventions are used in this document:

Xiv

Convention

Meaning

boldface

italic

monospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XV

XVi

1

Overview

Creating Analytic Workspaces with
DBMS_AWM

The DBMS AWM package provides stored procedures for creating and maintaining
analytic workspaces.

The DBMS AWM package is used by Analytic Workspace Manager. This chapter
explains how to create your own scripts that use the DBMS_ AWM procedures directly.

See Also:

» Chapter 26, "DBMS_AWM" for the complete syntax of the
procedures in this package

s Chapter 3, "Active Catalog Views" for descriptions of the views
that expose the logical structures within analytic workspaces

» Chapter 4, "Analytic Workspace Maintenance Views" for

descriptions of the views that expose information stored in the
OLAP Catalog by DBMS_AWM procedures

This chapter contains the following topics:

s Overview

s Understanding the DBMS_AWM Procedures

s Creating and Refreshing a Workspace Dimension

s Creating and Refreshing a Workspace Cube

= Managing Sparse Data and Optimizing the Workspace Cube

= Aggregating the Data in an Analytic Workspace

= Enabling Access by the OLAP API

= Enabling Relational Access

The DBMS_ AWM package provides a feature—rich set of APIs for building and
maintaining analytic workspaces. These APIs use a logical cube, stored in the OLAP
Catalog, to structure the workspace. The cube is mapped to a star or snowflake
schema, which provides the source data for the workspace.

Applications that use the BI Beans or OLAP API can directly query any workspace
created by DBMS AWM. Other types of applications must query the workspace through
relational views. These views are created by the DBMS_AWM enablement procedures.

Creating Analytic Workspaces with DBMS_AWM 1-1

Overview

Note: Analytic workspaces created by the DBMS_AWM procedures are
in database standard form, ensuring compatibility with related Oracle
OLAP tools and utilities. See Oracle OLAP Application Developer’s
Guide for information about standard form.

Scripts that create and maintain analytic workspaces must identify two different
logical cubes: a relational source cube and a multidimensional target cube.
DBMS_AWM also supports the creation of a third optional cube, a relational target cube,
which is not used by the OLAP APL

The basic flow of events is as follows:

1.

Relational Source Cube. This cube must exist before you call any of the
DBMS_AWM procedures. The cube's metadata is defined within the OLAP Catalog.
Its data is unsolved (lowest level only) and stored in a star or snowflake schema.

Multidimensional Target Cube. DBMS_AWM procedures define and populate this
cube from the relational source cube. The cube's standard form metadata is
defined in the analytic workspace. Its data is stored in the workspace, typically
with full or partial summarization.

Relational Target Cube. DBMS_AWM enablement procedures optionally define this
cube from the multidimensional target cube. The cube's metadata is defined
within the OLAP Catalog. Its data is stored in the analytic workspace and accessed
through relational views. The views present the data as fully solved (embedded
totals for all level combinations).

The basic process of building an analytic workspace with the DBMS_AWM package is
illustrated in Figure 1-1.

1-2 Oracle OLAP Reference

Overview

Figure 1-1 Creating an Analytic Workspace with DBMS_AWM

‘ OLAP Application

SAL Application

| OLAP API
A A
Relational Target Cube
OLAP Catalog cube
Relational Views
A
Relational Source Cube
OLAP Catalog cube [Abstract Data Type
CLAP_TABLE

Multidimensional Target Cube

Analytic Workspace

Y

Star Schema

Creating OLAP Catalog Metadata for the Source Cube

Before you can use the DBMS AWM procedures, you must create a cube in the OLAP
Catalog and map it to the source fact table and dimension tables. The source tables
must be organized as a star or snowflake schema.

You can use Oracle Enterprise Manager or Oracle Warehouse Builder to create the
cube. You can also create the cube from scripts that use the cCWwM2 PL/SQL packages, as
described in Chapter 2.

Creating Dimensions in the Analytic Workspace

For each dimension of the source cube in the OLAP Catalog, you must run a set of
procedures in the DBMS_ AWM package to accomplish the following general tasks:

1. Create a dimension load specification, which contains instructions for populating
the dimension in the analytic workspace. The load specification may include a
filter that identifies criteria for selecting data from the source dimension tables.

2. Create containers for the dimension in an analytic workspace.

3. Use the dimension load specification to populate the dimension in the analytic
workspace from the source dimension tables.

Creating Analytic Workspaces with DBMS_AWM 1-3

Overview

See Also: "Creating and Refreshing a Workspace Dimension" on
page 1-9.

Creating Cubes in the Analytic Workspace

After creating the cube's dimensions, run another set of procedures to create and
populate the cube itself.

1. Create a cube load specification, which contains instructions for populating the
cube's measures in the analytic workspace. The load specification may include a
filter that identifies criteria for selecting data from the source fact table.

2. Create a composite specification, which contains instructions for ordering the
cube's dimensions and storing sparse data in the analytic workspace.

3. Add the composite specification to the cube load specification.
4. Create containers for the cube in an analytic workspace.
5. Use the cube load specification to populate the cube's measures in the analytic

workspace from the source fact table.

See Also: "Creating and Refreshing a Workspace Cube" on page 1-10
and "Managing Sparse Data and Optimizing the Workspace Cube" on
page 1-12.

Aggregating the Cube's Data in the Analytic Workspace

For the workspace cube, run a set of procedures to accomplish the following:

1. Create an aggregation specification, which contains instructions for storing
summary data in the analytic workspace.

2. Use the aggregation specification to aggregate the workspace cube.

See Also: "Aggregating the Data in an Analytic Workspace" on
page 1-14.

Enabling Access to the Analytic Workspace

Analytic workspaces created with the current release of DBMS_AWM and Analytic
Workspace Manager are automatically accessible by applications that use the OLAP
API or Bl Beans. You do not need to create any views or additional metadata. If you
have workspaces that were created with earlier releases of the software, you can
upgrade them. Refer to the upgrade instructions in "Enabling Access by the OLAP
API" on page 1-17.

To enable analytic workspaces for access by other types of SQL clients, you must create

views that project the multidimensional data as logical columns and rows. The

DBMS_AWM enablement procedures create and maintain a set of relational views for an

analytic workspace. The enablement procedures can optionally create OLAP Catalog
metadata that maps to the views. See "Enabling Relational Access" on page 1-17 for
information on the enablement process.

Viewing Metadata Created by DBMS_AWM

Two sets of views reveal metadata related to analytic workspaces. The Active Catalog

views reveal metadata stored within analytic workspaces. The Analytic Workspace
Maintenance views reveal metadata stored within the OLAP Catalog.

1-4 Oracle OLAP Reference

Understanding the DBMS_AWM Procedures

Active Catalog Views

These views use OLAP_TABLE functions to return information about logical standard
form objects within analytic workspaces. For example, you could query an Active
Catalog view to obtain information about the dimensionality of a workspace cube. The
Active Catalog view names have the prefix ALL._OLAP2_AW. For more information, see
Chapter 3.

Analytic Workspace Maintenance Views

These views return information about building and maintaining analytic workspace
cubes. For example, you could query an Analytic Workspace Maintenance view to
obtain information about the load specifications associated with an analytic workspace
dimension or cube. The Analytic Workspace Maintenance view names have the prefix
ALL_AW. For more information, see Chapter 4.

Understanding the DBMS_AWM Procedures

The procedures in the DBMS_ AWM package support methods on several types of logical
entities. These entities are described in Table 1-1.

See Also: Chapter 26, "'DBMS_AWM"

Table 1-1 Logical Entities in the DBMS_AWM Package

Entity Description

Dimension A dimension in the OLAP Catalog and its corresponding
dimension in an analytic workspace.

Cube A cube in the OLAP Catalog and its corresponding cube
in an analytic workspace.

Dimension Load Specification Instructions for populating an analytic workspace
dimension from the dimension tables of an OLAP Catalog
dimension.

Cube Load Specification Instructions for populating an analytic workspace cube

from the fact table of an OLAP Catalog cube.

Cube Aggregation Specification Instructions for creating summary data in an analytic
workspace.

Cube Composite Specification Instructions for ordering dimensions and storing sparse
data in an analytic workspace.

Methods on Dimensions

The methods you can perform on a dimension are described in Table 1-2.

Table 1-2 Methods on Dimensions in DBMS_AWM

Method Description Procedure

Create Create the metadata in an analytic CREATE_AWDIMENSION Procedure
workspace for a dimension
defined in the OLAP Catalog.

Refresh Use a dimension load specification REFRESH_AWDIMENSION Procedure
to populate an analytic workspace
dimension from the dimension
tables of an OLAP Catalog
dimension.

Creating Analytic Workspaces with DBMS_AWM 1-5

Understanding the DBMS_AWM Procedures

Table 1-2 (Cont.) Methods on Dimensions in DBMS_AWM

Method

Description

Procedure

Enable for
non-OLAP
clients

Create a script to enable relational
access to a dimension in an
analytic workspace.

Create a script to disable relational
access to a dimension in an
analytic workspace.

Create and run a script to enable
relational access to a dimension in
an analytic workspace

Create and run a script to disable
relational access to a dimension in
an analytic workspace.

Refresh the workspace metadata
that supports user-defined view
names for a dimension in an
analytic workspace.

Specify names for the relational
views of a dimension in an
analytic workspace.

CREATE_AWDIMENSION_ACCESS
Procedure

DELETE_AWDIMENSION_ACCESS
Procedure

CREATE_AWDIMENSION_ACCESS_FULL
Procedure

DELETE_AWDIMENSION_ACCESS_ALL
Procedure

REFRESH_AWDIMENSION_VIEW_NAME
Procedure

SET_AWDIMENSION_VIEW_NAME
Procedure

Methods on Cubes

The methods you can perform on a cube are described in Table 1-3.

Table 1-3

Methods on Cubes in DBMS_AWM

Method

Description

Procedure

Create

Refresh

Aggregate

Enable for
non-OLAP
clients

1-6 Oracle OLAP Reference

Create containers in an analytic
workspace for a cube defined in the
OLAP Catalog.

Use a cube load specification to
populate the measures of an
analytic workspace cube from the
fact table of an OLAP Catalog cube.

Use an aggregation specification to
aggregate the cube in the analytic
workspace.

Create a script to enable relational
access to a cube in an analytic
workspace.

Create a script to disable relational
access to a cube in an analytic
workspace

Create and run a script to enable
relational access to a cube in an
analytic workspace.

Create and run a script to disable
relational access to a cube in an
analytic workspace.

CREATE_AWCUBE Procedure

REFRESH_AWCUBE Procedure

AGGREGATE_AWCUBE Procedure

CREATE_AWCUBE_ACCESS Procedure

DELETE_AWCUBE_ACCESS Procedure

CREATE_AWCUBE_ACCESS_FULL

Procedure

DELETE_AWCUBE_ACCESS_ALL
Procedure

Understanding the DBMS_AWM Procedures

Table 1-3 (Cont.) Methods on Cubes in DBMS_AWM

Method Description Procedure
Refresh the workspace metadata REFRESH_AWCUBE_VIEW_NAME
that supports user-defined view Procedure

names for a cube in an analytic
workspace.

Specify names for the relational
views of a cube in an analytic
workspace.

SET_AWCUBE_VIEW_NAME Procedure

Methods on Dimension Load Specifications

The methods you can perform on a dimension load specification are described in

Table 1-4.

Table 1-4 Methods on Dimension Load Specifications in DBMS_AWM

Method Description

Procedure

Create/Delete Create or delete a dimension
load specification.

Reset Change various components
information of a dimension load
specification.

Add/Delete Add or remove a filter from a
filter dimension load specification.

CREATE_AWDIMLOAD_SPEC Procedure
DELETE_AWDIMLOAD_SPEC Procedure

SET_AWDIMLOAD_SPEC_DIMENSION
Procedure

SET_AWDIMLOAD_SPEC_LOADTYPE
Procedure

SET_AWDIMLOAD_SPEC_NAME Procedure

SET_AWDIMLOAD_SPEC_PARAMETER
Procedure

ADD_AWDIMLOAD_SPEC_FILTER Procedure

DELETE_AWDIMLOAD_SPEC_FILTER
Procedure

Methods on Cube Load Specifications

The methods you can perform on a cube load specification are described in Table 1-5.

Table 1-5 Methods on Cube Load Specifications in DBMS_AWM

Method Description

Procedure

Create/Delete Create or delete a cube load
specification.

Reset Change various components
information of a cube load specification.

CREATE_AWCUBELOAD_SPEC Procedure
DELETE_AWCUBELOAD_SPEC Procedure

SET_AWCUBELOAD_SPEC_CUBE Procedure

SET_AWCUBELOAD_SPEC_LOADTYPE
Procedure

SET_AWCUBELOAD_SPEC_NAME Procedure

SET_AWCUBELOAD_SPEC_PARAMETER
Procedure

Creating Analytic Workspaces with DBMS_AWM 1-7

Understanding the DBMS_AWM Procedures

Table 1-5 (Cont.) Methods on Cube Load Specifications in DBMS_AWM

Method Description Procedure

Add/Delete Add or remove a filter from ADD_AWCUBELOAD_SPEC_FILTER

filter a cube load specification. Procedure
DELETE_AWCUBELOAD_SPEC_FILTER
Procedure

Add/Delete Add or remove a composite ADD_AWCUBELOAD_SPEC_COMP

composite specification from a cube Procedure

specification load specification.

DELETE_AWCUBELOAD_SPEC_COMP
Procedure

Methods on Aggregation Specifications

The methods you can perform on an aggregation specification are described in

Table 1-6.

Table 1-6 Methods on Aggregation Specifications in DBMS_AWM

Method

Description

Procedure

Create/Delete

Set operator

Add/Delete
levels

Add/Delete
measures

Create or delete an
aggregation specification.

Set the aggregation operator
for a dimension.

Add or remove levels from
an aggregation specification.

Add or remove measures
from an aggregation
specification.

CREATE_AWCUBEAGG_SPEC Procedure

DELETE_AWCUBEAGG_SPEC_MEASURE
Procedure

SET_AWCUBEAGG_SPEC_AGGOP Procedure

ADD_AWCUBEAGG_SPEC_LEVEL Procedure
DELETE_AWCUBEAGG_SPEC_LEVEL
Procedure
ADD_AWCUBEAGG_SPEC_MEASURE
Procedure

DELETE_AWCUBEAGG_SPEC_MEASURE
Procedure

Methods on Composite Specifications

The methods you can perform on a composite specification are described in Table 1-7.

Table 1-7 Methods on Composite Specifications in DBMS_AWM

Method Description Procedure

Create/Delete Create or delete a composite CREATE_AWCOMP_SPEC Procedure
specification. DELETE_AWCOMP_SPEC Procedure

Reset Change the name of the SET_AWCOMP_SPEC_CUBE Procedure

information comp.osug sp.ec1f1cat.10n or SET_AWCOMP SPEC_NAME Procedure
associate it with a different
cube.

Add/Delete Add or remove members ADD_AWCOMP_SPEC_MEMBER Procedure

members from the specification.

1-8 Oracle OLAP Reference

Members can be dimensions
or composites.

DELETE_AWCOMP_SPEC_MEMBER
Procedure

Creating and Refreshing a Workspace Dimension

Table 1-7 (Cont.) Methods on Composite Specifications in DBMS_AWM

Method Description Procedure

Reset member Change information about =~ SET_AWCOMP_SPEC_MEMBER_NAME
information =~ members of the specification. Procedure

SET_AWCOMP_SPEC_MEMBER_POS

Procedure
SET_AWCOMP_SPEC_MEMBER_SEG
Procedure
Add Add members to a composite ADD_AWCOMP_SPEC_COMP_MEMBER
composite in the specification. Procedure

members

Creating and Refreshing a Workspace Dimension

Once you have defined a dimension in the OLAP Catalog for your source dimension
table, you can create the dimension in the analytic workspace.

Only one workspace dimension may be created from a given dimension in the OLAP
Catalog. For example, if you have used the OLAP Catalog PRODUCT dimension as the
source for the PROD_AW dimension in an analytic workspace, you cannot create
another dimension PROD_AW2 from the same source dimension in the same
workspace.

Note: CREATE AWDIMENSION opens the analytic workspace with
read/write access. It updates the workspace, but it does not execute a
SQL COMMIT.

The analytic workspace must already exist before you call
CREATE_AWDIMENSION or any other procedures in the DBMS_AWM
package.

Example 1-1 shows the procedure calls for defining and populating workspace objects
for the XADEMO . CHANNEL dimension. The load specification includes a filter condition
that causes only the row for 'DIRECT' to be loaded.

Example 1-1 Creating the CHANNEL Dimension in an Analytic Workspace

--- SET UP
set serveroutput on
execute cwm2_olap manager.set_echo_on;
create or replace directory myscripts as '/users/myxademo/myscripts’';
execute cwm2 olap manager.begin log
('"MYSCRIPTS' , 'channel.log');

--- CREATE THE ANALYTIC WORKSPACE
execute dbms_aw.execute ('aw create ''myaw''');

--- CREATE AND POPULATE THE DIMENSION
execute dbms_awm.create awdimension

('XADEMO', 'CHANNEL', 'MYSCHEMA', 'MYAW', 'AW CHAN');
execute dbms_awm.create awdimload spec

('CHAN LOAD', 'XADEMO', 'CHANNEL', 'FULL LOAD');
execute dbms_awm.add awdimload spec filter

('"CHAN LOAD', 'XADEMO', 'CHANNEL', 'XADEMO',

'XADEMO CHANNEL', '''CHAN STD CHANNEL'' = ''DIRECT''');
execute dbms_awm.refresh awdimension

Creating Analytic Workspaces with DBMS_AWM 1-9

Creating and Refreshing a Workspace Cube

('MYSCHEMA', 'MYAW', 'AW CHAN', 'CHAN LOAD');

--- COMMIT AND WRAP UP

commit;

execute cwm2_olap manager.set_echo off;
execute cwm2_ olap manager.end log

When you query the Active Catalog view ALL_OLAP2 AW DIMENSIONS, you will see
the following row.

AW_OWNER AW _NAME AW _LOGICAL NAME SOURCE_OWNER SOURCE_NAME

MYSCHEMA MYAW AW_CHAN XADEMO CHANNEL

CREATE AWDIMENSION creates the standard form metadata for the dimension in the
workspace. REFRESH_AWDIMENSION loads the dimension members and attribute
values.

You should refresh a dimension whenever changes occur in the source dimension
tables. These changes could be additions or deletions of dimension members, for
example removing a product from a Product dimension, or they could be changes to
the dimension's metadata, such as adding a Day level to a time dimension.

When you refresh a dimension, you must also refresh each cube in which it
participates.

When you refresh a dimension whose cube has associated stored summaries in the
analytic workspace (the result of an aggregation specification), you must also
reaggregate the cube.

Creating and Refreshing a Workspace Cube

Once you have defined a cube in the OLAP Catalog for your star schema, you can
create the cube in the analytic workspace.

You must call CREATE_AWDIMENSION to create each of the cube's dimensions before
calling CREATE AWCUBE to create the cube. To populate the cube, you must call
REFRESH AWDIMENSION to populate each of the cube's dimensions before calling
REFRESH AWCUBE to refresh the cube's measures.

Within an analytic workspace, dimensions can be shared by more than one cube.
When creating a new workspace cube, you will only call CREATE_ AWDIMENSION for
OLAP Catalog dimensions that have not been used as the source for dimensions of
cubes that already exist in the workspace.

Note: CREATE AWCUBE opens the analytic workspace with
read /write access. It updates the workspace, but it does not execute a
SQL COMMIT.

The analytic workspace must already exist before you call
CREATE_AWCUBE or any other procedures in the DBMS AWM package.

Example 1-2 shows the procedure calls for creating and populating the
XADEMO.ANALYTIC CUBE cube in an analytic workspace.

Example 1-2 Creating the ANALYTIC_CUBE Cube in an Analytic Workspace

--- SET UP
set serveroutput on

1-10 Oracle OLAP Reference

Creating and Refreshing a Workspace Cube

execute cwm2_olap manager.set_echo_on;

create or replace directory myscripts as '/users/myxademo/myscripts’';
execute cwm2_ olap manager.begin log('MYSCRIPTS' , 'anacube.log');

--- CREATE THE ANALYTIC WORKSPACE
execute dbms_aw.execute ('aw create ''myaw''');

--- CREATE AND REFRESH THE DIMENSIONS
execute dbms_awm.create_awdimension

('XADEMO', 'CHANNEL', 'MYSCHEMA', 'MYAW', 'AW CHAN');
execute dbms_awm.create awdimension

('XADEMO', 'GEOGRAPHY', 'MYSCHEMA', '"MYAW', 'AW GEOG');
execute dbms_awm.create awdimension

('XADEMO', 'PRODUCT', 'MYSCHEMA', 'MYAW', 'AW PROD');
execute dbms_awm.create_awdimension

('XADEMO', 'TIME', '"MYSCHEMA', 'MYAW', 'AW TIME');
execute dbms_awm.refresh awdimension

('MYSCHEMA', 'MYAW', 'AW CHAN');
execute dbms_awm.refresh awdimension

('MYSCHEMA', 'MYAW', 'AW PROD');
execute dbms_awm.refresh awdimension

('MYSCHEMA', 'MYAW', 'AW _GEOG');
execute dbms_awm.refresh awdimension

('MYSCHEMA', 'MYAW', 'AW TIME');

--- CREATE AND REFRESH THE CUBE
execute dbms_awm.create_ awcube

('XADEMO', 'ANALYTIC CUBE', 'MYSCHEMA', 'MYAW','AW ANACUBE');
execute dbms_awm.create awcubeload spec

('AC_CUBELOADSPEC', 'XADEMO', 'ANALYTIC CUBE', 'LOAD DATA');
execute dbms_awm.refresh awcube

('MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AC CUBELOADSPEC');

--- COMMIT AND WRAP UP

commit;

execute cwm2_olap manager.set echo off;
execute cwm2_olap manager.end log

When you query the Active Catalog view ALL_OLAP2_AW_CUBES, you will see the
following row.

AW OWNER AW NAME AW _LOGICAL_NAME SOURCE_OWNER SOURCE_NAME

MYSCHEMA MYAW AW _ANACUBE XADEMO ANALYTIC CUBE

The measures in the source fact table may have numeric, text, or date data types.
When REFRESH AWCUBE loads the data into a workspace cube, it converts the RDBMS
data types to types that are native to analytic workspaces. The data type conversion is
described in Table 1-8.

If a source measure has a data type not described in Table 1-8, the measure is ignored
by REFRESH_AWCUBE and none of its data or metadata is loaded into the analytic
workspace.

Creating Analytic Workspaces with DBMS_AWM 1-11

Managing Sparse Data and Optimizing the Workspace Cube

Table 1-8 Conversion of RDBMS Data Types to Workspace Data Types

RDBMS Data Type Analytic Workspace Data Type
NUMBER DECIMAL

CHAR, LONG, VARCHAR, VARCHAR2 TEXT

NCHAR, NVARCHAR2 NTEXT

DATE DATE

CREATE_AWCUBE ensures that the generic standard form objects that support cubes
exist in the workspace, and it registers the specified cube in the workspace. However,
the metadata that defines the logical structure of this particular cube is not instantiated
in the workspace until you call REFRESH_AWCUBE.

For example, if you have just created a cube AW_ANACUBE in a workspace MYAW in
MYSCHEMA from the source cube XADEMO.ANALYTIC_ CUBE, you can query the Active
Catalog to check the workspace.

SQL>select * from ALL OLAP2 AW CUBES where AW LOGICAL NAME in 'AW ANACUBE';

AW _OWNER AW NAME AW_LOGICAL NAME SOURCE_OWNER SOURCE_NAME

MYSCHEMA MYAW AW_ANACUBE XADEMO ANALYTIC CUBE

The following query shows that there are no measures associated with the cube. The
measures, dimensions, and descriptions will be instantiated when the cube is
refreshed.

SQL>select * from ALL OLAP2 AW CUBE MEASURES where AW CUBE NAME in 'AW_ANACUBE' ;
no rows selected

You should refresh a cube whenever changes occur in the source fact table. These
changes could be additions or deletions of data, for example updating sales figures, or
they could be changes to the cube's metadata, such as adding a measure or renaming a
description.

When you refresh a cube, you must first refresh any of its dimensions that have
changed. If you want to drop or add a dimension to a cube, you must drop the cube
and re-create it.

Every time you refresh a cube that has an associated aggregation specification, you
must reaggregate the cube.

If you make changes to the composite specification associated with a cube, you must
drop the cube and re-create it in the analytic workspace. You cannot refresh a cube
with a modified composite specification.

Managing Sparse Data and Optimizing the Workspace Cube

A composite is an object that is used to store sparse data compactly in a variable in an
analytic workspace. A composite consists of a list of dimension-value combinations in
which one value is taken from each of the dimensions on which the composite is
based. Only the combinations for which data exists are included in the composite.

Composites are maintained automatically by the OLAP engine. With composites, you
can keep your analytic workspace size to a minimum and promote good performance.
For more information on composites, see the Oracle OLAP DML Reference. For

1-12 Oracle OLAP Reference

Managing Sparse Data and Optimizing the Workspace Cube

information on managing sparsity and optimizing performance in your analytic
workspaces, see the Oracle OLAP Application Developer’s Guide

For example, you might have some products in your analytic cube that are not sold in
all regions. The data cells for those combinations of PRODUCT and GEOGRAPHY would
be empty. In this case, you might choose to define PRODUCT and GEOGRAPHY as a
composite. The OLAP DML syntax for defining the dimensionality of the Costs
measure in this cube could be as follows.

DEFINE prod geog COMPOSITE <product geography>
DEFINE costs VARIABLE INTEGER <time channel prod geog<product geographys>

To specify that a cube's data be loaded into an analytic workspace using this definition
of the cube's dimensionality, you would define a composite specification for the cube.
The composite specification would define the following expression.

<time channel prod geog<product geographys>>

Each member of a composite specification has a name, a type, and a position. Table 1-9
identifies this information for the preceding example.

Table 1-9 Composite Spec Members for XADEMO.ANALYTIC_CUBE

Member Type Position
TIME dimension 1
CHANNEL dimension 2
PROD_GEOG composite 3
PRODUCT dimension 4
GEOGRAPHY dimension 5

Dimension order determines how the cube's data is stored and accessed in the analytic
workspace. The first dimension in the dimension's definition is the fastest-varying and
the last is the slowest-varying.

By default, REFRESH_AWCUBE defines a workspace cube's dimensionality with Time
as the fastest varying dimension followed by a composite of all the other dimensions.
The dimensions in the composite are ordered according to their size. The dimension
with the most members is first and the dimension with the least members is last. For
example, the default dimensionality of the ANALYTIC CUBE in an analytic workspace
would be as follows.

<time comp name<geography, product, channels>>
You can override the default dimensionality by specifying a composite specification
and including it in the cube load specification.

For information on ordering dimensions and specifying segment size for dimension
storage, see the Oracle OLAP Application Developer’s Guide.

The statements in Example 1-3 create a composite specification called comp1 for the
ANALYTIC CUBE.

Example 1-3 Defining a Cube's Dimensionality in an Analytic Workspace

exec dbms_awm.create_ awcomp_spec

('compl', 'xademo', 'analytic cube');
exec dbms_awm.add awcomp spec member
('compl', 'xademo', 'analytic cube', 'compl time', 'dimension',

Creating Analytic Workspaces with DBMS_AWM 1-13

Aggregating the Data in an Analytic Workspace

'xademo', 'time');
exec dbms_awm.add awcomp spec member

('compl', 'xademo', 'analytic cube', 'compl channel', 'dimension',

'xademo', 'channel');
exec dbms_awm.add awcomp_ spec_member

('compl', 'xademo', 'analytic cube', 'compl prod geog', 'composite');
exec dbms_awm.add awcomp_spec_comp_member

('compl', 'xademo', 'analytic cube', 'compl prod geog',

'compl product' ,'dimension', 'xademo', 'product');
exec dbms_awm.add awcomp spec_comp member

('compl', 'xademo', 'analytic cube', 'compl prod geog',

'compl_geography' ,'dimension', 'xademo', 'geography');
exec dbms_awm.add awcubeload spec comp

('my cube load', 'xademo', 'analytic cube', 'compl');

You can modify a composite specification by applying it to a different cube or giving it
a different name. You can rename, move, and change the segment size of a primary
member of a composite specification. However, you cannot rename, move, or change
the segment size of a member of a composite. To edit the composite itself, you must
delete it and define a new composite.

Suppose that you wanted to make Channel, instead of Time, the fastest varying
dimension of the cube in the analytic workspace. You could reposition Channel in the
composite specification as follows.

exec dbms_awm.set awcomp_spec_member pos
('compl', 'xademo', 'analytic cube', 'compl channel', 1);

Aggregating the Data in an Analytic Workspace

The DBMS AWM package enables you to store aggregate data for level combinations of
measures in a workspace cube.

Stored aggregates in an analytic workspace are similar to materialized views for
relational data. However, a workspace cube is always presented as fully solved with
embedded totals when queried by an application. If you do not preaggregate any of
the workspace data, all the aggregate data is still available but it must be calculated on
the fly.

Preaggregating some or all of your workspace data will improve query performance in
most circumstances. For information on choosing an aggregation strategy, refer to the
Oracle OLAP Application Developer’s Guide

Note: The aggregation process (AGGREGATE AWCUBE) opens the
analytic workspace with read /write access. It updates the workspace,
but it does not execute a SQL COMMIT.

The cube refresh process stores detail data in the workspace and sets up the structures
to support dynamic aggregation. If you want to preaggregate some or all of your data,
you must create an aggregation specification and run a separate aggregation
procedure for the workspace cube.

Example 1-4 shows sample procedure calls for preaggregating the Costs and Quota
measures of the analytic workspace cube AC2, which was created from
XADEMO.ANALYTIC_ CUBE.

1-14 Oracle OLAP Reference

Aggregating the Data in an Analytic Workspace

The quarter totals (level 'L2' of TIME) for product groups (level 'L3 ' of PRODUCT),
product divisions (level 'L2"' of PRODUCT), and all channels (level ' STANDARD-2"' of
CHANNEL) are calculated and stored in the analytic workspace.

Example 1-4 Preaggregating Costs and Quota in an Analytic Workspace

execute dbms_awm.create_ awcubeagg_spec

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2');
execute dbms_awm.add awcubeagg spec level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'PRODUCT', 'L3');
execute dbms_awm.add awcubeagg spec_level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'PRODUCT', 'L2');
execute dbms_awm.add_awcubeagg_spec_level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'CHANNEL', 'STANDARD 2');
execute dbms_awm.add awcubeagg spec level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'TIME', 'L2');
execute dbms_awm.add awcubeagg spec_measure

('AGG1', 'XADEMOAW', 'UK', 'AC2', 'XXF_COSTS');
execute dbms_awm.add awcubeagg spec_measure

('AGG1', 'XADEMOAW', 'UK', 'AC2', 'XXF QUOTA');
execute dbms_awm.aggregate_awcube('MYSCHEMA‘, 'MYAW', 'AC2', 'AGGl');

The following statements show the measures and the PRODUCT levels in the
aggregation plan in the analytic workspace.

execute dbms_aw.execute ('aw attach MYSCHEMA.MYAW ro');
execute dbms_aw.execute ('fulldsc aggl');

DEFINE AGG1l DIMENSION TEXT

LD List of Measures which use this AggPlan
PROPERTY 'AWSCLASS' -'IMPLEMENTATION'
PROPERTY 'AWSCREATEDBY' -'AWSCREATE'
PROPERTY 'AWSLASTMODIFIED' -'.*

PROPERTY 'AW$LOGICAL_NAME' - 'AGGL'
PROPERTY 'AWSPARENT NAME' -'AC2'

PROPERTY 'AWSROLE' -'AGGDEF'

PROPERTY 'AWSSTATE' -'ACTIVE'

execute dbms_aw.execute('rpr aggl')

XXF.COSTS
XXF.QUOTA

execute dbms_aw.execute('fulldsc aggl product');

DEFINE AGG1l_ PRODUCT VALUESET PRODUCT LEVELLIST
LD List of Levels for this AggPlan
PROPERTY 'AWSAGGOPERATOR' -'SUM'
PROPERTY 'AWSCLASS' -'IMPLEMENTATION'
PROPERTY 'AWSCREATEDBY' -'AWSCREATE'
PROPERTY 'AWSLASTMODIFIED' -'.*
PROPERTY 'AW$PARENT_CUBE' -'AC2'
PROPERTY 'AW$PARENT DIM' -'PRODUCT'
PROPERTY 'AW$PARENT NAME' -'AGGl'
PROPERTY 'AWSROLE' -'AGGDEF LEVELS'
PROPERTY 'AWSSTATE' -'ACTIVE'

execute dbms_aw.execute ('shw values(aggl product)');

Creating Analytic Workspaces with DBMS_AWM 1-15

Aggregating the Data in an Analytic Workspace

L3
L2

An aggregation method specifies the operation used to summarize the data by level.
The default aggregation method is addition. For example, sales data is typically
aggregated over time by adding the values for each time period.

The OLAP Catalog supports a set of aggregation methods, which may be included in
the definition of a cube. These aggregation methods are listed in Table 1-10.

When a workspace cube is refreshed, the aggregation operators specified in the OLAP
Catalog are converted to the corresponding operators supported by the OLAP DML
RELATION command. These operators are incorporated in the aggregation map that
controls dynamic aggregation for the cube.

To specify a different operator for your stored aggregates, you can use the

SET AWCUBEAGG_SPEC_AGGOP procedure. This procedure enables you to specify any
of the operators supported by the OLAP DML RELATION command to preaggregate
your data.

Note: The DBMS_AWM package currently does not support weighted
aggregation operators. For example, if the OLAP Catalog specifies a
weighted sum or weighted average for aggregation along one of the
cube's dimensions, it is converted to the scalar equivalent (sum or
average) when the cube is refreshed in the analytic workspace.
Weighted operators specified by SET AWCUBEAGG SPEC_AGGOP are
similarly converted.

The OLAP Catalog and corresponding OLAP DML aggregation operators are
described in Table 1-10.

Table 1-10 Aggregation Operators

OLAP Catalog OLAP DML DML Abbrv Description
SUM SUM SU Sum. Adds data values (default)
SCALED SUM SSUM Ss Converted to Sum.
WEIGHTED SUM WSUM WS Converted to Sum.
AVERAGE AVERAGE AV Average. Adds data values, then divides the sum by the
number of data values that were added together.
HIERARCHICAL HAVERAGE HA Hierarchical Average. Adds data values, then divides the sum
AVERAGE by the number of the children in the dimension hierarchy.
WEIGHTED WAVERAGE WA Converted to Average.
AVERAGE
HWAVERAGE HW Converted to Hierarchical Average.
MAX MAX MA Maximum. The largest data value among the children of any
parent data value.
MIN MIN MI Minimum. The smallest data value among the children of any
parent data value.
FIRST FIRST FI First. The first non-NA data value.
HFIRST HF Hierarchical First. The first data value that is specified by the

hierarchy, even if that value is NA.

1-16 Oracle OLAP Reference

Enabling Relational Access

Table 1-10 (Cont.) Aggregation Operators

OLAP Catalog OLAP DML DML Abbrv Description

LAST LAST LA Last. The last non-NA data value.

HLAST HL Hierarchical Last. The last data value that is specified by the
hierarchy, even if that value is NA.

AND AND AN (Boolean variables only) If any child data value is FALSE, then
the data value of its parent is FALSE. A parent is TRUE only
when all of its children are TRUE.

OR OR OR (Default for Boolean variables) If any child data value is
TRUE, then the data value of its parent is TRUE. A parent is
FALSE only when all of its children are FALSE.

COUNT NO Converted to NOAGG.

NOAGG NO Do not aggregate any data for this dimension.

Enabling Access by the OLAP API

Analytic workspaces created with the current DBMS_ AWM package or Analytic
Workspace Manager automatically support queries by the OLAP API and BI Beans.
You do not need to create relational views, abstract data types, or OLAP Catalog
metadata to enable access. Current standard form metadata supports the automatic
generation of the mapping information needed by OLAP queries at runtime.

The DBMS AWM package will attempt to upgrade the standard form metadata when it
attaches a workspace created in a previous version. You can explicitly upgrade the
metadata with a one-time call to the CREATE DYNAMIC AW ACCESS procedure. The
workspace must already be in 10g storage format before the metadata can be
upgraded.

See Also:

= "Converting an Analytic Workspace to Oracle 10g Storage
Format" on page 24-2 for the storage format upgrade procedure.

s "CREATE_DYNAMIC_AW_ACCESS Procedure" on page 26-28 for
the syntax of the standard form metadata upgrade procedure.

If you choose not to upgrade to the current standard form, you can continue to use the
DBMS_AWM enablement procedures as you did in previous releases. The relational
views, abstract data types, and OLAP Catalog metadata will still be valid. However,
any views, abstract data types, and OLAP Catalog metadata associated with upgraded
analytic workspaces will be ignored by the OLAP APL

Enabling Relational Access

If your analytic workspace must support ad hoc SQL queries and applications that do
not use the OLAP AP], you need to create views that present the workspace data in
relational format.

Once you have created an analytic workspace cube and refreshed and aggregated its
data, you can use the DBMS_AWM enablement procedures to create and maintain a set
of views that can be queried with standard SQL. The DBMS_AWM enablement views
include:

= Anembedded total dimension view for each dimension hierarchy.

Creating Analytic Workspaces with DBMS_AWM 1-17

Enabling Relational Access

s An embedded total fact view for each combination of dimension hierarchies.

When you refresh a dimension or cube because of metadata change for its hierarchies,
you must regenerate its enablement views. When you refresh a dimension or cube
because of data changes, you can continue to use the pre-existing views.

If the enablement views do not provide the data in a useful format for your
application, you can create your own views. Refer to Chapter 34, "OLAP_TABLE" for
more information.

You can use DBMS_AWM enablement procedures to generate the enablement scripts and
run them yourself, or you can use a one-step procedure to create and run the scripts
automatically.

Procedure: Generate and Run the Enablement Scripts

Use the following steps to create and run the enablement scripts for an analytic
workspace:

1. Determine how your system is configured to write to files. The enabler procedures
accept either a directory object or a directory path. If you specify a directory object,
make sure that your user ID has been granted the appropriate access rights to it. If
you specify a path, make sure that it is the value of the UTL. FILE_DIR
initialization parameter for the instance.

2. Runthe REFRESH AWCUBE and REFRESH AWDIMENSION procedures to refresh
the cube. These procedures create metadata in the analytic workspace to track the
generations of enablement view names.

3. The enablement process automatically provides system-generated names for the
enablement views. To provide your own view names, call
REFRESH AWDIMENSION VIEW NAME and REFRESH AWCUBE VIEW NAME, then
call SET AWDIMENSION VIEW NAME and SET AWCUBE VIEW_ NAME.

4. Call the CREATE AWDIMENSION ACCESS procedure for each of the cube's
dimensions. Each procedure call will create an enablement script in a directory
that you specify. The script will contain statements that create the dimension views
and, optionally, an OLAP Catalog dimension that maps to the views.

5. Call the CREATE_AWCUBE_ACCESS procedure. This procedure call will create an
enablement script in a directory that you specify. The script will contain
statements that create the fact views and, optionally, an OLAP Catalog cube that
maps to the views.

6. Run the enablement scripts. The scripts will delete any previous generation of
views and metadata before creating new views and metadata.

Procedure: Run the Enablement Scripts Automatically

To create and run the enablement scripts automatically, use the following steps:

1. Refresh the cube and its dimensions in the analytic workspace, as described in step
2 of "Procedure: Generate and Run the Enablement Scripts” on page 1-18.

2. If you want to specify your own view names, follow step 3 of "Procedure:
Generate and Run the Enablement Scripts" on page 1-18.

3. Call CREATE AWDIMENSION ACCESS FULL for each of the cube's dimensions.
This procedure creates the enablement scripts in temporary memory and runs the
scripts to create the dimension views and, optionally, the OLAP Catalog metadata.

Oracle OLAP Reference

Enabling Relational Access

The scripts delete any previous views and metadata before creating new views

and metadata.

4. Call the procedure CREATE AWCUBE ACCESS FULL to create the fact views for
the cube. This procedure accomplishes the same basic steps as the corresponding

procedure for dimensions.

The OLAP API Enabler Procedures

The OLAP API enabler procedures are listed in Table 1-11.

Table 1-11

The OLAP API Enabler Procedures

Procedure

Description

CREATE_AWCUBE_ACCESS Procedure

CREATE_AWCUBE_ACCESS_FULL
Procedure

CREATE_AWDIMENSION_ACCESS
Procedure

CREATE_AWDIMENSION_ACCESS_FULL
Procedure

DELETE_AWCUBE_ACCESS Procedure

DELETE_AWCUBE_ACCESS_ALL Procedure

DELETE_AWDIMENSION_ACCESS
Procedure

DELETE_AWDIMENSION_ACCESS_ALL
Procedure

REFRESH_AWCUBE_VIEW_NAME
Procedure

REFRESH_AWDIMENSION_VIEW_NAME
Procedure

SET_AWCUBE_VIEW_NAME Procedure

SET_AWDIMENSION_VIEW_NAME
Procedure

Creates a script that enables relational access to
a cube in an analytic workspace.

Enables relational access to a cube in an
analytic workspace.

Creates a script that enables relational access to
a dimension in an analytic workspace.

Enables relational access to a dimension in an
analytic workspace.

Creates a script that deletes the enablement
views and metadata for a cube in an analytic
workspace.

Deletes the enablement views and metadata
for a cube in an analytic workspace.

Creates a script that deletes the enablement
views and metadata for a dimension in an
analytic workspace.

Deletes the enablement views and metadata
for a dimension in an analytic workspace.

Creates metadata in the analytic workspace to
support user-defined view names for a cube.

Creates metadata in the analytic workspace to
support user-defined view names for a
dimension.

Replaces the system-generated names for the
views of an analytic workspace cube.

Replaces the system-generated names for the
views of an analytic workspace dimension.

Note:

If you capture the SQL generated by Analytic Workspace

Manager and use it to create your own scripts, you will need to edit
the enablement procedure calls. Analytic Workspace Manager uses
different versions of the enablement procedures. In your scripts, you
must use the syntax described in this manual.

Disabling Relational Access

The enablement procedures automatically delete any previous generation of views and
OLAP Catalog metadata. However, in some circumstances, you might want to drop

Creating Analytic Workspaces with DBMS_AWM

1-19

Enabling Relational Access

the views and metadata without re-creating them. In particular, if you drop the
workspace cube or the workspace itself, you will need to clean up the orphaned views
and metadata.

In this case, you can run the DELETE_AWDIMENSION ACCESS and
DELETE_AWCUBE_ACCESS procedures to generate scripts that will drop the views and
metadata that enable relational access to the cube. These scripts do not delete any
enablement metadata that is stored within the analytic workspace.

To delete all the enablement views and metadata for a dimension or a cube, use
DELETE_AWCUBE ACCESS ALL and DELETE AWDIMENSION ACCESS ALL.

Specifying Names for Dimension Views

The CREATE_AWDIMENSION ACCESS and CREATE AWDIMENSION ACCESS FULL
procedures create metadata in the analytic workspace related to enablement. This
metadata includes a set of default names for the enablement views.

If you want to specify your own view names, you must refresh this metadata by
calling REFRESH_AWDIMENSION VIEW NAME. Then call
SET_AWDIMENSION_ VIEW_NAME to specify the names of the views.

Whenever you re-create the views, new view names are generated. If you have
previously created your own names, the refresh process uses them as the basis for the
new names.

The default view name for a dimension is: aaaa bbbbb ccccc ddddd#view,
where:

aaaa is the first four characters of the analytic workspace owner
bbbbb is the first five characters of the analytic workspace name
cccccis the first five characters of the analytic workspace dimension name
ddddd is the first five characters of the analytic workspace hierarchy name

is an automatically-generated sequence number between 1 and 9,999 to ensure
uniqueness.

Default names are also generated for the abstract objects (ADTs) populated by
OLAP_TABLE. For example, the workspace dimension AWGEOG, in a workspace called
AWTEST in the XADEMO schema could have the following system-generated names for
the STANDARD hierarchy.

Default Name Description

XADE AWTES_ AWGEO STAND34VIEW Name of the relational view

XADE AWTES AWGEOG340BJ Name of the abstract object that defines a row in the
abstract table of objects populated by OLAP_TABLE

XADE_AWTES_ AWGEOG34TBL Name of the abstract table type populated by
OLAP_TABLE

Specifying Names for Fact Views

The CREATE AWCUBE_ACCESS and CREATE AWCUBE ACCESS FULL procedures
create metadata in the analytic workspace related to enablement. This metadata
includes a set of default names for the enablement views.

1-20 Oracle OLAP Reference

Enabling Relational Access

If you want to specify your own view names, you must refresh this metadata by
calling REFRESH _AWCUBE_VIEW NAME. Then call SET AWCUBE VIEW NAME to
specify the names of the views.

Whenever you re-create the views, new view names are generated. If you have
previously created your own names, the refresh process uses them as the basis for the
new names.

The default view name for a cube is: aaaa bbbbb cccccccc#view, where:
aaaa is the first four characters of the analytic workspace owner

bbbbb is the first five characters of the analytic workspace name

cccccccec is the first eight characters of the analytic workspace cube name

is an automatically-generated sequence number between 1 and 9,999 to ensure
uniqueness.

Default names are also generated for the abstract objects (ADTs) populated by
OLAP_TABLE. For example, the workspace cube AWCUBE, in a workspace called
AWTEST in the XADEMO schema could have the following system-generated names.

Default Name

Description

XADE AWTES AWCUBESVIEW

XADE _AWTES AWCUBEOSVIEW

XADE AWTES AWCUBE1OVIEW

XADE _AWTES AWCUBE11lVIEW

XADE AWTES AWCUBE70BJ

XADE AWTES AWCUBE7TBL

Name of the relational fact view for the first hierarchy
combination.

Name of the relational fact view for the second
hierarchy combination.

Name of the relational fact view for the third hierarchy
combination.

Name of the relational fact view for the fourth
hierarchy combination.

Name of the abstract object that defines a row in the
abstract table of objects populated by OLAP_TABLE

Name of the abstract table type populated by
OLAP_TABLE

Column Structure of Dimension Views

The enablement process generates a separate view for each dimension hierarchy. For
example, a workspace cube with the four dimensions shown in Table 1-12 would have
six separate dimension views since two of the dimensions have two hierarchies.

Table 1-12 Sample Dimension Hierarchies

Dimensions Hierarchies Number of Views
geography standard 2
consolidated
product standard 1
channel standard 1
time standard 2
ytd

Creating Analytic Workspaces with DBMS_AWM

Enabling Relational Access

The dimension views are level-based, and they include the full lineage of every level
value in every row. This type of dimension table is considered solved, because the fact
table related to this dimension includes embedded totals for all level combinations.

Each dimension view contains the columns described in Table 1-13.

Table 1-13 Dimension View Columns

Column Description

ET key The embedded-total key column stores the value of the lowest populated
level in the row.

Parent ET key The parent embedded-total key column stores the parent of each ET key
value.

GID The grouping ID column identifies the hierarchy level associated with each
row, as described in "Grouping ID Column" on page 1-22.

Parent GID The parent grouping ID column stores the parent of each GID value.

level columns A column for each level of the dimension hierarchy. These columns
provide the full ancestry of each dimension member within a single row.

level attribute A column for each level attribute.

columns

Sample Dimension View

For a standard geography hierarchy with levels for TOTAL US, REGION, and STATE,
the dimension view would contain columns like the ones that follow. Level attribute
columns would also be included.

GID PARENT GID ET KEY PARENT ET KEY TOTAL US REGION STATE
0 1 MA Northeast USA Northeast MA

0 1 NY Northeast USA Northeast NY

0 1 GA Southeast USA Southeast GA

0 1 CA Southwest UsA Southwest CA

0 1 AZ Southwest USA Southwest AZ

1 3 Northeast USA USA Northeast

1 3 Southeast USA USA Southeast

1 3 Southwest USA USA Southwest

3 NA USA NA USA

Grouping ID Column

The GID identifies the hierarchy level associated with each row by assigning a zero to
each non-null value and a one to each null value in the level columns. The resulting
binary number is the value of the GID.

For example, a GID of 1 is assigned to a row with the following three levels.

TOTAL US REGION STATE
USA Southwest
0 0 1

A GID of 3 is assigned to a row with the following five levels.

TOTAL_GEOG COUNTRY REGION STATE CITY
World USA Northeast
0 0 0 1 1

1-22 Oracle OLAP Reference

Enabling Relational Access

Column Structure of Fact Views

The CREATE_AWCUBE_ACCESS procedure generates a separate view for each
dimension/hierarchy combination. For example, an analytic workspace cube with the
four dimensions shown in Table 1-12, would have four separate fact views, one for
each hierarchy combination show in Table 1-14.

Table 1-14 Sample Dimension/Hierarchy Combinations

Geography Dim Product Dim Channel Dim Time Dim
geography/ product/standard channel/standard time/standard
standard

geography/ product/standard channel/standard time/ytd
standard

geography/ product/standard channel/standard time/standard
consolidated

geography/ product/standard channel/standard time/ytd
consolidated

The fact views are fully solved. They contain embedded totals for all level
combinations. Each view has columns for the cube's measures, and key columns that
link the fact view with its associated dimension views.

Each fact view contains the columns described in Table 1-15.

Table 1-15 Fact View Columns

Column Description

ET key for each The ET key columns are foreign keys that map to the primary keys of

dimension/hierarchy the associated dimension tables, and are used to join the measure
table with the dimension tables.

GID for each The GID column provides grouping IDs needed by the OLAP API for

dimension/hierarchy = optimal response time. It is identical to the GID column of the

measure columns

R2C

CUST_MEAS_TEXTn

CUST MEAS_NUMn

associated dimension table.

Columns for each of the cube's measures.

A column that stores information used by the single-row functions.
See Chapter 30, "OLAP_EXPRESSION" and "Limit Map: ROW2CELL

Clause" on page 34-20.

100 sequentially numbered empty columns with a data type of

VARCHAR2 (1000).

100 sequentially numbered empty columns with a data type of

NUMBER (38,6).

Example: Enable a Workspace Cube for Relational Access

The following example creates, refreshes, and enables a cube AWUSR . AWTEST based on
the source cube XADEMO . ANALYTIC CUBE.

Example 1-5 Create, Refresh, and Enable a Cube

-- SET UP
set serveroutput on size 1000000
execute cwm2_olap_manager.set_echo_on;

create or replace directory myscripts as '/users/myxademo/myscripts’;
execute cwm2_olap manager.begin log ('MYSCRIPTS' , 'awtest.log');

Creating Analytic Workspaces with DBMS_AWM 1-23

Enabling Relational Access

--- CREATE AW

execute dbms_aw.execute ('aw create ''AWTEST''');

-- CREATE DIMENSIONS
execute dbms_awm.create awdime

nsion

('XADEMO', 'CHANNEL', 'AWUSR'",
execute dbms_awm.create awdimension
('XADEMO', 'GEOGRAPHY', 'AWUSR',
execute dbms_awm.create awdimension
('XADEMO', 'PRODUCT', 'AWUSR'",
execute dbms_awm.create_awdimension
('XADEMO', 'TIME', 'AWUSR'",

-- CREATE CUBE
execute dbms_awm.create awcube
('XADEMO',

-- REFRESH DIMENSIONS

'ANALYTIC CUBE', 'AWUSR',

execute
execute
execute
execute

dbms_awm.refresh awdimension
dbms_awm.refresh awdimension
dbms_awm.refresh awdimension
dbms_awm.refresh _awdimension

(
(
(
(

-- REFRESH CUBE
execute dbms_awm.refresh awcube ('AWUSR',

-- SET DIMENSION VIEW NAMES
exec dbms_awm.refresh awdimension view_name

exec

exec

exec

exec

exec

exec

exec

exec

exec

('"AWUSR', 'AWTEST',

'awprod') ;

'AWUSR',
'AWUSR',
'AWUSR',
'AWUSR',

'AWTEST', 'AWCHAN');
'AWTEST', 'AWGEOG');
'"AWTEST', 'AWPROD');
'AWTEST', 'AWTIME');

'AWTEST', 'AWCUBE') ;

' AWCHAN'
' AWGEOG'
'AWPROD'
'AWTIME'

1

'AWTEST',
'AWTEST',
'AWTEST',
'AWTEST',

)

) i
) i
).

I

'"AWTEST', 'AWCUBE');

dbms_awm.refresh awdimension view name

('AWUSR', 'AWTEST',

'awchan') ;

dbms_awm.refresh awdimension view name

('"AWUSR', 'AWTEST',

'awgeog') ;

dbms_awm.refresh_awdimension view name

('"AWUSR', 'AWTEST',
dbms_awm.set awdimension view name
('AWUSR', 'AWTEST', 'awprod',
dbms_awm.set awdimension view name
('AWUSR', 'AWTEST', 'awchan',
dbms_awm.set_awdimension_view_name
('"AWUSR', 'AWTEST', 'awgeog',
dbms_awm.set _awdimension view name
('AWUSR', 'AWTEST', 'awgeog',
dbms_awm.set awdimension view name
('AWUSR', 'AWTEST', 'awtime',
dbms_awm.set_awdimension_view_name

'awtime') ;

'standard',

'standard',

'consolidated',

'standard',

'standard',

'prod_std view');
'chan_std view');
'geog_csd view');
'geog_std view');

'time std view');

("AWUSR',

'AWTEST',

-- SET CUBE VIEW NAMES

'awtime',

exec dbms_awm.refresh awcube view name

exec

exec

exec

exec

1-24 Oracle OLAP Reference

('AWUSR',

('"AWUSR',

('"AWUSR',

('AWUSR',

("AWUSR',

'AWTEST',

'AWTEST',

'AWTEST',

'AWTEST',

'AWTEST',

'awcube') ;

dbms_awm.set awcube view name

'awcube', 1,

dbms_awm.set awcube view name

'awcube', 2,

dbms_awm.set awcube view name

'awcube', 3,

dbms_awm.set awcube view name

'awcube', 4,

‘Ytdll

'time ytd view');

'"AWCUBE viewl');
'AWCUBE view2');
'"AWCUBE view3');

'"AWCUBE view4');

Enabling Relational Access

-- ENABLE DIMENSIONS
exec dbms_awm.create AWdimension access
('AWUSR', 'AWTEST', 'awprod', 'olap',
'MYSCRIPTS', 'awprod views.sql', 'w');
exec dbms_awm.create AWdimension_access
('AWUSR', 'AWTEST', 'awchan', 'olap',
'MYSCRIPTS', 'awchan views.sql', 'w');
exec dbms_awm.create AWdimension_access
('AWUSR', 'AWTEST', 'awgeog', 'olap',
'MYSCRIPTS', 'awgeog views.sql', 'w');
exec dbms_awm.create AWdimension access
('AWUSR', 'AWTEST', 'awtime', 'olap',
'MYSCRIPTS', 'awtime views.sql', 'w');

-- ENABLE CUBE

exec dbms_awm.create AWcube access
('"AWUSR', 'AWTEST', 'awcube', 'olap',
'"MYSCRIPTS', 'awcube views.sql', 'w');

-- COMMIT and WRAPUP
commit;
execute cwm2_olap manager.end log;

The following queries show the resulting workspace cube and dimensions with their
source cubes and dimensions in the OLAP Catalog.

select * from all olap2 aw dimensions where AW _OWNER = 'AWUSER';

AW _OWNER AW NAME AW LOGICAL NAME AW PHYSICAL OBJECT SOURCE OWNER SOURCE NAME

AWUSER AWTEST AWCHAN AWCHAN XADEMO CHANNEL
AWUSER AWTEST AWGEOG AWGEOG XADEMO GEOGRAPHY
AWUSER AWTEST AWPROD AWPROD XADEMO PRODUCT
AWUSER AWTEST AWTIME AWTIME XADEMO TIME

select * from all olap2_aw CUBEs where AW _OWNER = 'AWUSER';

AW _OWNER AW NAME AW LOGICAL NAME AW PHYSICAL OBJECT SOURCE OWNER SOURCE NAME

AWUSER AWTEST AWCUBE AWCUBE XADEMO ANALYTIC_CUBE

The following query shows the system names and user names for the dimension
enablement views.

select * from all_aw_dim ENABLED VIEWS where AW OWNER = 'AWUSER';

AW_OWNER AW_NAME DIMENSION HIERARCHY SYSTEM_VIEWNAME USER_VIEWNAME

AWUSER AWTEST AWCHAN STANDARD AWUS_AWTES AWCHA STAND144VIEW CHAN STD VIEW
AWUSER AWTEST AWGEOG CONSOLIDATED AWUS_AWTES AWGEO CONSO145VIEW GEOG_CSD_VIEW
AWUSER AWTEST AWGEOG STANDARD AWUS_AWTES AWGEO STAND146VIEW GEOG_STD VIEW
AWUSER AWTEST AWPROD STANDARD AWUS_AWTES AWPRO_STAND147VIEW PROD STD VIEW
AWUSER AWTEST AWTIME STANDARD AWUS_AWTES_AWTIM STAND148VIEW TIME_STD VIEW
AWUSER AWTEST AWTIME YTD AWUS_AWTES AWTIM YTD149VIEW TIME _YTD VIEW

The following query shows the system names and user names for the cube enablement
views. Included are the hierarchy combination numbers, in this case 1 - 4, and the
hierarchy strings, consisting of each unique combination of dimension hierarchies for
this cube.

select * from all aw CUBE_ENABLED VIEWS where AW OWNER = 'AWUSER';

Creating Analytic Workspaces with DBMS_AWM 1-25

Enabling Relational Access

AW _OWN AW NA CUBE_NAM HIER HIERCOMBO_STR SYSTEM_VIEWNAME USER_VIEWNAME

AWUSER AWTEST AWCUBE 1 DIM:AWCHAN/HIER:STANDARD;DIM:AWGEOG AWUS AWTES AWCUBE151VIEW AWCUBE VIEW1
/HIER:CONSOLIDATED;DIM: AWPROD/HIER:
STANDARD; DIM: AWTIME/HIER : STANDARD

AWUSER AWTEST AWCUBE 2 DIM:AWCHAN/HIER:STANDARD;DIM:AWGEOG AWUS AWTES AWCUBE152VIEW AWCUBE VIEW2
/HIER:CONSOLIDATED;DIM: AWPROD/HIER:
STANDARD; DIM: AWTIME/HIER: YTD

AWUSER AWTEST AWCUBE 3 DIM:AWCHAN/HIER:STANDARD;DIM:AWGEOG AWUS AWTES AWCUBE153VIEW AWCUBE VIEW3
/HIER:STANDARD; DIM: AWPROD/HIER: STAN
DARD; DIM:AWTIME/HIER: STANDARD

AWUSER AWTEST AWCUBE 4 DIM:AWCHAN/HIER:STANDARD;DIM:AWGEOG AWUS AWTES AWCUBE154VIEW AWCUBE VIEW4
/HIER:STANDARD; DIM: AWPROD/HIER: STAN
DARD;DIM:AWTIME/HIER:YTD

The final step is to run the enablement scripts to generate the views for the analytic
workspace cube. The scripts produced by this example are described as follows.

Script Description

awprod views. Creates an abstract object, a table of objects, and a
sql view for the PRODUCT dimension. Also creates and
validates an OLAP Catalog dimension
AWUSER . AWPROD that maps to the view.

awchan views. Creates an abstract object, a table of objects, and a
sql view for the CHANNEL dimension. Also creates and
validates an OLAP Catalog dimension
AWUSER . AWCHAN that maps to the view.

awgeog_views. Creates an abstract object, a table of objects, and a

sqgl view for each hierarchy of the GEOGRAPHY
dimension. Also creates and validates an OLAP
Catalog dimension AWUSER . AWGEOG that maps to the
view.

awtime views. Creates an abstract object, a table of objects, and a

sql view for each hierarchy of the TIME dimension. Also
creates and validates an OLAP Catalog dimension
AWUSER . AWTIME that maps to the view.

awcube views. Creates an abstract object, a table of objects, and a

sql separate view for each hierarchy combination of the
AWCUBE cube. Also creates and validates an OLAP
Catalog cube AWUSER . AWCUBE that maps to the view.

1-26 Oracle OLAP Reference

2

Creating OLAP Catalog Metadata with CWM2

The OLAP Catalog cwM2 PL/SQL packages provide stored procedures for creating,
dropping, and updating OLAP Catalog metadata. This chapter explains how to work
with the CWM2 procedures. For complete syntax descriptions, refer to the reference
chapter for each package.

This chapter discusses the following topics:

s Understanding OLAP Catalog Metadata

s OLAP Catalog Metadata Entities

s Creating a Dimension

»s Creating a Cube

s Mapping OLAP Catalog Metadata

s Validating and Committing OLAP Catalog Metadata
= Invoking the Procedures

s Directing Output

= Viewing OLAP Catalog Metadata

Understanding OLAP Catalog Metadata

OLAP Catalog metadata presents relational data as a logical cube. It is stored in tables
in the OLAP Catalog, and it can be queried using the OLAP Catalog views.

The OLAP API uses OLAP Catalog metadata to access relational data stored in star,
snowflake, and embedded-total configurations.

The OLAP API does not use OLAP Catalog metadata to access data stored in analytic
workspaces. However, OLAP Catalog metadata is required by the DBMS_AWM package
(and Analytic Workspace Manager) for building analytic workspaces.

The DBMS_AWM enabler procedures optionally create an OLAP Catalog cube that maps
to relational views of an analytic workspace. The OLAP API does not use this cube,
nor its underlying views, to query an analytic workspace. The OLAP API queries data
in an analytic workspace directly, using standard form metadata within the
workspace.

The OLAP Analytic Workspace API does not use OLAP Catalog metadata for building
analytic workspaces. See Chapter 25 for more information.

You can create OLAP Catalog metadata with Oracle Enterprise Manager, Oracle
Warehouse Builder, or the CWM2 procedures. OLAP Catalog metadata created in
Enterprise Manager maps to star and snowflake schemas only. You can create OLAP

Creating OLAP Catalog Metadata with CWM2 2-1

OLAP Catalog Metadata Entities

Catalog metadata for embedded-total dimension and fact tables, as well as star and
snowflakes, using Warehouse Builder or the CWM2 procedures.

See Also:

s "Overview" on page 1-1 for descriptions of the relational source
cube used by DBMS_AWM and the relational target cube that can
optionally be created by DBMS_AWM.

» Chapter 5 for descriptions of the OLAP Catalog views.

OLAP Catalog Metadata Entities

OLAP Catalog metadata entities are: dimensions, hierarchies, levels, level attributes,
dimension attributes, measures, cubes, and measure folders. A separate PL/SQL
package exists for each type of entity. The package provides procedures for creating,
dropping, locking, and specifying descriptions for entities of that type. For example, to
create a dimension, you would call CWM2_OLAP_DIMENSION.CREATE_DIMENSION;
to create a level, you would call CWM2_OLAP_LEVEL.CREATE_ LEVEL, and so on.

Each entity of metadata is uniquely identified by its owner and its name.

When you create an OLAP Catalog metadata entity, you are simply adding a row to an
OLAP Catalog table that identifies all the entities of that type. Creating an entity does
not fully define a dimension or a cube, nor does it involve any mapping to warehouse
dimension tables or fact tables.

Note: All OLAP Catalog metadata entities are defined as
VARCHAR (30).

To fully construct a dimension or a cube, you must understand the hierarchical
relationships between the component metadata entities.

Creating a Dimension

Creating a dimension entity is only the first step in constructing the OLAP Catalog
metadata for a dimension. Each dimension must have at least one level. More
typically, it will have multiple levels, hierarchies, and attributes. Table 2-1 shows the
parent-child relationships between the metadata components of a dimension.

Table 2-1 Hierarchical Relationships Between Components of a Dimension

Parent Entity Child Entity

dimension dimension attribute, hierarchy, level
dimension attribute level attribute

hierarchy level

level level attribute

Note: OLAP Catalog dimensions created with the CWM2 procedures
are purely logical entities. They have no relationship to database
dimension objects. However, OLAP Catalog dimensions created in
Enterprise Manager are associated with database dimension objects.

2-2 Oracle OLAP Reference

Creating a Dimension

Procedure: Create an OLAP Dimension

Generally, you will create hierarchies and dimension attributes after creating the
dimension and before creating the dimension levels and level attributes. Once the
levels and level attributes are defined, you can map them to columns in one or more
warehouse dimension tables. The general steps are as follows:

1.
2.

Call procedures in CWM2 OLAP_ DIMENSION to create the dimension.

Call procedures in CWM2 OLAP DIMENSION ATTRIBUTE to create dimension
attributes. In general, you will need to define dimension attributes for ' long
description' and 'short description'.

The OLAP API requires the following dimension attributes for embedded total
dimension tables (for example, views of analytic workspaces): 'ET Key',
'Parent ET Key', 'Grouping ID',6 and 'Parent Grouping ID'.For more
information, see Table 12-1, " Reserved Dimension Attributes".

Call procedures in CWM2 OLAP_ HIERARCHY to define hierarchical relationships
for the dimension's levels.

Call procedures in CWM2_OLAP_LEVEL to create levels and assign them to
hierarchies.

Call procedures in CWM2 OLAP LEVEL ATTRIBUTE to create level attributes and
assign them to dimension attributes. For ' long description', 'short
description' and other reserved dimension attributes, create level attributes
with the same name for every level.

The OLAP API requires the following level attributes for embedded total
dimension tables (for example, views of analytic workspaces): 'ET Key',
'Parent ET Key', 'Grouping ID',6 and 'Parent Grouping ID'.For more
information, see Table 16-1, " Reserved Level Attributes".

Call procedures in CWM2 OLAP_TABLE MAP to map the dimension's levels and
level attributes to columns in dimension tables.

Example: Create a Product Dimension

The PL/SQL statements in Example 21 create a logical CWM2 dimension, PRODUCT _
DIM, for the PRODUCTS dimension table in the SH schema.

The following table shows the columns in the PRODUCTS table.

Column Name Data Type

PROD ID NUMBER

PROD NAME VARCHAR?2
PROD_DESC VARCHAR2
PROD_SUBCATEGORY VARCHAR2
PROD_SUBCAT DESC VARCHAR2
PROD CATEGORY VARCHAR?2
PROD CAT DESC VARCHAR?2
PROD WEIGHT CLASS NUMBER

PROD_UNIT OF MEASURE VARCHAR?2
PROD_ PACK SIZE VARCHAR2

Creating OLAP Catalog Metadata with CWM2 2-3

Creating a Dimension

Column Name Data Type
SUPPLIER_ID NUMBER
PROD_STATUS VARCHAR?2
PROD_LIST PRICE NUMBER
PROD MIN PRICE NUMBER
PROD_TOTAL VARCHAR2

Example 2-1 Create an OLAP Dimension for the Products Table

exec

exec

exec

exec

exec

exec

exec

exec

exec

exec

exec

exec

CREATE THE PRODUCT DIMENSION ---

cwm2_olap_dimension.create dimension
('SH', 'PRODUCT DIM', 'Product', 'Products', 'Product Dimension',
'Product Dimension Values');

CREATE DIMENSION ATTRIBUTES ---
cwm2_olap dimension attribute.create dimension attribute
('SH', 'PRODUCT DIM', 'Long Description', 'Long Descriptions',
'Long Desc', 'Long Product Descriptions', true);
cwm2_olap dimension attribute.create dimension attribute
('SH', 'PRODUCT DIM', 'PROD NAME DIM', 'Product Name',
'Prod Name', 'Product Name');

CREATE STANDARD HIERARCHY ---
cwm2_olap_hierarchy.create hierarchy
('SH', 'PRODUCT DIM', 'STANDARD', 'Standard', 'Std Product',
'Standard Product Hierarchy', 'Unsolved Level-Based');
cwm2_olap dimension.set default display hierarchy
('SH', 'PRODUCT DIM', 'standard');

CREATE LEVELS ---
cwm2_olap_level.create level
('SH', 'PRODUCT DIM', 'L4', 'Product ID', 'Product Identifiers',
'"Prod Key', 'Product Key');
cwm2_olap level.create level
('SH', 'PRODUCT DIM', 'L3','Product Sub-Category',
'Product Sub-Categories', 'Prod Sub-Category',
'Sub-Categories of Products');
cwm2_olap level.create level
('sH', 'PRODUCT DIM', 'L2','Product Category',
'Product Categories', 'Prod Category', 'Categories of Products');
cwm2_olap level.create level
('SH', 'PRODUCT DIM', 'L1l', 'Total Product', 'Total Products',
'Total Prod', 'Total Product');

CREATE LEVEL ATTRIBUTES ---

cwm2_olap level attribute.create level attribute
('SH', 'PRODUCT DIM', 'Long Description', 'L4', 'Long Description',
'PRODUCT LABEL', 'L4 Long Desc',
'Long Labels for PRODUCT Identifiers', TRUE);

cwm2_olap level attribute.create level attribute
('SH', 'PRODUCT DIM', 'Long Description', 'L3', 'Long Description',
' SUBCATEGORY LABEL', 'L3 Long Desc',
'Long Labels for PRODUCT Sub-Categories', TRUE);

cwm2_olap_level attribute.create_level attribute
('SH', 'PRODUCT DIM', 'Long Description', 'L2', 'Long Description',
'CATEGORY LABEL', 'L2 Long Desc',
'Long Labels for PRODUCT Categories', TRUE);

2-4 Oracle OLAP Reference

Creating a Dimension

exec cwm2_olap level attribute.create level attribute

('sH', 'PRODUCT DIM', 'PROD NAME DIM', 'L4', 'PROD NAME LEV',
'Product Name', 'Product Name', 'Product Name');

ADD LEVELS TO HIERARCHIES ---

exec cwm2_olap level.add level to hierarchy

('SH', 'PRODUCT DIM', 'STANDARD', 'L4', 'L3');

exec cwm2_olap level.add level to hierarchy

('SH', 'PRODUCT DIM', 'STANDARD', 'L3', 'L2');

exec cwm2_olap level.add level to hierarchy

('SH', 'PRODUCT DIM', 'STANDARD', 'L2', 'L1');

exec cwm2_olap_level.add level to hierarchy

('SH', 'PRODUCT DIM', 'STANDARD', 'L1l');

CREATE MAPPINGS ---

exec cwm2_olap table map.Map DimTbl HierLevel

("SH', 'PRODUCT DIM', 'STANDARD', 'L4',
'"SH', 'PRODUCTS', 'PROD ID');

exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'PRODUCT DIM', 'Long Description', 'STANDARD',
'L4', 'Long Description', 'SH', 'PRODUCTS', 'PROD DESC');

exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'PRODUCT DIM', 'PROD NAME DIM', 'STANDARD', 'L4',
'"PROD_NAME LEV', 'SH', 'PRODUCTS', 'PROD NAME');

exec cwm2_olap table map.Map DimTbl HierLevel

('SH', 'PRODUCT DIM', 'STANDARD', 'L3','SH', 'PRODUCTS',
'"PROD_SUBCATEGORY') ;

exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'PRODUCT DIM', 'Long Description', 'STANDARD', 'L3',
'Long Description', 'SH', 'PRODUCTS', 'PROD SUBCATEGORY DESC');

exec cwm2_olap_table map.Map DimTbl HierLevel

('SH', 'PRODUCT DIM', 'STANDARD', 'L2','SH', 'PRODUCTS',
'"PROD_CATEGORY') ;

exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'PRODUCT DIM', 'Long Description', 'STANDARD', 'L2',
'Long Description', 'SH', 'PRODUCTS', 'PROD CATEGORY DESC');

exec cwm2_olap table map.Map DimTbl HierLevel

('SH', 'PRODUCT DIM', 'STANDARD', 'L1l','SH', 'PRODUCTS',
'"PROD_TOTAL') ;

Procedure: Create a Time Dimension

When constructing metadata for your time dimension tables, you will follow the same
general procedure as for any other OLAP dimension. However, several additional
requirements apply. The general steps for creating a time dimension are as follows:

1.

Call procedures in CWM2 OLAP_DIMENSION to create the dimension. Specify
'"TIME' for the dimension type parameter.

Call procedures in CWM2_ OLAP_DIMENSION ATTRIBUTE to create dimension
attributes. In addition to the dimension attributes needed for regular dimensions,
define an 'End Date' attribute and a 'Time Span'attribute.

Call procedures in CWM2 OLAP_HIERARCHY to define hierarchical relationships
for the dimension's levels. Typical hierarchies are Calendar and Fiscal.

Call procedures in CWM2_ OLAP_LEVEL to create levels and assign them to
hierarchies. Typical levels are Month, Quarter, and Year.

Call procedures in CWM2_ OLAP_LEVEL_ ATTRIBUTE to create level attributes and
assign them to dimension attributes. In addition to the level attributes needed for

Creating OLAP Catalog Metadata with CWM2 2-5

Creating a Dimension

regular dimension attributes, create 'End Date' and 'Time Span'attributes for
each level and associate them with the 'End Date' and 'Time Span'dimension
attributes.

6. Call procedures in CWM2_ OLAP TABLE MAP to map the dimension's levels and
level attributes to columns in dimension tables. Map the 'End Date' level
attributes to columns with a Date data type. Map the 'Time Span'level attributes
to columns with a numeric data type.

Example: Create a Time Dimension

The PL/SQL statements in Example 2—1 create a logical CWM2 time dimension, TIME_
DIM, for the TIMES dimension table in the SH schema.

The TIMES table includes the following columns.

Column Name Data Type

TIME ID DATE

TIME ID KEY NUMBER

DAY NAME VARCHAR2 (9)
CALENDAR MONTH NUMBER NUMBER (2)
CALENDAR MONTH DESC VARCHAR?2 (8)
CALENDAR MONTH DESC_KEY NUMBER

END OF CAL_ MONTH DATE
CALENDAR MONTH NAME VARCHAR2 (9)
CALENDAR QUARTER DESC CHAR (7)
CALENDAR QUARTER DESC KEY NUMBER

END OF CAL QUARTER DATE
CALENDAR QUARTER NUMBER NUMBER (1)
CALENDAR YEAR NUMBER (4)
CALENDAR YEAR KEY NUMBER

END OF CAL_YEAR DATE

Example 2-2 Create an OLAP Time Dimension

--- CREATE THE TIME DIMENSION

exec cwm2_olap dimension.create dimension
('SH', 'TIME DIM', 'Time','Time', 'Time Dimension',
'Time Dimension Values', 'TIME');

--- CREATE DIMENSION ATTRIBUTE END DATE

exec cwm2_olap dimension attribute.create dimension attribute
('SH', 'TIME DIM', 'END DATE', 'End Date',
'End Date', 'Last date of time period', true);

--- CREATE CALENDAR HIERARCHY

exec cwm2_olap hierarchy.create hierarchy
('SH', 'TIME DIM', 'CALENDAR', 'Calendar', 'Calendar Hierarchy',
'Calendar Hierarchy', 'Unsolved Level-Based');

exec cwm2_olap dimension.set default display hierarchy

2-6 Oracle OLAP Reference

Creating a Cube

('sH', 'TIME DIM', 'CALENDAR');

--- CREATE LEVELS
exec cwm2_olap level.create level
('SH', 'TIME DIM', 'MONTH', 'Month', 'Months', 'Month', 'Month');
exec cwm2_olap level.create level
('SH', 'TIME DIM', 'QUARTER', 'Quarter', 'Quarters', 'Quarter', 'Quarter');
exec cwm2_olap level.create level
('sH', 'TIME DIM', 'YEAR', 'Year', 'Years', 'Year', 'Year') ;

--- CREATE LEVEL ATTRIBUTES ---

exec cwm2_olap level attribute.create level attribute
('sH', 'TIME DIM', 'END DATE', 'Month', 'END DATE',
'End Date', 'End Date',
'Last date of time period', TRUE);

exec cwm2_olap level attribute.create level attribute
('SH', 'TIME DIM', 'END DATE', 'Quarter', 'END DATE',
'End Date', 'End Date',
'Last date of time period', TRUE);

exec cwm2_olap level attribute.create level attribute
('SH', 'TIME DIM', 'END DATE', 'Year',6 'END DATE',
'End Date', 'End Date',
'Last date of time period', TRUE);

--- ADD LEVELS TO HIERARCHIES
exec cwm2_olap level.add level to hierarchy

('SH', 'TIME DIM', 'CALENDAR', 'Month', 'Quarter');
exec cwm2_olap level.add level to hierarchy

('SH', 'TIME DIM', 'CALENDAR', 'Quarter', 'Year');
exec cwm2_olap_level.add level to hierarchy

('sH', 'TIME DIM', 'CALENDAR', 'Year');

--- CREATE MAPPINGS
exec cwm2_olap table map.Map DimTbl HierLevel

('SH', 'TIME DIM', 'CALENDAR', 'Year',

'SH', 'TIMES', 'CALENDAR YEAR ID');
exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'TIME DIM', 'END DATE', 'CALENDAR',

'Year', 'END DATE', 'SH', 'TIMES', 'END OF CAL YEAR');
exec cwm2_olap table map.Map DimTbl HierLevel

('SH', 'TIME DIM', 'CALENDAR', 'Quarter','SH', 'TIMES',

'CALENDAR QUARTER NUMBER') ;
exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'TIME DIM', 'END DATE', 'CALENDAR',

'Quarter', 'END DATE', 'SH', 'TIMES', 'END OF CAL QUARTER');
exec cwm2_olap table map.Map DimTbl HierLevel

('SH', 'TIME DIM', 'CALENDAR', 'Month','SH', 'TIMES',

'CALENDAR MONTH NUMBER') ;
exec cwm2_olap table map.Map DimTbl HierLevelAttr

('SH', 'TIME DIM', 'END DATE', 'CALENDAR',

'Month', 'END DATE', 'SH', 'TIMES', 'END OF CAL MONTH');

Creating a Cube

Creating a cube entity is only the first step in constructing the OLAP Catalog metadata
for a cube. Each cube must have at least one dimension and at least one measure. More
typically, it will have multiple dimensions and multiple measures.

Creating OLAP Catalog Metadata with CWM2 2-7

Creating a Cube

Procedure: Create a Cube

The general steps for constructing a cube are as follows:

1. Follow the steps in "Procedure: Create an OLAP Dimension" for each of the cube's
dimensions.

2. Call procedures in CWM2_OLAP_CUBE to create the cube and identify its
dimensions.

3. Call procedures in CWM2_ OLAP MEASURE to create the cube's measures.

4. Call procedures in CWM2_ OLAP TABLE MAP to map the cube's measures to
columns in fact tables and to map foreign key columns in the fact tables to key
columns in the dimension tables.

Example: Create a Costs Cube

The PL/SQL statements in Example 2-3 create a logical CWM2 cube object, ANALYTIC_
CUBE, for the COSTS fact table in the SH schema. The dimensions of the cube are
PRODUCT DIM, shown in Example 2-1, and TIME DIM, shown in Example 2-2.

The COSTS fact table has the following columns.

Column Name Data Type
PROD ID NUMBER
TIME ID DATE

UNIT COST NUMBER
UNIT PRICE NUMBER

Example 2-3 Create an OLAP Cube for the COSTS Fact Table

--- CREATE THE ANALYTIC CUBE CUBE ---
cwm2_olap cube.create cube('SH', 'ANALYTIC CUBE', 'Analytics',
'Analytic Cube', 'Unit Cost and Price Analysis');

--- ADD THE DIMENSIONS TO THE CUBE ---

cwm2_olap_cube.add dimension to cube('SH', 'ANALYTIC CUBE',
'SH', 'TIME DIM');

cwm2_olap cube.add dimension to cube('SH', 'ANALYTIC CUBE',
'SH', 'PRODUCT DIM');

--- CREATE THE MEASURES ---

cwm2_olap _measure.create measure('SH', 'ANALYTIC CUBE', 'UNIT COST',
'Unit Cost','Unit Cost', 'Unit Cost');

cwm2_olap measure.create measure('SH', 'ANALYTIC CUBE', 'UNIT PRICE',
'Unit Price', 'Unit Price', 'Unit Price');

--- CREATE THE MAPPINGS ---
cwm2_olap table map.Map FactTbl LevelKey
('SH', 'ANALYTIC CUBE','SH', 'COSTS', 'LOWESTLEVEL',
'DIM:SH.PRODUCTS/HIER: STANDARD/LVL:L4/COL: PROD_ID;
DIM:SH.TIME/HIER:CALENDAR/LVL:L3/COL:MONTH; ') ;
cwm2_olap table map.Map FactTbl Measure
('SH', 'ANALYTIC CUBE','UNIT_COST', 'SH', 'COSTS', 'UNIT COST',
'DIM:SH.PRODUCTS/HIER: STANDARD/LVL:L4/COL:PROD ID;
DIM:SH.TIME/HIER:CALENDAR/LVL:L3/COL:MONTH; ') ;
cwm2_olap table map.Map FactTbl Measure
('SH', 'ANALYTIC CUBE', 'UNIT PRICE', 'SH', 'COSTS', 'UNIT PRICE',

2-8 Oracle OLAP Reference

Mapping OLAP Catalog Metadata

'DIM:SH.PRODUCTS/HIER: STANDARD/LVL:L4/COL:PROD ID;
DIM:SH.TIME/HIER:CALENDAR/LVL:L3/COL:MONTH; ') ;

Mapping OLAP Catalog Metadata

OLAP Catalog metadata mapping is the process of establishing the links between
logical metadata entities and the physical locations where the data is stored.
Dimension levels and level attributes map to columns in dimension tables. Measures
map to columns in fact tables. The mapping process also specifies the join
relationships between a fact table and its associated dimension tables.

Note: The dimension tables and fact tables may be implemented as
views. For example, the views you can generate using the DBMS_AWM
package may be the data source for OLAP Catalog metadata. For more
information, see "Overview" on page 1-1.

Mapping to Columns

The CWM2_OLAP_TABLE_MAP package contains the mapping procedures for CWM2
metadata. Dimension levels, level attributes, and measures can be mapped within the
context of a hierarchy or with no hierarchical context.

Mapping Dimensions

Each level maps to one or more columns in a dimension table. All the columns of a
multicolumn level must be mapped within the same table. All the levels of a
dimension may be mapped to columns in the same table (a traditional star schema), or
the levels may be mapped to columns in separate tables (snowflake schema).

Each level attribute maps to a single column in the same table as its associated level.

Mapping Measures

Each measure maps to a single column in a fact table. All the measures mapped within
the same fact table must share the same dimensionality.

When more than one hierarchical context is possible within a cube (at least one of the
cube's dimensions has multiple hierarchies), each combination of hierarchies may be
mapped to a separate fact table. In this case, each table must have columns for each of
the cube's measures, and the measure columns must appear in the same order in each
table.

Joining Fact Tables with Dimension Tables

Once you have mapped the levels, level attributes, and measures, you can specify the
mapping of logical foreign key columns in the fact table to level key columns in
dimension tables.

The MAP FACTTBL_ LEVELKEY procedure defines the join relationships between a
cube and its dimensions. This procedure takes as input: the cube name, the fact table
name, a mapping string, and a storage type indicator specifying how data is stored in
the fact table.

The storage type indicator can have either of the following values:

L] 'LOWESTLEVEL'
A single fact table stores unsolved data for all the measures of a cube (star
schema). If any of the cube's dimensions have more than one hierarchy, they must

Creating OLAP Catalog Metadata with CWM2 2-9

Validating and Committing OLAP Catalog Metadata

all have the same lowest level. Each foreign key column in the fact table maps to a
level key column in a dimension table.

L] 'ET'
Fact tables store completely solved data (with embedded totals) for specific
hierarchies of the cube's dimensions. Typically, the data for each combination of
hierarchies is stored in a separate fact table. Each fact table must have the same
columns. Multiple hierarchies in dimensions do not have to share the same lowest
level.

An embedded total key and a grouping ID key (GID) in the fact table map to
corresponding columns that identify a dimension hierarchy in a solved dimension
table. The ET key identifies the lowest level value present in a row. The GID
identifies the hierarchy level associated with each row. For more information, see
"Grouping ID Column" on page 1-22. For more information on mapping the key
relationships between fact tables and dimension tables, see "MAP_FACTTBL_
LEVELKEY Procedure" on page 21-8.

When the fact table and dimension tables are joined with a storage type of
LOWESTLEVEL, the cube's hierarchies have a solved code of 'UNSOLVED
LEVEL-BASED"

When the fact tables and dimension tables are joined with a storage type of ET, the
cube's hierarchies have a solved code of 'SOLVED LEVEL-BASED'.

See "SET_SOLVED_CODE Procedure" on page 14-7.

Validating and Committing OLAP Catalog Metadata

None of the CWM2 procedures that create, map, or validate OLAP Catalog metadata
includes a COMMIT.

Scripts that create OLAP Catalog metadata should first execute all the statements that
create and map new metadata, then validate the metadata, then execute a COMMIT.

If the metadata will be used by the OLAP API to access data stored in relational tables,
you must refresh the OLAP API Metadata Reader tables after validating the metadata.
The refresh process includes a COMMIT. See "Refreshing Metadata Tables for the OLAP
API" on page 2-12.

Validating OLAP Catalog Metadata

To test the validity of OLAP Catalog metadata, use the CWM2 OLAP VALIDATE and
CWM2 OLAP_VERIFY ACCESS packages. The validation procedures check the
structural integrity of the metadata and ensure that it is correctly mapped to columns
in dimension tables and fact tables. Additional validation specific to the OLAP APl is
done if requested.

The CWM2_ OLAP_VERIFY ACCESS package performs two additional checks after
validating a cube. It checks that the CWM2 metadata for the cube is consistent with the
cached metadata tables queried by the OLAP API Metadata Reader. Additionally, it
checks that the calling user has access to the source tables and columns.

See Also:

s "Refreshing Metadata Tables for the OLAP API" on page 2-12
s Chapter 22, "CWM2_OLAP_VALIDATE"

s Chapter 23, "CWM2_OLAP_VERIFY_ACCESS"

2-10 Oracle OLAP Reference

Validating and Committing OLAP Catalog Metadata

Note: Remember to validate metadata created or updated in
Enterprise Manager as well as CWM2 metadata.

When running the validation procedures, you can choose to generate a summary or
detailed report of the validation process. See "Directing Output" on page 2-13 for
information about viewing output on the screen or writing output to a file.

Example 2—4 shows the statements that validate the PRODUCT dimension in XADEMO
and generate a detailed validation report. The report is displayed on the screen and
written to a log file.

Example 2-4 Generate a Validation Report for the PRODUCT Dimension

set echo on
set linesize 135
set pagesize 50

set serveroutput on size 1000000

execute
execute

execute

execute
execute

cwm2_olap manager.set echo on;

cwm2_olap manager.begin log('/users/myxademo/myscripts’

'x.log") ;

cwm2_olap validate.validate dimension
('xademo', 'product', 'default', 'yes');

cwm2_olap manager.end log;

cwm2_olap_manager.set_echo_off;

The validation report would look like this.

Validate Dimension: XADEMO.PRODUCT

Validating Dimension in OLAP Catalog 1

Type of Validation: DEFAULT

Verbose Report: YES

ENTITY TYPE ENTITY NAME STATUS COMMENT
Dimension . VALID
Dimension XADEMO. PRODUCT VALID
LevelAttribute PROD_STD_TOP LLABEL VALID DimensionAttribute "Long Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD_TOP_LLABEL"
LevelAttribute PROD_STD_TOP_SLABEL VALID DimensionAttribute "Short Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD TOP_SLABEL"
Hierarchy STANDARD VALID
Level L4 VALID Hierarchy depth 1 (Lowest Level)
LevelMap VALID Mapped to Column "XADEMO.XADEMO_ PRODUCT
.PROD_STD PRODUCT"
LevelAttribute PROD_COLOR VALID DimensionAttribute "Color"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO_ PRODUCT
.PROD_COLOR"
LevelAttribute PROD_SIZE VALID DimensionAttribute "Size"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO_
PRODUCT.PROD_SIZE"
LevelAttribute PROD_STD_PRODUCT LLABEL VALID DimensionAttribute "Long Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO_ PRODUCT
.PROD_STD PRODUCT_LLABEL"
LevelAttribute PROD_STD_PRODUCT SLABEL VALID DimensionAttribute "Short Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO_ PRODUCT
.PROD_STD PRODUCT_SLABEL"
Level L3 VALID Hierarchy depth 2
LevelMap VALID Mapped to Column "XADEMO.XADEMO_ PRODUCT
.PROD_STD GROUP"
LevelAttribute PROD_STD_GROUP_LLABEL VALID DimensionAttribute "Long Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO_ PRODUCT

Creating OLAP Catalog Metadata with CWM2 2-11

.PROD_STD GROUP_LLABEL"

Invoking the Procedures

LevelAttribute PROD_STD_GROUP_SLABEL VALID DimensionAttribute "Short Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD GROUP_SLABEL"
Level L2 VALID Hierarchy depth 3
LevelMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD DIVISION"
LevelAttribute PROD_STD DIVISION LLABEL VALID DimensionAttribute "Long Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD DIVISION LLABEL"
LevelAttribute PROD_STD_DIVISION SLABEL VALID DimensionAttribute "Short Description"
LevelAttributeMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD DIVISION SLABEL"
Level Ll VALID Hierarchy depth 4 (Top Level)
LevelMap VALID Mapped to Column "XADEMO.XADEMO PRODUCT
.PROD_STD_TOP"
Note: When a metadata entity is invalid, the Comment column of the

validation report indicates whether the problem originates with this
entity or with a different entity on which it depends. For example, if a
level is invalid, its dependent level attributes will also be invalid.

Viewing Validity Status

You can check the validity status of cubes and dimensions by selecting the INVALID
column of the ALL._ OLAP2 CUBES and ALL_OLAP2 DIMENSIONS views. One of the
following values is displayed:

Y -- The cube or dimension is invalid.
N -- The cube or dimension has met basic validation criteria.

0 -- The cube has met basic validation criteria and additional criteria specific to the
OLAP APIL

For more information, see "ALL_OLAP2_CUBES" on page 5-4 and "ALL_OLAP2_
DIMENSIONS" on page 5-6.

Refreshing Metadata Tables for the OLAP API

If your metadata will be used by the OLAP API to access relational data, use the
CWM2_ OLAP_ METADATA REFRESH package to refresh the OLAP API Metadata Reader
tables.

Views built on these tables present a read API to the OLAP Catalog that is optimized
for queries by the OLAP API Metadata Reader. The Metadata Reader views have
public synonyms with the prefix MRV_OLAP2. For more information, see Chapter 19.

Note: If you use Enterprise Manager to create OLAP Catalog
metadata, you must run the refresh procedure separately, after the
metadata has been created.

Invoking the Procedures

When using the OLAP Catalog write APIs, you should be aware of logic and
conventions that are common to all the CWM2 procedures.

2-12 Oracle OLAP Reference

Directing Output

Security Checks and Error Conditions

Each cwM2 procedure first checks the calling user's security privileges. The calling user
must have the OLAP_DBA role. Generally, the calling user must be the entity owner. If
the calling user does not meet the security requirements, the procedure fails with an
exception. For example, if your identity is jsmith, you cannot successfully execute
CWM2_OLAP_HIERARCHY.DROP_HIERARCHY for a hierarchy owned by jjones.

After verifying the security requirements, each procedure checks for the existence of
the entity and of its parent entities. All procedures, except CREATE procedures, return
an error if the entity does not already exist. For example, if you call CWM2_OLAP
LEVEL.SET DESCRIPTION, and the level does not already exist, the procedure will
fail.

Size Requirements for Parameters

CWM2 metadata entities are created with descriptions and display names. For example,
the CREATE_CUBE procedure in the CWM2_OLAP_CUBE package requires the following

parameters:

CREATE CUBE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
display name IN VARCHAR2,
short description IN VARCHAR2,
description IN VARCHAR2) ;

Entity names and descriptions have size limitations based on the width of the columns
where they are stored in the OLAP Catalog model tables. The size limitations are listed
in Table 2-2.

Table 2-2 Size Limitations of CWM2 Metadata Entities

Metadata Entity Maximum Size
entity owner 30 characters
entity name 30 characters
display name 30 characters
short description 240 characters
description 2000 characters

Case Requirements for Parameters

You can specify arguments to CWM2 procedures in lower case, upper case, or mixed
case.

If the argument is a metadata entity name (for example, dimension name) or a value
that will be used in further processing by other procedures (for example, the solved
code of a hierarchy), the procedure converts the argument to upper case. For all other
arguments, the case that you specify is retained.

Directing Output

The CWM2_ OLAP_MANAGER package, described in Chapter 17, provides procedures
that direct the output of OLAP stored procedures to the screen or to a file. You can use
these procedures to help you develop and debug your scripts for working with OLAP
Catalog metadata and analytic workspaces.

Creating OLAP Catalog Metadata with CWM2 2-13

Viewing OLAP Catalog Metadata

Before calling any of the CWM2_OLAP_MANAGER procedures, you must set the
serveroutput option in SQL*Plus. This causes SQL*Plus to display the contents of
the SQL buffer. For more information, see SQL*Plus User’s Guide and Reference.

>set serveroutput on
The default and minimum size of the SQL buffer is 2K. You can extend the size up to a

maximum of IMG. In general, you should set serveroutput to its maximum size to
prevent buffer overflow conditions.

SQL>set serveroutput on size 1000000

To echo the output and messages from OLAP procedures to the SQL buffer, use the
following statement.

>exec cwm2_olap manager.set_ echo_on;

By default, echoing is turned off. Once you have set echoing on, you can turn it off
with the following statement.

>exec cwm2_olap manager.set_echo off;

To accommodate larger amounts of output, you should direct output to a file. Use the
following statement.

SQL>exec cwm2_olap manager.begin log('directory path','filename');

For directory pathyou can specify either a directory object to which your user ID

has been granted the appropriate access (in upper-case), or a directory path set by the
UTL_FILE DIR initialization parameter for the instance.

To flush the contents of the buffer and turn off logging, use the following statement.

SQL>exec cwm2_olap manager.end log;

Viewing OLAP Catalog Metadata

A set of views, identified by the ALL._OLAP2 prefix, presents the metadata in the
OLAP Catalog. The metadata may have been created with the cwM2 PL/SQL

packages, with Enterprise Manager, or with Warehouse Builder. The ALL. OLAP2
views are automatically populated whenever changes are made to the metadata.

A second set of views, identified by the MRV_OLAP prefix, also presents OLAP Catalog
metadata. These views are used by the OLAP API to access data stored in relational
tables, typically star schemas. These views are structured specifically to support fast
querying by the OLAP API Metadata Reader. They must be explicitly refreshed
whenever changes are made to the metadata.

See Also:

s Chapter 5, "OLAP Catalog Metadata Views" for more information
on the ALL. OLAP2 views.

s Chapter 19, "CWM2_OLAP_METADATA_REFRESH" for more
information on refreshing metadata tables for the OLAP APL

2-14 Oracle OLAP Reference

3

Active Catalog Views

This chapter describes the relational views of standard form metadata in analytic
workspaces. Within the workspace, standard form objects are automatically created
and populated by OLAP APIs, such as the DBMS_AWM package and the OLAP Analytic
Workspace Java APL

See Also:

» Chapter 1, "Creating Analytic Workspaces with DBMS_AWM"

» Oracle OLAP Analytic Workspace Java API Reference

This chapter discusses the following topics:

s Understanding the Active Catalog

= Active Catalog Metadata Cache

= Example: Query an Analytic Workspace Cube

= Summary of Active Catalog Views

Understanding the Active Catalog

OLAP processing depends on a data model composed of cubes, measures, dimensions,
hierarchies, levels, and attributes. OLAP Catalog metadata defines this logical model
for relational sources. Standard form metadata defines the logical model within
analytic workspaces.

The DBMS_AWM procedures and the OLAP Analytic Workspace Java API create and
maintain standard form metadata when creating and refreshing dimensions and cubes
in analytic workspaces.

Whereas OLAP Catalog metadata must be explicitly created by a DBA, standard form
metadata is actively generated as part of workspace management. Views of this
metadata are commonly referred to as the Active Catalog, because they are populated
with information that is automatically generated within analytic workspaces.

Active Catalog views use the OLAP_TABLE function to return information about
logical objects in analytic workspaces. See Chapter 34 for more information on OLAP_
TABLE.

Standard Form Classes

Each standard form workspace object belongs to one of four classes:

= Implementation class. Objects in this class implement the logical model.

Active Catalog Views 3-1

Active Catalog Metadata Cache

= Catalogs class. Objects in this class hold information about the logical model.

n Features class. Objects in this class hold information about specific objects in the
logical model.

= Extensions class. Objects in this class are proprietary.

Active Catalog and Standard Form Classes

The primary source of information for the Active Catalog views is objects in the
Catalogs class. This includes a list of all the cubes, measures, dimensions, levels, and
attributes in analytic workspaces.

Active Catalog views also provide information that associates logical objects from the
Catalogs class with their source objects in the OLAP Catalog and with their containers
in the Implementation class.

Finally, two Active Catalog views provide all the standard form objects and all the
properties of those objects.

Note: Active Catalog views provide information about standard
form objects in all analytic workspaces accessible to the current user.

See Also:

» Oracle OLAP Application Developer’s Guide for information about
standard form analytic workspaces

» Oracle OLAP DML Reference for information about the OLAP DML
and the native objects within analytic workspaces

Active Catalog Metadata Cache

The Active Catalog views present information stored within analytic workspaces. This
information is also stored for fast access in a separate set of cache tables in the
Database.

The Active Catalog views are named with the ALL._OLAP2_ AW prefix. The views of the
cache tables, which have the same column structure, are named with the MRV_OLAP2
AW prefix.

Applications that require fast access to the Active Catalog should query the cached
metadata in the MRV_OLAP2 AW views. You should continue to use CWM2_ OLAP_AC
REFRESH to ensure that all the MRV_OLAP2 AW views are synchronized with the ALL_
OLAP2 AW views.

The metadata cache is not automatically refreshed when changes are made to the
Active Catalog. To refresh the cache, use the CWM2_ OLAP_METADATA REFRESH
package, as described in Chapter 19.

The OLAP API queries the Active Catalog cache to obtain the logical model stored in
an analytic workspace. You must refresh the cache for OLAP applications that use
analytic workspaces.

In the current version of the Active Catalog, the performance of some of the views has
been enhanced. These views no longer use the caching mechanism, and the MRV_
OLAP2_AW views are simply copies of the ALL._OLAP2_AW views. However, if you are
using an earlier version of standard form, caching is used for all the Active Catalog
V1ews.

3-2 Oracle OLAP Reference

Example: Query an Analytic Workspace Cube

See Also: "Views of Cached Active Catalog Metadata" on page 19-2.

Example: Query an Analytic Workspace Cube

Example 3-1 uses the XADEMO cube ANALYTIC CUBE to illustrate two Active Catalog
views.

Example 3—1 Query the Active Catalog for Information about a Workspace Cube

The following statements create the dimensions in the analytic workspace
XADEMO.MY AW.

execute dbms_awm.create awdimension
('XADEMO', 'CHANNEL', 'XADEMO', 'MY AW', 'AW CHAN');

execute dbms_awm.create awdimension

('XADEMO', 'PRODUCT', 'XADEMO', 'MY AW', 'AW PROD');
execute dbms_awm.create_awdimension

('XADEMO', 'GEOGRAPHY', 'XADEMO', 'MY AW', 'AW GEOG');
execute dbms_awm.create awdimension

('XADEMO', 'TIME', 'XADEMO', 'MY AW', 'AW TIME');

You can view the logical dimensions in the analytic workspace with the following
query.
SQL>select * from ALL_OLAP2_AW_DIMENSIONS;

AW _OWNER AW NAME AW LOGICAL NAME AW PHYSICAL OBJECT SOURCE OWNER SOURCE NAME

XADEMO MY AW AW _CHAN AW_CHAN XADEMO CHANNEL
XADEMO MY AW AW_PROD AW_PROD XADEMO PRODUCT
XADEMO MY_AW AW_GEOG AW_GEOG XADEMO GEOGRAPHY
XADEMO MY AW AW_TIME AW_TIME XADEMO TIME

The following statement creates the cube.
execute dbms_awm.create awcube

('XADEMO', 'ANALYTIC CUBE','XADEMO', 'MY AW', 'MY ANALYTIC CUBE');
You can view the logical cube in the analytic workspace with the following query.

SQL>select * from ALL OLAP2 AW CUBES;

AW _OWNER AW NAME AW LOGICAL NAME AW PHYSICAL OBJECT SOURCE OWNER SOURCE NAME

XADEMO MY AW MY ANALYTIC CUBE MY ANALYTIC CUBE XADEMO ANALYTIC_CUBE
The following query returns the analytic workspace cube with its associated
dimensions.

SQL>select * from ALL OLAP2 AW CUBE DIM USES;

AW _OWNER AW NAME AW LOGICAL NAME DIMENSION DIMENSION DIMENSION DIMENSION
AW _OWNER AW NAME SOURCE_OWNER SOURCE NAME

XADEMO MY AW MY ANALYTIC CUBE XADEMO AW_CHAN XADEMO CHANNEL
XADEMO MY AW MY ANALYTIC CUBE XADEMO AW_GEOG XADEMO GEOGRAPHY
XADEMO MY AW MY ANALYTIC_CUBE XADEMO AW_PROD XADEMO PRODUCT
XADEMO MY AW MY ANALYTIC CUBE XADEMO AW _TIME XADEMO TIME

Active Catalog Views 3-3

Summary of Active Catalog Views

Summary of Active Catalog Views

The analytic workspace Active Catalog views are summarized in the following table.

Table 3—-1 Active Catalog Views

PUBLIC Synonym

Description

ALL_OLAP2_AWS
ALL_OLAP2_AW_ATTRIBUTES
ALL_OLAP2_AW_CUBES
ALL_OLAP2_AW_CUBE_AGG_LVL
ALL_OLAP2_AW_CUBE_AGG_MEAS
ALL_OLAP2_AW_CUBE_AGG_OP

ALL_OLAP2_AW_CUBE_AGG_SPECS
ALL_OLAP2_AW_CUBE_DIM_USES
ALL_OLAP2_AW_CUBE_MEASURES
ALL_OLAP2_AW_DIMENSIONS

ALL_OLAP2_AW_DIM_HIER_LVL_ORD

ALL_OLAP2_AW_DIM_LEVELS
ALL_OLAP2_AW_PHYS_OBJ
ALL_OLAP2_AW_PHYS_OBJ_PROP

List of analytic workspaces.

List of dimension attributes in analytic workspaces.

List of cubes in analytic workspaces.

List of levels in aggregation plans in analytic workspaces.
List of measures in aggregation plans in analytic workspaces.

List of aggregation operators in aggregation plans in analytic
workspaces.

List of aggregation plans in analytic workspaces.

List of cubes with their associated dimensions in analytic workspaces.
List of cubes with their associated measures in analytic workspaces.
List of dimensions in analytic workspaces.

List of hierarchical levels in analytic workspaces.

List of levels in analytic workspaces.

List of standard form objects in analytic workspaces.

List of properties associated with standard form objects in analytic
workspaces.

ALL_OLAP2_AWS

ALL_OLAP2_AWS provides a list of all the analytic workspaces accessible to the current
user. This includes both standard form and non-standard analytic workspaces.

Column Datatype NULL Description

OWNER VARCHAR2 (30) Owner of the analytic workspace.

AW VARCHAR2 (30) Name of the analytic workspace.
AW_NUMBER NUMBER Unique identifier for the analytic workspace.

AW_VERSION

SF_VERSION

VARCHAR?2 (4)

CHAR (8)

The version of the Database in which the analytic workspace was
created. If the version is 10.1 or higher, the workspace is in 10g storage
format. Earlier versions are in 9i format. To upgrade to 10g storage
format, use the DBMS_AW.CONVERT procedure, as described in
"Converting an Analytic Workspace to Oracle 10g Storage Format" on
page 24-2.

The version of the Database in which the standard form metadata was
created. To upgrade to 10.1.0.3.1 standard form, use the DBMS _
AWM.CREATE_DYNAMIC AW _ACCESS procedure, as described in
"CREATE_DYNAMIC_AW_ACCESS Procedure" on page 26-28.

ALL_OLAP2_AW_ATTRIBUTES

ALL_OLAP2_ AW_ATTRIBUTES lists the attributes in standard form analytic

workspaces.

3-4 Oracle OLAP Reference

ALL_OLAP2_AW_CUBE_AGG_LVL

The ALL_OLAP2_AW_ATTRIBUTES view uses the direct analytic workspace metadata
access process to rapidly return information about standard form metadata. It does not
use a caching mechanism and is unaffected by CWM2_OLAP_METADATA REFRESH. See
Chapter 19 for more information.

Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW_NAME VARCHAR2 (30) Name of the analytic workspace.

AW _DIMENSION_ NAME

AW LOGICAL NAME

AW_PHYSICAL OBJECT

DISPLAY NAME
DESCRIPTION

ATTRIBUTE_TYPE

SOURCE_OWNER

SOURCE_DIMENSION NAME

SOURCE_NAME

VARCHAR2 (1000)

VARCHAR2 (90)

VARCHAR2 (1000)

VARCHAR2 (1000)
VARCHAR2 (1000)

VARCHAR2 (1000)

VARCHAR2 (1000)

VARCHAR2 (4000)

VARCHAR2 (1000)

Name of the dimension in the analytic workspace.

Logical name for the attribute in the analytic
workspace.

Standard form name for the attribute in the
analytic workspace.

Display name for the attribute.
Description of the attribute.

Type of attribute. See Table 121, " Reserved
Dimension Attributes".

Owner of the source attribute in the OLAP Catalog.

Name of the source dimension in the OLAP
Catalog.

Name of the source attribute in the OLAP Catalog.

ALL_OLAP2_AW_CUBES

ALL OLAP2 AW _CUBES lists the cubes in standard form analytic workspaces.

The ALL._OLAP2 AW_CUBES view uses the direct analytic workspace metadata access
process to rapidly return information about standard form metadata. It does not use a
caching mechanism and is unaffected by CWM2 OLAP METADATA REFRESH. See

Chapter 19 for more information.

Column Datatype NULL Description
AW _OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW NAME VARCHAR2 (30) Name of the analytic workspace.

AW _LOGICAL NAME

AW _PHYSICAL_ OBJECT

SOURCE_OWNER

SOURCE_NAME

VARCHAR2 (90)

VARCHAR2 (1000)

VARCHAR2 (1000)

VARCHAR2 (1000)

Logical name for the cube in the analytic
workspace.

Standard form name for the cube in the analytic
workspace.

Owner of the source cube in the OLAP Catalog.
Name of the source cube in the OLAP Catalog.

ALL_OLAP2_AW_CUBE_AGG_LVL

ALL OLAP2 AW CUBE_AGG_LVL lists the levels in aggregation specifications in
standard form analytic workspaces.

Active Catalog Views 3-5

ALL_OLAP2_AW_CUBE_AGG_MEAS

Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW NAME VARCHAR2 (30) Name of the analytic workspace.

AW_CUBE_NAME VARCHAR2 (90) Name of a cube in the analytic workspace.

AW _AGGSPEC NAME VARCHAR2 (1000) Name of an aggregation specification for the cube.

AW _DIMENSION NAME VARCHAR2 (1000) Name of a workspace dimension of the cube.

AW _LEVEL_ NAME VARCHAR2 (1000) Name of a workspace level of the dimension. This

level is in the aggregation specification.

ALL_OLAP2_AW_CUBE_AGG_MEAS

ALL_OLAP2_AW_CUBE_AGG_MEAS lists the measures in aggregation specifications in
standard form analytic workspaces.

Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW_NAME VARCHAR2 (30) Name of the analytic workspace.

AW_CUBE_NAME VARCHAR2 (90) Name of a cube in the analytic workspace.

AW AGGSPEC NAME VARCHAR2 (1000) Name of an aggregation specification for the cube.

AW MEASURE NAME VARCHAR2 (1000) Name of a workspace measure of the cube. This

measure is in the aggregation specification

ALL_OLAP2_AW_CUBE_AGG_OP

ALL_OLAP2_ AW_CUBE_AGG_OP lists the aggregation operators in aggregation
specifications in standard form analytic workspaces.

Column Datatype NULL Description
AW _OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW _NAME VARCHAR2 (30) Name of the analytic workspace.

AW _CUBE_NAME VARCHAR2 (90) Name of a cube in the analytic workspace.

VARCHAR2

AW_MEASURE NAME

AW_AGGSPEC_NAME

AW _DIMENSION_ NAME

OPERATOR

VARCHAR2 (1000)
VARCHAR2 (1000)

VARCHAR2 (1000)

Name of a workspace measure to aggregate.
Name of an aggregation specification for the cube.
Name of a workspace dimension of the cube.

Operator for aggregation along this dimension. See
Table 1-10, " Aggregation Operators" for a list of valid
operators.

ALL_OLAP2_AW_CUBE_AGG_SPECS

ALL_OLAP2_ AW_CUBE_AGG_SPECS lists the aggregation specifications in standard

form analytic workspaces.

Column

Datatype

NULL

Description

AW_OWNER

VARCHAR2 (30)

3-6 Oracle OLAP Reference

Owner of the analytic workspace.

ALL_OLAP2_AW_CUBE_MEASURES

Column Datatype NULL Description

AW_NAME VARCHAR2 (30) Name of the analytic workspace.
AW_CUBE_NAME VARCHAR2 (90) Name of the cube in the analytic workspace.
AW_AGGSPEC_NAME VARCHAR2 (1000) Name of an aggregation plan for the cube.

ALL_OLAP2_AW_CUBE_DIM_USES

ALL OLAP2 AW CUBE DIM USES lists the dimensions of cubes in standard form
analytic workspaces.

Column Datatype NULL Description

AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.

AW_NAME VARCHAR2 (30) Name of the analytic workspace.

AW_LOGICAL_ NAME VARCHAR2 (90) Name of a cube in the analytic workspace.

DIMENSION_AW_OWNER VARCHAR2 (1000) Owner of a workspace dimension of the cube.

DIMENSION AW NAME VARCHAR2 (1000) Name of a workspace dimension of the cube.

DIMENSION SOURCE_ OWNER VARCHAR2 (1000) Owner of the source dimension in the OLAP
Catalog

DIMENSION_ SOURCE_NAME VARCHAR2 (1000) Name of the source dimension in the OLAP
Catalog.

ALL_OLAP2_AW_CUBE_MEASURES

ALL OLAP2 AW CUBE MEASURES lists the measures of cubes in standard form
analytic workspaces.

The ALL._ OLAP2 AW CUBE_MEASURES view uses the direct analytic workspace
metadata access process to rapidly return information about standard form metadata.
It does not use a caching mechanism and is unaffected by CWM2 OLAP METADATA
REFRESH. See Chapter 19 for more information.

Column Datatype NULL Description

AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.

AW_NAME VARCHAR2 (30) Name of the analytic workspace.

AW_CUBE_NAME VARCHAR2 (90) Name of a cube in the analytic workspace.

AW MEASURE NAME VARCHAR2 (1000) Logical name of a measure of the cube.

AW_PHYSICAL OBJECT VARCHAR2 (4000) Standard form name of the measure.

MEASURE _SOURCE_NAME VARCHAR2 (1000) Name of the source measure in the OLAP Catalog.

DISPLAY NAME VARCHAR2 (1000) Display name for the measure in the analytic
workspace.

DESCRIPTION VARCHAR2 (1000) Description of the measure in the analytic workspace.

IS_AGGREGATEABLE VARCHAR2 (1000) Whether or not this measure can be aggregated with

the OLAP DML AGGREGATE command. The value is
YES if the measure is implemented as an OLAP
variable or if its underlying storage is a variable. For
example, the measure could be implemented as a
formula whose value is stored in a variable.

Active Catalog Views 3-7

ALL_OLAP2_AW_DIMENSIONS

ALL_OLAP2_AW_DIMENSIONS

ALL OLAP2 AW DIMENSIONS lists the dimensions in standard form analytic
workspaces.

The ALL._OLAP2 AW DIMENSIONS view uses the direct analytic workspace metadata
access process to rapidly return information about standard form metadata. It does not
use a caching mechanism and is unaffected by CWM2_ OLAP METADATA REFRESH. See

Chapter 19 for more information.

Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW NAME VARCHAR2 (30) Name of the analytic workspace.

AW _LOGICAL NAME

AW _PHYSICAL
OBJECT

SOURCE_OWNER

SOURCE_NAME

VARCHAR2 (90)

VARCHAR2 (1000)

VARCHAR2 (1000)

VARCHAR2 (1000)

Logical name of the dimension in the analytic workspace.

Standard form name of the dimension in the analytic
workspace.

Owner of the source dimension in the OLAP Catalog.

Name of the source dimension in the OLAP Catalog.

ALL_OLAP2_AW_DIM_HIER_LVL_ORD

ALL OLAP2 AW DIM HIER LVL_ORD lists the levels in hierarchies in standard form
analytic workspaces. It includes the position of each level within the hierarchy.

Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW_NAME VARCHAR2 (30) Name of the analytic workspace.

AW _DIMENSION NAME

AW _HIERARCHY NAME

IS DEFAULT_HIER
AW _LEVEL_NAME

POSITION

VARCHAR2 (90)

VARCHAR2 (1000)
VARCHAR2 (1000)
VARCHAR2 (1000)

NUMBER

Name of a dimension in the analytic workspace.
Name of a hierarchy of the workspace dimension.
Whether or not this hierarchy is the default hierarchy
Name of a level of the workspace hierarchy.

The position of the level in the hierarchy

ALL_OLAP2_AW_DIM_LEVELS

ALL_OLAP2_ AW_DIM_ LEVELS lists the levels of dimensions in standard form analytic

workspaces.
Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW _NAME VARCHAR2 (30) Name of the analytic workspace.

AW_LOGICAL NAME
LEVEL_NAME
DISPLAY NAME

DESCRIPTION

VARCHAR2 (90)
VARCHAR2 (1000)
VARCHAR2 (1000)

VARCHAR2 (1000)

Name of a dimension in the analytic workspace.
Name of a workspace level of the dimension.
Display name of the level.

Description of the level.

3-8 Oracle OLAP Reference

ALL_OLAP2_AW_PHYS_OBJ_PROP

ALL_OLAP2_AW_PHYS_OBJ

ALL OLAP2 AW PHYS OBJ lists the standard form objects in analytic workspaces.

Column Datatype NULL Description
AW _OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW NAME VARCHAR2 (30) Name of the analytic workspace.

AW _OBJECT NAME

AW _OBJECT TYPE

VARCHAR2 (90)

VARCHAR?2 (4000)

Name of the standard form object in the analytic
workspace.

Type of the standard form object. The type may be any

of the native object types that can be defined with the
OLAP DML, including: dimensions, relations,
variables, formulas, composites, and valuesets.

AW_OBJECT_DATATYPE VARCHAR2 (4000) Data type of the standard form object. The data type
may be any of the native types supported by the OLAP
DML, including text, boolean, or integer, or it may be a

defined type specific to standard form.

ALL_OLAP2_AW_PHYS_OBJ_PROP

ALL OLAP2 AW PHYS OBJ_ PROP lists the standard form objects with their

properties.
Column Datatype NULL Description
AW_OWNER VARCHAR2 (30) Owner of the analytic workspace.
AW_NAME VARCHAR2 (30) Name of the analytic workspace.

AW_OBJECT NAME VARCHAR2 (90) Name of the standard form object in the analytic workspace.

AW_PROP_NAME VARCHAR2 (1000) Name of a property of the standard form object.

AW_PROP_VALUE VARCHAR2 (1000) Value of the property.

Active Catalog Views 3-9

ALL_OLAP2_AW_PHYS_OBJ_PROP

3-10 Oracle OLAP Reference

4

Analytic Workspace Maintenance Views

This chapter describes the views you can query to obtain information about
maintaining standard form analytic workspaces with the DBMS_AWM package.
See Also:
» Chapter 1, "Creating Analytic Workspaces with DBMS_AWM"
s Chapter 26, "DBMS_AWM"

This chapter discusses the following topics:
s Building and Maintaining Analytic Workspaces
» Example: Query Load and Enablement Parameters for Workspace Dimensions

= Summary of Analytic Workspace Maintenance Views

Building and Maintaining Analytic Workspaces

The DBMS_ AWM package manages the life cycle of standard form analytic workspaces.
This includes the creation of workspace cubes from relational sources, data loads, and
the enablement of workspace cubes for relational access.

The DBMS_AWM package stores information about workspace builds in the OLAP
Catalog. You can query the Analytic Workspace Maintenance views to obtain this
information. For example, you could obtain a list of workspace cubes with their
relational sources, a list of load specifications, or a list of composite specifications.

The DBMS_AWM package stores information about workspace enablement within the
analytic workspace itself. The Analytic Workspace Maintenance views use OLAP_
TABLE functions to return information about the enablement of workspace cubes. You
can query these views to obtain the names of enablement views and hierarchy
combinations.

Example: Query Load and Enablement Parameters for Workspace
Dimensions

The following example uses the XADEMO dimensions CHANNEL and TIME to illustrate
several Analytic Workspace Maintenance views.

Example 4-1 Query Load Parameters and Enablement View Names for CHANNEL and
TIME

The following statements create the dimensions AW _CHAN and AW_TIME in the analytic
workspace MY SCHEMA.MY AW.

Analytic Workspace Maintenance Views 4-1

Summary of Analytic Workspace Maintenance Views

execute dbms_awm.create awdimension
('XADEMO', 'CHANNEL', '"MY SCHEMA', 'MY AW', 'AW CHAN');
execute dbms_awm.create awdimension
('XADEMO', 'TIME', 'MY_SCHEMA', 'MY AW', 'AW TIME');

The following statements create the load specifications for the dimensions.

execute dbms_awm.create awdimload spec
('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'FULL LOAD');

execute dbms_awm.add awdimload spec filter
('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'XADEMO', 'XADEMO CHANNEL',
'''CHAN STD CHANNEL'' = ''DIRECT''');

execute dbms_awm.create awdimload spec
('TIME DIMLOADSPEC', 'XADEMO', 'TIME', 'FULL LOAD');

execute dbms_awm.add awdimload spec_filter
('TIME DIMLOADSPEC', 'XADEMO', 'TIME', 'XADEMO', 'XADEMO TIME',
"'"'TIME STD YEAR'' = ''1997''');

The following query returns the filter conditions associated with the dimension load
specifications.

SQL>select * from all aw load dim filters;

OWNER DIMENSION NAME LOAD NAME TABLE OWNER TABLE NAME FILTER_CONDITION
XADEMO TIME TIME DIMLOADSPEC XADEMO XADEMO TIME 'TIME_STD YEAR' = '1997'
XADEMO CHANNEL CHAN DIMLOADSPEC XADEMO XADEMO CHANNEL 'CHAN STD CHANNEL' = 'DIRECT'

AW OWNER AW NAME

MY SCHEMA MY AW
MY SCHEMA MY AW
MY SCHEMA MY AW

The following statements load the dimensions in the analytic workspace. The
system-generated names that will be used for the enablement views are created in the
workspace as part of the load process.

execute dbms_awm.refresh awdimension

('MY_SCHEMA', 'MY AW', 'AWCHAN', 'CHAN DIMLOADSPEC');
execute dbms_awm.refresh awdimension

('MY SCHEMA', 'MY AW', 'AWTIME', 'TIME DIMLOADSPEC') ;

The following query returns the system-generated enablement view names for the
dimensions.

SQL>select * from all aw dim enabled views;

DIMENSION NAME HIERARCHY NAME SYSTEM VIEWNAME USER_VIEWNAME
AWCHAN STANDARD MY S MY AW AWCHA STAND35VIEW

AWTIME STANDARD MY S MY AW AWTIM STAND36VIEW

AWTIME YTD MY S MY AW AWTIM YTD37VIEW

Summary of Analytic Workspace Maintenance Views

The analytic workspace maintenance views are summarized in the following table.

Table 4-1 Analytic Workspace Maintenance Views

Public Synonym Description

ALL_AW_CUBE_AGG_LEVELS Describes the levels in aggregation specifications for cubes.
ALL_AW_CUBE_AGG_MEASURES Describes the measures in aggregation specifications for cubes.
ALL_AW_CUBE_AGG_PLANS Describes the aggregation specifications for cubes.

ALL_AW_CUBE_ENABLED_HIERCOMBO Describes the hierarchy combinations associated with cubes.

4-2 Oracle OLAP Reference

ALL_AW_CUBE_AGG_MEASURES

Table 4-1 (Cont.) Analytic Workspace Maintenance Views

Public Synonym

Description

ALL_AW_CUBE_ENABLED_VIEWS

ALL_AW_DIM_ENABLED_VIEWS

ALL_AW_LOAD_CUBES
ALL_AW_LOAD_CUBE_DIMS
ALL_AW_LOAD_CUBE_FILTERS

ALL_AW_LOAD_CUBE_MEASURES
ALL_AW_LOAD_CUBE_PARMS
ALL_AW_LOAD_DIMENSIONS
ALL_AW_LOAD_DIM_FILTERS

ALL_AW_LOAD_DIM_PARMS
ALL_AW_OB]J

ALL_AW_PROP

Describes the fact views that can be generated for workspace
cubes.

Describes the dimension views that can be generated for
workspace dimensions.

Describes the load specifications for cubes.
Describes the composite specifications for cubes.

Describes the filter conditions associated with load specifications
for cubes.

Describes the measures in cube load specifications.
Describes parameters of cube load specifications.
Describes the load specifications for dimensions.

Describes the filter conditions associated with load specifications
for dimensions.

Describes parameters of dimension load specifications.

Lists the objects in all analytic workspaces available to the current
user. The workspaces may have been created by DBMS_AWM or by
another tool, such as the OLAP Analytic Workspace AP

Lists the OLAP DML properties and their values in all analytic
workspaces available to the current user. The workspaces may

have been created by DBMS_AWM or by another tool, such as the
OLAP Analytic Workspace APL.

ALL_AW_CUBE_AGG_LEVELS

ALL AW CUBE_AGG_LEVELS lists the levels in aggregation specifications for cubes.

Aggregation specifications determine how data will be aggregated along the
dimensions of a cube in an analytic workspace. Aggregation specifications are created
by the DBMS_AWM.CREATE_AWCUBEAGG SPEC procedure.

Column Datatype NULL Description

owner varchar2 (240) Owner of the cube.

cube name varchar2 (240) Name of the cube.

aggregation name varchar2 (60) Name of the aggregation spec.

dimension owner varchar2 (30) Owner of the dimension to aggregate.

dimension_ name varchar2 (240) Name of the dimension to aggregate.

level name archar2 (240) Name of the level of aggregation for this dimension.

ALL_AW_CUBE_AGG_MEASURES

ALL_AW_CUBE_AGG_MEASURES lists the measures in aggregation specifications for

cubes.

Aggregation specifications determine how the measures will be aggregated along the
dimensions of a cube in an analytic workspace. Aggregation specifications are created
by the DBMS_AWM.CREATE AWCUBEAGG SPEC procedure.

Analytic Workspace Maintenance Views 4-3

ALL_AW_CUBE_AGG_PLANS

Column Datatype NULL Description

cube_owner varchar2 (240) Owner of the cube.

cube name varchar2 (240) Name of the cube.

aggregation name varchar2 (60) Name of the aggregation spec.
measure name varchar2 (240) Name of the measure to aggregate.

ALL_AW_CUBE_AGG_PLANS

ALL AW _CUBE_AGG_PLANS lists the aggregation specifications for cubes.

Aggregation specifications determine how data will be aggregated along the
dimensions of a cube in an analytic workspace. Aggregation specifications are created
by the DBMS_AWM.CREATE_AWCUBEAGG SPEC procedure.

Column Datatype NULL Description

owner varchar2 (240) Owner of the cube.

cube name varchar2 (240) Name of the cube.
aggregation name varchar2 (60) Name of the aggregation spec.

ALL_AW_CUBE_ENABLED_HIERCOMBO

ALL AW CUBE_ ENABLED HIERCOMBO lists the hierarchy combinations associated
with cubes in analytic workspaces.

Each hierarchy combination is identified by a unique number. The OLAP API Enabler
creates a separate fact view for each hierarchy combination.

The information in this view is available for all standard form cubes that have been
refreshed. See the DBMS AWM .REFRESH AWCUBE procedure and the DBMS
AWM.CREATE_AWCUBE_ACCESS procedure.

Column Datatype NULL Description

aw_owner varchar2 (30) Owner of the analytic workspace.

aw_name varchar2 (30) Name of the analytic workspace.

cube name varchar2 (4000) Name of the cube in the analytic workspace.
hiercombo num number Unique number that identifies the hierarchy combination.
hiercombo_str varchar2(4000) List of hierarchies that define the dimensionality of a fact

view of the enabled cube.

ALL_AW_CUBE_ENABLED_VIEWS

ALL_AW_CUBE_ENABLED_VIEWS describes the fact views that can be generated for
cubes in analytic workspaces.

Descriptions of the views are created when the cube is refreshed. The view is not
instantiated until the DBMS AWM.CREATE AWCUBE ACCESS has executed and the
resulting script has been run.

ALL_AW_CUBE_ENABLED_VIEWS shows the descriptions of the views. The views
themselves do not necessarily exist.

4-4 Oracle OLAP Reference

ALL_AW_LOAD_CUBES

Metadata about fact views is generated by the DBMS_AWM.REFRESH_AWCUBE
procedure. Scripts to create views of workspace cubes are created by the DBMS_
AWM.CREATE_AWCUBE_ACCESS procedure.

Column Datatype NULL Description
aw_owner varchar2 (30) Owner of the analytic workspace.
aw_name varchar2 (30) Name of the analytic workspace.

cube name
hiercombo num

hiercombo_str

system_ viewname

user_viewname

varchar2 (4000) Name of the cube in the analytic workspace.

number Unique number that identifies the hierarchy combination.

varchar2 (4000) List of hierarchies that define the dimensionality of a fact

view of the enabled cube.

varchar2 (4000) Default view name created by the DBMS_AWM.REFRESH

AWCUBE procedure.

varchar2(4000) User-defined view name specified by the DBMS_

AWM. SET_AWCUBE_VIEWNAME procedure.

ALL_AW_DIM_ENABLED_VIEWS

ALL AW _DIM ENABLED VIEWS describes the dimension views that can be generated
for dimensions in analytic workspaces.

Descriptions of the views are created when the dimension is refreshed. The view is not
instantiated until the DBMS AWM.CREATE AWDIMENSION ACCESS has executed and
the resulting script has been run.

ALL_ AW DIM ENABLED VIEWS shows the descriptions of the views. The views
themselves do not necessarily exist.

Metadata about dimension views is generated by the DBMS AWM .REFRESH
AWDIMENSION procedure. Scripts to create views of workspace dimensions are
created by the DBMS_AWM.CREATE_AWDIMENSION ACCESS procedure.

Column

Datatype NULL Description

aw_owner
aw_name
dimension name

hierarchy name

system_ viewname

user_viewname

varchar2 (30) Owner of the analytic workspace.

varchar2 (30) Name of the analytic workspace.

varchar2 (4000) Name of the dimension in the analytic workspace.

varchar2 (4000) Name of the hierarchy in the analytic workspace.

varchar2 (4000) Default view name created by the DBMS_AWM.REFRESH

AWCUBE procedure.

varchar2(4000) User-defined view name specified by the DBMS_AWM. SET

AWDIMENSION VIEWNAME procedure.

ALL_AW_LOAD_CUBES

ALL AW _LOAD_CUBES lists the load specifications for cubes.

Load specifications determine how data will be loaded from the source fact table into
the analytic workspace. Cube load specifications are created by the DBMS
AWM.CREATE AWCUBELOAD SPEC procedure.

Analytic Workspace Maintenance Views 4-5

ALL_AW_LOAD_CUBE_DIMS

Column

Datatype

NULL

Description

cube_owner
cube name
load name

load type

varchar2 (240)
varchar2 (240)
varchar2 (60)

varchar?2 (60)

Owner of the OLAP Catalog source cube.

Name of the OLAP Catalog source cube.

Name of a load specification for the cube.

'"LOAD_DATA' -- Load the data and metadata for an OLAP
Catalog cube into the analytic workspace target cube.

'LOAD_PROGRAM' -- This argument is no longer used.

ALL_AW_LOAD_CUBE_DIMS

ALL AW LOAD CUBE_DIMS describes the composite specifications for cubes.

Composite specifications determines how the cube's dimensions will be optimized in
the analytic workspace. Composite specifications are created by the DBMS_
AWM.CREATE_AWCOMP_SPEC procedure.

Column

Datatype

NULL

Description

cube owner
cube_ name
cubeload name

compspec_name

composite name

segwidth

compspec_position

dimension_owner

dimension name
composite
position

nested level

nested type

nested name

varchar2 (240)
varchar2 (240)
varchar2 (60)

varchar2 (30)

varchar2 (30)

number

number

varchar2 (30)

varchar2 (240)

number

number

varchar2 (10)

varchar2 (30)

Owner of the OLAP Catalog source cube.
Name of the OLAP Catalog source cube.
Name of a load specification for the cube.

Name of a composite specification associated with this
load specification.

Name of a composite that is a member of the
specification. A composite contains sparse dimensions of
the cube.

Segment width for storage of the data dimensioned by
this member of the specification.

Position of the member within the specification.

Owner of an OLAP Catalog source dimension that is a
member of the specification.

Name of the OLAP Catalog source dimension that is a
member of the specification.

Position of the member within a composite member.

The level of nesting of the member of the specification.
For example, a dense dimension would have a nesting
level of 1. A sparse dimension within a composite would
have a nesting level of 2, and a nested composite would
have a nesting level of 3.

Type of member of the specification. Either DIMENSION
or COMPOSITE.

Name of the member of the specification. This may be the
name of a dimension or the name of a composite.

ALL_AW_LOAD_CUBE_FILTERS

ALL AW LOAD CUBE FILTS lists the filter conditions associated with load
specifications for cubes.

4-6 Oracle OLAP Reference

ALL_AW_LOAD_CUBE_PARMS

Filter conditions are SQL WHERE clauses that identify a subset of the data to be loaded
from the fact table to the analytic workspace.

Filter conditions are created by the DBMS_AWM.ADD_AWCUBELOAD_SPEC_FILTER
procedure.

Column

Datatype NULL Description

owner
cube name
load _name
table_owner
table name

filter
condition

varchar2 (240) Owner of the OLAP Catalog source cube.

varchar2 (240) Name of the OLAP Catalog source cube.
varchar2 (60) Name of a load specification for the cube.
varchar2 (30) Owner of the fact table.
varchar2 (30) Name of the fact table.

varchar2 (4000) SQL WHERE clause.

ALL_AW_LOAD_CUBE_MEASURES

ALL_AW_LOAD_CUBE_MEASURES lists the measures in cube load specifications with
their corresponding target measures in standard form analytic workspaces.

Measures are added to cube load specifications by the DBMS_AWM.ADD AWCUBELOAD
SPEC_MEASURE procedure. This procedure enables you to specify a target name and
display name for the measure in the analytic workspace. If you do not call this
procedure, or if you do not specify the target names, the OLAP Catalog names are
used.

Column

Datatype NULL Description

owner
cube name
load name
measure_name

measure_target_
name

measure_target
display name

measure target
description

varchar2 (240)
varchar2 (240)
varchar2 (60)

varchar2 (240)

varchar2 (60)

varchar?2 (60)

varchar2 (4000
)

Owner of the source cube in the OLAP Catalog.
Name of the source cube in the OLAP Catalog.
Name of the load specification for the source cube.
Name of a measure of the source cube.

Name of the measure in the analytic workspace.

Display name of the measure in the analytic workspace.
This may be the display name from the OLAP Catalog, or
it may be user-defined.

Description of the measure in the analytic workspace.
This may be the description from the OLAP Catalog, or it
may be user-defined.

ALL_AW_LOAD_CUBE_PARMS

ALL AW LOAD CUBE_ PARMS lists the parameters in cube load specifications.

Cube load specifications determine how a cube's data will be loaded from the fact
table into the analytic workspace.

Parameters are set for cube load specifications by the DBMS_AWM. SET AWCUBELOAD _
SPEC_PARAMETER procedure.

Analytic Workspace Maintenance Views 4-7

ALL_AW_LOAD_DIMENSIONS

Column Datatype NULL Description

owner varchar2 (240) Owner of the source cube in the OLAP Catalog.
cube_name varchar2 (240) Name of the source cube in the OLAP Catalog.

load name varchar2 (60) Name of the load specification for the source cube.
parm_name varchar2 (16) The name of the parameter. Currently only DISPLAY

NAME' is available. If you do not set this parameter, the
cube display name from the OLAP Catalog is used in the
analytic workspace.

parm value varchar2 (4000) The display name to use for the target cube in the analytic
workspace.

ALL_AW_LOAD_DIMENSIONS

ALL AW LOAD DIMENSIONS lists the load specifications for dimensions.

Dimension load specifications are created by the DBMS_AWM. CREATE_AWDIMLOAD
SPEC procedure.

Column Datatype NULL Description

owner varchar2 (30) Owner of the source dimension in the OLAP Catalog.

dimension name varchar2 (30) Name of the source dimension in the OLAP Catalog.

load_name varchar2 (60) Name of the load specification.

load_type varchar2 (60) 'FULL_LOAD_ ADDITIONS_ONLY'-- Only new dimension
members will be loaded when the dimension is refreshed.
(Default)

'FULL_LOAD' -- When the dimension is refreshed, all
dimension members in the workspace will be deleted, then all
the members of the source dimension will be loaded.

ALL_AW_LOAD_DIM_FILTERS

ALL AW LOAD DIM FILTERS lists the filter conditions associated with load
specifications for dimensions.

Filter conditions are SQL WHERE clauses that identify a subset of the data to be loaded
from the dimension table to the analytic workspace.

Filter conditions are created by the DBMS AWM.ADD AWDIMLOAD SPEC FILTER

procedure.
Column Datatype NULL Description
owner varchar2 (30) Owner of the source dimension in the OLAP Catalog.
dimension_name varchar2 (30) Name of the source dimension in the OLAP Catalog.
load_name varchar2 (60) Name of the dimension load specification.
table owner varchar2 (30) Owner of the dimension table.
table name varchar2 (30) Name of the dimension table.
filter condition varchar2 (4000) SQL WHERE clause.

4-8 Oracle OLAP Reference

ALL_AW_OBJ

ALL_AW_LOAD_DIM_PARMS

ALL AW LOAD DIM_ PARMS lists the parameters in dimension load specifications.

Dimension load specifications determine how dimension members will be loaded
from the dimension table into the analytic workspace.

Parameters are set for dimension load specifications by the DBMS AWM. SET _
AWDIMLOAD SPEC PARAMETER procedure.

Column Datatype NULL Description

owner varchar2 (30) Owner of the source dimension in the OLAP Catalog.
dimension name varchar2(30) Name of the source dimension in the OLAP Catalog.

load name varchar2 (60) Name of the dimension load specification.

parm_name varchar2 (16) 'UNIQUE RDBMS KEY'-- Whether or not the members of this

dimension are unique across all levels in the source tables.

'DISPLAY NAME' -- Display name for the target dimension
in the analytic workspace.

'PLURAL_DISPLAY NAME' -- Plural display name for the
target dimension in the analytic workspace.

parm_value varchar2 (4000) Values of UNIQUE_RDBMS_KEY:
NO-- Dimension member names are not unique across levels
in the RDBMS tables. The corresponding dimension member
names in the analytic workspace include the level name as a
prefix. (Default)
YES -- Dimension member names are unique across levels in
the RDBMS tables. The corresponding dimension member
names in the analytic workspace have the same names as in
the source relational dimension.

Value of DISPLAY NAME is the display name for the target
dimension in the analytic workspace.

Value of PLURAL DISPLAY NAME is the plural display name
for the target dimension in the analytic workspace.

ALL_AW_OBJ

ALL_AW_OBJ lists the current objects in all analytic workspaces that are accessible to
the user. The workspaces may have been created by DBMS_ AWM or by another tool,
such as the OLAP Analytic Workspace APL

Column Datatype NULL Description

OWNER VARCHAR2 (30) NOT NULL User name of the analytic workspace owner

AW_NUMBER NUMBER NOT NULL Unique identifier within the database for the
analytic workspace

AW NAME VARCHAR2 (30) Name of the analytic workspace

OBJ_ID NUMBER (20) Unique identifier for the object within the analytic
workspace

OBJ_NAME VARCHAR2 (256) Name of the object

OBJ_TYPE NUMBER (4) Data type of the object

Analytic Workspace Maintenance Views 4-9

ALL_AW_PROP

Column Datatype NULL Description

PART NAME VARCHAR2 (256) Name of the partition for the object

FULL_PROPERTY
VALUE

ALL_AW_PROP

ALL AW _PROP lists the current OLAP DML properties and their values in all analytic
workspaces that are accessible to the user. The workspaces may have been created by
DBMS_AWM or by another tool, such as the OLAP Analytic Workspace API.

Column Datatype NULL Description

OWNER VARCHAR2 (30) NOT NULL User name of the analytic workspace owner

AW_NUMBER NUMBER NOT NULL Unique identifier within the database for the
analytic workspace

AW_NAME VARCHAR2 (30) Name of the analytic workspace

OBJ ID NUMBER (20) Unique identifier for the object within the
analytic workspace

OBJ_NAME VARCHAR2 (256) Name of the object

PROPERTY NAME
PROPERTY_ TYPE

PROPERTY_ VALUE

FULL_PROPERTY_ VALUE

PROPERTY VALUE_
LENGTH

VARCHAR2 (256)
VARCHAR?2 (4000)
VARCHAR2 (4000)
CLOB

NUMBER

Name of the property

Data type of the property value
Value of the property

Full value of the property
Length of the property value

4-10 Oracle OLAP Reference

O

OLAP Catalog Metadata Views

This chapter describes the OLAP Catalog metadata views. All OLAP Catalog
metadata, whether created with the cwM2 PL/SQL packages, with Enterprise Manager,
or with Warehouse Builder, is presented in these views.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2".

This chapter discusses the following topics:

= Access to OLAP Catalog Views

s OLAP Catalog Metadata Cache

= Views of the Dimensional Model

= Views of Mapping Information

Access to OLAP Catalog Views
The OLAP Catalog read API consists of two sets of corresponding views:

= ALL_views displaying all valid OLAP Catalog metadata accessible to the current
user.

= DBA_ views displaying all OLAP Catalog metadata (both valid and invalid) in the
entire database. DBA _ views are intended only for administrators.

Note: The OLAP Catalog tables are owned by OLAPSYS. To create
OLAP Catalog metadata in these tables, the user must have the OLAP
DBA role.

The columns of the ALL_and DBA_ views are identical. Only the ALL_ views are listed
in this chapter.

OLAP Catalog Metadata Cache

The OLAP Catalog views present information stored in the base tables of the OLAP
Catalog. This information is also stored for fast access in a separate set of cache tables.

The OLAP Catalog views are named with the ALL. OLAP2 or DBA_OLAP2 prefix. The
views of the cache tables, which have the same column structure, are named with the
MRV_OLAP2 prefix.

OLAP Catalog Metadata Views 5-1

Views of the Dimensional Model

Applications that require fast access to OLAP Catalog metadata should query the
cached metadata in the MRV_OLAP2 views.

The metadata cache is not automatically refreshed when changes are made to the base
metadata tables. To refresh the cache, use the CWM2 OLAP METADATA REFRESH

package.

Note: If your data is stored in relational tables (not in analytic
workspaces), you must refresh the OLAP Catalog metadata cache for
applications that use the OLAP APIL

See Also:

s Chapter 19, "CWM2_OLAP_METADATA_REFRESH"
= "Validating and Committing OLAP Catalog Metadata" on

page 2-10

Views of the Dimensional Model

The following views show the basic dimensional model of OLAP Catalog metadata.

For more information on the logical model, see the Oracle OLAP Application Developer's

Guide.

Table 5-1 OLAP Catalog Dimensional Model Views

View Name Synonym

Description

ALL_OLAP2_AGGREGATION_USES

ALL_OLAP2_CATALOGS
ALL_OLAP2_CATALOG_ENTITY_USES
ALL_OLAP2_CUBES
ALL_OLAP2_CUBE_DIM_USES
ALL_OLAP2_CUBE_MEASURES
ALL_OLAP2_CUBE_MEAS_DIM_USES

ALL_OLAP2_DIMENSIONS
ALL_OLAP2_DIM_ATTRIBUTES
ALL_OLAP2_DIM_ATTR_USES

ALL_OLAP2_DIM_HIERARCHIES
ALL_OLAP2_DIM_HIER_LEVEL_USES
ALL_OLAP2_DIM_LEVELS
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES

5-2 Oracle OLAP Reference

Lists the aggregation operators that can be used in relational
cubes based on star or snowflake schemas.

List all measure folders (catalogs) within the Oracle instance.
Lists the measures within each measure folder.

Lists all cubes in an Oracle instance.

Lists the dimensions within each cube.

Lists the measures within each cube.

Shows how each measure is aggregated along each of its
dimensions.

Lists all OLAP dimensions in an Oracle instance.
Lists the dimension attributes within each dimension.

Shows how level attributes are associated with each
dimension attribute.

Lists the hierarchies within each dimension.
Show how levels are ordered within each hierarchy.
Lists the levels within each dimension.

Lists the level attributes within each level.

ALL_OLAP2_AGGREGATION_USES

Table 5-1 (Cont.) OLAP Catalog Dimensional Model Views

View Name Synonym Description

ALL_OLAP2_ENTITY_DESC_USES Lists the reserved attributes that have application-specific
meanings. Examples are dimension attributes that are used
for long and short descriptions and time-series calculations
(end date, time span, period ago, and so on).

ALL_OLAP2_ENTITY_EXT_PARMS Lists the metadata descriptors.
ALL_OLAP2_ENTITY_PARAMETERS Lists the parameters for the metadata descriptors.

Views of Mapping Information

The following views show how the basic dimensional model is mapped to relational
tables or views.

Table 5-2 OLAP Catalog Mapping Views

View Synonym Name Description

ALL_OLAP2_CUBE_MEASURE_MAPS Shows the mapping of each measure to a column.

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS Shows the mapping of each level attribute to a column.

ALL_OLAP2_FACT_LEVEL_USES Shows the joins between dimension tables and fact tables in a
star or snowflake schema.

ALL_OLAP2_FACT_TABLE_GID S}]ﬁws the Grouping ID column for each hierarchy in each fact
table.

ALL_OLAP2_HIER_CUSTOM_SORT Shows the default sort order for level columns within
hierarchies.

ALL_OLAP2_JOIN_KEY_COLUMN_USES Shows the joins between two levels in a hierarchy.

ALL_OLAP2_LEVEL_KEY_COL_USES Shows the mapping of each level to a unique key column.

ALL_OLAP2_AGGREGATION_USES

ALL OLAP2 AGGREGATION_ USES lists the aggregation operators associated with
cubes that map to relational tables organized as star or snowflake schemas.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimensions of the cube.

HIERARCHY NAME VARCHAR2 (30) Name of the hierarchies of the cube's dimensions.

DIM HIER COMBO_ID NUMBER NOT NULL Identifier of a hierarchy combination within the
cube.

AGGREGATION NAME VARCHAR2 (240) Name of the aggregation operator for this

dimension. (See Table 1-10, " Aggregation
Operators" on page 1-16.)

AGGREGATION ORDER NUMBER The order of precedence of the aggregation
operator.
TABLE OWNER VARCHAR2 (30) Owner of the table that contains the weightby

factors for weighted operators. If the operator is
not weighted, this column is null.

OLAP Catalog Metadata Views 5-3

ALL_OLAP2_CATALOGS

Column Data Type NULL

Description

TABLE_NAME VARCHAR2 (30)

COLUMN_NAME VARCHAR2 (30)

Name of the table that contains the weightby
factors for weighted operators. If the operator is
not weighted, this column is null.

Name of the column that contains the weightby
factors for weighted operators. If the operator is
not weighted, this column is null.

ALL_OLAP2_CATALOGS

ALL OLAP2 CATALOGS lists all the measure folders (catalogs) within the Oracle

instance.
Column Data Type NULL Description
CATALOG_ID NUMBER NOT NULL ID of the measure folder.
CATALOG_NAME VARCHAR2 (30) NOT NULL Name of the measure folder.

PARENT CATALOG_ID NUMBER

DESCRIPTION VARCHAR2 (2000)

ID of the parent measure folder. This column is
null for measure folders at the root of the measure
folder tree.

Description of the measure folder.

ALL_OLAP2_CATALOG_ENTITY_USES

ALL OLAP2 CATALOG ENTITY USES lists the measures within each measure folder.

Column Data Type NULL Description

CATALOG_ID NUMBER NOT NULL 1D of the measure folder.

ENTITY OWNER VARCHAR2 (30) NOT NULL Owner of the measure's cube.

ENTITY NAME VARCHAR2 (30) NOT NULL Name of the measure's cube.
CHILD_ENTITY NAME VARCHAR2(30) NOT NULL Name of the measure in the measure folder.

ALL_OLAP2_CUBES

ALL OLAP2 CUBES lists all cubes in an Oracle instance .

Column Data Type NULL Description

OWNER VARCHAR?2 (30) NOT NULL Owner of the cube that contains the measure.
CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube that contains the measure.
INVALID VARCHAR2 (2) NOT NULL Whether or not this cube is in an invalid state. See

DISPLAY NAME VARCHAR2 (30)

DESCRIPTION VARCHAR2 (2000)

MV_SUMMARYCODE VARCHAR?2 (2)

"Validating and Committing OLAP Catalog Metadata"
on page 2-10.

Display name for the cube.
Description of the cube.

If this cube has an associated materialized view, the MV
summary code specifies whether it is in Grouping Set
(groupingset) or Rolled Up (rollup) form.

See Chapter 27, "'DBMS_ODM".

5-4 Oracle OLAP Reference

ALL_OLAP2_CUBE_MEASURE_MAPS

ALL_OLAP2_CUBE_DIM_USES

ALL OLAP2 CUBE_DIM USES lists the dimensions within each cube.

A dimension may be associated more than once with the same cube, but each
association is specified in a separate row, under its own unique dimension alias.

Column Data Type NULL Description

CUBE_DIMENSION NUMBER NOT NULL ID of the association between a cube and a
USE_ID dimension.

OWNER VARCHAR2 (30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube.

DIMENSION_OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.
DIMENSION_NAME VARCHAR2 (30) NOT NULL Name of the dimension.

DIMENSION_ ALIAS

DEFAULT CALC_
HIERARCHY NAME

DEPENDENT ON_DIM
USE_ID

VARCHAR2 (30)

VARCHAR?2 (30)

NUMBER

Alias of the dimension, to provide unique identity of
dimension use within the cube.

The default hierarchy to be used for drilling up or
down within the dimension.

ID of the cube/dimension association on which this
cube/dimension association depends.

ALL_OLAP2_CUBE_MEASURES

ALL OLAP2 CUBE_MEASURES lists the measures within each cube.

Column Data Type NULL Description

OWNER VARCHAR?2 (30) NOT NULL Owner of the cube that contains the measure.
CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube that contains the measure.
MEASURE_NAME VARCHAR?2 (30) NOT NULL Name of the measure.

DISPLAY NAME

DESCRIPTION

VARCHAR?2 (30)

VARCHAR2 (2000)

Display name for the measure.

Description of the measure.

ALL_OLAP2_CUBE_MEASURE_MAPS

ALL_OLAP2_ CUBE_MEASURE_MAPS shows the mapping of each measure to a column.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube.

MEASURE_NAME VARCHAR2 (30) NOT NULL Name of the measure contained in this cube.

DIM HIER COMBO_ NUMBER NOT NULL ID of the association between this measure and one
ID combination of its dimension hierarchies.

FACT TABLE VARCHAR2 (30) NOT NULL Owner of the fact table.

OWNER

FACT TABLE NAME VARCHAR2 (30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2 (30) NOT NULL Name of the column in the fact table where this

measure's data is stored.

OLAP Catalog Metadata Views 5-5

ALL_OLAP2_CUBE_MEAS_DIM_USES

ALL_OLAP2_CUBE_MEAS_DIM_USES

ALL OLAP2 CUBE_MEAS DIM USES shows how each measure is aggregated along
each of its dimensions. The default aggregation method is addition.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the cube that contains this measure.
CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube that contain this measure.
MEASURE_NAME VARCHAR2 (30) NOT NULL Name of the measure.

DIMENSION_ OWNER VARCHAR2 (30) NOT NULL Owner of a dimension associated with this measure.
DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.

DIMENSION_ALIAS VARCHAR2 (30) Alias of the dimension.

DEFAULT_AGGR_ NUMBER The default aggregation method used to aggregate this
FUNCTION_USE_ID measure's data over this dimension. If this column is

null, the aggregation method is addition.

ALL_OLAP2_DIMENSIONS

ALL OLAP2 DIMENSIONS lists all the OLAP dimensions in the Oracle instance.

OLAP dimensions created with the CWM2 APIs have no association with database
dimension objects. OLAP dimensions created in Enterprise Manager are based on
database dimension objects.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.

PLURAL_ NAME VARCHAR2 (30) Plural name for the dimension. Used for display.
DISPLAY NAME VARCHAR2 (30) Display name for the dimension.

DESCRIPTION VARCHAR2 (2000) Description of the dimension.

DEFAULT DISPLAY VARCHAR2 (30) NOT NULL Default display hierarchy for the dimension.
HIERARCHY

INVALID VARCHAR2 (1) NOT NULL Whether or not the dimension is valid. See

"Validating and Committing OLAP Catalog
Metadata" on page 2-10

DIMENSION_TYPE VARCHAR2 (10) Not used.

ALL_OLAP2_DIM_ATTRIBUTES

ALL OLAP2 DIM ATTRIBUTES lists the dimension attributes within each dimension.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.
ATTRIBUTE_NAME VARCHAR2 (30) NOT NULL Name of the dimension attribute.
DISPLAY NAME VARCHAR2 (30) Display name for the dimension attribute.
DESCRIPTION VARCHAR2 (2000) Description of the dimension attribute.

5-6 Oracle OLAP Reference

ALL_OLAP2_DIM_HIER_LEVEL_USES

Column Data Type

NULL

Description

DESC_ID NUMBER

If the attribute is reserved, its type is listed in this
column. Examples of reserved dimension attributes are
long and short descriptions and time-related attributes,
such as end date, time span, and period ago.

ALL_OLAP2_DIM_ATTR_USES

ALL OLAP2 DIM ATTR_USES shows how level attributes are associated with each

dimension attribute.

The same level attribute can be included in more than one dimension attribute.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2(30) NOT NULL Name of the dimension.

DIM ATTRIBUTE_ VARCHAR2 (30) NOT NULL Name of the dimension attribute.

NAME

LEVEL_NAME VARCHAR2 (30) NOT NULL Name of a level within the dimension.
LVL_ATTRIBUTE_ VARCHAR2(30) NOT NULL Name of an attribute for this level. This level attribute is

NAME

included in the dimension attribute.

ALL_OLAP2_DIM_HIERARCHIES

ALL OLAP2 DIM HIERARCHIES lists the hierarchies within each dimension.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.

HIERARCHY NAME VARCHAR2 (30) NOT NULL Name of the hierarchy.

DISPLAY NAME VARCHAR2 (30) Display name for the hierarchy.
DESCRIPTION VARCHAR2 (2000) Description of the hierarchy.

SOLVED_CODE VARCHAR2 (2) NOT NULL The solved code may be one of the following;:

UNSOLVED LEVEL-BASED, for a hierarchy that contains
no embedded totals and is stored in a level-based
dimension table.

SOLVED LEVEL-BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table.

SOLVED VALUE-BASED, for a hierarchy that contains
embedded totals and is stored in a parent-child
dimension table.

For information about mapping hierarchies with different
solved codes, see "Joining Fact Tables with Dimension
Tables" on page 2-9.

ALL_OLAP2_DIM_HIER_LEVEL_USES

ALL OLAP2 DIM HIER LEVEL_ USES shows how levels are ordered within each

hierarchy.

OLAP Catalog Metadata Views 5-7

ALL_OLAP2_DIM_LEVELS

Within separate hierarchies, the same parent level may be hierarchically related to a

different child level.
Column Data Type NULL Description
OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.
DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.
HIERARCHY NAME VARCHAR2 (30) NOT NULL Name of the hierarchy.

PARENT LEVEL NAME VARCHAR2 (30) NOT NULL Name of the parent level.
CHILD_ LEVEL NAME VARCHAR2 (30) NOT NULL Name of the child level.

POSITION NUMBER NOT NULL Position of this parent-child relationship within the
hierarchy, with position 1 being the most detailed.

ALL_OLAP2_DIM_LEVELS

ALL OLAP2 DIM LEVELS lists the levels within each dimension.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension containing this level.
DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension containing this level.
LEVEL_NAME VARCHAR2 (30) NOT NULL Name of the level.

DISPLAY NAME VARCHAR2 (30) Display name for the level.

DESCRIPTION VARCHAR2 (2000) Description of the level.

LEVEL_TABLE OWNER VARCHAR2 (30) NOT NULL Owner of the dimension table that contains the

columns for this level.

LEVEL_TABLE_ NAME VARCHAR2 (30) NOT NULL Name of the dimension table that contains the
columns for this level.

ALL_OLAP2_DIM_LEVEL_ATTRIBUTES

ALL OLAP2 DIM LEVEL ATTRIBUTES lists the level attributes within each level.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension containing the level.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension containing the level.

ATTRIBUTE NAME VARCHAR2 (30) Name of the level attribute. If no attribute name is
specified, the column name is used.

DISPLAY NAME VARCHAR2 (30) Display name for the level attribute.

DESCRIPTION VARCHAR2 (2000) Description of the level attribute.

DETERMINED BY VARCHAR2 (30) NOT NULL Name of the level.

LEVEL_NAME

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS shows the mapping of each level attribute to a
column.

5-8 Oracle OLAP Reference

ALL_OLAP2_ENTITY_EXT_PARMS

The mapping of level attributes to levels is dependent on hierarchy. The same level
may have different attributes when it is used in different hierarchies.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.

HIERARCHY NAME VARCHAR2 (30) Name of the hierarchy containing this level.

ATTRIBUTE NAME VARCHAR2 (30) Name of a dimension attribute grouping containing this
level attribute.

LVL_ATTRIBUTE VARCHAR2 (30) NOT NULL Name of the level attribute, or name of the column if the

NAME level attribute name is not specified.

LEVEL_NAME VARCHAR2 (30) NOT NULL Name of the level.

TABLE_OWNER VARCHAR2 (30) NOT NULL Owner of the dimension table containing the level and
level attribute.

TABLE NAME VARCHAR2 (30) NOT NULL Name of the dimension table containing the level and
level attribute columns.

COLUMN_NAME VARCHAR2 (30) NOT NULL Name of the column containing the level attribute.

DTYPE VARCHAR2 (10) NOT NULL Data type of the column containing the level attribute.

ALL_OLAP2_ENTITY_DESC_USES

ALL OLAP2 ENTITY DESC_USES lists the reserved attributes and shows whether or
not dimensions are time dimensions.

Column Data Type NULL

Description

DESCRIPTOR_ID NUMBER NOT NULL

ENTITY OWNER VARCHAR2 (30) NOT NULL

ENTITY NAME VARCHAR2 (30) NOT NULL

CHILD ENTITY NAME VARCHAR2 (30)

SECONDARY CHILD
ENTITY NAME

VARCHAR2 (30)

Name of the reserved attribute or dimension type.

The reserved dimension attributes are listed in
Table 12-1, " Reserved Dimension Attributes" on
page 12-1.

The reserved level attributes are listed in Table 16-1,
" Reserved Level Attributes" on page 16-1.

Owner of the metadata entity.
Name of the metadata entity.

Name of the child entity (if applicable). A dimension
attribute is a child entity of a dimension. A level
attribute is a child entity of a dimension attribute.

Name of the secondary child entity name (if
applicable). A dimension attribute is a child entity of a
dimension. A level attribute is a child entity of a
dimension attribute. A level attribute could be the
secondary child entity of a dimension.

ALL_OLAP2_ENTITY_EXT_PARMS

ALL OLAP2 ENTITY EXT PARMS lists the following metadata descriptors: Default
Member, Dense Indicator, Fact Table Join,and Estimated Cardinality.

The metadata descriptors are described in Table 8-1, " OLAP Catalog Metadata

Descriptors" on page 8-1.

OLAP Catalog Metadata Views 5-9

ALL_OLAP2_ENTITY_PARAMETERS

Column Data Type NULL Description
DESCRIPTOR_ID NUMBER (38) ID of the metadata descriptor.
DESCRIPTOR_NAME VARCHAR2 (240) One of the following metadata descriptor names:

Default Member — The default dimension member
within a hierarchy. The Default Member descriptor is
set by the CWM2_OLAP CLASSIFY.ADD ENTITY
DEFAULTMEMBER_USE procedure (described on

page 8-5).

Dense Indicator — Specifies whether the data is
sparse or dense over a dimension of a cube. The Dense
Indicator descriptor is set by the CWM2_OLAP
CLASSIFY.ADD ENTITY DENSEINDICATOR USE
procedure (described on page 8-6).

Fact Table Join — Specifies the key columns in a
dimension table that satisfy the foreign key columns in the
fact table. The Fact Table Join descriptor applies only
to CWM2 metadata. The Fact Table Join descriptor is
set by the CWM2 OLAP CLASSIFY.ADD ENTITY
FACTJOIN_USE procedure (described on page 8-7).

Estimated Cardinality — The Estimated
Cardinality descriptor is set by the CWM2_OLAP
CLASSIFY.ADD ENTITY CARDINALITY USE procedure
(described on page 8-5).

ENTITY OWNER VARCHAR2 (240) Schema of the cube or dimension.
ENTITY NAME VARCHAR2 (240) Name of the cube or dimension.
CHILD_ ENTITY NAME VARCHAR2 (30) Name of a child of the cube or dimension. For example, a

dimension attribute is a child of a dimension, and a
measure is a child of a cube. If the descriptor applies to a
cube or dimension, this parameter is NULL.

SECONDARY_ CHILD_ VARCHAR2 (30) Name of a child of the child entity. For example, a level
ENTITY NAME attribute is a child of a level, which is a child of a
dimension. If the descriptor applies to a cube or

dimension, or a child of a cube or dimension, this

parameter is NULL.
PARAMETER NAME VARCHAR?2 (80) User-defined label for the descriptor.
PARAMETER_VALUE VARCHAR?2 (4000) Value of the descriptor. For the Fact Table Join

descriptor, this parameter contains the table owner.
PARAMETER VALUE2 VARCHAR2 (4000) Table name for Fact Table Join descriptor.
PARAMETER_VALUE3 VARCHAR2 (4000) Column name for Fact Table Join descriptor.
PARAMETER _VALUE4 VARCHAR2 (4000) Hierarchy name for Fact Table Join descriptor.
POSITION NUMBER Position in multi-column key for Fact Table Join

descriptor.

ALL_OLAP2_ENTITY_PARAMETERS

ALL OLAP2 ENTITY PARAMETERS lists the metadata descriptors not listed in ALL_
OLAP2_ENTITY_EXT_PARMS. Additionally, it includes all the descriptors from ALL_
OLAP2_ENTITY_DESC_USES.

The metadata descriptors are described in Table 8-1, " OLAP Catalog Metadata
Descriptors" on page 8-1.

5-10 Oracle OLAP Reference

ALL_OLAP2_FACT_LEVEL_USES

Column

Data Type

NULL

Description

DESCRIPTOR_ID
DESCRIPTOR_NAME
ENTITY OWNER
ENTITY NAME

CHILD_ENTITY NAME

SECONDARY CHILD_
ENTITY NAME

PARAMETER NAME

PARAMETER VALUE

NUMBER (38)

VARCHAR2 (240)
VARCHAR2 (240)
VARCHAR2 (240)

VARCHAR2 (240)

VARCHAR2 (240)

VARCHAR2 (30)

VARCHAR2 (80)

ID of metadata descriptor.

Name of the metadata descriptor.
Schema of the cube or dimension.
Name of the cube or dimension.

Name of a child of the cube or dimension. For example, a
dimension attribute is a child of a dimension, and a measure
is a child of a cube. If the descriptor applies to a cube or
dimension, this parameter is NULL.

Name of a child of the child entity. For example, a level
attribute is a child of a level, which is a child of a dimension.
If the descriptor applies to a cube or dimension, or a child of
a cube or dimension, this parameter is NULL.

User-defined label for the descriptor.
Value of the descriptor.

ALL_OLAP2_FACT_LEVEL_USES

ALL OLAP2 FACT LEVEL USES shows the joins between dimension tables and fact
tables in a star or snowflake schema. For more information, see "Joining Fact Tables
with Dimension Tables" on page 2-9.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube.

DIMENSION_OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME NUMBER NOT NULL Name of the dimension.

DIMENSION ALIAS VARCHAR2 (30) Dimension alias (if applicable).

HIERARCHY NAME NOT NULL Name of the hierarchy.

DIM HIER COMBO_ID NUMBER NOT NULL ID of the dimension hierarchy combination associated
with this fact table.

LEVEL_NAME VARCHAR2 (30) Name of the level within the hierarchy where the
mapping occurs.

FACT_TABLE OWNER VARCHAR2(30) NOT NULL Owner of the fact table.

FACT TABLE_NAME VARCHAR2 (30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2 (30) NOT NULL Name of the foreign key column in the fact table.

POSITION NUMBER Position of this column within a multi-column key.

DIMENSION_KEYMAP VARCHAR2 (30) NOT NULL Type of key mapping for the fact table. Values may be:

TYPE

LL (Lowest Level), when only lowest-level dimension
members are stored in the key column. The fact table is
unsolved.

ET (Embedded Totals), when dimension members for all
level combinations are stored in the key column. The fact
table is solved (contains embedded totals for all level
combinations).

OLAP Catalog Metadata Views 5-11

ALL_OLAP2_FACT_TABLE_GID

Column Data Type NULL

Description

FOREIGN_ KEY NAME VARCHAR2 (30)

Name of the foreign key constraint applied to the foreign
key column. Constraints are not used by the CWwM2 APIs.

ALL_OLAP2_FACT_TABLE_GID

ALL_OLAP2_FACT_TABLE_GID shows the Grouping ID column for each hierarchy in
each fact table. For more information, see "Grouping ID Column" on page 1-22.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2 (30) NOT NULL Name of the cube.

DIMENSION_OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION_ NAME VARCHAR2 (30) NOT NULL Name of the dimension

HIERARCHY NAME VARCHAR2 (30) NOT NULL Name of the hierarchy.

DIM HIER COMBO ID NUMBER NOT NULL ID of the dimension-hierarchy association.
FACT TABLE OWNER VARCHAR2 (30) NOT NULL Owner of the fact table.

FACT TABLE_NAME VARCHAR2 (30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2 (30) NOT NULL Name of the GID column.

ALL_OLAP2_HIER_CUSTOM_SORT

ALL OLAP2 HIER CUSTOM SORT shows the sort order for level columns within
hierarchies. Custom sorting information is optional.

Custom sorting information specifies how to sort the members of a hierarchy based on
columns in the dimension table. The specific columns in the dimension tables may be
the same as the key columns or may be related attribute columns.

Custom sorting can specify that the column be sorted in ascending or descending
order, with nulls first or nulls last. Custom sorting can be applied at multiple levels of
a dimension.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.

HIERARCHY NAME VARCHAR2 (30) NOT NULL Name of the hierarchy.

TABLE_OWNER VARCHAR2 (30) NOT NULL Owner of the dimension table.

TABLE NAME VARCHAR2 (30) NOT NULL Name of the dimension table.

COLUMN NAME VARCHAR2 (30) NOT NULL Name of the column to be sorted.

POSITION NUMBER NOT NULL Represents the position within a multi-column SORT
POSITION. In most cases, a single column represents
SORT_POSITION, and the value of POSITION is 1.

SORT_ POSITION NUMBER NOT NULL Position within the sort order of the level to be sorted.

SORT_ORDER VARCHAR2 (4) NOT NULL Sort order. Can be either Ascending or Descending.

NULL_ORDER VARCHAR2 (5) NOT NULL Where to insert null values in the sort order. Can be

either Nulls First orNulls Last.

5-12 Oracle OLAP Reference

ALL_OLAP2_LEVEL_KEY_COL_USES

ALL_OLAP2_JOIN_KEY_COLUMN_USES

ALL OLAP2 JOIN KEY COLUMN_USES shows the joins between two levels in a
hierarchy. The joins are between dimension tables in a snowflake schema, and between
level columns in a star schema.

If the level is mapped to more than one column, each column mapping is represented
in a separate row in the view.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension

HIERARCHY NAME VARCHAR2 (30) NOT NULL Name of the hierarchy.

CHILD_ LEVEL NAME VARCHAR2 (30) NOT NULL Chﬂdlevdinthehkﬂamhy

TABLE_OWNER VARCHAR2 (30) NOT NULL Owner of the dimension table.

TABLE NAME VARCHAR2 (30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2 (30) NOT NULL Name of the child level column in the dimension
table. In a star schema, this is the column associated
with CHILD LEVEL_ NAME. In a snowflake schema,
this is the parent column of CHILD LEVEL_ NAME in
the same dimension table.

POSITION NUMBER Position of column within the key. Applies to
multi-column keys only (where the level is mapped to
more than one column).

JOIN KEY TYPE VARCHAR2 (30) NOT NULL The key is of type SNOWFLAKE if the join key is a

logical foreign key. The key is of type STAR if the join
key refers to a column within the same table.

ALL_OLAP2_LEVEL_KEY_COL_USES

ALL_OLAP2_LEVEL_KEY_ COL_USES shows the mapping of each level to a unique
key column.

If the level is mapped to more than one column, each column mapping is represented
in a separate row in the view.

Column Data Type NULL Description

OWNER VARCHAR2 (30) NOT NULL Owner of the dimension.

DIMENSION NAME VARCHAR2 (30) NOT NULL Name of the dimension.

HIERARCHY NAME VARCHAR2 (30) Name of the hierarchy that includes this level.

CHILD LEVEL NAME VARCHAR2 (30) NOT NULL Name of the level.

TABLE OWNER VARCHAR2 (30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2 (30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2 (30) NOT NULL Name of the column that stores CHILD LEVEL_ NAME.

POSITION

NUMBER

Position of the column within the key. Applies to
multi-column keys only (where the level is mapped to
more than one column).

OLAP Catalog Metadata Views 5-13

ALL_OLAP2_LEVEL_KEY_COL_USES

5-14 Oracle OLAP Reference

6

OLAP Dynamic Performance Views

Oracle collects statistics in fixed tables, and creates user-accessible views from these
tables. This chapter describes the fixed views that contain data on Oracle OLAP.

See Also: For additional information about fixed tables and views,
refer to the following:

» Oracle Database Reference

» Oracle Database Performance Tuning Guide

This chapter contains the following topics:

s V$ Tables for OLAP

s Summary of OLAP Dynamic Performance Views
= VSAW_AGGREGATE_OP

= V$SAW_ALLOCATE_OP

= V$SAW_CALC

= VSAW_LONGOPS

= V$SAW_OLAP

= V$AW_SESSION_INFO

V$ Tables for OLAP

Each Oracle database instance maintains a set of virtual tables that record current
database activity and store data about the instance. These tables are called the V$§
tables. They are also referred to as the dynamic performance tables, because they store
information that pertains primarily to performance. Views of the V$ tables are
sometimes called fixed views because they cannot be altered or removed by the
database administrator.

The V$ tables collect data on internal disk structures and memory structures. They are
continuously updated while the database is in use. Among them are tables that collect
data on Oracle OLAP.

The SYS user owns the V§$ tables. In addition, any user with the SELECT CATALOG
role can access the tables. The system creates views from these tables and creates
public synonyms for the views. The views are also owned by SYS, but the DBA can
grant access to them to a wider range of users.

The names of the OLAP V$ tables begin with V$AW. The view names also begin with
V$AW. The following sample SQL*Plus session shows the list of OLAP system tables.

OLAP Dynamic Performance Views 6-1

Summary of OLAP Dynamic Performance Views

% sglplus '/ as sysdba'

SQL> SELECT name FROM v$fixed table WHERE name LIKE 'VS$AWS';

V$AW_AGGREGATE_OP
V$AW_ALLOCATE_OP
V$AW_CALC
V$AW_LONGOPS

V$AW _OLAP

V$AW _SESSION INFO

See Also: For more information on the V$ views in the Database, see
the Oracle Database Reference.

Summary of OLAP Dynamic Performance Views
Table 6-1 briefly describes each OLAP dynamic performance view.

Table 6-1 OLAP Fixed Views

Fixed View

Description

V$AW_AGGREGATE_OP
V$AW_ALLOCATE_OP
V$AW_CALC

V$AW_LONGOPS
V$AW_OLAP

V$AW_SESSION_INFO

Lists the aggregation operators available in the OLAP DML.
Lists the allocation operators available in the OLAP DML.

Collects information about the use of cache space and the status
of dynamic aggregation.

Collects status information about SQL fetches.

Collects information about the status of active analytic
workspaces.

Collects information about each active session.

VSAW_AGGREGATE_OP

VSAW_AGGREGATE_OP lists the aggregation operators available in the OLAP DML.
You can use this view in an application to provide a list of choices.

Column Datatype Description

NAME VARCHAR2 (14) Operator keyword used in the OLAP DML RELATION command
LONGNAME VARCHAR2 (30) Descriptive name for the operator

DEFAULT WEIGHT NUMBER Default weight factor for weighted operators

VSAW_ALLOCATE_OP

V$AW_ALLOCATE_OP lists the allocation operators available in the OLAP DML. You
can use this view in an application to provide a list of choices.

6-2 Oracle OLAP Reference

V$SAW_CALC

Column Datatype Description
NAME VARCHAR2 (14) Operator keyword used in the OLAP DML RELATION command
LONGNAME VARCHAR?2 (30) Descriptive name for the operator

VSAW_CALC

VS$AW_CALC reports on the effectiveness of various caches used by Oracle OLAP and
the status of processing by the AGGREGATE function.

OLAP Caches

Because OLAP queries tend to be iterative, the same data is typically queried
repeatedly during a session. The caches provide much faster access to data that has
already been calculated during a session than would be possible if the data had to be
recalculated for each query.

The more effective the caches are, the better the response time experienced by users.
An ineffective cache (that is, one with few hits and many misses) probably indicates
that the data is not being stored optimally for the way it is being viewed. To improve
runtime performance, you may need to reorder the dimensions of the variables (that is,
change the order of fastest to slowest varying dimensions).

Oracle OLAP uses the following caches:

= Aggregate cache. An internal cache used by the aggregation subsystem during
querying. It stores the children of a given dimension member, such as Q1-04,
Q2-04,Q03-04, and Q4-04 as the children of 2004.

= Session cache. Oracle OLAP maintains a cache for each session for storing the
results of calculations. When the session ends, the contents of the cache are
discarded.

= Page pool. A cache allocated from the User Global Area (UGA), which Oracle
OLAP maintains for the session. The page pool is associated with a particular
session and caches records from all the analytic workspaces attached in that
session. If the page pool becomes too full, then Oracle OLAP writes some of the
pages to the database cache. When an UPDATE command is issued in the OLAP
DML, the changed pages associated with that analytic workspace are written to
the permanent LOB, using temporary segments as the staging area for streaming
the data to disk. The size of the page pool is controlled by the OLAP PAGE POOL
initialization parameter.

= Database cache. The larger cache maintained by the Oracle RDBMS for the
database instance.

See Also: Oracle OLAP Application Developer’s Guide for full
discussions of data storage issues and aggregation.

Dynamic Aggregation
V$AW_CALC provides status information about dynamic aggregation in each OLAP
session. Dynamic aggregation is performed by the OLAP DML AGGREGATE function.

V$AW_CALC reports the number of logical NAs generated when AGGINDEX is set.
AGGINDEX is an index of all composite tuples for the data. When a composite tuple
does not exist, the AGGREGATE function returns NA.

OLAP Dynamic Performance Views 6-3

V$AW_LONGOPS

VSAW CALC also reports the number of times the AGGREGATE function uses a
precomputed aggregate, and the number of times the AGGREGATE function has to
calculate an aggregate value.

See Also:
AGGREGATE function.

Oracle OLAP DML Reference for information about the

Column Datatype Description

SESSION_ID NUMBER A unique numeric identifier for the session.

AGGREGATE_CACHE_HITS NUMBER The number of times a dimension member is found in the
aggregate cache (a hit).
The number of hits for run-time aggregation can be increased
by fetching data across the dense dimension.

AGGREGATE_CACHE_MISSES NUMBER The number of times a dimension member is not found in the
aggregate cache and must be read from disk (a miss).

SESSION_CACHE HITS NUMBER The number of times the data is found in the session cache (a
hit).

SESSION CACHE MISSES NUMBER The number of times the data is not found in the session cache
(a miss).

POOL_HITS NUMBER The number of times the data is found in a page in the OLAP
page pool (a hit).

POOL_MISSES NUMBER The number of times the data is not found in the OLAP page
pool (a miss).

POOL_NEW_PAGES NUMBER The number of newly created pages in the OLAP page pool that
have not yet been written to the workspace LOB.

POOL_RECLAIMED_PAGES NUMBER The number of previously unused pages that have been
recycled with new data.

CACHE_WRITES NUMBER The number of times the data from the OLAP page pool has
been written to the database cache.

POOL_SIZE NUMBER The number of kilobytes in the OLAP page pool.

CURR_DML_COMMAND

PREV_DML COMMAND

AGGR_FUNC_LOGICAL NA

AGGR_FUNC_PRECOMPUTE

AGGR_FUNC_CALCS

VARCHAR?2 (64)

VARCHAR?2 (64)

NUMBER

NUMBER

NUMBER

The OLAP DML command currently being executed.
The OLAP DML command most recently completed.

The number of times the AGGREGATE function returns a logical
NA because AGGINDEX is on and the composite tuple does not
exist.

The number of times the AGGREGATE function finds a value in a
position that it was called to calculate.

The number of times the AGGREGATE function calculates a
parent value based on the values of its children.

VSAW_LONGOPS

V$AW_LONGOPS provides status information about active SQL cursors initiated in the
OLAP DML.

A cursor can be initiated within the OLAP DML using SQL. FETCH, SQL. IMPORT, or
SQL EXECUTE, that is, SQL statements that can be declared and executed.

6-4 Oracle OLAP Reference

V$SAW_OLAP

Column Datatype Description

SESSION_ ID NUMBER The identifier for the session in which the fetch is
executing. This table can be joined with V$SESSION to
get the user name.

CURSOR_NAME VARCHAR?2 (64) The name assigned to the cursor in an OLAP DML
SQL DECLARE CURSOR or SQL. PREPARE CURSOR
command.

COMMAND VARCHAR2 (7) An OLAP DML command (SQL IMPORT, SQL

FETCH, or SQL EXECUTE) that is actively fetching data
from relational tables.

STATUS VARCHAR2 (9) One of the following values:
s EXECUTING. The command has begun executing.

= FETCHING. Data is being fetched into the analytic
workspace.

= FINISHED. The command has finished executing.
This status appears very briefly before the record
disappears from the table.

ROWS_PROCESSED NUMBER The number of rows already inserted, updated, or
deleted.
START TIME TIMESTAMP (3) The time the command started executing.

VSAW_OLAP

VSAW_OLAP provides a record of active sessions and their use with analytic
workspaces. A row is generated whenever an analytic workspace is created or
attached. The first row for a session is created when the first DML command is issued.
It identifies the SYS . EXPRESS workspace, which is attached automatically to each
session. Rows related to a particular analytic workspace are deleted when the
workspace is detached from the session or the session ends.

Column Datatype Description
SESSION ID NUMBER A unique numeric identifier for a session.
AW_NUMBER NUMBER A unique numeric identifier for an analytic workspace. To get

the name of the analytic workspace, join this column to the AW_
NUMBER column of the USER_AWS view or to the AWSEQ#
column of the AWS table

ATTACH_MODE VARCHAR2 (10) READ ONLY or READ WRITE.

GENERATION NUMBER The generation of an analytic workspace. Each UPDATE creates
a new generation. Sessions attaching the same workspace
between UPDATE commands share the same generation.

TEMP_SPACE_PAGES NUMBER The number of pages stored in temporary segments for the
analytic workspace.

TEMP_SPACE_READS NUMBER The number of times data has been read from a temporary
segment and not from the page pool.

LOB_READS NUMBER The number of times data has been read from the table where
the analytic workspace is stored (the permanent LOB).

POOL_CHANGED PAGES NUMBER The number of pages in the page pool that have been modified
in this analytic workspace.

POOL_UNCHANGED_PAGES NUMBER The number of pages in the page pool that have not been
modified in this analytic workspace.

OLAP Dynamic Performance Views 6-5

VSAW_SESSION_INFO

VSAW_SESSION_INFO

VSAW_SESSION_INFO provides information about each active session.

A transaction is a single exchange between a client session and Oracle OLAP. Multiple
OLAP DML commands can execute within a single transaction, such as in a call to the
DBMS_AW.EXECUTE procedure.

Column

Datatype

Description

SESSION ID
CLIENT TYPE

SESSION_STATE

SESSION_HANDLE

USERID

TOTAL_TRANSACTION

TOTAL_ TRANSACTION_ TIME

TRANSACTION TIME

AVERAGE TRANSACTION TIME

TRANSACTION CPU_ TIME

TOTAL_ TRANSACTION_CPU_ TIME

AVERAGE TRANSACTION CPU_TIME

NUMBER
VARCHAR?2 (64)

VARCHAR?2 (64)

NUMBER

VARCHAR?2 (64)

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

A unique numeric identifier for a session.
OLAP

TRANSACTING, NOT TRANSACTING, EXCEPTION_
HANDLING, CONSTRUCTING, CONSTRUCTED,
DECONSTRUCTING, or DECONSTRUCTED

The session identifier

The database user name under which the session
opened

The total number of transactions executed within
the session; this number provides a general
indication of the level of activity in the session

The total elapsed time in milliseconds in which
transactions were being executed

The elapsed time in milliseconds of the mostly
recently completed transaction.

The average elapsed time in milliseconds to
complete a transaction

The total CPU time in milliseconds used to
complete the most recent transaction

The total CPU time used to execute all transactions
in this session; this total does not include
transactions that are currently in progress

The average CPU time to complete a transaction;
this average does not include transactions that are
currently in progress

6-6 Oracle OLAP Reference

7

CWM2_OLAP_CATALOG

The CWM2_OLAP_CATALOG package provides procedures for managing measure
folders.

Note: The term catalog, when used in the context of the CWM2_
OLAP_CATALOG package, refers to a measure folder.

See Also:
s Chapter 18, "CWM2_OLAP_MEASURE"
» Chapter 2, "Creating OLAP Catalog Metadata with CWM2"

This chapter discusses the following topics:
» Understanding Measure Folders
= Example: Creating a Measure Folder

s Summary of CWM2_OLAP_CATALOG Subprograms

Understanding Measure Folders

A measure folder is an OLAP Catalog metadata entity. This means that it is a logical
object, identified by name and owner, within the OLAP Catalog.

Use the procedures in the CWM2_OLAP_CATALOG package to create, populate, drop,
and lock measure folders, and to specify descriptive information for display purposes.

Measure folders provide a mechanism for grouping related measures. They can
contain measures and nested measure folders. Access to measure folders is
schema-independent. All measure folders are visible to any client. However, access to
the measures themselves depends on the client's access rights to the underlying tables.

See Also: Oracle OLAP Application Developer’s Guide for more
information on measure folders and the OLAP Catalog metadata
model.

Example: Creating a Measure Folder

The following statements create a measure folder called PHARMACEUTICALS and add
the measure UNIT COST from the cube SH.COST CUBE. The measure folder is at the
root level.

execute cwm2_olap catalog.create catalog

CWM2_OLAP_CATALOG 7-1

Example: Creating a Measure Folder

('PHARMACEUTICALS', 'Pharmaceutical Sales and Planning');
execute cwm2 olap catalog.add catalog entity
('PHARMACEUTICALS', 'SH', 'COST_CUBE', UNIT COST');

7-2 Oracle OLAP Reference

Summary of CWM2_OLAP_CATALOG Subprograms

Summary of CWM2_OLAP_CATALOG Subprograms

Table 7-1 CWM2_OLAP_CATALOG Subprograms

Subprogram Description
ADD_CATALOG_ENTITY Procedure on Adds a measure to a measure folder.
page 7-4

CREATE_CATALOG Procedure on page 7-4 Creates a measure folder.
DROP_CATALOG Procedure on page 7-4 Drops a measure folder.
LOCK_CATALOG Procedure on page 7-5 Locks a measure folder.

REMOVE_CATALOG_ENTITY Procedure = Removes a measure from a measure folder.
on page 7-5

SET_CATALOG_NAME Procedure on Sets the name of a measure folder.
page 7-5

SET_DESCRIPTION Procedure on page 7-6 Sets the description of a measure folder.

SET_PARENT_CATALOG Procedure on Sets the parent folder of a measure folder.
page 7-6

CWM2_OLAP_CATALOG 7-3

ADD_CATALOG_ENTITY Procedure

ADD CATALOG_ENTITY Procedure

Syntax

Parameters

This procedure adds a measure to a measure folder.

ADD CATALOG ENTITY (

catalog name IN VARCHAR2,
cube owner IN VARCHAR2,
cube_name IN VARCHAR2,
measure_name IN VARCHAR2) ;

Table 7-2 ADD_CATALOG_ENTITY Procedure Parameters

Parameter Description

catalog name Name of the measure folder.

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure to be added to the measure folder.

CREATE_CATALOG Procedure

Syntax

Parameters

This procedure creates a new measure folder.

Descriptions and display properties must also be established as part of measure folder
creation. Once the measure folder has been created, you can override these properties
by calling other procedures in this package.

CREATE CATALOG (

catalog_name IN VARCHAR2,
description IN VARCHAR2,
parent catalog IN VARCHAR2 DEFAULT NULL) ;

Table 7-3 CREATE_CATALOG Procedure Parameters

Parameter Description

catalog name Name of the measure folder.
description Description of the measure folder.
parent catalog Optional parent measure folder.

DROP_CATALOG Procedure

Syntax

This procedure drops a measure folder. If the measure folder contains other measure
folders, they are also dropped.

DROP_CATALOG (
catalog name IN VARCHAR2) ;

7-4 Oracle OLAP Reference

Summary of CWM2_OLAP_CATALOG Subprograms

Parameters

Table 7-4 DROP_CATALOG Procedure Parameters

Parameter Description

catalog name Name of the measure_folder.

LOCK_CATALOG Procedure

Syntax

Parameters

This procedure locks the measure folder's metadata for update by acquiring a database
lock on the row that identifies the measure folder in the CWM2 model table.

LOCK_CATALOG (
catalog name IN VARCHAR2,
wait for lock IN BOOLEAN DEFAULT FALSE);

Table 7-5 LOCK_CATALOG Procedure Parameters

Parameter Description
catalog name Name of the measure folder
wait_for_ lock (Optional) Whether or not to wait for the measure folder to be

available when it is already locked by another user. If you do not
specify a value for this parameter, the procedure does not wait to
acquire the lock.

REMOVE_CATALOG_ENTITY Procedure

Syntax

Parameters

This procedure removes a measure from a measure folder.

REMOVE CATALOG ENTITY (

catalog name IN VARCHAR2,
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
measure_name IN VARCHAR2) ;

Table 7-6 REMOVE_CATALOG_ENTITY Procedure Parameters

Parameter Description

catalog name Name of the measure folder.

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure to be removed from the measure folder.

SET_CATALOG_NAME Procedure

This procedure sets the name for a measure folder.

CWM2_OLAP_CATALOG 7-5

ADD_CATALOG_ENTITY Procedure

Syntax
SET CATALOG NAME (
old catalog_name IN VARCHAR2,
new catalog name IN VARCHAR2) ;
Parameters

Table 7-7 SET_CATALOG_NAME Procedure Parameters

Parameter Description
old_catalog_name Old measure folder name.
new_catalog_name New measure folder name.

SET DESCRIPTION Procedure

This procedure sets the description for a measure folder.

Syntax

SET DESCRIPTION (
catalog_name IN VARCHAR2,
description IN VARCHAR2) ;

Parameters

Table 7-8 SET_DESCRIPTION Procedure Parameters

Parameter Description
catalog name Name of the measure folder
description Description of the measure folder.

SET _PARENT_CATALOG Procedure

This procedure sets a parent measure folder for a measure folder.

Syntax
SET_PARENT_CATALOG (
catalog_name IN VARCHAR2,
parent_catalog name IN VARCHAR2 DEFAULT NULL) ;
Parameters

Table 7-9 SET_PARENT_CATALOG Procedure Parameters

Parameter Description
catalog name Name of the measure folder.
parent catalog name Name of the parent measure folder. If the measure folder is

at the root level, this parameter is null.

7-6 Oracle OLAP Reference

8

CWM2_OLAP_CLASSIFY

The CWM2_OLAP_CLASSIFY package provides procedures for managing metadata
extensions for the OLAP APL

This chapter discusses the following topics:
s OLAP Catalog Metadata Descriptors
= Example: Creating Descriptors

s Summary of CWM2_OLAP_CLASSIFY Subprograms

OLAP Catalog Metadata Descriptors

The OLAP Catalog metadata descriptors provide additional information about your
data. These descriptors can be used by the OLAP APL

The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog
Metadata Descriptors".

You can view the descriptors that have been set for your OLAP Catalog metadata in
the views ALL_OLAP2_ENTITY_EXT_PARMS (described on page 5-9) and ALL_
OLAP2_ENTITY_PARAMETERS (described on page 5-10).

Table 8-1 OLAP Catalog Metadata Descriptors

Descriptor Applies To Description

Level Standard level The level is not in a time dimension.
Level Year level The year level in a time dimension.
Level HalfYear level The half year level in a time dimension.
Level Quarter level The quarter level in a time dimension.
Level Month level The month level in a time dimension.
Level Week level The week level in a time dimension.
Level Day level The day level in a time dimension.
Level Hour level The hour level in a time dimension.
Level Minute level The minutes level in a time dimension.
Level Second level The seconds level in a time dimension.

Value Separator dimension The separator character used by the OLAP API to
construct the names of dimension members. The default
separator is "::".

CWM2_OLAP_CLASSIFY 8-1

Example: Creating Descriptors

Table 8-1 (Cont.) OLAP Catalog Metadata Descriptors

Descriptor Applies To Description

Skip Level hierarchy =~ Whether or not the hierarchy supports skip levels. An
example of a skip level hierarchy is City-State-Country,
where Washington D.C. is a City whose parent is a
Country.

Measure Format measure The display format for a measure.

Measure Unit measure The unit of measurement of a measure.

Fact Table Join hierarchy = The key columns in a dimension table that satisfy the
join to a fact table. This descriptor applies to CWM2
metadata only.

Default Member hierarchy The default dimension member in a hierarchy.

Dense Indicator dimension Whether or not the data over a given dimension of a
cube is dense or sparse.

Estimated level Estimated number of dimension members in a given

Cardinality level.

Example: Creating Descriptors

The following examples show how to set some of the metadata descriptors.

Note:

If you have used Enterprise Manager to create your OLAP

Catalog metadata, be sure to respect the case of metadata names.

The following statements specify the quarter, month, and year levels in the time

dimension XADEMO . TIME.

execute cwm2 olap classify.add entity descriptor use

('Level Year', 'LEVEL',

'XADEMO',

'"TIME', 'L1');

execute cwm2_olap classify.add entity descriptor use

('Level Quarter', 'LEVEL',

'XADEMO',

'TIME', 'L2');

execute cwm2 olap classify.add entity descriptor use

('Level Month', 'LEVEL',

'XADEMO',

'TIME', 'L3');

The following statement indicates that the value separator used by the OLAP API to
construct dimension member names for XADEMO . TIME is the default ("::").

execute cwm2 olap classify.add entity descriptor use

('Value Separator',
'Value Separator','::');

'DIMENSION',

'XADEMO', 'TIME', NULL, NULL,

The following statement indicates that the data in the cube XADEMO . ANALYTIC CUBE
is dense over Time and Geography, but sparse over Channel and Product.

execute cwm2 olap classify.add entity denseindicator use

('XADEMO',

'ANALYTIC CUBE',

'XADEMO', 'TIME', 'YES');

execute cwm2 olap classify.add entity denseindicator use

('XADEMO',

'ANALYTIC _CUBE',

'XADEMO', 'GEOGRAPHY', 'YES');

execute cwm2_olap_classify.add entity denseindicator use

('XADEMO',

'ANALYTIC CUBE',

'XADEMO', 'CHANNEL', 'NO');

execute cwm2 olap classify.add entity denseindicator use

('XADEMO',

'ANALYTIC CUBE',

'XADEMO', 'PRODUCT', 'NO');

The following statement removes the Dense Indicator descriptors from

XADEMO.ANALYTIC CUBE.

8-2 Oracle OLAP Reference

Example: Creating Descriptors

execute cwm2_olap_classify.remove entity descriptor use
('Dense Indicator', 'DENSE INDICATOR','XADEMO', 'ANALYTIC CUBE',
'XADEMO', 'CHANNEL');

execute cwm2 olap classify.remove entity descriptor use
('Dense Indicator', 'DENSE INDICATOR','XADEMO', 'ANALYTIC CUBE',
'XADEMO', 'PRODUCT');

execute cwm2_olap_classify.remove entity descriptor use
('Dense Indicator', 'DENSE INDICATOR','XADEMO', 'ANALYTIC CUBE',
'XADEMO', 'GEOGRAPHY') ;

execute cwm2 olap classify.remove entity descriptor use
('Dense Indicator', 'DENSE INDICATOR','XADEMO', 'ANALYTIC CUBE',
'XADEMO', 'TIME');

CWM2_OLAP_CLASSIFY 8-3

Summary of CWM2_OLAP_CLASSIFY Subprograms

Summary of CWM2_OLAP_CLASSIFY Subprograms

Table 8-2 CWM2_OLAP_CLASSIFY Subprograms

Subprogram Description
ADD_ENTITY_CARDINALITY_USE on Adds the Estimated Cardinality descriptor
page 8-5 to a level of a hierarchy.
ADD_ENTITY_DEFAULTMEMBER_USE Adds the Default Member descriptor to a
on page 8-5 hierarchy.
ADD_ENTITY_DENSEINDICATOR_USE = Adds the Dense Indicator descriptor to a
on page 8-6 dimension of a cube.
ADD_ENTITY_DESCRIPTOR_USE on Applies a descriptor to a metadata entity.
page 8-7
ADD_ENTITY_FACTJOIN_USE on page 8-7 Adds the Fact Table Join descriptor to a
CWM2 hierarchy.
REMOVE_ENTITY_DESCRIPTOR_USE on Removes a descriptor from a metadata entity.
page 8-8

8-4 Oracle OLAP Reference

Summary of CWM2_OLAP_CLASSIFY Subprograms

ADD_ENTITY_CARDINALITY_USE

Syntax

Parameters

Example

This procedure adds the Estimated Cardinality descriptor to a level of a

hierarchy.

The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog

Metadata Descriptors".

ADD ENTITY CARDINALITY USE (
dimension owner
dimension name
hierarchy name
level name
estimated cardinality

IN
IN
IN
IN
IN

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2,
NUMBER) ;

Table 8-3 ADD_ENTITY_CARDINALITY _USE Procedure Parameters

Parameter

Description

dimension_owner
dimension_ name

hierarchy name

Owner of the dimension.
Name of the dimension.

Hierarchy within the dimension. If the dimension has no

hierarchy, specify NULL.

level name

estimated cardinality

Level within the hierarchy.

Estimated number of dimension members in the level.

The following statement sets the estimated cardinality of a level in the Standard

hierarchy of the Geography dimension.

execute cwm2_olap classify.add entity cardinality use

('XADEMO', 'GEOGRAPHY',

ADD_ENTITY_DEFAULTMEMBER_USE

This procedure adds the Default Member descriptor to a hierarchy.
The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog

Syntax

Metadata Descriptors".

ADD ENTITY DEFAULTMEMBER USE (
dimension owner
dimension name
hierarchy name
default member
default_member_ level
position

'STANDARD',

IN
IN
IN
IN

IN

'L4', 60);

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2,
NUMBER DEFAULT NULL) ;

CWM2_OLAP_CLASSIFY 8-5

ADD_ENTITY_CARDINALITY_USE

Parameters

Table 8-4 ADD_ENTITY_DEFAULTMEMBER_USE Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

hierarchy name Name of the hierarchy.

default member Name of a dimension member in the hierarchy.

default _member level Level of the default dimension member.

position Position of the default member within a multi-column key. If

position is not meaningful, this parameter is NULL (default).

Example

The following statement sets the default member of the Standard hierarchy in the
Geography dimension to Paris.

execute cwm2 olap classify.add entity defaultmember use
('XADEMO', 'GEOGRAPHY', 'STANDARD', 'Paris', 'L4');

ADD_ENTITY_DENSEINDICATOR_USE

This procedure adds the Dense Indicator descriptor to a dimension of a cube.

The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog

Metadata Descriptors".

Syntax
ADD ENTITY DENSEINDICATOR USE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dense indicator IN VARCHAR2);
Parameters
Table 8-5 ADD_ENTITY_DENSEINDICATOR_USE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_name Name of the cube.
dimension owner Owner of the dimension.
dimension name Name of the dimension.
dense_indicator YES indicates that the data over this dimension is dense. This
means that data exists for most dimension members.
NO indicates that the data over this dimension is sparse. This
means that there is no data for many of the dimension members.
Example

See "Example: Creating Descriptors" on page 8-2.

8-6 Oracle OLAP Reference

Summary of CWM2_OLAP_CLASSIFY Subprograms

ADD_ENTITY_DESCRIPTOR_USE

This procedure adds a descriptor to a metadata entity.

The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog

Metadata Descriptors".

Syntax
ADD ENTITY DESCRIPTOR USE (
descriptor name IN VARCHAR2,
entity type IN VARCHAR2,
entity owner IN VARCHAR2,
entity name IN VARCHAR2,
entity child name IN VARCHAR2 DEFAULT NULL,
entity secondary child name IN VARCHAR2 DEFAULT NULL,
parameter name IN VARCHAR2 DEFAULT NULL,
parameter value IN VARCHAR2 DEFAULT NULL);
Parameters
Table 8-6 ADD_ENTITY_DESCRIPTOR_USE Procedure Parameters
Parameter Description
descriptor_name Name of the descriptor.
entity type Type of metadata entity to which the descriptor applies. Types are:
DIMENSION
HIERARCHY
LEVEL
LEVEL ATTRIBUTE
DIMENSION ATTRIBUTE
CUBE
MEASURE
entity owner Schema of the cube or dimension.
entity name Name of the cube or dimension.
entity child name Name of a child of the cube or dimension. For example, a
dimension attribute is a child of a dimension, and a measure is a
child of a cube. If the descriptor applies to a cube or dimension,
this parameter is NULL.
entity secondary Name of a child of the child entity. For example, a level attribute is
child name a child of a level, which is a child of a dimension. If the descriptor
applies to a cube or dimension, or a child of a cube or dimension,
this parameter is NULL.
parameter name Label for the descriptor. You can specify any label that you choose.
parameter value Value of the descriptor.
Example

See "Example: Creating Descriptors” on page 8-2.

ADD_ENTITY_FACTJOIN_USE

This procedure adds the Fact Table Join descriptor to a cube. The Fact Table
Join descriptor applies to CWM2 metadata only.

The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog

Metadata Descriptors".

CWM2_OLAP_CLASSIFY 8-7

ADD_ENTITY_CARDINALITY_USE

Syntax
ADD_ENTITY FACTJOIN USE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
dim table owner IN VARCHAR2,
dim table name IN VARCHAR2,
dim table column name IN VARCHAR2,
position IN NUMBER DEFAULT NULL) ;
Parameters
Table 8-7 ADD_ENTITY_FACTJOIN_USE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_name Name of the cube.
dimension_owner Owner of a dimension of the cube.
dimension name Name of the dimension.
hierarchy name Name of a hierarchy of the dimension.
dim_table owner Owner of the dimension table.
dim_table name Name of the dimension table.
dim_table column_ name Key column in the dimension table that maps to a foreign
key column in the fact table.
position Position of the key column in a multi-column key. If the key
is in a single column, this parameter is NULL (Default).
Example

The following statement adds Fact Table Join descriptor to the Standard hierarchy of
the Geography dimension of the ANALYTIC CUBE.

execute cwm2 olap classify.add entity factjoin use
('XADEMO', 'ANALYTIC CUBE', 'XADEMO', 'GEOGRAPHY, 'STANDARD',
'XADEMO', 'XADEMO GEOGRAPHY', 'GEOG STD CITY');

REMOVE_ENTITY_DESCRIPTOR_USE

This procedure removes a descriptor from an entity.

The OLAP Catalog metadata descriptors are described in Table 8-1, " OLAP Catalog

Metadata Descriptors".
Syntax

REMOVE_ENTITY DESCRIPTOR USE (
descriptor_name IN VARCHAR2,
entity type IN VARCHAR2,
entity owner IN VARCHAR2,
entity name IN VARCHAR2,
entity child name IN VARCHAR2 DEFAULT NULL,

entity secondary child name IN VARCHAR2 DEFAULT NULL) ;

8-8 Oracle OLAP Reference

Summary of CWM2_OLAP_CLASSIFY Subprograms

Parameters

Example

Table 8-8 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Parameters

Parameter Description

descriptor_name Name of the descriptor to remove.

entity type Type of metadata entity to which the descriptor applies. Types are:
DIMENSION
HIERARCHY
LEVEL

LEVEL ATTRIBUTE

DIMENSION ATTRIBUTE

CUBE

MEASURE

ESTIMATED CARDINALITY

DEFAULT MEMBER

DENSE INDICATOR

FACT TABLE JOIN

entity owner Schema of the cube or dimension.
entity name Name of the cube or dimension.
entity child name Name of a child of the cube or dimension. For example, a

dimension attribute is a child of a dimension, and a measure is a
child of a cube. If the descriptor applies to a cube or dimension,

this parameter is NULL.
entity secondary Name of a child of the child entity. For example, a level attribute is
child name a child of a level, which is a child of a dimension. If the descriptor
applies to a cube or dimension, or a child of a cube or dimension,
this parameter is NULL.

See "Example: Creating Descriptors" on page 8-2.

CWM2_OLAP_CLASSIFY 8-9

ADD_ENTITY_CARDINALITY_USE

8-10 Oracle OLAP Reference

9

CWM2_OLAP_CUBE

The CWM2_OLAP_CUBE package provides procedures managing cubes.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CwM2"

This chapter discusses the following topics:

s Understanding Cubes

= Example: Creating a Cube

s Summary of CWM2_OLAP_CUBE Subprograms

Understanding Cubes

A cube is an OLAP Catalog metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

A cube is a multidimensional framework to which you can assign measures. A
measure represents data stored in fact tables. The fact tables may be relational tables or
views. The views may reference data stored in analytic workspaces.

Use the procedures in the CWM2_OLAP_CUBE package to create, drop, and lock cubes,
to associate dimensions with cubes, and to specify descriptive information for display
purposes.

You must create the cube before using the CWM2_OLAP_MEASURE package to create the
cube's measures.

See Also:

» Chapter 18, "CWM2_OLAP_MEASURE"

» Oracle OLAP Application Developer’s Guide for more information
about cubes and the OLAP Catalog metadata model.

Example: Creating a Cube

The following statements drop the cube SALES_ CUBE, re-create it, and add the
dimensions TIME DIM, GEOG_DIM, and PRODUCT DIM.

Dropping the cube removes the cube entity, along with its measures, from the OLAP
Catalog. However, dropping the cube does not cause the cube's dimensions to be
dropped.

execute cwm2_olap cube.drop cube ('JSMITH', 'SALES CUBE');

CWM2_OLAP_CUBE 9-1

Example: Creating a Cube

execute cwm2_olap cube.create cube

('JSMITH', 'SALES CUBE', 'Sales', 'Sales Cube',

'Sales dimensioned over geography, product, and time');

execute cwm2 olap cube.add dimension to cube

('JSMITH', 'SALES CUBE', 'JSMITH', 'TIME DIM');
execute cwm2_olap cube.add dimension to_cube

('JSMITH', 'SALES CUBE', 'JSMITH', 'GEOG DIM');
execute cwm2 olap cube.add dimension to cube

('JSMITH', 'SALES CUBE', 'JSMITH', 'PRODUCT DIM');

9-2 Oracle OLAP Reference

Summary of CWM2_OLAP_CUBE Subprograms

Summary of CWM2_OLAP_CUBE Subprograms

Table 9-1 CWM2_OLAP_CUBE Subprograms

Subprogram Description
ADD_DIMENSION_TO_CUBE Procedure on Adds a dimension to a cube.

page 9-4

CREATE_CUBE Procedure on page 9-4 Creates a cube.

DROP_CUBE Procedure on page 9-4 Drops a cube.

LOCK_CUBE Procedure on page 9-5 Locks a cube's metadata for update.
REMOVE_DIMENSION_FROM_CUBE Removes a dimension from a cube.

Procedure on page 9-5

SET_AGGREGATION_OPERATOR Procedure on Sets the aggregation operators for rolling

page 9-6 up the cube's data.

SET_CUBE_NAME Procedure on page 9-7 Sets the name of a cube.
SET_DEFAULT_CUBE_DIM_CALC_HIER Sets the default calculation hierarchy for a
Procedure on page 9-8 dimension of the cube.
SET_DESCRIPTION Procedure on page 9-8 Sets the description for a cube.
SET_DISPLAY_NAME Procedure on page 9-8 Sets the display name for a cube.
SET_MV_SUMMARY_CODE Procedure on Sets the format for materialized views
page 9-9 associated with a cube.
SET_%I—;ORT_DESCRIPTION Procedure on Sets the short description for a cube.

page >-

CWM2_OLAP_CUBE 9-3

ADD_DIMENSION_TO_CUBE Procedure

ADD DIMENSION_TO CUBE Procedure

Syntax

Parameters

This procedure adds a dimension to a cube.

ADD DIMENSION TO CUBE (
cube_owner
cube_name

dimension owner IN

dimension name

IN VARCHAR2,
IN VARCHAR2,
VARCHAR2,
IN VARCHAR2) ;

Table 9-2 ADD_DIMENSION_TO_CUBE Procedure Parameters

Parameter

Description

cube owner
cube name
dimension_owner

dimension_name

Owner of the cube.
Name of the cube.
Owner of the dimension to be added to the cube.

Name of the dimension to be added to the cube.

CREATE_CUBE Procedure

This procedure creates a new cube in the OLAP Catalog.

Syntax

Parameters

Descriptions and display properties must also be established as part of cube creation.
Once the cube has been created, you can override these properties by calling other
procedures in this package.

CREATE CUBE (
cube owner
cube_name
display name

short description IN

description

IN VARCHAR2,
IN VARCHARZ2,
IN VARCHAR2,
VARCHAR2,
IN VARCHAR2) ;

Table 9-3 CREATE_CUBE Procedure Parameters

Parameter

Description

cube owner

cube name

display name
short_description

description

Owner of the cube.

Name of the cube.

Display name for the cube.
Short description of the cube.

Description of the cube.

DROP_CUBE Procedure
This procedure drops a cube from the OLAP Catalog.

9-4 Oracle OLAP Reference

Summary of CWM2_OLAP_CUBE Subprograms

Syntax

Parameters

Note: When a cube is dropped, its associated measures are also
dropped. However, the cube's dimensions are not dropped. They
might be mapped within the context of a different cube.

DROP CUBE (
cube owner IN VARCHAR2,
cube name IN VARCHAR2) ;

Table 9-4 DROP_CUBE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube name Name of the cube.

LOCK_CUBE Procedure

Syntax

Parameters

This procedure locks the cube's metadata for update by acquiring a database lock on
the row that identifies the cube in the CWM2 model table.

LOCK _CUBE (
cube_owner IN VARCHAR2,
cube name IN VARCHAR2.
wait_for_lock IN BOOLEAN DEFAULT FALSE) ;

Table 9-5 LOCK_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

wait_for lock (Optional) Whether or not to wait for the cube to be available

when it is already locked by another user. If you do not specify a
value for this parameter, the procedure does not wait to acquire
the lock.

REMOVE_DIMENSION_FROM_CUBE Procedure

Syntax

This procedure removes a dimension from a cube.

REMOVE DIMENSION FROM CUBE (

cube owner IN VARCHAR2,
cube name IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2) ;

CWM2_OLAP_CUBE 9-5

ADD_DIMENSION_TO_CUBE Procedure

Parameters

Table 9-6 REMOVE_DIMENSION_FROM_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

dimension_ owner Owner of the dimension to be removed from the cube.
dimension_ name Name of the dimension to be removed from the cube.

SET AGGREGATION_OPERATOR Procedure

Syntax

Parameters

This procedure sets the aggregation operator for rolling up a cube's data over its
dimensions. The cube must be mapped to a star schema, with a storage type indicator
of 'LOWESTLEVEL'. (See "Joining Fact Tables with Dimension Tables" on page 2-9.)

The aggregation operators supported by the OLAP Catalog are listed in Table 1-10,
" Aggregation Operators" on page 1-16.

When no aggregation operator is specified, the operator is addition. The view ALL
OLAP2 AGGREGATION USES lists the nondefault aggregation operators that have
been specified for cubes. See "TALL_OLAP2_AGGREGATION_USES" on page 5-3.

SET AGGREGATION OPERATOR (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
aggop_spec IN VARCHAR2) ;

Table 9-7 SET_AGGREGATION_OPERATOR Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

aggop_spec A string that specifies the aggregation operators for the cube.

Each aggregation operator that you specify applies to all of the cube's
measures over a given hierarchy of a given dimension of the cube. If you
do not specify a hierarchy, the operator applies to all hierarchies of the
dimension. By default, the aggregation operator is addition.

Enclose the string in single quotes, and separate each dimension/operator
clause with a semicolon as follows:

'DIM:diml_owner.diml_name/AGGOP:operator;
DIM:dim2 owner.dim2 name/AGGOP:operator;..........

If the operator should apply to a specific hierarchy of a dimension, use the
optional 'HIER' clause after the DIM clause:

/HIER: hiernamel

For weighted operators, the 'AGGOP' clause may optionally be followed
with a WEIGHTBY clause:

/WEIGHTBY: ThlOwner. TblName.ColName;

NOTE: The cube's data will be aggregated in the order of the dimension
clauses in the aggregation specification.

9-6 Oracle OLAP Reference

Summary of CWM2_OLAP_CUBE Subprograms

Example

See Also

The following example specifies that data in the ANALYTIC CUBE should be
aggregated using addition over the Standard hierarchies of the Product and Channel
dimensions, using the MAX operator over the Standard hierarchy of Geography, and
using AVERAGE over the Year to Date hierarchy of the Time dimension. Any
unspecified hierarchies will use addition.

execute cwm2 olap cube.set aggregation operator
('XADEMO', 'ANALYTIC CUBE',
'DIM: XADEMO. PRODUCT/HIER : STANDARD/AGGOP : SUM;
DIM: XADEMO .GEOGRAPHY/HIER : STANDARD/AGGOP : MAX ;
DIM:XADEMO.TIME/HIER: YTD/AGGOP : AVERAGE;
DIM:XADEMO.CHANNEL /HIER : STANDARD/AGGOP: SUM; ') ;

The following example shows the same specification including a weighted operator
for Product.

execute cwm2 olap cube.set aggregation operator
('XADEMO', 'ANALYTIC CUBE',
'DIM:XADEMO . PRODUCT /HIER : STANDARD/AGGOP : SUM/

WEIGHTBY : XADEMO.XADEMO SALES VIEW.COSTS;
DIM:XADEMO.GEOGRAPHY/HIER : STANDARD/AGGOP : MAX ;
DIM:XADEMO.TIME/HIER:YTD/AGGOP: AVERAGE;
DIM:XADEMO.CHANNEL/HIER : STANDARD/AGGOP: SUM; ') ;

In the following example, aggregation operators are specified for all hierarchies of
each dimension.

execute cwm2_olap cube.set aggregation operator
("XADEMO', 'ANALYTIC_CUBE',
DIM:XADEMO.PRODUCT/AGGOP: SUM;
DIM:XADEMO.GEOGRAPHY/AGGOP : MAX ;
DIM:XADEMO.TIME/AGGOP : AVERAGE;
DIM:XADEMO.CHANNEL/AGGOP:SUM; ') ;

"Aggregating the Cube's Data in the Analytic Workspace" on page 1-4

SET_CUBE_NAME Procedure

Syntax

Parameters

This procedure sets the name for a cube.

SET_CUBE_NAME (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
set_cube name IN VARCHAR2) ;

Table 9-8 SET_CUBE_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube name Original name of the cube.
set_cube_ name New name for the cube.

CWM2_OLAP_CUBE 9-7

ADD_DIMENSION_TO_CUBE Procedure

SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure

This procedure sets the default calculation hierarchy for a dimension of this cube.

Syntax
SET DEFAULT CUBE DIM CALC HIER (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2) ;
Parameters

Table 9-9 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_owner Name of the cube.

dimension owner Owner of the dimension.

dimension name Name of the dimension.

hierarchy name Name of the hierarchy to be used by default for this
dimension.

SET _DESCRIPTION Procedure

This procedure sets the description for a cube.

Syntax
SET DESCRIPTION (
cube_owner IN VARCHAR2,
cube name IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 9-10 SET_DESCRIPTION Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_name Name of the cube.
description Description of the cube.

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a cube.

Syntax
SET DISPLAY NAME (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,

display name IN VARCHAR2);

9-8 Oracle OLAP Reference

Summary of CWM2_OLAP_CUBE Subprograms

Parameters

Table 9-11 SET_DISPLAY _NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_name Name of the cube.
display name Display name for the cube.

SET MV_SUMMARY_CODE Procedure

Syntax

Parameters

This procedure specifies the form of materialized views for this cube. Materialized
views may be in Grouping Set (groupingset) or Rolled Up (rollup) form.

In a materialized view in Rolled Up form, all the dimension key columns are
populated, and data may only be accessed when its full lineage is specified.

In a materialized view in Grouping Set form, dimension key columns may contain null
values, and data may be accessed simply by specifying one or more levels.

SET_MV_SUMMARY CODE (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
summary code IN VARCHAR2) ;

Table 9-12 SET_MV_SUMMARY_CODE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

summary code One of the following case-insensitive values:

= rollup, for Rolled Up form.

= groupingset, for Grouping Set form.

SET _SHORT_DESCRIPTION Procedure

Syntax

Parameters

This procedure sets the short description for a cube.

SET SHORT DESCRIPTION (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
short description IN VARCHAR2) ;

Table 9-13 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

CWM2_OLAP_CUBE 9-9

ADD_DIMENSION_TO_CUBE Procedure

Table 9-13 (Cont.) SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description
cube_name Name of the cube.
short_description Short description of the cube.

9-10 Oracle OLAP Reference

10

CWM2_OLAP_DELETE

The CWM2_OLAP_DELETE package provides procedures for deleting OLAP Catalog
metadata.

See Also: Chapter 13, "CWM2_OLAP_EXPORT"

This chapter discusses the following topics:
s Deleting OLAP Catalog Metadata
s Summary of CWM2_OLAP_DELETE Subprograms

Deleting OLAP Catalog Metadata

You can use the CWM2_OLAP_DELETE package to delete individual cubes, dimensions,
or measure folders, or the entire contents of the OLAP Catalog. CWM2_OLAP_DELETE
deletes CWM2 metadata created by the CWM2 PL/SQL packages and CWM1 metadata
created by Oracle Enterprise Manager. CWM2_OLAP_DELETE deletes both valid and
invalid metadata.

OLAP dimensions created in Oracle Enterprise Manager use Oracle Database
dimension objects. When deleting these CWM1 dimensions, you can choose whether or
not to delete the associated dimension objects. For more information on Oracle
dimension objects, see "CREATE DIMENSION" in the Oracle Database SQL Reference.

Rebuilding OLAP Catalog Metadata

To rebuild the OLAP Catalog metadata for a relational data source, you can export the
data and metadata, delete it, then import it. Use the CWM2 OLAP EXPORT package and
the Oracle Export utility to do the export. Use CWM2_ OLAP DELETE to delete the
metadata. Drop the source tables, then use the Oracle import utility to do the import.
See Chapter 13, "CWM2_OLAP_EXPORT".

To rebuild analytic workspaces, use the OLAP DML to export the contents of the
workspace to an EIF file, then import it in a new workspace. See "Procedure: Import a
workspace from a 9i Database into a 10g Database" on page 24-3. If you are running in
Oracle9i compatibility mode, you will need to re-enable the workspaces and re-create
the metadata for the workspaces. See "Enabling Relational Access" on page 1-17.

Using Wildcards to Identify Metadata Entities

You can use wildcard characters to delete cubes, dimensions, and measure folders
whose names meet certain criteria.

CWM2_OLAP_DELETE 10-1

Deleting OLAP Catalog Metadata

"non

Wildcard characters are the underscore "_" and the percent sign "%". An underscore
replaces any single character, and a percent sign replaces any zero or more characters.
An underscore, but not a percent sign, is also a legal character in a metadata owner or
entity name. Any underscore character in the owner or entity name is treated as a
wildcard, unless you precede it with a backslash "\" which acts as an escape character.

For example, the following command deletes all the cubes belonging to the owner
'‘GLOBAL'".

>execute cwm2_olap delete.delete cube('GLOBAL', '%', 'yes', 'yes');

The following command deletes all the cubes in the GLOBAL schema whose names
start with 'a’.

>execute cwm2 olap delete.delete cube('GLOBAL', 'a%', 'yes', 'yes');

If your database includes users TESTUSER1' and "TESTUSER?2', you could delete the
'TEST' cube belonging to each of these users with the following command.

>execute cwm2_olap delete.delete cube('TESTUSER ', 'TEST', 'yes', 'yes');

If your database includes users "TEST_USER1' and "TEST_USER?2', you could delete the
'TEST' cube belonging to each of these users with the following command.

>execute cwm2_olap delete.delete cube('TEST/ USER ', 'TEST', 'yes', 'yes');

Using a Command Report

Each procedure in the CWM2 OLAP DELETE package accepts a parameter that causes a
command report to be written to the SQL buffer. You can generate this report without
deleting any metadata. A separate parameter controls whether or not you actually
execute the delete commands.

See Also: "Directing Output" on page 2-13 for more information on
the SQL buffer and directing the output of OLAP procedures.

Depending on the metadata entities that you want to delete, the report will list
commands like the following.

EXECUTE cwm2_olap_cube.drop cube ('cubeowner', 'cubename')
EXECUTE cwm2_olap_dimension.drop_dimension ('dimowner', 'dimname')
EXECUTE cwm2_olap catalog.drop catalog ('"catalogowner', 'catalogname')

If you choose to drop the dimension objects associated with CWM1 dimensions, the
report will also include the following command.

EXECUTE cwm utility.Collect Garbage
Use the CWM2_OLAP_MANAGER.SET_ECHO_ON procedure to display the command

report on the screen. Use the CWM2_ OLAP_MANAGER.BEGIN_LOG procedure to direct
the report to a log file. See "Directing Output" on page 2-13 for more information.

As long as you have directed the output of the SQL buffer to the screen or to a file, you
will see messages describing the success or failure of each stored procedure call. If you
choose to delete a cube without generating a command report, you will see only the
following.

AMD-00003 dropped Cube "CUBEOWNER.CUBENAME"

10-2 Oracle OLAP Reference

Deleting OLAP Catalog Metadata

If you choose to delete a cube and generate a command report, you will see the
following.

EXECUTE cwm2_olap cube.Drop Cube ('CUBEOWNER', 'CUBENAME') ;
AMD-00003 dropped Cube "CUBEOWNER.CUBENAME"

CWM2_OLAP_DELETE 10-3

Summary of CWM2_OLAP_DELETE Subprograms

Summary of CWM2_OLAP_DELETE Subprograms

Table 10-1 CWM2_OLAP_DELETE

Subprogram

Description

DELETE_CUBE Procedure on page 10-5

DELETE_DIMENSION Procedure on
page 10-6

DELETE_MEASURE_CATALOG
Procedure on page 10-7

Deletes a cube in the OLAP Catalog.
Deletes a dimension in the OLAP Catalog.

Deletes a measure folder in the OLAP Catalog.

DELETE_OLAP_CATALOG Procedureon Deletes all the metadata in the OLAP Catalog.

page 10-8

10-4 Oracle OLAP Reference

Summary of CWM2_OLAP_DELETE Subprograms

DELETE CUBE Procedure

Syntax

Parameters

Example

This procedure can be used to delete a cube or group of cubes in the OLAP Catalog.
You can also use this procedure to list the commands that will delete the cubes. You
can choose to execute these commands or simply list them, without actually deleting
the cubes. See "Using a Command Report" on page 10-2.

You can identify a group of cubes by specifying wildcard characters in the cube
owner and cube_ name parameters. See "Using Wildcards to Identify Metadata
Entities" on page 10-1.

When you delete a cube, its dimensions are not deleted.

OLAP Catalog cubes are displayed in the view ALL_OLAP2_CUBES.

DELETE CUBE (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
delete report IN VARCHAR2,
delete cube IN VARCHAR2) ;

Table 10-2 DELETE_CUBE Procedure Parameters

Parameter Description

cube owner The owner of the cube. See "Using Wildcards to Identify
Metadata Entities" on page 10-1.

cube_name The name of the cube. See "Using Wildcards to Identify Metadata
Entities" on page 10-1.

delete report Whether or not to list the commands that will delete the cubes.
Specify 'YES' to list the commands. Otherwise specify 'NO'.

To display the output on the screen, use the CWM2_OLAP
MANAGER . SET_ECHO_ON procedure. To send the output to a file,
use the CWM2_OLAP_MANAGER.BEGIN_LOG procedure. See
"Directing Output" on page 2-13 for more information.

delete cube Whether or not to actually delete the cubes. Specify 'YES' to
delete the cubes. Otherwise specify 'NO'.

The following example first generates a command report for deleting the cwm2 cube
PRICE_COST in the GLOBAL schema, then actually deletes the cube.

>set serveroutput on size 1000000
>execute cwm2_olap manager.set_echo_on;
>select * from all olap2 cubes where OWNER ='GLOBAL';

OWNER CUBE_NAME NVALID DISPLAY NAME SHORT DESCRIPTION DESCRIPTION MV

GLOBAL PRICE_CUBE O PRICE CUBE RU
GLOBAL UNITS CUBE O UNITS CUBE RU
GLOBAL PRICE_COST N PRICE_COST GS

>execute cwm2 olap delete.delete cube('GLOBAL', 'PRICE COST', 'yes', 'no');

CWM2_OLAP_DELETE 10-5

DELETE_CUBE Procedure

EXECUTE cwm2_olap cube.Drop Cube ('GLOBAL', 'PRICE COST');
>select * from all olap2 cubes where OWNER ='GLOBAL';

OWNER CUBE NAME NVALID DISPLAY NAME SHORT DESCRIPTION DESCRIPTION MV

GLOBAL PRICE CUBE O PRICE_CUBE RU
GLOBAL UNITS CUBE O UNITS_CUBE RU
GLOBAL PRICE_COST N PRICE_COST GS

>execute cwm2_olap delete.delete cube('GLOBAL', 'PRICE COST', 'yes',6 'yes');

EXECUTE cwm2_olap cube.Drop Cube ('GLOBAL', 'PRICE COST');
AMD-00003 dropped Cube "GLOBAL.PRICE COST"

>select * from all olap2 cubes where OWNER ='GLOBAL';

OWNER CUBE NAME NVALID DISPLAY NAME SHORT DESCRIPTION DESCRIPTION MV

GLOBAL PRICE_CUBE O PRICE CUBE RU
GLOBAL UNITS CUBE O UNITS_CUBE RU

DELETE_DIMENSION Procedure

This procedure can be used to delete a dimension or group of dimensions in the OLAP
Catalog. You can also use this procedure to list the commands that will delete the
dimensions. You can choose to execute these commands or simply list them, without
actually deleting the dimensions. See "Using a Command Report" on page 10-2.

You can identify a group of dimensions by specifying wildcard characters in the
dimension owner and dimension name parameters. See "Using Wildcards to
Identify Metadata Entities" on page 10-1.

If the dimension was created in Oracle Enterprise Manager, it is a CWM1 dimension.
CWM1 dimensions have OLAP Catalog metadata and an associated Oracle dimension
object.

When you delete a dimension, all references within cubes to the dimension are also
deleted. This causes any cubes that used the dimension to become invalid.

OLAP Catalog dimensions are displayed in the view ALL_OLAP2_DIMENSIONS.

Syntax
DELETE DIMENSION (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
delete cwml dimension IN VARCHAR2,
delete report IN VARCHAR2,
delete dimension IN VARCHAR2) ;
Parameters

Table 10-3 DELETE_DIMENSION Procedure Parameters

Parameter Description

dimension owner The owner of the dimension. See "Using Wildcards to Identify
Metadata Entities" on page 10-1.

dimension_name The name of the dimension. See "Using Wildcards to Identify
Metadata Entities" on page 10-1.

10-6 Oracle OLAP Reference

Summary of CWM2_OLAP_DELETE Subprograms

Example

Table 10-3 (Cont.) DELETE_DIMENSION Procedure Parameters

Parameter Description

delete cwml_dimension Whether or not to delete the Oracle dimension object associated
with a CWM1 dimension. Specify 'YES' to delete the Oracle
dimension object. Otherwise specify 'NO'. This parameter has no
effect on CWM2 dimensions.

delete report Whether or not to list the commands that will delete the
dimensions. Specify "YES' to list the commands. Otherwise
specify 'NO'.
To display the output on the screen, use the CWM2_OLAP
MANAGER . SET_ECHO_ON procedure. To send the output to a file,
use the CWM2_OLAP MANAGER.BEGIN_LOG procedure. See
"Directing Output" on page 2-13 for more information.

delete_dimension Whether or not to actually delete the dimensions. Specify 'YES'
to delete the dimensions. Otherwise specify 'NO'.

The following example first generates a command report for deleting the PROD
dimension in the GLOBAL schema, then actually deletes the dimension. Since the
dimension is a CWM2 dimension, the third parameter to the DELETE DIMENSION
procedure is ignored.

>set serveroutput on size 1000000

>execute cwm2_olap manager.set echo on;

>execute cwm2_olap delete.delete dimension
('GLOBAL', 'PROD', 'mo','yes', 'mo');

EXECUTE cwm2_olap dimension.Drop Dimension('GLOBAL', 'PROD');

>execute cwm2 olap delete.delete dimension
('GLOBAL', 'PROD', 'no','yes',6 'yes');

EXECUTE cwm2_olap dimension.Drop_Dimension('GLOBAL', 'PROD');
AMD-00003 dropped Dimension "GLOBAL.PROD"

DELETE_MEASURE_CATALOG Procedure

Syntax

This procedure can be used to delete a measure folder or group of measure folders in
the OLAP Catalog. You can also use this procedure to list the commands that will
delete the measure folders. You can choose to execute these commands or simply list
them, without actually deleting the measure folders. See "Using a Command Report"
on page 10-2.

You can identify a group of measure folders by specifying wildcard characters in the
measure_folder name parameter. See "Using Wildcards to Identify Metadata
Entities" on page 10-1.

OLAP Catalog measure folders are displayed in the view ALL_OLAP2_CATALOGS.

DELETE MEASURE CATALOG (
measure_folder name IN VARCHAR2,
delete report IN VARCHAR2,
delete measure catalog IN VARCHAR2);

CWM2_OLAP_DELETE 10-7

DELETE_CUBE Procedure

Parameters

Example

Table 10-4 DELETE MEASURE_CATALOG Procedure Parameters

Parameter Description

measure_ folder name The name of the measure folder. See "Using Wildcards to
Identify Metadata Entities" on page 10-1.

delete report Whether or not to list the commands that will delete the measure
folders. Specify 'YES' to list the commands. Otherwise specify
'NO.
To display the output on the screen, use the CWM2_OLAP
MANAGER . SET_ECHO_ON procedure. To send the output to a file,
use the CWM2_OLAP MANAGER.BEGIN_LOG procedure. See
"Directing Output” on page 2-13.

delete measure_ Whether or not to actually delete the measure folders. Specify
catalog "YES' to delete the measure folder. Otherwise specify 'NO'.

The following example deletes the two measure folders whose names start with
'"TEMP".

>set serveroutput on size 1000000

>execute cwm2_olap manager.set echo on;

>execute cwm2_olap delete.delete measure catalog
('TEMP%', 'mo', 'yes');

AMD-0003 dropped Catalog "Templ"
AMD-0003 dropped Catalog "Temp2"

DELETE_OLAP_CATALOG Procedure

Syntax

This procedure can be used to delete all the metadata in the OLAP Catalog. You can
also use this procedure to list the commands that will drop each metadata entity. You
can choose to execute these commands or simply list them, without actually deleting
the metadata. See "Using a Command Report" on page 10-2.

OLAP Catalog metadata is displayed in the OLAP Catalog metadata views, described
in Chapter 5.

DELETE OLAP CATALOG (
delete cwml dimension IN VARCHAR2,
delete report IN VARCHAR2,
delete olap catalog IN VARCHAR2) ;

10-8 Oracle OLAP Reference

Summary of CWM2_OLAP_DELETE Subprograms

Parameters

Example

Table 10-5 DELETE _OLAP_CATALOG Procedure Parameters

Parameter

Description

delete_cwml_ dimension

delete report

delete olap catalog

Whether or not to delete the Oracle dimension object associated
with each CWM1 dimension. Specify 'YES' to delete the Oracle
dimension object. Otherwise specify 'NO'. This parameter has no
effect on CWM2 dimensions.

Whether or not to list the commands that will delete the
metadata. Specify 'YES' to list the commands. Otherwise specify
'NO".

To display the output on the screen, use the CWM2_OLAP
MANAGER . SET_ECHO_ON procedure. To send the output to a
file, use the CWM2_OLAP_MANAGER.BEGIN_LOG procedure. See
"Directing Output" on page 2-13 for more information.

Whether or not to actually delete all the metadata in the OLAP
Catalog. Specify 'YES' to delete the metadata. Otherwise specify
'NO'.

The following example deletes all the metadata in the OLAP Catalog without
generating a command report. Any associated Oracle dimension objects are not

deleted.

>set serveroutput on size 1000000
>execute cwm2_olap manager.set echo on;
>execute cwm2 olap delete.delete olap catalog('no', 'no', 'yes');

CWM2_OLAP_DELETE 10-9

DELETE_CUBE Procedure

10-10 Oracle OLAP Reference

11

CWM2_OLAP_DIMENSION

The CWM2_OLAP_DIMENSION package provides procedures for managing dimensions.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2"

This chapter discusses the following topics:

s Understanding Dimensions

= Example: Creating a CWM2 Dimension

s Summary of CWM2_OLAP_DIMENSION Subprograms

Understanding Dimensions

A dimension is an OLAP Catalog metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog. Logical OLAP dimensions
are fully described in.

Note: Dimensions in CWM2 map directly to columns in dimension
tables and have no relationship to Oracle database dimension objects.

Use the procedures in the CWM2_OLAP_ DIMENSION package to create, drop, and lock
CWM2 dimension entities and to specify descriptive information for display purposes.
To fully define a CWM2 dimension, follow the steps listed in "Creating a Dimension" on
page 2-2.

See Also: Oracle OLAP Application Developer’s Guide for more
information on dimensions and the OLAP Catalog metadata model.

Example: Creating a CWM2 Dimension

The following statement creates a CWM2 dimension entity, PRODUCT DIV, in the
JSMITH schema. The display name is Product, and the plural name is Products.
The short description is Prod, and the description is Product.

execute cwm2 olap dimension.create dimension
("JSMITH', 'PRODUCT DIM', 'Product', 'Products', 'Prod', 'Product');

The following statements change the short description to Product and the long
description to Product Dimension.

execute cwm2_olap_dimension.set short description

CWM2_OLAP_DIMENSION 11-1

Example: Creating a CWM2 Dimension

('JSMITH', 'PRODUCT DIM', 'Product');
execute cwm2 olap dimension.set description
('JSMITH', 'PRODUCT DIM', 'Product Dimension');

11-2 Oracle OLAP Reference

Summary of CWM2_OLAP_DIMENSION Subprograms

Summary of CWM2_OLAP_DIMENSION Subprograms

Table 11-1 CWM2_OLAP_DIMENSION Subprograms

Subprogram Description

CREATE_DIMENSION Procedure on page 11-4 Creates a dimension.
DROP_DIMENSION Procedure on page 11-4 Drops a dimension.
LOCK_DIMENSION Procedure on page 11-5 Locks the dimension metadata for update.

SET_DEFAULT_DISPLAY_HIERARCHY Sets the default hierarchy for a dimension.
Procedure on page 11-5

SET_DESCRIPTION Procedure on page 11-5 Sets the description for a dimension.

SET_DIMENSION_NAME Procedure on Sets the name of a dimension.
page 11-6

SET_DISPLAY_NAME Procedure on page 11-6 Sets the display name for a dimension.
SET_PLURAL_NAME Procedure on page 11-7 Sets the plural name for a dimension.

SET_SHORT_DESCRIPTION Procedure on Sets the short description for a dimension.
page 11-7

CWM2_OLAP_DIMENSION 11-3

CREATE_DIMENSION Procedure

CREATE_DIMENSION Procedure

This procedure creates a new dimension entity in the OLAP Catalog.

By default the new dimension is a normal dimension, but you can specify the value
TIME for the dimension type parameter to create a time dimension.

Descriptions and display properties must also be established as part of dimension
creation. Once the dimension has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE DIMENSION (

dimension owner IN VARCHAR2,

dimension name IN VARCHAR2,

display name IN VARCHAR2,

plural name IN VARCHAR2,

short description IN VARCHAR2,

description IN VARCHAR2,

dimension type IN VARCHAR2 DEFAULT NULL) ;
Parameters

Table 11-2 CREATE_DIMENSION Procedure Parameters

Parameter

Description

dimension_owner
dimension name
display name
plural name
short_description
description

dimension type

Owner of the dimension.

Name of the dimension.

Display name for the dimension.
Plural name for the dimension.
Short description of the dimension.
Description of the dimension.

(Optional) Type of the dimension. Specify the value TIME to
create a time dimension. If you do not specify this parameter, the
dimension is created as a normal dimension.

DROP_DIMENSION Procedure

This procedure drops a dimension entity from the OLAP Catalog. All related levels,
hierarchies, and dimension attributes are also dropped.

Syntax

DROP_DIMENSION (
dimension_owner
dimension_name

11-4 Oracle OLAP Reference

IN VARCHAR2,
IN VARCHAR2) ;

Summary of CWM2_OLAP_DIMENSION Subprograms

Parameters

Table 11-3 DROP_DIMENSION Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.

LOCK_DIMENSION Procedure

Syntax

Parameters

This procedure locks the dimension metadata for update by acquiring a database lock
on the row that identifies the dimension in the CWM2 model table.

LOCK _DIMENSION (

dimension owner IN VARCHAR2,
dimension name IN VARCHAR2.
wait for lock IN BOOLEAN DEFAULT FALSE);

Table 11-4 LOCK_DIMENSION Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension_ name Name of the dimension.

wait_for lock (Optional) Whether or not to wait for the dimension to be

available when it is already locked by another user. If you do not
specify a value for this parameter, the procedure does not wait to
acquire the lock.

SET_DEFAULT_DISPLAY_HIERARCHY Procedure

Syntax

Parameters

This procedure sets the default hierarchy to be used for display purposes.

SET DEFAULT DISPLAY HIERARCHY (

dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
hierarchy name IN VARCHAR2);

Table 11-5 SET_DEFAULT_DISPLAY HIERARCHY Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

hierarchy name Name of one of the dimension's hierarchies.

SET _DESCRIPTION Procedure

This procedure sets the description for a dimension.

CWM2_OLAP_DIMENSION 11-5

CREATE_DIMENSION Procedure

Syntax
SET DESCRIPTION (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 11-6 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
description Description of the dimension.

SET _DIMENSION_NAME Procedure

This procedure sets the name for a dimension.

Syntax
SET DIMENSION NAME (
dimension_owner IN VARCHAR2,
dimension_name IN VARCHAR2,
set_dimension name IN VARCHAR2);
Parameters

Table 11-7 SET_DIMENSION_NAME Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension_name Original name of the dimension.

set_dimension name New name for the dimension.

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a dimension.

Syntax
SET DISPLAY NAME (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
display name IN VARCHAR2) ;
Parameters

Table 11-8 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
display name Display name for the dimension.

11-6 Oracle OLAP Reference

Summary of CWM2_OLAP_DIMENSION Subprograms

SET_PLURAL_NAME Procedure

Syntax

Parameters

This procedure sets the plural name of a dimension.

SET PLURAL NAME (

dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
plural name IN VARCHAR2) ;

Table 11-9 SET_PLURAL_NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension_ name Name of the dimension.
plural name Plural name for the dimension.

SET _SHORT_DESCRIPTION Procedure

Syntax

Parameters

This procedure sets the short description for a dimension.

SET SHORT DESCRIPTION (

dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
short description IN VARCHAR2) ;

Table 11-10 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
short_description Short description of the dimension.

CWM2_OLAP_DIMENSION 11-7

CREATE_DIMENSION Procedure

11-8 Oracle OLAP Reference

12

CWM2_OLAP_DIMENSION_ATTRIBUTE

The CWM2_OLAP_DIMENSION ATTRIBUTE package provides procedures managing
dimension attributes.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2".

This chapter discusses the following topics:
s Understanding Dimension Attributes
= Example: Creating a Dimension Attribute

s Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Understanding Dimension Attributes

A dimension attribute is an OLAP Catalog metadata entity. This means that it is a
logical object, identified by name and owner, within the OLAP Catalog.

Dimension attributes define sets of level attributes for a dimension. Dimension
attributes may include level attributes for some or all of the dimension's levels. For
time dimensions, the dimension attributes end date and time span mustbe
defined for all levels.

Use the procedures in the CWM2_OLAP_DIMENSION_ATTRIBUTE package to create,
drop, and lock dimension attributes and to specify descriptive information for display
purposes.

Several dimension attribute names are reserved, because they have special significance
within CWM2. The level attributes comprising a reserved dimension attribute will be
mapped to columns containing specific information. The reserved dimension
attributes are listed in Table 12-1.

Table 12-1 Reserved Dimension Attributes

Dimension Attribute Description

Long Description A long description of the dimension member.

Short Description A short description of the dimension member.

End Date For a time dimension, the last date in a time period. (Required)

Time Span For a time dimension, the number of days in a time period.
(Required)

Prior Period For a time dimension, the time period before this time period.

CWM2_OLAP_DIMENSION_ATTRIBUTE 12-1

Example: Creating a Dimension Attribute

Table 12-1 (Cont.) Reserved Dimension Attributes

Dimension Attribute Description

Year Ago Period For a time dimension, the period a year before this time period.

ET Key For an embedded total dimension, the embedded total key, which
identifies the dimension member. (Required)

Parent ET Key For an embedded total dimension, the dimension member that is
the parent of the ET key. (Required)

Grouping ID For an embedded total dimension, the grouping ID (GID), which
identifies the hierarchical level for a row of the dimension table.
(Required)

Parent Grouping ID For an embedded total dimension, the dimension member that is
the parent of the grouping ID. (Required)

The parent dimension must already exist before you can create dimension attributes
for it. To fully define a dimension, follow the steps listed in "Creating a Dimension" on
page 2-2.

See Also:
» Chapter 16, "CWM2_OLAP_LEVEL_ATTRIBUTE"

» Oracle OLAP Application Developer’s Guide for more information
about dimension attributes and the OLAP Catalog metadata
model

Example: Creating a Dimension Attribute

The following statement creates a dimension attribute, PRODUCT DIM BRAND, for the
PRODUCT DIM dimension in the JSMITH schema. The display name is Brand. The
short description is Brand Name, and the description is Product Brand Name.

execute cwm2_olap dimension attribute.create dimension attribute
('JSMITH', 'PRODUCT DIM', 'PRODUCT DIM BRAND',
'Brand', 'Brand Name', 'Product Brand Name') ;

The following statement creates a dimension attribute, ' Short Description'’, for
the PRODUCT DIM dimension in the JSMITH schema. Short Descriptionisa
reserved dimension attribute.

execute cwm2 olap dimension attribute.create dimension attribute
('JSMITH', 'PRODUCT DIM', 'Short Description',
'Short Product Names', 'Short Desc Product',
'Short Name of Products', TRUE);

12-2 Oracle OLAP Reference

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Table 12-2 CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Subprogram Description

CREATE_DIMENSION_ATTRIBUTE Creates a dimension attribute.
Procedure on page 12-4

DROP_DIMENSION_ATTRIBUTE Procedure =~ Drops a dimension attribute.
on page 12-5

LOCK_DIMENSION_ATTRIBUTE Procedure Locks the dimension attribute for update.
on page 12-5

SET_DESCRIPTION Procedure on page 12-6 Sets the description for a dimension attribute.

SET_DIMENSION_ATTRIBUTE_NAME Sets the name of a dimension attribute.
Procedure on page 12-6

SET_DISPLAY_NAME Procedure on page 12-7 Sets the display name for a dimension

attribute.
SET_SHORT_DESCRIPTION Procedure on Sets the short description for a dimension
page 12-7 attribute.

CWM2_OLAP_DIMENSION_ATTRIBUTE 12-3

CREATE_DIMENSION_ATTRIBUTE Procedure

CREATE_DIMENSION_ATTRIBUTE Procedure

This procedure creates a new dimension attribute.

If the dimension attribute is reserved, you can specify the reserved name as the
dimension attribute name or as a type associated with a name that you specify. The
reserved dimension attributes are listed in Table 12-1, " Reserved Dimension
Attributes".

If the dimension attribute name should be reserved for mapping specific groups of
level attributes, you can set the RESERVED DIMENSION ATTRIBUTE argument to
TRUE. For more information, see Table 12-1, " Reserved Dimension Attributes".

Descriptions and display properties must also be established as part of dimension
attribute creation. Once the dimension attribute has been created, you can override
these properties by calling other procedures in this package.

Syntax
CREATE DIMENSION ATTRIBUTE (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension attribute name IN VARCHAR2,
display name IN VARCHAR2,
short description IN VARCHAR2,
description IN VARCHAR2,
type IN VARCHAR2) ;
use_name_as_type IN BOOLEAN DEFAULT FALSE) ;
Parameters

Table 12-3 CREATE_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

dimension attribute Name of the dimension attribute.

name

display name Display name for the dimension attribute.
short_description Short description of the dimension attribute.

12-4 Oracle OLAP Reference

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Table 12-3 (Cont) CREATE_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

description Description of the dimension attribute.
type This argument can be one of the following:
or

use_name_as_type

type

a VARCHAR? argument whose value is one of the
reserved names from Table 12-1, " Reserved Dimension
Attributes". Specify this argument if you want to create
your own name for a reserved dimension attribute.

use name_as_type

a BOOLEAN argument that defaults to FALSE. This
argument specifies whether or not the dimension
attribute name is a reserved name. If this argument is
TRUE, the value of the dimension attribute name
argument must be a reserved name from Table 12-1,

" Reserved Dimension Attributes".

If you do not specify a value for this argument, the dimension
attribute is not reserved.

DROP_DIMENSION_ATTRIBUTE Procedure

This procedure drops a dimension attribute.

Syntax

Parameters

DROP_DIMENSION ATTRIBUTE (
dimension_owner
dimension_name

IN VARCHAR2,
IN VARCHAR2,

dimension attribute name IN VARCHAR2);

Table 12-4 DROP_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter

Description

dimension_owner
dimension name

dimension attribute name

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute.

LOCK_DIMENSION_ATTRIBUTE Procedure

This procedure locks the dimension attribute for update by acquiring a database lock
on the row that identifies the dimension attribute in the CWM2 model table.

Syntax

LOCK DIMENSION ATTRIBUTE (
dimension owner
dimension name

IN VARCHAR2,
IN VARCHAR2,

dimension attribute name IN VARCHAR2,

wait_for_lock

IN BOOLEAN DEFAULT FALSE) ;

CWM2_OLAP_DIMENSION_ATTRIBUTE 12-5

CREATE_DIMENSION_ATTRIBUTE Procedure

Parameters

Table 12-5 LOCK_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

dimension attribute_ Name of the dimension attribute.

name

wait_for lock (Optional) Whether or not to wait for the dimension attribute

to be available when it is already locked by another user. If you
do not specify a value for this parameter, the procedure does
not wait to acquire the lock.

SET_DESCRIPTION Procedure

This procedure sets the description for a dimension attribute.

Syntax
SET_DESCRIPTION (
dimension_owner IN VARCHAR2,
dimension_name IN VARCHAR2,
dimension attribute name IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 12-6 SET_DESCRIPTION Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension_ name Name of the dimension.

dimension attribute name Name of the dimension attribute.

description Description of the dimension attribute.

SET_DIMENSION_ATTRIBUTE_NAME Procedure

This procedure sets the name for a dimension attribute.

If the dimension attribute is reserved, you can specify the reserved name as the
dimension attribute name or as a type associated with a name that you specify. The
reserved dimension attributes are listed in Table 12-1, " Reserved Dimension

Attributes".
Syntax
SET _DIMENSION ATTRIBUTE NAME (
dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
dimension_attribute name IN VARCHAR2,
set_dimension attribute name IN VARCHAR2,
type IN VARCHAR2)
use_name_as_type IN BOOLEAN DEFAULT FALSE) ;

12-6 Oracle OLAP Reference

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Parameters

Table 12-7 SET_DIMENSION__ATTRIBUTE_NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

dimension attribute Original name for the dimension attribute.
name

set_dimension_ New name for the dimension attribute.

attribute name

type This argument can be one of the following:

or

n
use_name_as_type

type

a VARCHAR? argument whose value is one of the reserved
names from Table 12-1, " Reserved Dimension Attributes".
Specify this argument if you want to create your own name
for a reserved dimension attribute.

use_name_as_type

a BOOLEAN argument that defaults to FALSE. This
argument specifies whether or not the dimension attribute
name is a reserved name. If this argument is TRUE, the
value of the dimension_attribute_name argument
must be a reserved name from Table 12-1, " Reserved
Dimension Attributes".

If you do not specify a value for this argument, the dimension
attribute is not reserved.

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a dimension attribute.

IN VARCHAR2,
IN VARCHAR2,

dimension_attribute name IN VARCHAR2,

Syntax
SET DISPLAY NAME (
dimension owner
dimension name
display name
Parameters

IN VARCHAR2) ;

Table 12-8 SET_DISPLAY_NAME Procedure Parameters

Parameter

Description

dimension_owner
dimension_name
dimension attribute name

display name

Owner of the dimension.
Name of the dimension.
Name of the dimension attribute.

Display name for the dimension attribute.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a dimension attribute.

CWM2_OLAP_DIMENSION_ATTRIBUTE 12-7

CREATE_DIMENSION_ATTRIBUTE Procedure

Syntax
SET SHORT DESCRIPTION (
dimension owner IN
dimension name IN
dimension_attribute_name IN
short_description IN
Parameters

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Table 12-9 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.

dimension attribute name Name of the dimension attribute.

short_description Short description of the dimension attribute.

12-8 Oracle OLAP Reference

13

CWM2_OLAP_EXPORT

The cWM2_OLAP_EXPORT package provides procedures you can use to export OLAP
Catalog metadata and its underlying fact tables and dimension tables. You can rebuild
the metadata and import the data within the same database instance or in a different
database instance.

See Also:

= "Original Export and Import" in Oracle Database Utilities.

s Chapter 10, "CWM2_OLAP_DELETE".

This chapter discusses the following topics:

s Exporting and Importing OLAP Catalog Metadata
» Creating a Metadata Command Script

» Creating an Export Parameter File

s Summary of CWM2_OLAP_Export Subprograms

Exporting and Importing OLAP Catalog Metadata

You can use the CWM2_OLAP_EXPORT package to export individual cubes or
dimensions or the entire contents of the OLAP Catalog. CWM2_OLAP_EXPORT exports
CWM2 metadata created by the CWM2 PL/SQL packages and CWM1 metadata created by
Oracle Enterprise Manager.

You can use CWM2_OLAP_EXPORT if your mapped data is stored in relational tables or
views of relational tables. If your data is stored in analytic workspaces, use the OLAP
DML to export and import the contents of the workspace. See "Procedure: Import a
workspace from a 9i Database into a 10g Database" on page 24-3.

Procedures in CWM2_OLAP_EXPORT produce a metadata command script and an
Export parameter file. The metadata command script contains the CWwM1, CWM2, and
Oracle Database commands that build the metadata. The Export parameter file can be
used with the Oracle Export utility to export the dimension tables and fact tables that
underlie the metadata.

Exporting and importing OLAP Catalog metadata is a four-step process:

1. Run the CWM2_OLAP_EXPORT procedure, specifying a metadata command script
file and an Export parameter file.

2. Run the Oracle Export utility, using the Export parameter file you produced in
Step 1. The Export utility will create an Export dump file.

CWM2_OLAP_EXPORT 13-1

Exporting and Importing OLAP Catalog Metadata

3. In the database instance where you want to re-create the data and metadata, run
the Oracle Import utility using the Export dump file you produced in Step 2. The
Import utility will import the underlying dimension tables and fact tables.

4, After running the Oracle Import utility, run the metadata command script you
produced in Step 1. This script will rebuild the metadata that maps to the
underlying dimension tables and fact tables.

Note: The database in which you re-create your OLAP Catalog
metadata must be OLAP-enabled. You can only use CWM2 OLAP
EXPORT to replicate your OLAP Catalog metadata within an
environment where the OLAP Catalog is already defined.

Rebuilding OLAP Catalog Metadata

To rebuild the OLAP Catalog metadata for a relational data source, you can export the
data and metadata, delete it, then import it. Use the CWM2_OLAP EXPORT package and
the Oracle Export utility to do the export. Use CWM2_OLAP_DELETE to delete the
metadata. Drop the tables, then use the Oracle import utility to do the import. See
Chapter 10, "CWM2_OLAP_DELETE".

To rebuild analytic workspaces, use the OLAP DML to export the contents of the
workspace to an EIF file, then import it in a new workspace. See "Procedure: Import a
workspace from a 9i Database into a 10g Database” on page 24-3. If you are running in
Oracle9i compatibility mode, you will need to re-enable the workspaces and re-create
the metadata for the workspaces. See "Enabling Relational Access" on page 1-17.

Using the Oracle Export and Import Utilities

The cWM2_OLAP_EXPORT package works with the Export and Import utilities that are
invoked with the exp and imp commands. In Oracle Database Utilities these are called
the original Export and Import utilities to differentiate them from the new Data Pump
Export and Import utilities available with Oracle Database 10g. The CWM2_OLAP_
EXPORT package was not designed to work with the new Data Pump Export and
Import utilities.

The original Export and Import utilities provide a simple way for you to transfer data
objects between Oracle databases, even if they reside on platforms with different
hardware and software configurations. When you run Export against an Oracle
database, objects (such as tables) are extracted, followed by their related objects (such
as indexes, comments, and grants), if any. The extracted data is written to an export
dump file. The Import utility reads the object definitions and table data from the dump
file.

The Export parameter file created by CWM2_OLAP_EXPORT specifies the tables where
your dimension and fact data are stored. The Export utility supports many options
and parameters. Refer to Oracle Database Utilities for specific information about
exporting and importing tables with exp and imp.

Using Wildcards to Identify Metadata Entities

You can use wildcard characters to export cubes and dimensions whose names meet
certain criteria.

"non

Wildcard characters are the underscore "_" and the percent sign "%". An underscore
replaces any single character, and a percent sign replaces any zero or more characters.
An underscore, but not a percent sign, is also a legal character in a metadata owner or

13-2 Oracle OLAP Reference

Creating a Metadata Command Script

entity name. Any underscore character in the owner or entity name is treated as a
wildcard, unless you precede it with a backslash "\" which acts as an escape character.

For example, the following command exports all the cubes belonging to the owner
'‘GLOBAL'".

>execute cwm2_olap export.export cube('GLOBAL', '%', '/scripts_dir',
'global cmd file', 'global tbl file');

The following command exports all the cubes in the GLOBAL schema whose names
start with 'a'.

>execute cwm2_olap export.export cube('GLOBAL', 'a%', '/scripts dir',
'global cmd file', 'global tbl file');

If your database includes users TESTUSER1' and "TESTUSER?2', you could export the
'TEST' cube belonging to each of these users with the following command.

>execute cwm2_olap export.export cube('TESTUSER ', 'TEST', '/scripts_ dir',
'global cmd file', 'global tbl file');

If your database includes users TEST_USER1' and 'TEST_USER2', you could export
the 'TEST' cube belonging to each of these users with the following command.

>execute cwm2_olap export.export cube('TEST/ USER ', 'TEST', '/scripts dir',
'global cmd file', 'global tbl file');

Creating a Metadata Command Script

Each procedure in the CWM2_ OLAP EXPORT package accepts a parameter that
identifies a metadata command script file. The contents of this script are the
commands that build the metadata.

The commands in the command script file may be CWM2 procedure calls, CWM1
procedure calls, CREATE DIMENSION statements to re-create the dimension objects
associated with cwM1 dimensions, and CREATE VIEW statements to re-create the
views when the metadata is mapped to views of the source dimension tables and fact
tables.

You can create a metadata command script without creating an Export parameter file.
However, if you run the script in a different database without importing or re-creating
the source tables, the metadata will be invalid.

Example 13-1 shows the metadata command script for the GLOBAL. PRODUCT
dimension. This dimension was created in Enterprise Manager, therefore it has an
associated Oracle dimension object and its metadata was defined using the CWM1 APIs.

Example 13-1 Metadata Command Script for GLOBAL.PRODUCT

The following command creates a metadata command script for the
GLOBAL.PRODUCT dimension. It does not create an Export parameter file.

>EXECUTE cwm2_olap_export.export dimension
('GLOBAL', 'PRODUCT', '/myscripts', 'GLOBALPROD CMD SCRIPT.SQL');

To re-create the metadata, transfer the GLOBALPROD CMD_ SCRIPT.SQL file to a
directory that can be accessed by the database. In SQL*Plus, navigate to this directory
and run the script with a command like the following.

>@GLOBALPROD CMD_SCRIPT.SQL

The contents of GLOBALPROD CMD_SCRIPT.SQL are shown as follows.

CWM2_OLAP_EXPORT 13-3

Creating a Metadata Command Script

CREATE DIMENSION GLOBAL.PRODUCT
LEVEL CLASS IS (GLOBAL.PRODUCT DIM.CLASS ID)
LEVEL FAMILY IS (GLOBAL.PRODUCT DIM.FAMILY ID)
LEVEL ITEM IS (GLOBAL.PRODUCT DIM.ITEM ID)
LEVEL TOTAL PRODUCT IS (GLOBAL.PRODUCT DIM.TOTAL PRODUCT ID)
HIERARCHY PRODUCT ROLLUP
(ITEM CHILD OF

FAMILY CHILD OF
CLASS CHILD OF
FAMILY CHILD OF
CLASS CHILD OF
TOTAL PRODUCT
)
ATTRIBUTE CLASS DETERMINES
(CLASS DsSC
)
ATTRIBUTE FAMILY DETERMINES
(FAMILY DSC
)
ATTRIBUTE ITEM DETERMINES
(ITEM DSC
)
ATTRIBUTE TOTAL PRODUCT DETERMINES
(TOTAL_PRODUCT DSC
)
ATTRIBUTE ITEM DETERMINES
(ITEM PACKAGE ID
)
ATTRIBUTE CLASS DETERMINES
(CLASS_DSC
)
ATTRIBUTE FAMILY DETERMINES
(FAMILY DSC
)
ATTRIBUTE ITEM DETERMINES
(ITEM DSC
)
ATTRIBUTE TOTAL PRODUCT DETERMINES
(TOTAL_PRODUCT DSC
)

i

EXECUTE cwm olap dimension.Set Description('GLOBAL', 'PRODUCT', '');

EXECUTE cwm olap dimension.Set Display Name ('GLOBAL', 'PRODUCT', 'Product');
EXECUTE cwm olap dimension.Set Plural Name ('GLOBAL', 'PRODUCT', 'PRODUCT');

EXECUTE cwm olap dim attribute.Create Dimension Attribute

('GLOBAL', 'PRODUCT', 'Long Description', 'Long Description', '');

EXECUTE cwm olap dim attribute.Create Dimension Attribute
('"GLOBAL', 'PRODUCT', 'Package', 'Package', '');
EXECUTE cwm olap dim attribute.Create Dimension Attribute

('GLOBAL', 'PRODUCT', 'Short Description', 'Short Description', '');
EXECUTE cwm olap hierarchy.Set Description('GLOBAL', 'PRODUCT', 'PRODUCT ROLLUP', '');
EXECUTE cwm olap hierarchy.Set Display Name ('GLOBAL', 'PRODUCT', 'PRODUCT ROLLUP', 'Product

Rollup');

EXECUTE cwm olap dimension.Set Default Display Hierarchy('GLOBAL', 'PRODUCT',

EXECUTE cwm olap level.Set Description('GLOBAL', 'PRODUCT', 'CLASS',
EXECUTE cwm olap level.Set Display Name ('GLOBAL', 'PRODUCT', 'CLASS'
EXECUTE cwm olap level.Set Description('GLOBAL', 'PRODUCT', 'FAMILY'

'PRODUCT ROLLUP') ;
")

, 'Class');

)G

EXECUTE cwm olap level.Set Display Name ('GLOBAL', 'PRODUCT', 'FAMILY', 'Family');

EXECUTE cwm olap level.Set Description('GLOBAL', 'PRODUCT', 'ITEM',
EXECUTE cwm olap level.Set Display Name ('GLOBAL', 'PRODUCT', 'ITEM',

13-4 Oracle OLAP Reference

")
'Ttem') ;

Creating an Export Parameter File

EXECUTE cwm olap level.Set Description('GLOBAL', 'PRODUCT', 'TOTAL PRODUCT', '');
EXECUTE cwm olap level.Set Display Name ('GLOBAL', 'PRODUCT', 'TOTAL PRODUCT', 'Total Product');
EXECUTE cwm olap level attribute.Set Name ('GLOBAL', 'PRODUCT', 'CLASS', 'CLASS DSC', 'CLASS DSC');
EXECUTE cwm olap dim attribute.Add Level Attribute
('GLOBAL', 'PRODUCT', 'Short Description', 'CLASS', 'CLASS DSC');
EXECUTE cwm_olap level attribute.Set Description('GLOBAL', 'PRODUCT', 'CLASS', 'CLASS DSC', '');
EXECUTE cwm olap level attribute.Set Display Name ('GLOBAL', 'PRODUCT', 'CLASS', 'CLASS DSC', '');
EXECUTE cwm olap level attribute.Set Name
('GLOBAL', 'PRODUCT', 'FAMILY', 'FAMILY DSC', 'FAMILY DSC');
EXECUTE cwm olap dim attribute.Add Level Attribute
('GLOBAL', 'PRODUCT', 'Short Description', 'FAMILY', 'FAMILY DSC');
EXECUTE cwm olap_level attribute.Set Description
('GLOBAL', 'PRODUCT', 'FAMILY', 'FAMILY DSC', '');
EXECUTE cwm olap level attribute.Set Display Name
('GLOBAL', 'PRODUCT', 'FAMILY', 'FAMILY DSC', '');
EXECUTE cwm olap level attribute.Set Name ('GLOBAL', 'PRODUCT', 'ITEM', 'ITEM DSC', 'ITEM DSC');
EXECUTE cwm_olap_dim attribute.Add Level Attribute ('GLOBAL', 'PRODUCT', 'Short_
Description', 'ITEM', 'ITEM DSC');
EXECUTE cwm olap level attribute.Set Description('GLOBAL', 'PRODUCT', 'ITEM', 'ITEM DSC', '');
EXECUTE cwm olap level attribute.Set Display Name ('GLOBAL', 'PRODUCT', 'ITEM', 'ITEM DSC', '');
EXECUTE cwm olap level attribute.Set Name ('GLOBAL', 'PRODUCT', 'ITEM', 'ITEM PACKAGE ID', 'ITEM
PACKAGE ID');
EXECUTE cwm olap dim attribute.Add Level Attribute('GLOBAL', 'PRODUCT', 'Package', 'ITEM', 'ITEM
PACKAGE_ID') ;
EXECUTE cwm olap level attribute.Set Description('GLOBAL', 'PRODUCT', 'ITEM', 'ITEM PACKAGE ID',
")
EXECUTE cwm_olap_level attribute.Set Display Name('GLOBAL', 'PRODUCT', 'ITEM', 'ITEM PACKAGE ID',
")
EXECUTE cwm_olap_level attribute.Set_Name
('GLOBAL', '"PRODUCT', 'TOTAL_PRODUCT', 'TOTAL PRODUCT DSC', 'TOTAL PRODUCT DSC') ;
EXECUTE cwm olap dim attribute.Add Level Attribute
('GLOBAL', 'PRODUCT', 'Short Description', 'TOTAL PRODUCT', 'TOTAL PRODUCT DSC');
EXECUTE cwm olap level attribute.Set Description
('GLOBAL', 'PRODUCT', 'TOTAL PRODUCT', 'TOTAL PRODUCT DSC', '');
EXECUTE cwm olap level attribute.Set Display Name
('GLOBAL', 'PRODUCT', 'TOTAL PRODUCT', 'TOTAL PRODUCT DSC','');

Creating an Export Parameter File

Each procedure in the CWM2_ OLAP EXPORT package accepts a parameter that
identifies an Export parameter file. The contents of this file are a series of comments
and a table specification that can be used by the Oracle Export utility.

You can create an Export parameter file without creating a metadata command script.
You can use the parameter file to export and import the base tables, but without a
metadata command script you will not be able to restore the metadata.

Example 13-2 shows the Export parameter file for the GLOBAL.PRODUCT
dimension.

Example 13-2 Export Parameter File for GLOBAL.PRODUCT

The following command creates an Export parameter file for the GLOBAL.PRODUCT
dimension. It does not create a metadata command script file.

>execute cwm2_olap_export.export dimension
('GLOBAL', 'PRODUCT','/myuser/scripts',' ' ,'GLOBALPROD EXP PARAM.DAT');

To export the dimension table used by GLOBAL.PRODUCT, run the Export utility in
SQL*Plus using a command like the following.

CWM2_OLAP_EXPORT 13-5

Creating an Export Parameter File

>exp username/password PARFILE=GLOBALPROD EXP_PARAM.DAT

The contents of GLOBALPROD EXP_PARAM.DAT are shown as follows.

#Export Dimension: GLOBAL.PRODUCT Directory: /myuser/scripts Command File:

#Table File: GLOBALPROD_EXP_PARAM.DAT

#

#ORACLE RDBMS EXPORT UTILITY PARFILE

#

Cube "GLOBAL.PRICE CUBE"

Dimension "GLOBAL.PRODUCT" Mapped to Table "GLOBAL.PRODUCT DIM"

#

Cube "GLOBAL.UNITS_CUBE"

Dimension "GLOBAL.PRODUCT" Mapped to Table "GLOBAL.PRODUCT DIM"

TABLES = (

GLOBAL . PRODUCT_DIM

)
To re-create the dimension table for GLOBAL.PRODUCT, transfer the dump file
generated by the Export utility (by default, expdat . dmp) to a directory that can be
accessed by the database. In SQL*Plus, navigate to this directory and run the Import
utility with a command like the following.

>imp username/password FILE=expdat.dmp

13-6 Oracle OLAP Reference

Summary of CWM2_OLAP_Export Subprograms

Summary of CWM2_OLAP_Export Subprograms

Table 13-1 CWM2_OLAP_DELETE

Subprogram Description

EXPORT_CUBE Procedure on page 13-8 Exports a cube in the OLAP Catalog.

EXPORT_DIMENSION Procedure on Exports a dimension in the OLAP Catalog.
page 13-8

EXPORT_OLAP_CATALOG Procedure Exports all the metadata in the OLAP Catalog.
on page 13-9

CWM2_OLAP_EXPORT 13-7

EXPORT_CUBE Procedure

EXPORT _CUBE Procedure

Syntax

Parameters

Example

EXPORT CUBE produces a metadata command script and an Export parameter file for
a cube that is based on relational tables.

You can use the Export parameter file to export the underlying fact and dimension
tables to a dump file, then you can import the dump file to re-create the tables. You can
run the metadata command script to rebuild the metadata that maps to the tables. See
"Exporting and Importing OLAP Catalog Metadata" on page 13-1.

You can identify a group of cubes to export by specifying wildcard characters in the
cube_ owner and cube name parameters. See "Using Wildcards to Identify Metadata
Entities" on page 13-2.

EXPORT CUBE includes each of the cube's dimensions. You do not have to export the
dimensions separately.

OLAP Catalog cubes are displayed in the view ALL_OLAP2_CUBES.

EXPORT CUBE (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
directory name IN VARCHAR2,

metadata command file name IN VARCHAR2,
export parameter file name IN VARCHAR2);

Table 13-2 EXPORT_CUBE Procedure Parameters

Parameter Description

cube_owner The owner of the cube. See "Using Wildcards to Identify Metadata
Entities" on page 13-2.

cube_name The name of the cube. See "Using Wildcards to Identify Metadata
Entities" on page 13-2.

directory name The directory where the metadata command file and the Export
parameter file will be written.

metadata_command_ The name of the metadata command file that will contain the SQL
file name and PL/SQL commands for rebuilding the metadata.

export_parameter _ The name of the Export parameter file that will identify the
file name dimension tables and fact tables for the Oracle Export utility.

See "Creating a Metadata Command Script" and "Creating an Export Parameter File"
on page 13-5. These examples illustrate the process of exporting and importing a
dimension. The process is exactly the same for a cube.

EXPORT _DIMENSION Procedure

EXPORT_DIMENSION produces a metadata command script and an Export parameter
file for a dimension that is based on relational dimension tables.

You can use the Export parameter file to export the underlying dimension tables to a
dump file, then you can import the dump file to re-create the tables. You can run the

13-8 Oracle OLAP Reference

Summary of CWM2_OLAP_Export Subprograms

metadata command script to rebuild the metadata that maps to the tables. See
"Exporting and Importing OLAP Catalog Metadata" on page 13-1.

You can identify a group of dimensions to export by specifying wildcard characters in
the dimension_owner and dimension_name parameters. See "Using Wildcards to
Identify Metadata Entities" on page 13-2.

Dimensions are exported along with cubes. You only need to use EXPORT
DIMENSION if the dimension does not participate in a cube or if the owning cube will
not be exported.

OLAP Catalog dimensions are displayed in the view ALL_OLAP2_DIMENSIONS.

Syntax
EXPORT DIMENSION (
dimension_owner IN VARCHAR2,
dimension name IN VARCHAR2,
directory name IN VARCHAR2,
metadata command file name IN VARCHAR2,
export parameter file name IN VARCHAR2);
Parameters
Table 13-3 EXPORT_DIMENSION Procedure Parameters
Parameter Description
dimension owner The owner of the dimension. See "Using Wildcards to Identify
Metadata Entities" on page 13-2.
dimension_ name The name of the dimension. See "Using Wildcards to Identify
Metadata Entities" on page 13-2.
directory name The directory where the metadata command file and the Export
parameter file will be written.
metadata_command_ The name of the metadata command file that will contain the
file name SQL and PL/SQL commands for rebuilding the metadata.
export_ parameter The name of the Export parameter file that will identify the
file name dimension tables for the Oracle Export utility.
Example

See "Creating a Metadata Command Script" and "Creating an Export Parameter File"
on page 13-5.

EXPORT _OLAP_CATALOG Procedure

EXPORT OLAP_CATALOG produces a metadata command script and an Export
parameter file for all the metadata (both CWM1 and cWM2) in the OLAP Catalog.

You can use the Export parameter file to export the underlying fact and dimension
tables to a dump file, then you can import the dump file to re-create the tables. You can
run the metadata command script to rebuild the metadata that maps to the tables. See
"Exporting and Importing OLAP Catalog Metadata" on page 13-1.

OLAP Catalog metadata is displayed in the OLAP Catalog metadata views, described
in Chapter 5.

Syntax

EXPORT OLAP CATALOG (

CWM2_OLAP_EXPORT 13-9

EXPORT_CUBE Procedure

directory name IN VARCHAR2,
metadata command file name IN VARCHAR2,
export parameter file name IN VARCHAR2);

Parameters
Table 13-4 EXPORT_OLAP_CATALOG Procedure Parameters
Parameter Description
directory name The directory where the metadata command file and the Export

parameter file will be written.

metadata_ command The name of the metadata command file that will contain the
file name SQL and PL/SQL commands for rebuilding the metadata
export_parameter The name of the Export parameter file that will identify the fact
file name and dimension tables for the Oracle Export utility.

Example

"

See "Creating a Metadata Command Script" and "Creating an Export Parameter File
on page 13-5. These examples illustrate the process of exporting and importing a
dimension. To use EXPORT OLAP CATALOG, follow the same procedure without
specifying a dimension name.

13-10 Oracle OLAP Reference

14

CWM2_OLAP_HIERARCHY

The CWM2_OLAP_HIERARCHY package provides procedures managing hierarchies.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2".

This chapter discusses the following topics:
s Understanding Hierarchies
= Example: Creating a Hierarchy

s Summary of CWM2_OLAP_HIERARCHY Subprograms

Understanding Hierarchies

A hierarchy is an OLAP Catalog metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Hierarchies define parent-child relationships between sets of levels in a dimension.
There can be multiple hierarchies associated with a single dimension, and the same
level can be used in multiple hierarchies. Hierarchies are fully described in.

Use the procedures in the CWM2_OLAP_HIERARCHY package to create, drop, and lock
hierarchies and to specify descriptive information for display purposes.

The parent dimension must already exist in the OLAP Catalog before you can create
hierarchies for it.

See Also:

s Chapter 15, "CWM2_OLAP_LEVEL"

» Oracle OLAP Application Developer’s Guide for more information
about hierarchies and the OLAP Catalog metadata model

Example: Creating a Hierarchy

The following statement creates a dimension hierarchy PRODUCT_DIM_ROLLUP, for
the PRODUCT DIM dimension in the JSMITH schema. The display name is Standard.
The short description is Std Product, and the description is Standard Product
Hierarchy. The solved code is SOLVED LEVEL-BASED, meaning that this hierarchy
will be mapped to an embedded total dimension table, and that the fact table
associated with this dimension hierarchy will store fully solved data.

execute cwm2 olap hierarchy.create hierarchy
('JSMITH', 'PRODUCT DIM', 'PRODUCT DIM ROLLUP',

CWM2_OLAP_HIERARCHY 14-1

Example: Creating a Hierarchy

'Standard', 'Std Product', 'Standard Product Hierarchy',
'SOLVED LEVEL-BASED') ;

14-2 Oracle OLAP Reference

Summary of CWM2_OLAP_HIERARCHY Subprograms

Summary of CWM2_OLAP_HIERARCHY Subprograms

Table 14-1 CWM2_OLAP_HIERARCHY Subprograms

Subprogram Description

CREATE_HIERARCHY Procedure on Creates a hierarchy.

page 14-4

DROP_HIERARCHY Procedure on Drops a hierarchy.

page 14-4

LOCK_HIERARCHY Procedure on Locks the hierarchy for update.

page 14-5

SET_DESCRIPTION Procedure on Sets the description for a hierarchy.
page 14-5

SET_DISPLAY_NAME Procedure on Sets the display name for a hierarchy.
page 14-6

SET_HIERARCHY_NAME Procedure on Sets the name of a hierarchy.

page 14-6

SET_SHORT_DESCRIPTION Procedure on Sets the short description for a hierarchy.
page 14-6

SET_SOLVED_CODE Procedure on Sets the solved code for a hierarchy.
page 14-7

CWM2_OLAP_HIERARCHY 14-3

CREATE_HIERARCHY Procedure

CREATE_HIERARCHY Procedure

This procedure creates a new hierarchy in the OLAP Catalog.

You must specify descriptions and display properties as part of hierarchy creation.
Once the hierarchy has been created, you can override these properties by calling other
procedures in the CWM2 OLAP HIERARCHY package.

Syntax
CREATE HIERARCHY (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
display name IN VARCHAR2,
short description IN VARCHAR2,
description IN VARCHAR2,
solved code IN VARCHAR2);
Parameters

Table 14-2 CREATE_HIERARCHY Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

hierarchy name Name of the hierarchy.

display name Display name for the hierarchy.

short_description Short description of the hierarchy.

description Description of the hierarchy.

solved_code Specifies whether or not the hierarchy includes embedded totals

and whether it is mapped to a level-based dimension table or a
parent-child dimension table. For information about mapping
hierarchies with different solved codes, see "Joining Fact Tables
with Dimension Tables" on page 2-9.

Values for this parameter are:

= UNSOLVED LEVEL-BASED, for ahierarchy that contains no
embedded totals and is stored in a level-based dimension
table

= SOLVED LEVEL-BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table

= SOLVED VALUE-BASED, for a hierarchy that contains
embedded totals and is stored in a parent-child dimension
table

DROP_HIERARCHY Procedure
This procedure drops a hierarchy from the OLAP Catalog.

Syntax
DROP_HIERARCHY (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,

14-4 Oracle OLAP Reference

Summary of CWM2_OLAP_HIERARCHY Subprograms

Parameters

hierarchy name IN VARCHAR2) ;

Table 14-3 DROP_HIERARCHY Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.
hierarchy name Name of the hierarchy.

LOCK_HIERARCHY Procedure

Syntax

Parameters

This procedure locks the hierarchy metadata for update by acquiring a database lock
on the row that identifies the hierarchy in the CWM2 model table.

LOCK_HIERARCHY (

dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
wait_for_lock IN BOOLEAN DEFAULT FALSE) ;

Table 14-4 LOCK_HIERARCHY Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

hierarchy name Name of the hierarchy.

wait_for lock (Optional) Whether or not to wait for the hierarchy to be available

when it is already locked by another user. If you do not specify a
value for this parameter, the procedure does not wait to acquire
the lock.

SET _DESCRIPTION Procedure

Syntax

Parameters

This procedure sets the description for a hierarchy.

SET DESCRIPTION (
dimension owner IN VARCHAR2,

dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
description IN VARCHAR2) ;

Table 14-5 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

CWM2_OLAP_HIERARCHY 14-5

CREATE_HIERARCHY Procedure

Table 14-5 (Cont) SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension_ name Name of the dimension.
hierarchy name Name of the hierarchy.
description Description of the hierarchy.

SET DISPLAY NAME Procedure

This procedure sets the display name for a dimension.

Syntax
SET DISPLAY NAME (
dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
hierarchy name IN VARCHAR2,
display name IN VARCHAR2) ;
Parameters

Table 14—6 SET_DISPLAY _NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
hierarchy name Name of the hierarchy.
display name Display name for the hierarchy.

SET_HIERARCHY_NAME Procedure

This procedure sets the name for a hierarchy.

Syntax
SET HIERARCHY NAME (
dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
hierarchy name IN VARCHAR2,
set_hierarchy name IN VARCHAR2);
Parameters

Table 14-7 SET_HIERARCHY_NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
hierarchy name Original name for the hierarchy.

set_hierarchy name New name for the hierarchy.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a hierarchy.

14-6 Oracle OLAP Reference

Summary of CWM2_OLAP_HIERARCHY Subprograms

Syntax
SET SHORT DESCRIPTION (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHARZ2,
short description IN VARCHAR2) ;
Parameters

Table 14-8 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
hierarchy name Name of the hierarchy.
short_description Short description of the hierarchy.

SET_SOLVED_CODE Procedure

This procedure sets the solved code for a hierarchy. The solved code specifies whether
or not the data dimensioned by this hierarchy includes embedded totals and whether
it is mapped to a level-based dimension table or a parent-child dimension table. If
mapped to a parent-child dimension table, it cannot be accessed by the OLAP APL

For more information on mapping solved and unsolved data, see "Joining Fact Tables
with Dimension Tables" on page 2-9.

Syntax
SET SOLVED CODE (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
solved code IN VARCHAR2) ;
Parameters

Table 14-9 SET_SOLVED CODE Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.

hierarchy name Name of the hierarchy.

CWM2_OLAP_HIERARCHY 14-7

CREATE_HIERARCHY Procedure

Table 14-9 (Cont) SET_SOLVED CODE Procedure Parameters

Parameter Description

solved_code Specifies whether or not the hierarchy includes embedded totals and
whether it is mapped to a level-based dimension table or a
parent-child dimension table. For information about mapping
hierarchies with different solved codes, see "Joining Fact Tables with
Dimension Tables" on page 2-9.

Values for this parameter are:

= UNSOLVED LEVEL-BASED, for a hierarchy that contains no
embedded totals and is stored in a level-based dimension table

= SOLVED LEVEL-BASED, for a hierarchy that contains embedded
totals, has a grouping ID, and is stored in a level-based dimension
table

= SOLVED VALUE-BASED, for a hierarchy that contains embedded
totals and is stored in a parent-child dimension table

14-8 Oracle OLAP Reference

15

CWM2_OLAP_LEVEL

The CWM2_OLAP_LEVEL package provides procedures for managing levels.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2".

This chapter discusses the following topics:
s Understanding Levels
= Example: Creating a Level

s Summary of CWM2_OLAP_LEVEL Subprograms

Understanding Levels

A level is an OLAP Catalog metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Dimension members are organized in levels that map to columns in dimension tables
or views. Levels are typically organized in hierarchies. Every dimension must have at
least one level. Levels are fully described in

Use the procedures in the CWM2_OLAP_LEVEL package to create, drop, and lock levels,
to assign levels to hierarchies, and to specify descriptive information for display
purposes.

The parent dimension and the parent hierarchy must already exist in the OLAP
Catalog before you can create a level.

See Also:

s Chapter 14, "CWM2_OLAP_HIERARCHY"

» Oracle OLAP Application Developer’s Guide for more information
about levels and the OLAP Catalog metadata model

Example: Creating a Level

The following statements create four levels for the PRODUCT DIM dimension and
assign them to the PRODUCT_DIM_ROLLUP hierarchy.

execute cwm2_olap level.create level
('JSMITH', 'PRODUCT DIM', 'TOTALPROD LVL',
'Total Product', 'All Products', 'Total',
'Equipment and Parts of standard product hierarchy!');
execute cwm2_olap level.create level

CWM2_OLAP_LEVEL 15-1

Example: Creating a Level

('JSMITH', 'PRODUCT DIM', 'PROD CATEGORY LVL',
'Product Category', 'Product Categories', 'Category',
'Categories of standard product hierarchy');

execute cwm2_olap level.create level

('JSMITH', 'PRODUCT DIM', 'PROD SUBCATEGORY LVL',
'Product Sub-Category', 'Product Sub-Categories', 'Sub-Category',
'Sub-Categories of standard product hierarchy');

execute cwm2_olap level.create level

('JSMITH', 'PRODUCT DIM', 'PRODUCT LVL',

'Product', 'Products', 'Product',
'Individual products of standard product hierarchy');

execute cwm2_olap_level.add level to hierarchy
('JSMITH', 'PRODUCT DIM', 'PRODUCT DIM ROLLUP',
'"PRODUCT_LVL', 'PROD SUBCATEGORY LVL');

execute cwm2 olap level.add level to hierarchy
('JSMITH', 'PRODUCT DIM', 'PRODUCT DIM ROLLUP',
"PROD_SUBCATEGORY LVL', 'PROD_CATEGORY LVL');

execute cwm2_olap_level.add level to hierarchy
('JSMITH', 'PRODUCT DIM', 'PRODUCT DIM ROLLUP',
'"PROD_CATEGORY LVL', 'TOTALPROD LVL');

execute cwm2 olap level.add level to hierarchy
('JSMITH', 'PRODUCT DIM', 'PRODUCT DIM ROLLUP', 'TOTALPROD LVL');

15-2 Oracle OLAP Reference

Summary of CWM2_OLAP_LEVEL Subprograms

Summary of CWM2_OLAP_LEVEL Subprograms

Table 15-1 CWM2_OLAP_LEVEL Subprograms

Subprogram Description
ADD_LEVEL_TO_HIERARCHY Procedure on Adds alevel to a hierarchy.

page 15-4

CREATE_LEVEL Procedure on page 15-4 Creates a level.

DROP_LEVEL Procedure on page 15-5 Drops a level.

LOCK_LEVEL Procedure on page 15-5 Locks the level metadata for update.
REMOVE_LEVEL_FROM_HIERARCHY Removes a level from a hierarchy.

Procedure on page 15-6
SET_DESCRIPTION Procedure on page 15-6 Sets the description for a level.

SET_DISPLAY_NAME Procedure on Sets the display name for a level.
page 15-6

SET_LEVEL_NAME Procedure on page 15-7 Sets the name of a level.
SET_PLURAL_NAME Procedure on page 15-7 Sets the plural name for a level.

SET_SHORT_DESCRIPTION Procedure on Sets the short description for a level.
page 15-8

CWM2_OLAP_LEVEL 15-3

ADD_LEVEL_TO_HIERARCHY Procedure

ADD_LEVEL_TO_HIERARCHY Procedure

This procedure adds a level to a hierarchy. A hierarchy can have a maximum of 31

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,

parent level name IN VARCHAR2 DEFAULT NULL) ;

levels.
Syntax
ADD_LEVEL TO HIERARCHY (
dimension owner
dimension name
hierarchy name
level name
Parameters

Table 15-2 ADD _LEVEL TO_HIERARCHY Procedure Parameters

Parameter

Description

dimension_owner
dimension_ name
hierarchy name
level name

parent level name

Owner of the dimension.

Name of the dimension.

Name of the hierarchy.

Name of the level to add to the hierarchy.

Name of the level's parent in the hierarchy. If you do not specify
a parent, then the added level is the root of the hierarchy.

CREATE_LEVEL Procedure

This procedure creates a new level in the OLAP Catalog.

You must specify descriptions and display properties as part of level creation. Once
the level has been created, you can override these properties by calling other
procedures in the CWM2_OLAP_LEVEL package.

Syntax
CREATE LEVEL (
dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
level name IN VARCHAR2,
display name IN VARCHAR2,
plural name IN VARCHAR2,
short description IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 15-3 CREATE_LEVEL Procedure Parameters

Parameter

Description

dimension owner
dimension_ name
level name

display name

15-4 Oracle OLAP Reference

Owner of the dimension.
Name of the dimension.
Name of the level.

Display name for the level.

Summary of CWM2_OLAP_LEVEL Subprograms

Table 15-3 (Cont) CREATE_LEVEL Procedure Parameters

Parameter Description

plural name Plural name for the level.
short_description Short description of the level.
description Description of the level.

DROP_LEVEL Procedure

Syntax

Parameters

This procedure drops a level from the OLAP Catalog. All related level attributes are
also dropped.

DROP_LEVEL (
dimension owner IN VARCHAR2,
dimension_name IN VARCHAR2,
level name IN VARCHAR2);

Table 15-4 DROP_LEVEL Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.
level name Name of the level.

LOCK_LEVEL Procedure

Syntax

Parameters

This procedure locks the level metadata for update by acquiring a database lock on the
row that identifies the level in the CWM2 model table.

LOCK_LEVEL (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
level name IN VARCHAR2Z,
wait_for_lock IN BOOLEAN DEFAULT FALSE) ;

Table 15-5 LOCK_LEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension name Name of the dimension.

level name Name of the level.

wait_for_ lock (Optional) Whether or not to wait for the level to be available

when it is already locked by another user. If you do not specify a
value for this parameter, the procedure does not wait to acquire
the lock.

CWM2_OLAP_LEVEL 15-5

ADD_LEVEL_TO_HIERARCHY Procedure

REMOVE_LEVEL_FROM_HIERARCHY Procedure

This procedure removes a level from a hierarchy.

Syntax
REMOVE LEVEL FROM HIERARCHY (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
level name IN VARCHAR2) ;
Parameters

Table 15-6 REMOVE_LEVEL_FROM_HIERARCHY Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

hierarchy name Name of the hierarchy.

level name Name of the level to remove from the hierarchy.

SET_DESCRIPTION Procedure

This procedure sets the description for a level.

Syntax
SET DESCRIPTION (
dimension_owner IN VARCHAR2,
dimension name IN VARCHAR2,
level name IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 15-7 SET_DESCRIPTION Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension_ name Name of the dimension.
level name Name of the level.
description Description of the level.

SET DISPLAY_NAME Procedure

This procedure sets the display name for a level.

Syntax
SET DISPLAY NAME (
dimension_owner IN VARCHAR2,
dimension_name IN VARCHAR2,
level name IN VARCHAR2,
display name IN VARCHAR2) ;

15-6 Oracle OLAP Reference

Summary of CWM2_OLAP_LEVEL Subprograms

Parameters

Table 15-8 SET_DISPLAY _NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
level name Name of the level.
display name Display name for the level.

SET LEVEL NAME Procedure

This procedure sets the name for a level.

Syntax

Parameters

SET LEVEL NAME (
dimension owner
dimension name
level name
set_level name

IN
IN
IN
IN

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Table 15-9 SET_LEVEL_NAME Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
level name Original name for the level.
set_level name New name for the level.

SET PLURAL_NAME Procedure

This procedure sets the plural name of a level.

Syntax

Parameters

SET_PLURAL NAME (
dimension owner
dimension name
level name
plural name

IN

IN
IN

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Table 15-10 SET_PLURAL_NAME Procedure Parameters

Parameter

Description

dimension_owner
dimension_name
level name

plural name

Owner of the dimension.

Name of the dimension.

Name of the level.

Plural name for the level.

CWM2_OLAP_LEVEL

15-7

ADD_LEVEL_TO_HIERARCHY Procedure

SET_SHORT_DESCRIPTION Procedure

This procedure sets the short description for a level.

Syntax
SET SHORT DESCRIPTION (
dimension owner IN
dimension name IN
level name IN
short description IN
Parameters

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Table 15-11 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.
dimension name Name of the dimension.
level name Name of the level.
short_description Short description of the level.

15-8 Oracle OLAP Reference

16

CWM2_OLAP_LEVEL_ATTRIBUTE

The CWM2_OLAP_LEVEL_ATTRIBUTE package provides procedures for managing
level attributes.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2".

This chapter discusses the following topics:

» Understanding Level Attributes

= Example: Creating Level Attributes

s Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Understanding Level Attributes

A level attribute is an OLAP Catalog metadata entity. This means that it is a logical
object, identified by name and owner, within the OLAP Catalog.

A level attribute is a child entity of a level and a dimension attribute. A level attribute
stores descriptive information about its related level. For example, a level containing
product identifiers might have an associated level attribute that contains color
information for each product.

Each level attribute maps to a column in a dimension table. The level attribute column
must be in the same table as the column (or columns) for its associated level. Level
attributes are fully described in.

Use the procedures in the CWM2_OLAP_LEVEL_ ATTRIBUTE package to create, drop,
and lock level attributes, to assign level attributes to levels and dimension attributes,
and to specify descriptive information for display purposes.

Several level attribute names are reserved, because they have special significance
within CWM2. Reserved level attributes are associated with reserved dimension
attributes of the same name. Reserved level attributes will be mapped to columns
containing specific information. The reserved level attributes are listed in Table 16-1.

Table 16—-1 Reserved Level Attributes

Dimension Attribute Description

Long Description A long description of the dimension member.

Short Description A short description of the dimension member.

End Date For a time dimension, the last date in a time period. (Required)

CWM2_OLAP_LEVEL_ATTRIBUTE 16-1

Example: Creating Level Attributes

Table 16-1 (Cont.) Reserved Level Attributes

Dimension Attribute Description

Time Span For a time dimension, the number of days in a time period.
(Required)

Prior Period For a time dimension, the time period before this time period.

Year Ago Period For a time dimension, the period a year before this time period.

ET Key For an embedded total dimension, the embedded total key, which

identifies the dimension member at the lowest level in a row of
the dimension table. (Required)

Parent ET Key For an embedded total dimension, the dimension member that is
the parent of the ET key. (Required)

Grouping ID For an embedded total dimension, the grouping ID (GID), which
identifies the hierarchical level for a row of the dimension table.
(Required)

Parent Grouping ID For an embedded total dimension, the dimension member that is
the parent of the grouping ID. (Required)

The parent dimension, parent level, and parent dimension attribute must already exist
in the OLAP Catalog before you can create a level attribute.

See Also:
» Chapter 12, "CWM2_OLAP_DIMENSION_ATTRIBUTE"

» Oracle OLAP Application Developer’s Guide for more information
about level attributes and the OLAP Catalog metadata model

Example: Creating Level Attributes

The following statements create a color attribute for the lowest level and long
descriptions for all four levels of the PRODUCT DIM dimension.

execute cwm2_olap level attribute.create level attribute
('JSMITH', 'PRODUCT DIM', 'Product Color', 'PRODUCT LVL', 'Product Color',
'"PROD_STD COLOR', 'Prod Color', 'Product Color');

execute cwm2 olap level attribute.create level attribute
('JSMITH', 'PRODUCT DIM', 'Long Description', 'PRODUCT LVL',
'Long Description', '"PRODUCT_STD_LLABEL', 'Product ',
'Long Labels for individual products of the PRODUCT hierarchy', TRUE);

execute cwm2 olap level attribute.create level attribute
('JSMITH', 'PRODUCT DIM', 'Long Description', 'PROD SUBCATEGORY LVL',
'Long Description', 'PROD STD LLABEL', 'Product Sub Category',
'Long Labels for subcategories of the PRODUCT hierarchy', TRUE);

execute cwm2 olap level attribute.create level attribute
('JSMITH', 'PRODUCT DIM', 'Long Description', 'PROD CATEGORY LVL',
'Long Description', 'PROD STD LLABEL', 'Product Category',
'Long Labels for categories of the PRODUCT hierarchy', TRUE);

execute cwm2_olap level attribute.create level attribute
('JSMITH', 'PRODUCT DIM', 'Long Description', 'TOTALPROD LVL',
'Long Description', 'PROD STD LLABEL', 'Total Product',
'Long Labels for total of the PRODUCT hierarchy', TRUE);

16-2 Oracle OLAP Reference

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 16-2 CWM2_OLAP_LEVEL ATTRIBUTE Subprograms

Subprogram Description
CREATE_LEVEL_ATTRIBUTE Procedure Creates a level attribute.

on page 16-4

DROP_LEVEL_ATTRIBUTE Procedure on Drops a level attribute.

page 16-5

LOCK_LEVEL_ATTRIBUTE Procedure on Locks the level attribute metadata for update.
page 16-5

SET_DESCRIPTION Procedure on Sets the description for a level attribute.
page 16-6

SET_DISPLAY_NAME Procedure on Sets the display name for a level attribute.
page 16-6

SET_LEVEL_ATTRIBUTE_NAME Sets the name of a level attribute.

Procedure on page 16-7

SET_SHORT_DESCRIPTION Procedure on Sets the short description for a level attribute.
page 16-8

CWM2_OLAP_LEVEL_ATTRIBUTE 16-3

CREATE_LEVEL_ATTRIBUTE Procedure

CREATE_LEVEL_ATTRIBUTE Procedure

This procedure creates a new level attribute in the OLAP Catalog and associates the
level attribute with a level and with a dimension attribute.

If the level attribute is reserved, you can specify the reserved name as the level
attribute name or as a type associated with a name that you specify. The reserved level
attributes are listed in Table 16-1, " Reserved Level Attributes".

You must specify descriptions and display properties as part of level attribute
creation. Once the level attribute has been created, you can override these properties
by calling other procedures in the CWM2 OLAP_ LEVEL ATTRIBUTE package.

Syntax
CREATE LEVEL ATTRIBUTE (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension attribute name IN VARCHAR2,
level name IN VARCHARZ2,
level attribute name IN VARCHAR2,
display name IN VARCHAR2,
short description IN VARCHAR2,
description IN VARCHAR2,
type IN VARCHAR2)
use name as_type IN BOOLEAN DEFAULT FALSE);
Parameters

Table 16-3 CREATE_LEVEL ATTRIBUTE Procedure Parameters

Parameter

Description

dimension owner
dimension_ name

dimension_ attribute
name

level name
level attribute name

display name

16-4 Oracle OLAP Reference

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute that includes this level
attribute.

Name of the level.
Name of the level attribute.

Display name for the level attribute.

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 16-3 (Cont) CREATE_LEVEL ATTRIBUTE Procedure Parameters

Parameter

Description

short description

description

type
or
use name_as_type

Short description of the level attribute.

Description of the level attribute.

This argument can be one of the following:

type

a VARCHAR?2 argument whose value is one of the reserved
names from Table 16-1, " Reserved Level Attributes".
Specify this argument if you want to create your own name
for a reserved level attribute.

use name_as_type

a BOOLEAN argument that defaults to FALSE. This
argument specifies whether or not the level attribute name
is a reserved name. If this argument is TRUE, the value of
the level attribute name argument mustbe a reserved
name from Table 161, " Reserved Level Attributes".

If you do not specify a value for this argument, the level
attribute is not reserved.

DROP_LEVEL_ATTRIBUTE Procedure
This procedure drops a level attribute from the OLAP Catalog.

Syntax

Parameters

DROP_LEVEL ATTRIBUTE (
dimension_owner
dimension name

IN VARCHAR2,
IN VARCHAR2,

dimension_attribute name IN VARCHAR2,

level name

IN VARCHAR2,

level attribute name IN VARCHAR2);

Table 16—-4 DROP_LEVEL ATTRIBUTE Procedure Parameters

Parameter

Description

dimension owner
dimension name

dimension attribute
name

level name

level attribute name

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute.

Name of the level.

Name of the level attribute.

LOCK_LEVEL_ATTRIBUTE Procedure

This procedure locks the level attribute metadata for update by acquiring a database
lock on the row that identifies the level attribute in the CWM2 model table.

Syntax

LOCK_LEVEL ATTRIBUTE (

dimension owner

dimension name

IN VARCHAR2,
IN VARCHARZ,

dimension attribute name IN VARCHAR2,

CWM2_OLAP_LEVEL_ATTRIBUTE 16-5

CREATE_LEVEL_ATTRIBUTE Procedure

level name IN
level attribute name IN
wait for lock IN

Parameters

VARCHAR2,
VARCHAR2,
BOOLEAN DEFAULT FALSE) ;

Table 16-5 LOCK_LEVEL ATTRIBUTE Procedure Parameters

Parameter Description

dimension owner Owner of the dimension.

dimension name Name of the dimension.

dimension_ attribute Name of the dimension attribute.

name

level name Name of the level.

level attribute name Name of the level attribute.

wait_for_ lock (Optional) Whether or not to wait for the level attribute to be

available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

SET DESCRIPTION Procedure

This procedure sets the description for a level attribute.

Syntax
SET DESCRIPTION (
dimension owner IN
dimension name IN
dimension_attribute_name IN
level name IN
level attribute name IN
description IN
Parameters

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Table 16—6 SET_DESCRIPTION Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.

dimension attribute name Name of the dimension attribute.

level name Name of the level.
level attribute_name Name of the level attribute.
description Description of the level attribute.

SET DISPLAY_NAME Procedure

This procedure sets the display name for a level attribute.

Syntax

SET DISPLAY NAME (

dimension_owner IN

16-6 Oracle OLAP Reference

VARCHAR2,

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Parameters

dimension_name

dimension attribute name IN

level name

level attribute name IN

display name

IN VARCHAR2,
VARCHAR2,
IN VARCHARZ2,
VARCHAR2,
IN VARCHAR2) ;

Table 16-7 SET_DISPLAY_NAME Procedure Parameters

Parameter

Description

dimension owner
dimension_ name

dimension_attribute
name

level name
level attribute name

display name

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute.

Name of the level.
Name of the level attribute.

Display name for the level attribute.

SET_LEVEL_ATTRIBUTE_NAME Procedure

This procedure sets the name for a level attribute.

Syntax

Parameters

If the level attribute is reserved, you can specify the reserved name as the level
attribute name or as a type associated with a name that you specify. The reserved level
attributes are listed in Table 16-1, " Reserved Level Attributes".

SET LEVEL ATTRIBUTE NAME
dimension_owner
dimension_name

(
IN VARCHAR2,
IN VARCHAR2,

dimension_attribute name IN VARCHAR2,
level name IN VARCHAR2,
level attribute name IN VARCHAR2,
set level attribute name IN VARCHAR2,
type IN VARCHAR2);

use_name_as_type IN

BOOLEAN DEFAULT FALSE) ;

Table 16-8 SET_LEVEL_ATTRIBUTE_NAME Procedure Parameters

Parameter

Description

dimension_owner
dimension_name

dimension_attribute
name

level name

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute.

Name for the level.

CWM2_OLAP_LEVEL_ATTRIBUTE 16-7

CREATE_LEVEL_ATTRIBUTE Procedure

Table 16-8 (Cont.) SET_LEVEL_ ATTRIBUTE_NAME Procedure Parameters

Parameter Description

level attribute_name Original name for the level attribute.

set_level attribute_ New name for the level attribute.

name

type This argument can be one of the following:

or

[]
use_name_as_type

type

a VARCHAR?2 argument whose value is one of the reserved
names from Table 16-1, " Reserved Level Attributes". Specify
this argument if you want to create your own name for a
reserved level attribute.

use _name_as_type

a BOOLEAN argument that defaults to FALSE. This
argument specifies whether or not the level attribute name is
a reserved name. If this argument is TRUE, the value of the
level attribute_name argument must be a reserved
name from Table 16-1, " Reserved Level Attributes".

If you do not specify a value for this argument, the level attribute
is not reserved.

SET _SHORT_DESCRIPTION Procedure

This procedure sets the short description for a level attribute.

IN VARCHAR2,
IN VARCHARZ2,

dimension attribute name IN VARCHAR2,

IN VARCHARZ2,

level attribute name IN VARCHAR2,

Syntax
SET_SHORT DESCRIPTION (
dimension_owner
dimension name
level name
short description
Parameters

IN VARCHAR2) ;

Table 16-9 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter

Description

dimension_owner
dimension_ name
dimension_attribute name
level name

level attribute name

short description

Owner of the dimension.

Name of the dimension.

Name of the dimension attribute.
Name of the level.

Name of the level attribute.

Short description of the level attribute.

16-8 Oracle OLAP Reference

17

CWM2_OLAP_MANAGER

The CWM2_OLAP_MANAGER package provides procedures that manage output
generated by the OLAP PL/SQL packages. These procedures will help you develop
and debug your PL/SQL scripts.

See Also:

s "Directing Output" in Chapter 2

» SQL*Plus User's Guide and Reference

This chapter discusses the following topics:

= Managing Output in a SQL*Plus Session

= Example: Using a Log File

s Summary of CWM2_OLAP_MANAGER Subprograms

Managing Output in a SQL*Plus Session

SQL*Plus maintains system variables (also called SET command variables) to enable
you to set up a particular environment for a SQL*Plus session. You can change these
system variables with the SET command and list them with the SHOW command.

In SQL*Plus, the output of stored procedures is sent to the SQL buffer. The default size
of the buffer is 2K. The SERVEROUTPUT system variable controls whether or not
SQL*Plus displays the contents of the SQL buffer.

When using the OLAP stored procedures, you should set SERVEROUTPUT and extend
the size of the buffer to its maximum size.

>set serveroutput on size 1000000

After setting SERVEROUTPUT, use the CWM2_OLAP MANAGER procedure SET ECHO
ON to display the output of OLAP procedures.

>execute cwm2_olap manager.set echo on;

Several OLAP packages generate reports. For example, the CWM2 OLAP_VALIDATE
package generates a metadata validation report, and the CWM2_OLAP_DELETE
package generates a delete command report . For procedures that generate reports or

other lengthy output, you should direct the output to a file. Use the CWM2_OLAP__
MANAGER procedure BEGIN_LOG.

>execute cwm2_olap manager.begin log;

CWM2_OLAP_MANAGER 17-1

Example: Using a Log File

Example: Using a Log File

The following example shows how to use the CWM2_OLAP_MANAGER package to direct
a validation report to a log file.

Example 17-1 Direct a Validation Report to a File

>set linesize 135
>set pagesize 50

>execute cwm2_olap manager.begin log
('/users/myuser' , 'Metadata Validation Report');
>execute cwm2_ olap manager.log note
('OLAP Metadata Validation Report');
>execute cwm2 olap validate.validate olap catalog
('"OLAP API');
>execute cwm2_olap manager.end log;

The log file would look something like this.

BEGIN: CwM2 OLAP Log Date: 2004 APRIL 05 Time: 17:10:20 User: MYUSER.
Log Directory: /users/myuser Log File: Metadata Validation Report.

OLAP Metadata Validation Report

.Validate Olap Catalog

.Validate Dimension: GLOBAL.CHANNEL Type of Validation: OLAP API Verbose

Report: YES
.Validating Dimension Metadata in OLAP Catalog 1 Date: 2004 APRIL 05 Time:
17:11:45
User: MYUSER 031201
.ENTITY TYPE ENTITY NAME STATUS COMMENT
Dimension GLOBAL . CHANNEL VALID Default_Display Hierarchy: "CHANNEL
ROLLUP".
END: CwM2 OLAP Log Date: 2004 APRIL 05 Time: 17:12:11 User: MYUSER.

Log Directory: /users/myuser Log File: Metadata Validation Report.

17-2 Oracle OLAP Reference

Summary of CWM2_OLAP_MANAGER Subprograms

Summary of CWM2_OLAP_MANAGER Subprograms

Table 177-1 CWM2_OLAP_MANAGER

Subprogram Description

BEGIN_LOG Procedure on page 17-4 Turns on logging.

END_LOG Procedure on page 17-4 Turns off logging.

LOG_NOTE Procedure on page 17-4 Writes a text string in the log file.

SET_ECHO_OFF Procedure on page 17-5 Turns on echoing to the screen.
SET_ECHO_ON Procedure on page 17-5 Turns off echoing to the screen.

CWM2_OLAP_MANAGER 17-3

BEGIN_LOG Procedure

BEGIN _LOG Procedure

The BEGIN_ LOG procedure directs the output from OLAP PL/SQL packages to a log

file.
Syntax
BEGIN LOG (
output directory IN VARCHAR2,
file name IN VARCHAR2,
append to file IN VARCHAR2 DEFAULT 'NO');
Parameters
Table 17-2 BEGIN_LOG Procedure Parameters
Parameter Description
output_directory Output directory for the log file. You can either specify a
directory object, to which your user ID has been granted the
appropriate access, or a path set by the UTL._FILE_DIR
initialization parameter for the instance.
file name Name of log file.
append_to_ file Specify 'YES' to append the output to the end of the file. Specify
'NO' to delete the previous contents of the file before writing to
it. The default is 'NO'.
Example

See "Example: Using a Log File" on page 17-2.

END_LOG Procedure
The END_LOG procedure turns off logging.

Syntax

END_LOG;

Example
See "Example: Using a Log File" on page 17-2.

LOG_NOTE Procedure

When logging is turned on, the LOG_NOTE procedure writes the text that you specify
to the log file. If logging is not turned on, this procedure has no effect.

Syntax

LOG_NOTE (
message text IN VARCHAR2) ;

17-4 Oracle OLAP Reference

Summary of CWM2_OLAP_MANAGER Subprograms

Parameters
Table 17-3 LOG_NOTE Procedure Parameters
Parameter Description
message text Text to write to the log file.
Example

See "Example: Using a Log File" on page 17-2.

SET_ECHO_OFF Procedure
SET_ECHO_OFF prevents the display of output generated by OLAP stored procedures.

Syntax

SET ECHO OFF;

Example

The following example illustrates how the output from an OLAP DML command is
displayed when echoing is turned on, but suppressed when echoing is turned off.

The PL/SQL calls are listed to the left, and the screen output is shown indented to the
right.

>execute cwm2_olap manager.set_echo_on;

PL/SQL procedure successfully completed.
>execute dbms aw.execute ('listnames');

1 DIMENSION

PL/SQL procedure successfully completed.
>execute cwm2_olap_manager.set_echo_off;

PL/SQL procedure successfully completed.
>execute dbms aw.execute ('listnames');

PL/SQL procedure successfully completed.

SET ECHO_ON Procedure

SET_ECHO_ON causes the output generated by OLAP stored procedures to be
displayed on the screen.

Syntax

SET_ECHO ON;

Example
See the example in "SET_ECHO_OFF Procedure" on page 17-5.

CWM2_OLAP_MANAGER 17-5

BEGIN_LOG Procedure

17-6 Oracle OLAP Reference

18

CWM2_OLAP_MEASURE

The CWM2_OLAP_MEASURE package provides procedures for managing measures.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CWM2".

This chapter discusses the following topics:
= Understanding Measures
= Example: Creating a Measure

s Summary of CWM2_OLAP_MEASURE Subprograms

Understanding Measures

A measure is an OLAP Catalog metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Measures represent data stored in fact tables. The fact tables may be relational tables or
views. The views may reference data stored in analytic workspaces.

Measures exist within the context of cubes, which fully specify the dimensionality of
the measures' data. Measures are fully described in.

Use the procedures in the CWM2_OLAP_MEASURE package to create, drop, and lock
measures, to associate a measure with a cube, and to specify descriptive information
for display purposes.

The parent cube must already exist in the OLAP Catalog before you can create a
measure.

See Also:

s Chapter 9, "CWM2_OLAP_CUBE"

» Oracle OLAP Application Developer’s Guide for more information
about measures and the OLAP Catalog metadata model

Example: Creating a Measure

The following statements create the SALES_AMOUNT and SALES_QUANTITY measures
for the SALES_CUBE cube.

execute cwm2_olap measure.create measure
("JSMITH', 'SALES_CUBE', 'SALES AMOUNT', 'Sales Amount',
'S Sales', 'Dollar Sales');
execute cwm2_olap measure.create measure

CWM2_OLAP_MEASURE 18-1

Example: Creating a Measure

('JSMITH', 'SALES CUBE', 'SALES QUANTITY', 'Sales Quantity',
'Sales Quantity', 'Quantity of Items Sold');

18-2 Oracle OLAP Reference

Summary of CWM2_OLAP_MEASURE Subprograms

Summary of CWM2_OLAP_MEASURE Subprograms

Table 18-1 CWM2_OLAP_MEASURE Subprograms

Subprogram Description

CREATE_MEASURE Procedure on page 18-4 Creates a measure.

DROP_MEASURE Procedure on page 18-4 Drops a measure.

LOCK_MEASURE Procedure on page 18-5 Locks a measure's metadata for update.
SET_DESCRIPTION Procedure on page 18-5 Sets the description for a measure.
SET_DISPLAY_NAME Procedure on page 18-5 Sets the display name for a measure.
SET_MEASURE_NAME Procedure on page 18-6 Sets the name of a measure.

SET_SHORT_DESCRIPTION Procedure on page 18-6 Sets the short description for a measure.

CWM2_OLAP_MEASURE 18-3

CREATE_MEASURE Procedure

CREATE_MEASURE Procedure

This procedure creates a new measure in the OLAP Catalog.

A measure can only be created in the context of a cube. The cube must already exist
before you create the measure.

Descriptions and display properties must also be established as part of measure
creation. Once the measure has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE MEASURE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
measure name IN VARCHAR2,
display name IN VARCHAR2,
short description IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 18-2 CREATE_MEASURE Procedure Parameters

Parameter

Description

cube_ owner

cube name
measure_name
display name
short description

description

Owner of the cube.

Name of the cube.

Name of the measure.

Display name for the measure.
Short description of the measure.

Description of the measure.

DROP_MEASURE Procedure

This procedure drops a measure from a cube.

Syntax
DROP_MEASURE (
cube_owner
cube name
measure_name
Parameters

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2) ;

Table 18-3 DROP_MEASURE Procedure Parameters

Parameter

Description

cube_owner
cube name

measure_ name

Owner of the cube.
Name of the cube.

Name of the measure to be dropped from the cube.

18-4 Oracle OLAP Reference

Summary of CWM2_OLAP_MEASURE Subprograms

LOCK_MEASURE Procedure

This procedure locks the measure's metadata for update by acquiring a database lock
on the row that identifies the measure in the CWM2 model table.

Syntax
LOCK_MEASURE (
cube owner IN VARCHAR2,
cube name IN VARCHAR2.
measure_name IN VARCHAR2,
wait_for_lock IN BOOLEAN DEFAULT FALSE) ;
Parameters

Table 18-4 LOCK_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure to be locked.

wait_for lock (Optional) Whether or not to wait for the measure to be available

when it is already locked by another user. If you do not specify a
value for this parameter, the procedure does not wait to acquire
the lock.

SET _DESCRIPTION Procedure

This procedure sets the description for a measure.

Syntax
SET DESCRIPTION (
cube owner IN VARCHAR2,
cube_name IN VARCHAR2,
measure _name IN VARCHAR2,
description IN VARCHAR2) ;
Parameters

Table 18-5 SET_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_name Name of the cube.
measure_name Name of the measure.
description Description of the measure.

SET DISPLAY_NAME Procedure

This procedure sets the display name for a measure.

Syntax

SET_DISPLAY NAME (
cube owner IN VARCHAR2,

CWM2_OLAP_MEASURE 18-5

CREATE_MEASURE Procedure

cube name IN VARCHAR2,
measure_name IN VARCHARZ,
display name IN VARCHAR2);

Parameters

Table 18-6 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_name Name of the cube.

measure name Name of the measure.
display name Display name for the measure.

SET_MEASURE_NAME Procedure

This procedure sets the name for a measure.

Syntax
SET_MEASURE NAME (
cube_owner IN
cube name IN
measure_name IN
set cube name IN
Parameters

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Table 18-7 SET_MEASURE_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_name Name of the cube.
measure_name Original name of the measure.
set_cube_name New name for the measure.

SET _SHORT_DESCRIPTION Procedure

This procedure sets the short description for a measure.

Syntax

SET SHORT DESCRIPTION (
cube_owner
cube_name
measure_name
short description

18-6 Oracle OLAP Reference

IN
IN
IN
IN

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR2) ;

Summary of CWM2_OLAP_MEASURE Subprograms

Parameters

Table 18-8 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube name Name of the cube.
measure_name Name of the measure.
short_description Short description of the measure.

CWM2_OLAP_MEASURE 18-7

CREATE_MEASURE Procedure

18-8 Oracle OLAP Reference

19

CWM2_OLAP_METADATA_REFRESH

The cWM2_OLAP_METADATA REFRESH package provides procedures that refresh
cached OLAP Catalog metadata.
See Also:

= "Validating and Committing OLAP Catalog Metadata" on
page 2-10

» Chapter 5, "OLAP Catalog Metadata Views"
» Chapter 3, "Active Catalog Views"

This chapter discusses the following topics:

= Views of Cached OLAP Catalog Metadata

= Views of Cached Active Catalog Metadata

s Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

Views of Cached OLAP Catalog Metadata

The Metadata Reader Views for the OLAP Catalog, named with the prefix MRV_
OLAP2, present a read API to a set of cache tables for OLAP Catalog metadata. These
views and tables are structured to facilitate query performance for the OLAP APIL

The MRV_OLAP2 views correspond to the ALL_OLAP2 views, which provide
information about OLAP Catalog metadata. Each MRV_OLAP2 view has the same
name and column structure as its corresponding ALL_OLAP2 view. If you require fast
access to OLAP Catalog metadata, you should query the cached metadata through the
MRV _OLAP2 views.

The cache tables are not automatically refreshed when changes are made to the
metadata. To refresh the cache, call the CWM2 OLAP METADATA REFRESH.MR
REFRESH procedure.

Note: If your data is stored in relational tables (not in analytic
workspaces), you must refresh the OLAP Catalog metadata cache for
applications that use the OLAP APIL

CWM2_OLAP_METADATA_REFRESH 19-1

Views of Cached Active Catalog Metadata

Views of Cached Active Catalog Metadata

The Metadata Reader Views for the Active Catalog, named with the prefix MRV_
OLAP2_ AW, present a read API to a set of cache tables for the Active Catalog. These
views and tables are structured to facilitate query performance for the OLAP API.

The MRV_OLAP2 AW views correspond to the ALL._OLAP2 AW views, which provide
information about standard form metadata within analytic workspaces. Each MRV _
OLAP2_AW view has the same name and column structure as its corresponding ALL_
OLAP2_ AW view. If you require fast access to the Active Catalog, you should query the
cached metadata through the MRV_OLAP2 AW views.

The cache tables are not automatically refreshed when changes are made to the Active
Catalog. To refresh the cache, call the CWM2 OLAP_METADATA REFRESH.MR_AC_
REFRESH procedure.

Note: If your data is stored in analytic workspaces, you should
refresh the Active Catalog cache for applications that use the OLAP
APIL

19-2 Oracle OLAP Reference

Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

Table 19-1 CWM2_OLAP_METADATA_REFRESH Subprograms

Subprogram Description
MR_REFRESH Procedure Refreshes the OLAP Catalog metadata cache.

MR_AC_REFRESH Procedure Refreshes the Active Catalog metadata cache.

CWM2_OLAP_METADATA_REFRESH 19-3

MR_REFRESH Procedure

MR_REFRESH Procedure

Syntax

See Also

This procedure refreshes the OLAP Catalog metadata cache tables that underlie the
MRV_OLAP2 views. You must refresh the cache for applications that use the OLAP API
with a relational data source.

The MR_REFRESH procedure includes a COMMIT.

MR_REFRESH;

"Validating and Committing OLAP Catalog Metadata" on page 2-10 and "OLAP
Catalog Metadata Cache" on page 5-1.

MR_AC_REFRESH Procedure

Syntax

See Also

This procedure refreshes the Active Catalog metadata cache tables that underlie the
MRV_OLAP2_AW views. You must refresh the cache for applications that use the OLAP
API with a multidimensional data source in analytic workspaces.

The MR_AC_REFRESH procedure includes a COMMIT.

MR_AC REFRESH;

"Active Catalog Metadata Cache" on page 3-2.

19-4 Oracle OLAP Reference

20

CWM2_OLAP_PC_TRANSFORM

The cWM2_OLAP_PC_TRANSFORM package contains a procedure for generating a SQL
script that creates a solved, level-based dimension table from a parent-child dimension
table.

After running the script and creating the new table, you can define OLAP Catalog
metadata so that OLAP API applications can access the dimension.
See Also:

» Oracle OLAP Application Developer’s Guide for information about
types of data warehouse tables supported by OLAP Catalog
metadata.

» Chapter 14, "CWM2_OLAP_HIERARCHY" for information about
creating OLAP Catalog metadata for dimension hierarchies.
This chapter discusses the following topics:
m Prerequisites
s Parent-Child Dimensions
s Solved, Level-Based Dimensions
= Example: Creating a Solved, Level-Based Dimension Table

s Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Prerequisites

Before running the CWM2_OLAP_PC_TRANSFORM.CREATE_SCRIPT procedure, ensure
that the RDBMS is enabled to write to a file. To specify a directory, you can use either a
directory object to which your user ID has been granted the appropriate access, or a
path set by the UTL_FILE_DIR initialization parameter for the instance.

A parent-child dimension table must exist and be accessible to the CWM2 OLAP_PC
TRANSFORM.CREATE SCRIPT procedure.

Parent-Child Dimensions

A parent-child dimension table is one in which the hierarchical relationships are
defined by a parent column and a child column. Since the hierarchy is defined by the
relationship between the values within two columns, a parent-child dimension is
sometimes referred to as having a value-based hierarchy.

Sample Parent-Child Dimension Table Columns

CWM2_OLAP_PC_TRANSFORM 20-1

Solved, Level-Based Dimensions

The following example illustrates the relationships between the values in the child and
parent columns. A description column, which is an attribute of the child, is also
included.

CHILD PARENT DESCRIPTION
World World

UsSA World United States of America
Northeast USA North East Region
Southeast USA South East Region
MA Northeast Massachusetts
Boston MA Boston, MA
Burlington MA Burlington, MA
NY Northeast New York State
New York City NY New York, NY

GA Southeast Georgia

Atlanta GA Atlanta,GA

Canada World Canada

If you choose to create OLAP Catalog metadata to represent a parent-child dimension,
set the solved_code for the hierarchy to ' SOLVED VALUE-BASED', as described in
Chapter 14, "CWM2_OLAP_HIERARCHY".

Note: You can create OLAP Catalog metadata to represent
value-based hierarchies, but this type of hierarchy is not accessible to
applications that use the OLAP APIL

Solved, Level-Based Dimensions

The script generated by OLAP_PC_TRANSFORM.CREATE SCRIPT creates a table that
stores the values from the parent-child table in levels.

The resulting level-based dimension table includes the full lineage of every level value
in every row. This type of dimension table is solved, because the fact table related to
this dimension includes embedded totals for all level combinations.

If you want to enable parent-child dimension tables for access by the OLAP API, you
must convert them to solved, level-based dimension tables. The OLAP API requires
that dimensions have levels and that they include a GID (Grouping ID) column and an
Embedded Total (ET) key column. GIDs and ET key columns are described in
Example: Creating a Solved, Level-Based Dimension Table.

The following example illustrates how the parent-child relationships in "Parent-Child
Dimensions" on page 20-1would be represented as solved levels.

TOT _GEOG COUNTRY REGION STATE CITY DESCRIPTION
World USA Northeast MA Boston Boston, MA

World USA Northeast MA Burlington Burlington, MA
World USA Northeast NY New York City New York, NY
World UsA Southeast GA Atlanta Atlanta, GA

World USA Northeast MA Massachusetts
World USA Northeast NY New York State
World Usa Southeast GA Georgia

World USA Northeast North East Region
World USA Southeast South East Region
World USA United States of America
World Canada Canada

World World

20-2 Oracle OLAP Reference

Example: Creating a Solved, Level-Based Dimension Table

When creating OLAP Catalog metadata to represent a solved, level-based dimension
hierarchy, specify a solved code of ' SOLVED LEVEL-BASED', as described in
Chapter 14, "CWM2_OLAP_HIERARCHY".

Example: Creating a Solved, Level-Based Dimension Table

Assuming a parent-child dimension table with the PARENT and CHILD columns
shown in "Parent-Child Dimensions" on page 20-1, you could use a command like the
following to represent these columns in a solved, level-based dimension table.

execute cwm2 olap pc transform.create script
('/datl/scripts/myscripts'’
'jsmith' ,
"input_tbl'
'PARENT' ,
'"CHILD' ,
'output tbl' ,
'jsmith data');

This statement creates a script in the directory /dat1/scripts/myscripts. The
script will convert the parent-child table input_tbl to the solved, level-based table
output_tbl. Both tables are in the jsmith data tablespace of the jsmith schema.

You can run the resulting script with the following command.

@create_output_tbl

You can view the resulting table with the following command.

select * from output tbl view

The resulting table would look like this.

GID SHORT DESC LONG_DESC CHILD1 CHILD2 CHILD3 CHILD4 CHILD5S
0 Boston Boston World USA Northeast MA Boston
0 Burlington Burlington World USA Northeast MA Burlington
0 New York City New York City World USA Northeast NY New York City
0 Atlanta Atlanta World USA Southeast GA Atlanta
1 MA MA World USA Northeast MA
1 NY MA World USA Northeast NY
1 GA GA World USA Southeast GA
3 Northeast Northeast World USA Northeast
3 Southeast Southeast World USA Southeast
7 USA USA World USA
7 Canada Canada World Canada
15 World World World
Grouping ID Column

The script automatically creates a GID column, as required by the OLAP APL The GID
identifies the hierarchy level associated with each row by assigning a zero to each
non-null value and a one to each null value in the level columns. The resulting binary
number is the value of the GID. For example, a GID of 3 is assigned to the row with
the level values World, USA, Northeast, since the three highest levels are assigned
zeros and the two lowest levels are assigned ones.

CHILD1 CHILD2 CHILD3 CHILD4 CHILD5

CWM2_OLAP_PC_TRANSFORM 20-3

Example: Creating a Solved, Level-Based Dimension Table

World TUSA Northeast
0 0 0 1 1

Embedded Total Key Column

The script automatically generates columns for long description and short description.
If you have columns in the input table that contain this information, you can specify
them as parameters to the CREATE_SCRIPT procedure.

If you do not specify a column for the short description, the script creates the column
and populates it with the lowest-level child value represented in each row. If you do
not specify a column for the long description, the script simply replicates the short
description.

The ET key column required by the OLAP API is the short description column that is
created by default.

20-4 Oracle OLAP Reference

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Table 20-1 CWM2_OLAP_PC_TRANSFORM

Subprogram Description
Generates a script that converts a parent-child table
to an embedded-total table.

CREATE_SCRIPT Procedure on
page 20-6

CWM2_OLAP_PC_TRANSFORM 20-5

CREATE_SCRIPT Procedure

CREATE_SCRIPT Procedure

This procedure generates a script that converts a parent-child dimension table to an
embedded-total dimension table.

Syntax

CREATE SCRIPT (
directory
schema
pc_table
pc_parent
pc_child
slb_table
slb tablespace
pc_root
number of leve
level names
short descript
long descripti
attribute name

Parameters

IN VARCHAR2,

IN VARCHAR2,

IN VARCHAR2,

IN VARCHAR2,

IN VARCHAR2,

IN VARCHAR2,

IN VARCHAR2,

IN VARCHAR2 DEFAULT NULL,
1s IN NUMBER DEFAULT NULL,

IN VARCHAR2 DEFAULT NULL,
ion IN VARCHAR2 DEFAULT NULL,
on IN VARCHAR2 DEFAULT NULL,
s IN VARCHAR2 DEFAULT NULL) ;

Table 20-2 CREATE_SCRIPT Procedure Parameters

Parameter Description

directory The directory that will contain the generated script. This may be
either a directory object or a directory path specified in the UTL_
FILE DIR initialization parameter.

schema Schema containing the parent-child table. This schema will also
contain the solved, level-based table.

pc_table Name of the parent-child table.

pc_parent Name of the column in pc_table that contains the parent values.

pc_child Name of the column in pc_table that contains the child values.

slb table Name of the solved, level-based table that will be created.

slb_tablespace

pc_root

number_of_ levels

20-6 Oracle OLAP Reference

Name of the tablespace where the solved, level-based table will be
created.

One of the following:

null- Root of the parent-child hierarchy is identified by null in
the parent column. (default)

condition -Root of the parent-child hierarchy is a condition, for
example:

'long_des = "All Countries"'

One of the following:

null - The number of levels in the solved, level-based table will be
all the levels of the hierarchy in the parent-child table. (default)

number - The number of levels to be created in the solved,
level-based table.

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Usage Notes

Table 20-2 (Cont) CREATE_SCRIPT Procedure Parameters

Parameter

Description

level names

short description

long description

attribute names

One of the following:

null - The column names in the solved, level-based table will be
the source child column name concatenated with the level number.
(default)

1ist - A comma-delimited list of column names for the solved,
level-based table.

One of the following:

null - There is no short description in the parent-child table. The
highest level non-null child value in each row of the solved,
level-based table will be used as the short description. This
constitutes the ET key column (default)

column name - Name of the column in the parent-child table that
contains the short description. This column will be copied from the
parent-child table to the solved, level-based table.

One of the following:

null - There is no long description in the parent-child table. The
short description will be used. (default)

column name - Name of the column in the parent-child table that
contains the long description. This column will be copied from the
parent-child table to the solved, level-based table.

One of the following:
null - There are no attributes in the parent-child table. (default)

1ist - A comma-delimited list of attribute columns in the
parent-child table. These columns will be copied from the
parent-child table to the solved, level-based table

1. If a table with the same name as the solved, level-based table already exists, the

script will delete it.

2. You can reduce the time required to generate the script by specifying the number
of levels in the number of levels parameter. If you do not specify a value for
this parameter, the CREATE SCRIPT procedure calculates all the levels from the

parent-child table.

3. To define additional characteristics of the solved, level-based table, you can
modify the generated script file before executing it.

CWM2_OLAP_PC_TRANSFORM 20-7

CREATE_SCRIPT Procedure

20-8 Oracle OLAP Reference

21

CWM2_OLAP_TABLE_MAP

The CWM2_OLAP_TABLE_MAP package provides procedures for mapping OLAP
Catalog metadata entities to columns in your data warehouse dimension tables and
fact tables.

See Also: Chapter 2, "Creating OLAP Catalog Metadata with
CwM2"

This chapter discusses the following topics:

s Understanding OLAP Catalog Metadata Mapping

= Example: Mapping a Dimension

= Example: Mapping a Cube

s Summary of CWM2_OLAP_TABLE_MAP Subprograms

Understanding OLAP Catalog Metadata Mapping

The cWM2_OLAP_TABLE_MAP package provides procedures for linking OLAP Catalog
metadata entities to columns in fact tables and dimension tables and for establishing
the join relationships between a fact table and its associated dimension tables.

Dimension levels and level attributes are mapped to columns in dimension tables.
Typically, they are mapped by hierarchy. Measures are mapped to columns in fact
tables.

The join relationship between the fact table and dimension tables may be specified for
solved or unsolved data stored in a single fact table, or for solved data stored in a
single fact table for each hierarchy combination.

See Also: "Mapping OLAP Catalog Metadata" on page 2-9.

Example: Mapping a Dimension

The following statements map the four levels of the STANDARD hierarchy in the
XADEMO . PRODUCT AW dimension to columns in the XADEMO AW VIEW PRODUCT
dimension table. A long description attribute is mapped for each level.

execute cwm2 olap table map.Map DimTbl HierLevel
('XADEMO', 'PRODUCT AW', 'STANDARD', 'L4',
'XADEMO', 'XADEMO AW VIEW PRODUCT', 'L4', 'L3');
execute cwm2 olap table map.Map DimTbl HierLevelAttr
('XADEMO', 'PRODUCT AW', 'Long Description', 'STANDARD', 'L4',
'Long Description', 'XADEMO', 'XADEMO AW VIEW PRODUCT', 'PROD STD LLABEL');

CWM2_OLAP_TABLE_MAP 21-1

Example: Mapping a Cube

execute cwm2 olap table map.Map DimTbl HierLevel
('XADEMO', 'PRODUCT AW', 'STANDARD', 'L3',
'XADEMO', 'XADEMO AW VIEW PRODUCT', 'L3', 'L2');
execute cwm2_olap table map.Map DimTbl HierLevelAttr
('XADEMO', 'PRODUCT AW', 'Long Description', 'STANDARD', 'L3',
'Long Description', 'XADEMO', 'XADEMO AW VIEW PRODUCT', 'PROD STD LLABEL');

execute cwm2 olap table map.Map DimTbl HierLevel
('XADEMO', 'PRODUCT AW', 'STANDARD', 'L2',
'XADEMO', 'XADEMO AW VIEW PRODUCT', 'L2', 'Ll');
execute cwm2_olap table map.Map DimTbl HierLevelAttr
('XADEMO', 'PRODUCT AW', 'Long Description', 'STANDARD', 'L2',
'Long Description', 'XADEMO', 'XADEMO AW VIEW PRODUCT', 'PROD STD LLABEL');

execute cwm2 olap table map.Map DimTbl HierLevel
('XADEMO', 'PRODUCT AW', 'STANDARD', 'L1',
'XADEMO', 'XADEMO AW VIEW PRODUCT', 'L1l', null);

execute cwm2 olap table map.Map DimTbl HierLevelAttr
('XADEMO', 'PRODUCT AW', 'Long Description', 'STANDARD', 'L1',
'Long Description', 'XADEMO', 'XADEMO AW VIEW PRODUCT', 'PROD STD LLABEL');

Example: Mapping a Cube

The following statement maps the dimension join keys for a cube named ANALYTIC
CUBE_AW in the XADEMO schema. Join key relationships are specified for four
dimension/hierarchy combinations:

PRODUCT AW/STANDARD
CHANNEL_AW/STANDARD

TIME AW/YTD

GEOGRAPHY AW/CONSOLIDATED.

The fact table is called XADEMO AW SALES VIEW_ 4. It stores lowest level data and
embedded totals for all level combinations.

execute cwm2_olap table map.Map FactTbl LevelKey
('XADEMO', 'ANALYTIC CUBE AW', 'XADEMO', 'XADEMO AW SALES VIEW 4', 'ET',
'DIM: XADEMO. PRODUCT AW/HIER:STANDARD/GID:PRODUCT GID/LVL:L4/COL:PRODUCT ET;
DIM:XADEMO.CHANNEL AW/HIER:STANDARD/GID:CHANNEL GID/LVL:STANDARD 1/COL:CHANNEL ET;
DIM:XADEMO.TIME AW/HIER:YTD/GID:TIME YTD GID/LVL:L3/COL:TIME_ YTD ET;
DIM:XADEMO.GEOGRAPHY AW/HIER:CONSOLIDATED/GID:GEOG_CONS_GID/LVL:L4/COL:GEOG_CONS ET;');

The following statement maps the F. SALES_AW measure to the SALES column in the
fact table.

execute cwm2_olap table map.Map FactTbl Measure
('XADEMO', 'ANALYTIC CUBE AW', 'F.SALES AW',

'XADEMO', 'XADEMO AW SALES VIEW 4', 'SALES',

'DIM:XADEMO.PRODUCT AW/HIER:STANDARD/LVL:L4/COL:PRODUCT ET;
DIM:XADEMO.CHANNEL AW/HIER:STANDARD/LVL:STANDARD 1/COL:CHANNEL ET;
DIM:XADEMO.TIME AW/HIER:YTD/LVL:L3/COL:TIME YTD ET;
DIM:XADEMO.GEOGRAPHY AW/HIER:CONSOLIDATED/LVL:L4/COL:GEOG_CONS ET;');

21-2 Oracle OLAP Reference

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 21-1 CWM2_OLAP_TABLE MAP

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Subprogram

Description

MAP_DIMTBL_HIERLEVELATTR Procedure
on page 21-4

MAP_DIMTBL_HIERLEVEL Procedure on
page 21-4

MAP_DIMTBL_HIERSORTKEY Procedure on
page 21-5

MAP_DIMTBL_LEVELATTR Procedure on
page 21-6

MAP_DIMTBL_LEVEL Procedure on page 21-7

MAP_FACTTBL_LEVELKEY Procedure on
page 21-8

MAP_FACTTBL_MEASURE Procedure on
page 21-9

REMOVEMAP_DIMTBL_HIERLEVELATTR
Procedure on page 21-10

REMOVEMAP_DIMTBL_HIERLEVEL
Procedure on page 21-11

REMOVEMAP_DIMTBL_HIERSORTKEY
Procedure on page 21-11

REMOVEMAP_DIMTBL_LEVELATTR
Procedure on page 21-12

REMOVEMAP_DIMTBL_LEVEL Procedure on
page 21-12

REMOVEMAP_FACTTBL_LEVELKEY
Procedure on page 21-13

REMOVEMAP_FACTTBL_MEASURE
Procedure on page 21-13

Maps a hierarchical level attribute to a
column in a dimension table.

Maps a hierarchical level to one or more
columns in a dimension table.

Sorts the members of a hierarchy within a
column of a dimension table.

Maps a non-hierarchical level attribute to a
column in a dimension table

Maps a non-hierarchical level to one or more
columns in a dimension table.

Maps the dimensions of a cube to a fact table.
Maps a measure to a column in a fact table.

Removes the mapping of a hierarchical level
attribute from a column in a dimension table.

Removes the mapping of a hierarchical level
from one or more columns in a dimension
table.

Removes custom sorting criteria associated
with columns in a dimension table.

Removes the mapping of a non-hierarchical
level attribute from a column in a dimension
table.

Removes the mapping of a non-hierarchical
level from one or more columns in a
dimension table.

Removes the mapping of a cube's dimensions
from a fact table.

Removes the mapping of a measure from a
column in a fact table.

CWM2_OLAP_TABLE_MAP 21-3

MAP_DIMTBL_HIERLEVELATTR Procedure

MAP_DIMTBL_HIERLEVELATTR Procedure

This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level in the context of a hierarchy.

Syntax
MAP DIMTBL HIERLEVELATTR (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension attribute name IN VARCHAR2,
hierarchy name IN VARCHAR2,
level name IN VARCHARZ,
level attribute name IN VARCHAR2,
table owner IN VARCHAR2,
table name IN VARCHAR2,
attrcol IN VARCHAR2) ;
Parameters
Table 21-2 MAP_DIMTBL_HIERLEVELATTR Procedure Parameters
Parameter Description
dimension owner Owner of the dimension.
dimension_ name Name of the dimension.
dimension_attribute_ Name of the dimension attribute.
name
hierarchy name Name of the hierarchy.
level name Name of the level.
level attribute name Name of the level attribute associated with this level.
table owner Owner of the dimension table.
table name Name of the dimension table.
attrcol Column in the dimension table to which this level attribute
should be mapped.
Example

See Example 2-1, "Create an OLAP Dimension for the Products Table" and "Example:

Mapping a Dimension" on page 21-1.

MAP_DIMTBL_HIERLEVEL Procedure

This procedure maps a level to one or more columns in a dimension table.

Syntax

The level being mapped is identified within the context of a hierarchy.

MAP DIMTBL HIERLEVEL (
dimension owner
dimension name
hierarchy name
level name
table_owner

21-4 Oracle OLAP Reference

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Parameters

Example

MAP_DIMTBL_HIERSORTKEY Procedure

Syntax

Parameters

table name
keycol
parentcol

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2 DEFAULT NULL) ;

Table 21-3 MAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter

Description

dimension owner
dimension name
hierarchy name
level name
table_owner
table name

keycol

parentcol

Owner of the dimension.
Name of the dimension.
Name of the hierarchy.

Name of the level.

Owner of the dimension table.
Name of the dimension table.

Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

Column that stores the parent level in the hierarchy. If you do
not specify this parameter, the level is the root of the hierarchy.

See Example 2-1, "Create an OLAP Dimension for the Products Table" and "Example:
Mapping a Dimension" on page 21-1.

This procedure specifies how to sort the members of a hierarchy within one or more
columns of a dimension table.

Custom sorting can be specified for level columns or related attribute columns.
Columns can be sorted in ascending or descending order, with nulls first or nulls last.
By default, columns are sorted in ascending order and nulls are first.

Custom sorting information is optional. You can define a valid hierarchy without
using the MAP_DIMTBL_ HIERSORTKEY procedure.

MAP DIMTBL HIERSORTKEY (
dimension owner
dimension name
hierarchy name
sortcols

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2) ;

Table 21-4 MAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter

Description

dimension_owner

Owner of the dimension.

CWM2_OLAP_TABLE_MAP 21-5

MAP_DIMTBL_HIERLEVELATTR Procedure

Table 21-4 (Cont.) MAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description

dimension_ name Name of the dimension.

hierarchy name Name of the hierarchy.

sortcols A string specifying how to sort the values stored in one or more

columns of a dimension table. For each column, the string specifies
whether to sort in ascending or descending order, and whether to
place nulls first or last. The default order is ascending with nulls
first.

Specify the columns in the order in which they should be sorted.

The string should be enclosed in single quotes, and it should be in
the following form.

'TBL: tablel owner.tablel name
/COL: columnl name
/ORD:ASC|DSC/NULL: FIRST|LAST;
TBL: table2 owner.table2 name
/COL: column2_ name
/ORD:ASC|DSC/NULL:FIRST|LAST; '

NOTE: You do not need to repeat the table name for columns in
the same table. You do not need to repeat the column names for a
group of columns that share the same sorting attributes.

Example

The GLOBAL . CUSTOMER dimension, based on the table GLOBAL . CUSTOMER _DIM, has
two hierarchies: SHTPMENTS ROLLUP and MARKET ROLLUP.

The MARKET ROLLUP hierarchy has four levels: TOTAL MARKET, MARKET SEGMENT,
ACCOUNT, and SHIP_TO. Each level has a corresponding attribute column containing a
short description of the level. The attribute column names are: TOTAL_MARKET DSC,
MARKET SEGMENT DSC, ACCOUNT DSC,and SHIP TO DSC

The following command specifies that all the levels within the MARKET ROLLUP
hierarchy should be sorted in ascending order by description. The three most
aggregate levels should be sorted with nulls first; the lowest level, with attribute
column SHIP_TO DSC, should be sorted with nulls last.

>EXECUTE cwm2_olap_table_map.map_dimtbl_hiersortkey
('GLOBAL', 'CUSTOMER', 'MARKET ROLLUP',
'TBL:GLOBAL.CUSTOMER _DIM/COL:TOTAL MARKET DSC/COL:MARKET SEGMENT DSC
/COL:ACCOUNT_DSC/ORD:ASC/NULL: FIRST
/COL:SHIP_TO DSC/ORD:ASC/NULL:LAST') ;

MAP_DIMTBL_LEVELATTR Procedure

This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level that has no hierarchical context.
Typically, this level is the only level defined for this dimension.

Syntax
MAP DIMTBL LEVELATTR (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension attribute name IN VARCHAR2,

21-6 Oracle OLAP Reference

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Parameters

level name

IN VARCHAR2,

level attribute name IN VARCHAR2,

table owner
table name
attrcol

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2) ;

Table 21-5 MAP_DIMTBL_LEVELATTR Procedure Parameters

Parameter

Description

dimension owner
dimension_ name

dimension_attribute
name

level name

level attribute name
table_owner
table_name

attrcol

Owner of the dimension.
Name of the dimension.

Name of the dimension attribute.

Name of the level.

Name of the level attribute associated with this level.
Owner of the dimension table.

Name of the dimension table.

Column in the dimension table to which this level attribute
should be mapped.

MAP_DIMTBL_LEVEL Procedure

This procedure maps a level to one or more columns in a dimension table.

Syntax

Parameters

The level being mapped has no hierarchical context. Typically, this level is the only
level defined for this dimension.

MAP DIMTBL LEVEL (
dimension owner
dimension name
level name
table owner
table name
keycol

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2) ;

Table 21-6 MAP_DIMTBL_LEVEL Procedure Parameters

Parameter

Description

dimension_owner
dimension name
level name

table owner

table_name

Owner of the dimension.
Name of the dimension.
Name of the level.

Owner of the dimension table.

Name of the dimension table.

CWM2_OLAP_TABLE_MAP 21-7

MAP_DIMTBL_HIERLEVELATTR Procedure

Table 21-6 (Cont.) MAP_DIMTBL_LEVEL Procedure Parameters

Parameter Description

keycol Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in the
fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

MAP_FACTTBL_LEVELKEY Procedure

Syntax

Parameters

This procedure creates the join relationships between a fact table and a set of
dimension tables. A join must be specified for each of the dimensions of the cube. Each
dimension is joined in the context of one of its hierarchies.

For example, if you had a cube with three dimensions, and each dimension had only
one hierarchy, you could fully map the cube with one call to MAP_FACTTBL _
LEVELKEY.

However, if you had a cube with three dimensions, but two of the dimensions each
had two hierarchies, you would need to call MAP_ FACTTBL LEVELKEY four times to
fully map the cube. For dimensions Diml, Dim2, and Dim3, where Diml and Dim3
each have two hierarchies, you would specify the following mapping strings in each
call to MAP_FACTTBL_LEVELKEY, as follows.

Diml Hierl, Dim2 Hier, Dim3 Hierl
Diml Hierl, Dim2 Hier, Dim3 Hier2
Diml_Hier2, Dim2_Hier, Dim3_Hierl
Diml_Hier2, Dim2_Hier, Dim3_Hier2

Typically the data for each hierarchy combination would be stored in a separate fact
table.

For more information, see"Joining Fact Tables with Dimension Tables" on page 2-9.

MAP_ FACTTBL_ LEVELKEY (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
facttable owner IN VARCHAR2,
facttable name IN VARCHAR2,
storetype IN VARCHAR2,
dimkeymap IN VARCHAR2,
dimkeytype IN VARCHAR2 DEFAULT NULL);

Table 21-7 MAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_name Name of the cube.
facttable_owner Owner of the fact table.
facttable name Name of the fact table.

21-8 Oracle OLAP Reference

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Example

Table 21-7 (Cont.) MAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description

storetype One of the following:
' LOWESTLEVEL', for a fact table that stores only lowest level data

'ET', for a fact table that stores embedded totals for all level
combinations in addition to lowest level data

dimkeymap A string specifying the mapping for each dimension of the data in
the fact table. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each dimension
specification with a semicolon as follows:

'DIM:diml_name/HIER:hier name;
/GID:gid column/LVL:Ilevel name
/COL:map column;

'DIM:dim2_ name/HIER:hier name;
/GID:gid column/LVL:level name
/COL:map column,...............

Note: The GID clause of the mapping string is only applicable to
embedded totals. If you specify 'LOWESTLEVEL' for the storetype
argument, do not include a GID clause in the mapping string.

This string must also be specified as an argument to the MAP_
FACTTBL MEASURE procedure.

dimkeytype This parameter is not currently used.

Example 2-3, "Create an OLAP Cube for the COSTS Fact Table" illustrates the
mapping commands for a fact table with a storetype of ' LOWESTLEVEL'".

"Example: Mapping a Cube" on page 21-2 illustrates the mapping commands for a fact
table with a storetype of 'ET'.

MAP_FACTTBL_MEASURE Procedure

Syntax

Parameters

This procedure maps a measure to a column in a fact table.

MAP_ FACTTBL_ MEASURE (

cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
measure_ name IN VARCHAR2,

facttable owner IN VARCHAR2,
facttable name IN VARCHAR2,
column name IN VARCHAR2,
dimkeymap IN VARCHAR2) ;

Table 21-8 MAP_FACTTBL_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

CWM2_OLAP_TABLE_MAP 21-9

MAP_DIMTBL_HIERLEVELATTR Procedure

Table 21-8 (Cont.) MAP_FACTTBL_MEASURE Procedure Parameters

Parameter Description

cube_name Name of the cube.

measure_name Name of the measure to be mapped.

facttable owner Owner of the fact table.

facttable name Name of the fact table.

column_name Column in the fact table to which the measure will be mapped.
dimkeymap A string specifying the mapping for each of the measure's

dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each dimension
specification with a semicolon as follows:

'DIM:diml_name/HIER:hier name;
/GID:gid column/LVL:level name
/COL:map_ colummn;

'DIM:dim2 name/HIER:hier name;
/GID:gid column/LVL:level name
/COL:map_colummn.............

Note: The GID clause of the mapping string is only applicable to
embedded totals. If you specify 'LOWESTLEVEL' for the storetype
argument, do not include a GID clause in the mapping string.

This string must also be specified as an argument to the MAP_
FACTTBL_LEVELKEYfnocedure

Example

See Example 2-3, "Create an OLAP Cube for the COSTS Fact Table" and "Example:
Mapping a Cube" on page 21-2.

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure

This procedure removes the relationship between a level attribute and a column in a
dimension table. The attribute is identified by the hierarchy that contains its associated
level.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

Syntax
REMOVEMAP DIMTBL HIERLEVELATTR (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension attribute name IN VARCHAR2,
hierarchy name IN VARCHAR2,
level name IN VARCHAR2,
level attribute name IN VARCHAR2) ;

21-10 Oracle OLAP Reference

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Parameters

Table 21-9 REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.

dimension attribute_ Name of the dimension attribute.

name
hierarchy name Name of the hierarchy.
level name Name of the level.

level attribute name Name of the level attribute associated with this level.

REMOVEMAP_DIMTBL_HIERLEVEL Procedure

This procedure removes the relationship between a level of a hierarchy and one or
more columns in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

Syntax
REMOVEMAP DIMTBL HIERLEVEL (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2,
level name IN VARCHAR2) ;
Parameters

Table 21-10 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.
hierarchy name Name of the hierarchy.
level name Name of the level.

REMOVEMAP_DIMTBL_HIERSORTKEY Procedure

This procedure removes custom sorting criteria associated with columns in a
dimension table.

Syntax
REMOVEMAP DIMTBL HIERSORTKEY (
dimension_owner IN VARCHAR2,
dimension name IN VARCHAR2,
hierarchy name IN VARCHAR2) ;

CWM2_OLAP_TABLE_MAP 21-11

MAP_DIMTBL_HIERLEVELATTR Procedure

Parameters

Table 21-11 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension name Name of the dimension.
hierarchy name Name of the hierarchy.

REMOVEMAP_DIMTBL_LEVELATTR Procedure

Syntax

Parameters

This procedure removes the relationship between a level attribute and a column in a
dimension table.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

REMOVEMAP DIMTBL LEVELATTR (

dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension attribute name IN VARCHAR2,
level name IN VARCHAR2,
level attribute name IN VARCHAR2) ;

Table 21-12 REMOVEMAP_DIMTBL_LEVELATTR Procedure Parameters

Parameter Description
dimension owner Owner of the dimension.
dimension_ name Name of the dimension.

dimension attribute_ Name of the dimension attribute.
name

level name Name of the level.

level attribute name Name of the level attribute associated with this level.

REMOVEMAP_DIMTBL_LEVEL Procedure

Syntax

This procedure removes the relationship between a level and one or more columns in a
dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

REMOVEMAP DIMTBL_LEVEL (

dimension_owner IN VARCHAR2,
dimension name IN VARCHAR2,
level name IN VARCHAR2);

21-12 Oracle OLAP Reference

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Parameters

Table 21-13 REMOVEMAP_DIMTBL_LEVEL Procedure Parameters

Parameter Description
dimension owner Owner of the dimension
dimension name Name of the dimension
level name Name of the level.

REMOVEMAP_FACTTBL_LEVELKEY Procedure

This procedure removes the relationship between the key columns in a fact table and
the level columns of a dimension hierarchy in a dimension table.

Syntax
REMOVEMAP FACTTBL_LEVELKEY (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
facttable_owner IN VARCHAR2,
facttable name IN VARCHAR2 DEFAULT) ;
Parameters

Table 21-14 REMOVEMAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_name Name of the cube.
facttable_ owner Owner of the fact table.
facttable name Name of the fact table.

REMOVEMAP_FACTTBL_MEASURE Procedure

This procedure removes the relationship between a measure column in a fact table and
a logical measure associated with a cube.

Upon successful completion of this procedure, the measure is a purely logical
metadata entity. It has no data associated with it.

Syntax
REMOVEMAP FACTTBL MEASURE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
measure_ name IN VARCHAR2,
facttable_owner IN VARCHAR2,
facttable_name IN VARCHAR2,
column name IN VARCHAR2,
dimkeymap IN VARCHAR2) ;

CWM2_OLAP_TABLE_MAP 21-13

MAP_DIMTBL_HIERLEVELATTR Procedure

Parameters

Table 21-15 REMOVEMAP_FACTTBL_MEASURE Procedure Parameters

Parameter

Description

cube owner

cube name
measure_name
facttable owner
facttable name
column_name

dimkeymap

Owner of the cube.

Name of the cube.

Name of the measure.

Owner of the fact table.

Name of the fact table.

Column in the fact table to which the measure is mapped.

A string specifying the mapping for each of the measure's
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each dimension
specification with a semicolon as follows:

'DIM: dimnamel/HIER: hiernamel

/GID:gid columnnamel/LVL:levelnamel
/COL:map columnnamel;
DIM:dimname2/HIER: hiername?2

/GID:gid columnname2/LVL:levelname2
/COL:map_columnname2z;...........

Note that the GID clause of the mapping string is only applicable
to embedded totals. If the measure contained only detail data
and was mapped with a storage type of 'LOWESTLEVEL', do not
include a GID clause in the mapping string.

This string must also be specified as an argument to the MAP_
FACTTBL_MEASURE and MAP_FACTTBL LEVELKEY procedures.

21-14 Oracle OLAP Reference

22

CWM2_OLAP_VALIDATE

The CWM2_OLAP_VALIDATE package provides procedures for validating OLAP
Catalog metadata.

See Also:
= "Validating OLAP Catalog Metadata" on page 2-10
» Chapter 23, "CWM2_OLAP_VERIFY_ACCESS"

This chapter discusses the following topics:
= About OLAP Catalog Metadata Validation
s Summary of CWM2_OLAP_VALIDATE Subprograms

About OLAP Catalog Metadata Validation

The validation process checks the structural integrity of the metadata and ensures that
it is correctly mapped to columns in dimension tables and fact tables. Additional
validation specific to the OLAP APl is done if requested.

The procedures in CWM2_OLAP_VALIDATE validate the OLAP Catalog metadata
created by Enterprise Manager as well as the metadata created by CWM2 procedures.

See Also: "Validating and Committing OLAP Catalog Metadata" on
page 2-10 for additional information.

Structural Validation

Structural validation ensures that cubes and dimensions have all their required
component parts. All the procedures in CWM2_OLAP_VALIDATE perform structural
validation by default.

Cubes

To be structurally valid, a cube must meet the following criteria:
s It must have at least one valid dimension.

s It must have at least one measure.

Dimensions
To be structurally valid, a dimension must meet the following criteria:

s It must have at least one level.

CWM2_OLAP_VALIDATE 22-1

About OLAP Catalog Metadata Validation

= It may have one or more hierarchies. Each hierarchy must have at least one level.

= It may have one or more dimension attributes. Each dimension attribute must
have at least one level attribute.

Mapping Validation

Mapping validation ensures that the metadata has been properly mapped to columns
in tables or views. All the procedures in CWM2_OLAP_VALIDATE perform mapping
validation by default.

Cubes
To be valid, a cube's mapping must meet the following criteria:

s It must be mapped to one or more fact tables.

= All of the cube's measures must be mapped to existing columns in a fact table. If
there are multiple fact tables, all the measures must be in each one.

s Every dimension/hierarchy combination must be mapped to one of the fact tables.

Dimensions
To be valid, a dimension's mapping must meet the following criteria:

= Alllevels must be mapped to existing columns in a dimension table.

s Level attributes must be mapped to columns in the same table as the
corresponding levels.

Validation Type

All the procedures in CWM2_OLAP_VALIDATE package take a validation type
argument. The validation type can be one of the following;:

DEFAULT -- Validates the basic structure of the metadata and its mapping to the source
tables. To be valid, the metadata must meet the criteria specified in "Structural
Validation" and "Mapping Validation" on page 22-2.

OLAP API -- Performs default validation plus the following:

= Validates that each dimension of an ET-style cube has dimension and level
attributes 'ET KEY' and 'GROUPING ID' for all levels.

m Validates that time dimensions have dimension and level attributes ' END DATE'
and 'TIME SPAN' for all levels.

Using Wildcards to Identify Metadata Entities

You can use wildcard characters to validate cubes and dimensions whose names meet
certain criteria.

"non

Wildcard characters are the underscore "_" and the percent sign "%". An underscore
replaces any single character, and a percent sign replaces any zero or more characters.
An underscore, but not a percent sign, is also a legal character in a metadata owner or
entity name. Any underscore character in the owner or entity name is treated as a
wildcard, unless you precede it with a backslash "\" which acts as an escape character.

For example, the following command validates all the cubes belonging to the owner
'‘GLOBAL'".

execute cwm2 olap validate.validate cube('GLOBAL', '%');

22-2 Oracle OLAP Reference

About OLAP Catalog Metadata Validation

The following command validates all the cubes in the GLOBAL schema whose names
start with 'a'.

execute cwm2 olap validate.validate cube('GLOBAL', 'a%');

If your database includes users "TESTUSER1' and 'TESTUSER?2', you could validate the
'TEST' cube belonging to each of these users with the following command.

execute cwm2 olap validate.validate cube('TESTUSER ', 'TEST');

If your database includes users TEST_USER1' and 'TEST_USER?2', you could validate
the 'TEST' cube belonging to each of these users with the following command.

execute cwm2_olap validate.validate cube('TEST/ USER ', 'TEST');

CWM2_OLAP_VALIDATE 22-3

Summary of CWM2_OLAP_VALIDATE Subprograms

Summary of CWM2_OLAP_VALIDATE Subprograms

Table 22-1 CWM2_OLAP_VALIDATE

Subprogram Description
VALIDATE_ALL_CUBES Procedure on ~ Validates all the cubes in the OLAP Catalog.
page 22-5

VALIDATE_ALL_DIMENSIONS
Procedure on page 22-5

VALIDATE_CUBE Procedure on

page 22-5

VALIDATE_DIMENSION Procedure on
page 22-6

VALIDATE_OLAP_CATALOG Procedure
on page 22-7

Validates all the dimensions in the OLAP Catalog.
Validates one or more cubes in the OLAP Catalog.

Validates one or more dimensions in the OLAP
Catalog.

Validates all the cubes and all the dimensions in
the OLAP Catalog.

22-4 Oracle OLAP Reference

Summary of CWM2_OLAP_VALIDATE Subprograms

VALIDATE_ALL_CUBES Procedure

Syntax

Parameters

This procedure validates all the cubes the OLAP Catalog. This includes validation of
all the dimensions associated with the cubes.

Cube validity status is displayed in the view ALL_OLAP2_CUBES.

VALIDATE ALL CUBES (
type_of validation IN VARCHAR2 DEFAULT 'DEFAULT',
verbose report IN VARCHAR2 DEFAULT 'YES');

Table 22-2 VALIDATE_ALL CUBES Procedure Parameters

Parameter Description

type of validation 'DEFAULT' or 'OLAP API'. See "Validation Type" on
page 22-2.

verbose report '"YES' or 'NO'. Whether to report all validation checks or only
major events and errors. By default, all validation checks are
reported.

VALIDATE_ALL_DIMENSIONS Procedure

Syntax

Parameters

This procedure validates all the dimensions in the OLAP Catalog.
Dimension validity status is displayed in the view ALL_OLAP2_DIMENSIONS.

VALIDATE ALL DIMENSIONS (
type of validation IN VARCHAR2 DEFAULT 'DEFAULT',
verbose_report IN VARCHAR2 DEFAULT 'YES');

Table 22-3 VALIDATE_ALL DIMENSIONS Procedure Parameters

Parameter Description

type of validation 'DEFAULT' or 'OLAP API'.See "Validation Type" on
page 22-2.

verbose report '"YES' or 'NO'. Whether to report all validation checks or only
major events and errors. By default, all validation checks are
reported.

VALIDATE_CUBE Procedure

This procedure validates a cube or group of cubes in the OLAP Catalog. This includes
validation of all the dimensions associated with the cubes.

You can identify a group of cubes by specifying wildcard characters in the cube
owner and cube_name parameters. See "Using Wildcards to Identify Metadata
Entities" on page 22-2.

The validity status of a cube is displayed in the view ALL_OLAP2_CUBES.

CWM2_OLAP_VALIDATE 22-5

VALIDATE_ALL_CUBES Procedure

Syntax
VALIDATE CUBE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
type_of_validation IN VARCHAR2 DEFAULT 'DEFAULT',
verbose report IN VARCHAR2 DEFAULT 'YES');
Parameters

Table 22-4 VALIDATE_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube. See "Using Wildcards to Identify Metadata
Entities" on page 22-2.

cube_name Name of the cube. See "Using Wildcards to Identify Metadata
Entities" on page 22-2.

type of validation 'DEFAULT' or 'OLAP API'.See "Validation Type" on
page 22-2.

verbose report '"YES' or 'NO'. Whether to report all validation checks or only
major events and errors. By default, all validation checks are
reported.

VALIDATE_DIMENSION Procedure

This procedure validates a dimension or group of dimensions in the OLAP Catalog.

You can identify a group of dimensions by specifying wildcard characters in the
cube_owner and cube_name parameters. See "Using Wildcards to Identify Metadata
Entities" on page 22-2.

The validity status of an OLAP dimension is displayed in the view ALL_OLAP2_

DIMENSIONS.
Syntax
VALIDATE DIMENSION (
dimension_owner IN VARCHAR2,
dimension_name IN VARCHAR2,
type of validation IN VARCHAR2 DEFAULT 'DEFAULT',
verbose_report IN VARCHAR2 DEFAULT 'YES');
Parameters

Table 22-5 VALIDATE_DIMENSION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension. See "Using Wildcards to Identify
Metadata Entities" on page 22-2.

dimension_name Name of the dimension. "Using Wildcards to Identify Metadata
Entities" on page 22-2.

type_of validation 'DEFAULT' or 'OLAP API'.See "Validation Type" on
page 22-2.

verbose report '"YES' or 'NO'. Whether to report all validation checks or only
major events and errors. By default, all validation checks are
reported.

22-6 Oracle OLAP Reference

Summary of CWM2_OLAP_VALIDATE Subprograms

VALIDATE_OLAP_CATALOG Procedure

Syntax

Parameters

This procedure validates all the metadata in the OLAP Catalog. This includes all the
cubes (with their dimensions) and all the dimensions that are not associated with
cubes.

VALIDATE OLAP_ CATALOG validates each standalone dimension in alphabetical
order, then it validates each cube in alphabetical order.

VALIDATE OLAP_CATALOG (
type_of validation IN VARCHAR2 DEFAULT 'DEFAULT',
verbose report IN VARCHAR2 DEFAULT 'YES');

Table 22—-6 VALIDATE_OLAP_CATALOG Procedure Parameters

Parameter Description

type of validation 'DEFAULT' or 'OLAP API'. See "Validation Type" on
page 22-2.

verbose_report '"YES' or 'NO'. Whether to report all validation checks or only
major events and errors. By default, all validation checks are
reported.

CWM2_OLAP_VALIDATE 22-7

VALIDATE_ALL_CUBES Procedure

22-8 Oracle OLAP Reference

23

CWM2_OLAP_VERIFY_ACCESS

The CWM2_OLAP_VERIFY_ ACCESS package provides a procedure for validating an
OLAP cube and verifying its accessibility to the OLAP APL

See Also:

= "Validating and Committing OLAP Catalog Metadata" on
page 2-10

s Chapter 19, "CWM2_OLAP_METADATA_REFRESH"

» Chapter 22, "CWM2_OLAP_VALIDATE"

This chapter discusses the following topics:
= Validating the Accessibility of an OLAP Cube
s Summary of CWM2_OLAP_VERIFY_ACCESS Subprograms

Validating the Accessibility of an OLAP Cube

Cube validation procedures in the CWM2_OLAP_VALIDATE package validate the
logical structure of an OLAP cube and check that it is correctly mapped to columns in
dimension tables and fact tables. However, a cube may be entirely valid according to
this criteria and still be inaccessible to your application.

For this reason, you may need to use the CWM2_OLAP_VERIFY ACCESS package to
check that the following additional criteria have also been met:

s The metadata tables used by the OLAP API Metadata Reader must be refreshed
with the latest changes in the cube's metadata. If these MRV tables have not been
updated, you must run the procedures in the CWM2_OLAP_METADATA_REFRESH
package to enable access by the OLAP APL

s The identity of the application must have access to the source data that underlies
the cube. The validation procedures in CWM2 OLAP_ VALIDATE run under the SYS
identity. These procedures may indicate that the cube is entirely valid, and yet the
application may not be able to access it. If this is the case, you must grant the
appropriate rights to the calling user.

CWM2_OLAP_VERIFY_ACCESS 23-1

Summary of CWM2_OLAP_VERIFY_ACCESS Subprograms

Summary of CWM2_OLAP_VERIFY_ACCESS Subprograms

Table 23-1 CWM2_OLAP_VERIFY_ACCESS

Subprogram Description
VERIFY_CUBE_ACCESS Procedure on Validates the cube and verifies its accessibility to
page 23-3 an OLAP application.

23-2 Oracle OLAP Reference

Summary of CWM2_OLAP_VERIFY_ACCESS Subprograms

VERIFY_CUBE_ACCESS Procedure

Syntax

Parameters

This procedure first validates a cube by calling the VALIDATE CUBE procedure in the
CWM2_ OLAP_VALIDATE package. Additionally it checks that an OLAP API
application running under the identity of the calling user has access to the cube.

Cube accessibility requirements are described in "Validating the Accessibility of an

OLAP Cube" on page 23-1.

VERIFY CUBE ACCESS (

cube_owner IN
cube_name IN
type of validation IN
verbose_report IN

VARCHAR2,

VARCHAR2,

VARCHAR2 DEFAULT 'DEFAULT',
VARCHAR2 DEFAULT 'YES');

Table 23-2 VERIFY_CUBE_ACCESS Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

type of validation 'DEFAULT' or 'OLAP API'.See "Validation Type" on page 22-2.
verbose report '"YES' or 'NO'. Whether to report all validation checks or only

major events and errors. By default, all validation checks are

reported.

CWM2_OLAP_VERIFY_ACCESS 23-3

VERIFY_CUBE_ACCESS Procedure

23-4 Oracle OLAP Reference

24

DBMS_AW

The DBMS_ AW package provides procedures and functions for interacting with analytic
workspaces. With DBMS_ AW, you can:

» Create, delete, copy, rename, and update analytic workspaces.
= Convert analytic workspaces from Oracle9i to Oracle 10g storage format.
= Attach analytic workspaces for processing within your session.
= Execute OLAP DML commands.
s Obtain information to help you manage sparsity and summary data within
analytic workspaces.
See Also:

» Oracle OLAP DML Reference for information on analytic workspace
objects and the syntax of individual OLAP DML commands.

» Oracle OLAP Application Developer’s Guide for information about
using analytic workspaces.
This chapter includes the following topics:
= Managing Analytic Workspaces
s Embedding OLAP DML in SQL Statements
= Using the Sparsity Advisor
= Using the Aggregate Advisor
= Summary of DBMS_AW Subprograms

Managing Analytic Workspaces

To interact with Oracle OLAP, you must attach an analytic workspace to your session.
From within SQL*Plus, you can use the following command to attach a workspace
with read-only access.

SQL>execute dbms aw.aw_attach ('awname');
Each analytic workspace is associated with a list of analytic workspaces. The read-only
workspace EXPRESS . AW, which contains the OLAP engine code, is always attached

last in the list. When you create a new workspace, it is attached first in the list by
default.

DBMS_AW 24-1

Managing Analytic Workspaces

You can reposition a workspace within the list by using keywords such as FIRST and
LAST. For example, the following commands show how to move a workspace called
GLOBAL.TEST2 from the second position to the first position on the list.

SQL>execute dbms aw.execute ('aw list');

TEST1 R/O UNCHANGED GLOBAL.TEST1
TEST2 R/O UNCHANGED GLOBAL.TEST2
EXPRESS R/O UNCHANGED SYS.EXPRESS

SQL>execute dbms aw.aw_attach ('test2', false, false, 'first');
SQL>execute dbms aw.execute ('aw list');

TEST2 R/O UNCHANGED GLOBAL.TEST2
TEST1 R/O UNCHANGED GLOBAL.TEST1
EXPRESS R/O UNCHANGED SYS.EXPRESS

From within SQL*Plus, you can rename workspaces and make copies of workspaces. If
you have a workspace attached with read /write access, you can update the workspace
and save your changes in the permanent database table where the workspace is stored.
You must do a SQL COMMIT to save the workspace changes within the database.

The following commands make a copy of the objects and data in workspace test2 in
a new workspace called test3, update test3, and commit the changes to the

database.

SQL>execute dbms_aw.aw_copy ('test2', 'test3');
SQL>execute dbms aw.aw_update('test3');
SQL>commit;

Converting an Analytic Workspace to Oracle 10g Storage Format

Analytic workspaces are stored in tables within the Database. The storage format for
Oracle 10g analytic workspaces is different from the storage format used in Oracle9i.
Analytic workspace storage format is described in the Oracle OLAP Application
Developer’s Guide.

When you upgrade an Oracle9i database to Oracle 10g, the upgraded database is
automatically in Oracle9i compatibility mode, and the analytic workspaces are still in
9i storage format. If you want to use new Oracle 10g OLAP features, such as dynamic
enablement and multi-writer, you must use DBMS_AW . CONVERT to convert these
workspaces to the new storage format.

See Also:

» Oracle Database Upgrade Guide for more information on Database
compatibility mode.

s Oracle MetaLink at http://metalink.oracle.com for more
information about upgrading analytic workspaces.

Procedure: Convert an Analytic Workspace from 9ito10g Storage Format

To convert an Oracle9i compatible analytic workspace to Oracle 10g storage format,
follow these steps:

1. Change the compatibility mode of the database to 10.0.0 or higher.
2. Log into the database with the identity of the analytic workspace.

24-2 Oracle OLAP Reference

http://metalink.oracle.com

Embedding OLAP DML in SQL Statements

3. In Oracle Database 10g SQL*Plus, use the following procedure to convert the
workspace to the new storage format.

= Rename the analytic workspace to a name like aw_temp.

SQL>execute dbms_aw.aw_rename ('my aw', 'aw temp');

» Convert the workspace to 10g storage format in a workspace with the original
name.

SQL>execute dbms_aw.convert ('aw temp', 'my aw');

Note that standard form analytic workspaces typically include the workspace
name in fully-qualified logical object names. For this reason, the upgraded
workspace must have the same name as the original Oracle9i workspace.

4. Because you changed the Database compatibility mode to Oracle Database 10g,
any new workspaces that you create are in the new storage format.

Procedure: Import a workspace from a 9i Database into a 10g Database

If you install Oracle Database 10g separately from your old Oracle9i Database
installation, you must export the Oracle9i workspaces and import them into Oracle
Database 10g. The export and import processes automatically convert the workspaces
to the new storage format. Therefore you do not need to use DBMS_AW.CONVERT in
this case.

Use the following procedure to export an Oracle9i analytic workspace and import it in
an Oracle 10g database.

In Oracle Database 9i SQL*Plus, export the analytic workspace to the directory
identified by the SCRIPTS directory object.

'aw attach ''awname''');

'allstat!');

'cda scripts');

'export all to eif file ''filename''');

SQL>execute dbms_aw.execute (
SQL>execute dbms_aw.execute (
SQL>execute dbms aw.execute (
SQL>execute dbms aw.execute (
In Oracle 10g SQL*Plus, create a new workspace with the same name and schema, and
import the EIF file from the SCRIPTS directory.

'aw create awname') ;

'cda scripts');

"import all from eif file ''filename''');
'update') ;

SQL>execute dbms_aw.execute (
SQL>execute dbms_aw.execute (
SQL>execute dbms_aw.execute (
SQL>execute dbms:aw.execute (
You can also use Oracle export and import utilities to move the entire schema,
including the analytic workspaces to an Oracle 10g database. See Oracle Database
Utilities and Oracle Database Upgrade Guide.

Embedding OLAP DML in SQL Statements

With the DBMS_AW package you can perform the full range of OLAP processing within
analytic workspaces. You can import data from legacy workspaces, relational tables, or
flat files. You can define OLAP objects and perform complex calculations.

DBMS_AW 24-3

Using the Sparsity Advisor

Note: If you use the DBMS_ AW package to create analytic workspaces
from scratch, you may not be able to use OLAP utilities, such as
Analytic Workspace Manager and the DBMS AW Aggregate Advisor,
which require standard form.

Methods for Executing OLAP DML Commands

The DBMS_ AW package provides several procedures for executing ad hoc OLAP DML
commands. Using the EXECUTE or INTERP_SILENT procedures or the INTERP or
INTERCLOB functions, you can execute a single OLAP DML command or a series of
commands separated by semicolons.

Which procedures you use will depend on how you want to direct output and on the
size of the input and output buffers. For example, the EXECUTE procedure directs
output to a printer buffer, the INTERP_SILENT procedure suppresses output, and the
INTERP function returns the session log.

The DBMS_ AW package also provides functions for evaluating OLAP expressions. The
EVAL_TEXT function returns the result of a text expression, and EVAL_NUMBER returns
the result of a numeric expression.

See Also: Oracle OLAP DML Reference for complete information
about OLAP DML expressions.

Do not confuse the DBMS AW functions EVAL NUMBER and EVAL
TEXT with the SQL function OLAP EXPRESSION. See Chapter 30,
"OLAP_EXPRESSION" for more information.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the embedded OLAP DML commands, either in whole
or in part, before sending them to Oracle OLAP for processing. Follow these
guidelines when formatting the OLAP DML commands in the olap-commands
parameter of DBMS_AW procedures:

= Wherever you would normally use a single quote (') in an OLAP DML command,
use two single quotes (' '). The SQL processor strips one of the single quotes
before it sends the OLAP DML command to Oracle OLAP.

s Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

Using the Sparsity Advisor

Data can be stored in several different forms in an analytic workspace, depending on
whether it is dense, sparse, or very sparse. The Sparsity Advisor is a group of
subprograms in DBMS_AW that you can use to analyze the relational source data and
get recommendations for storing it in an analytic workspace.

Data Storage Options in Analytic Workspaces

Analytic workspaces analyze and manipulate data in a multidimensional format that
allocates one cell for each combination of dimension members. The cell can contain a
data value, or it can contain an NA (null). Regardless of its content, the cell size is
defined by the data type, for example, every cell in a DECIMAL variable is 8 bytes.

24-4 Oracle OLAP Reference

Using the Sparsity Advisor

Variables can be either dense (they contain 30% or more cells with data values) or
sparse (less than 30% data values). Most variables are sparse and many are extremely
sparse.

Although data can also be stored in the multidimensional format used for analysis,
other methods are available for storing sparse variables that make more efficient use of
disk space and improve performance. Sparse data can be stored in a variable defined
with a composite dimension. A composite has as its members the dimension-value
combinations (called tuples) for which there is data. When a data value is added to a
variable dimensioned by a composite, that action triggers the creation of a composite
tuple. A composite is an index into one or more sparse data variables, and is used to
store sparse data in a compact form. Very sparse data can be stored in a variable
defined with a compressed composite, which uses a different algorithm for data
storage from regular composites.

Selecting the Best Data Storage Method

In contrast to dimensional data, relational data is stored in tables in a very compact
format, with rows only for actual data values. When designing an analytic workspace,
you may have difficulty manually identifying sparsity in the source data and
determining the best storage method. The Sparsity Advisor analyzes the source data in
relational tables and recommends a storage method. The recommendations may
include the definition of a composite and partitioning of the data variable.

The Sparsity Advisor consists of these procedures and functions:

SPARSITY_ADVICE_TABLE Procedure
ADD_DIMENSION_SOURCE Procedure
ADVISE_SPARSITY Procedure
ADVISE_DIMENSIONALITY Function
ADVISE_DIMENSIONALITY Procedure

The Sparsity Advisor also provides a public table type for storing information about
the dimensions of the facts being analyzed. Three objects are used to define the table

type:
DBMS AWS COLUMNLIST T

DBMS_AWS DIMENSION SOURCE T
DBMS_AW$S DIMENSION SOURCES T

The following SQL DESCRIBE statements show the object definitions.

SQL> describe dbms_aw$_columnlist t
dbms_aw$_columnlist t TABLE OF VARCHAR2 (100)

SQL> describe dbms aw$ dimension source t

Name Null? Type

DIMNAME VARCHAR2 (100)
COLUMNNAME VARCHAR2 (100)
SOURCEVALUE VARCHAR?2 (32767)
DIMTYPE NUMBER (3)

HIERCOLS DBMS_AWS COLUMNLIST T
PARTBY NUMBER (9)

SQL> describe dbms aw$ dimension sources t
dbms_aw$_dimension sources t TABLE OF DBMS AWS DIMENSION SOURCE T

DBMS_AW 24-5

Using the Sparsity Advisor

Using the Sparsity Advisor
Take these steps to use the Sparsity Advisor:

1. Call SPARSITY ADVICE_TABLE to create a table for storing the evaluation of the
Sparsity Advisor.

2, Call ADD_DIMENSION_SOURCE for each dimension related by one or more
columns to the fact table being evaluated.

The information that you provide about these dimensions is stored in a DBMS_
AWS DIMENSION SOURCES_T variable.

3. Call ADVISE SPARSITY to evaluate the fact table.

Its recommendations are stored in the table created by SPARSITY ADVICE_
TABLE. You can use these recommendations to make your own judgements about
defining variables in your analytic workspace, or you can continue with the
following step.

4. Call the ADVISE DIMENSIONALITY procedure to get the OLAP DML object
definitions for the recommended composite, partitioning, and variable definitions.

or

Use the ADVISE_DIMENSIONALITY function to get the OLAP DML object
definition for the recommended composite and the dimension order for the
variable definitions for a specific partition.

Example: Evaluating Sparsity in the GLOBAL Schema

Example 24-1 provides a SQL script for evaluating the sparsity of the UNITS_
HISTORY_ FACT table in the GLOBAL schema. In the GLOBAL analytic workspace,
UNITS HISTORY FACT defines the Units Cube and will be the source for the UNITS
variable. UNITS_HISTORY_ FACT is a fact table with a primary key composed of
foreign keys from four dimension tables. A fifth column contains the facts for Unit
Sales.

The CHANNEL DIM and CUSTOMER_ DIM tables contain all of the information for the
Channel and Customer dimensions in a basic star configuration. Three tables in a
snowflake configuration provide data for the Time dimension: MONTH_DIM,

QUARTER DIM, and YEAR DIM. The PRODUCT CHILD PARENT table is a parent-child
table and defines the Product dimension.

Example 24-1 Sparsity Advisor Script for GLOBAL

CONNECT global/global

SET ECHO ON

SET LINESIZE 300

SET PAGESIZE 300

SET SERVEROUT ON FORMAT WRAPPED

-- Define and initialize an advice table named GLOBAL SPARSITY ADVICE
BEGIN
dbms_aw.sparsity advice table();
EXCEPTION
WHEN OTHERS THEN NULL;
END;
/

TRUNCATE TABLE aw_sparsity advice;

24-6 Oracle OLAP Reference

Using the Sparsity Advisor

DECLARE
dimsources dbms_aw$_dimension sources t;
dimlist VARCHAR2 (500);
sparsedim VARCHAR2 (500) ;

defs CLOB;
BEGIN
-- Provide information about all dimensions in the cube
dbms_aw.add dimension source('channel', 'channel id', dimsources,
'channel dim', dbms_aw.hier levels,
dbms_aw$ columnlist t('channel id', 'total channel id'));
dbms_aw.add_dimension_source ('product', 'item_id', dimsources,
'product_child parent', dbms_aw.hier parentchild,
dbms_aw$_columnlist_t('product_id', 'parent id'));
dbms_aw.add dimension source('customer', 'ship to id', dimsources,
'customer dim', dbms aw.hier levels,
dbms_aw$_ columnlist t('ship to id', 'warehouse id', 'region id',
'total customer id'));
dbms_aw.add_dimension_source('time', 'month_id', dimsources,

'SELECT m.month id, g.quarter id, y.year id
FROM time month dim m, time quarter dim g, time year dim y
WHERE m.parent=q.quarter id AND g.parent=y.year id',
dbms_aw.hier levels,
dbms_aw$_columnlist t('month id', 'quarter id', 'year id'));

-- Analyze fact table and provide advice without partitioning
dbms_aw.advise sparsity('units history fact', 'units cube',
dimsources, dbms_aw.advice default, dbms_aw.partby none);

commit;

-- Generate OLAP DML for composite and variable definitions

dimlist := dbms_aw.advise dimensionality('units cube', sparsedim,
'units cube composite');

dbms_output.put line('Dimension list: ' || dimlist);

dbms_output.put line('Sparse dimension: ' || sparsedim);

dbms_aw.advise dimensionality(defs, 'units cube');
dbms _output.put line('Definitions: ');
dbms_aw.printlog(defs) ;

END;
/

Advice from Sample Program
The script in Example 24-1 generates the following information.

Dimension list: <channel units cube composite<product customer times>>

Sparse dimension: DEFINE units cube composite COMPOSITE <product customer times
Definitions:

DEFINE units cube.cp COMPOSITE <product customer times>

DEFINE units cube NUMBER VARIABLE <channel units cube.cp<product customer times>>
PL/SQL procedure successfully completed.

Information Stored in GLOBAL_SPARSITY_ADVICE Table

This SQL SELECT statement shows some of the columns from the GLOBAL
SPARSITY ADVICE table, which is the basis for the recommended OLAP DML object
definitions.

SELECT fact, dimension, dimcolumn, membercount nmem, leafcount nleaf,
advice, density

DBMS_AW 24-7

Using the Aggregate Advisor

from aw_sparsity advice
WHERE cubename='units cube';

FACT DIMENSION DIMCOLUMN NMEM NLEAF ADVICE DENSITY
units_history fact channel channel id 3 3 DENSE .46182
units_history fact product item id 48 36 SPARSE .94827
units history fact customer ship to_id 61 61 SPARSE .97031
units history fact time month id 96 79 SPARSE .97664

Using the Aggregate Advisor

The management of aggregate data within analytic workspaces can have significant
performance implications. To determine an optimal set of dimension member
combinations to preaggregate, you can use the ADVISE_REL and ADVISE_CUBE
procedures in the DBMS_AW package. These procedures are known together as the
Aggregate Advisor.

Based on a percentage that you specify, ADVISE_REL suggests a set of dimension
members to preaggregate. The ADVISE CUBE procedure suggests a set of members for
each dimension of a cube.

Aggregation Facilities within the Workspace

Instructions for storing aggregate data are specified in a workspace object called an
aggmap. The OLAP DML AGGREGATE command uses the aggmap to preaggregate the
data. Any data that is not preaggregated is aggregated dynamically by the AGGREGATE
function when the data is queried.

Choosing a balance between static and dynamic aggregation depends on many factors
including disk space, available memory, and the nature and frequency of the queries
that will run against the data. After weighing these factors, you may arrive at a
percentage of the data to preaggregate.

Once you have determined the percentage of the data to preaggregate, you can use the
Aggregate Advisor. These procedures analyze the distribution of dimension members
within hierarchies and identify an optimal set of dimension members to preaggregate.

Example: Using the ADVISE_REL Procedure

24-8

Based on a precompute percentage that you specify, the ADVISE_REL procedure
analyzes a family relation, which represents a dimension with all its hierarchical
relationships, and returns a list of dimension members.

ADVISE_CUBE applies similar heuristics to each dimension in an aggmap for a cube.

See Also:
= "ADVISE_REL Procedure" on page 24-20
= ADVISE_CUBE Procedure on page 24-15

Example 24-2 uses the following sample Customer dimension to illustrate the
ADVISE_REL procedure.

Oracle OLAP Reference

Using the Aggregate Advisor

Sample Dimension: Customer in the Global Analytic Workspace

The Customer dimension in GLOBAL AW .GLOBAL has two hierarchies: SHIPMENTS
ROLLUP with four levels, and MARKET ROLLUP with three levels. The dimension has
106 members. This number includes all members at each level and all level names.

The members of the Customer dimension are integer keys whose text values are
defined in long and short descriptions.

The following OLAP DML commands show information about the representation of
the Customer dimension, which is in database standard form.

SQL>set serveroutput on

---- Number of members of Customer dimension
SQL>execute dbms_aw.execute ('show statlen(customer)')
106

---- Hierarchies in Customer dimension;

SQL>execute dbms_aw.execute ('rpr w 40 customer hierlist');
CUSTOMER_HIERLIST

MARKET ROLLUP

SHIPMENTS_ROLLUP

---- Levels in Customer dimension

SQL>execute dbms_aw.execute ('rpr w 40 customer_ levellist');
CUSTOMER_LEVELLIST

ALL_CUSTOMERS

REGION

WAREHOUSE

TOTAL_MARKET

MARKET SEGMENT

ACCOUNT

SHIP_TO

---- Levels in each hierarchy from leaf to highest
SQL>execute dbms_aw.execute ('report w 20 customer hier levels');

CUSTOMER_HIERL

IST CUSTOMER_HIER LEVELS
SHIPMENTS SHIP TO

WAREHOUSE

REGION

TOTAL CUSTOMER
MARKET SEGMENT SHIP TO

ACCOUNT

MARKET SEGMENT

TOTAL MARKET

---- Parent relation showing parent-child relationships in the Customer dimension
---- Only show the last 20 members

SQL>execute dbms_aw.execute('limit customer to last 20');

SQL>execute dbms_aw.execute('rpr w 10 down customer w 20 customer parentrel');

CUSTOMER MARKET ROLLUP SHIPMENTS ROLLUP
103 44 21

104 45 21

105 45 21

106 45 21

7 NA NA

1 NA NA

8 NA 1

9 NA 1

10 NA 1

DBMS_AW 24-9

Using the Aggregate Advisor

11 NA 8
12 NA 10
13 NA 9
14 NA 9
15 NA 8
16 NA 9
17 NA 8
18 NA 8
19 NA 9
20 NA 9
21 NA 10

---- Show text descriptions for the same twenty dimension members

SQL>execute dbms_aw.execute ('report w 15 down customer w 35 across customer_ hierlist:
<customer short description>');

ALL LANGUAGES: AMERICAN AMERICA

——————————— MARKET ROLLUP----------- ---------SHIPMENTS ROLLUP----------
CUSTOMER CUSTOMER_SHORT DESCRIPTION CUSTOMER_SHORT DESCRIPTION
103 US Marine Svcs Washington US Marine Svcs Washington
104 Warren Systems New York Warren Systems New York
105 Warren Systems Philladelphia Warren Systems Philladelphia
106 Warren Systems Boston Warren Systems Boston
7 Total Market NA
1 NA All Customers
8 NA Asia Pacific
9 NA Europe
10 NA North America
11 NA Australia
12 NA Canada
13 NA France
14 NA Germany
15 NA Hong Kong
16 NA Italy
17 NA Japan
18 NA Singapore
19 NA Spain
20 NA United Kingdom
21 NA United States

Example 24-2 ADVISE_REL: Suggested Preaggregation of the Customer Dimension

This example uses the GLOBAL Customer dimension described in Sample Dimension:
Customer in the Global Analytic Workspace on page 24-9.

The following PL/SQL statements assume that you want to preaggregate 25% of the
Customer dimension. ADVISE_REL returns the suggested set of members in a
valueset.

SQL>set serveroutput on
SQL>execute dbms_aw.execute ('aw attach global aw.global');
SQL>execute dbms_aw.execute ('define customer preagg valueset customer');

SQL>execute dbms_aw.advise_rel('customer parentrel', 'customer_ preagg', 25);
SQL>execute dbms_aw.execute ('show values(customer preagg)');
31

2

4

5

6

7

1

8

9

20

21

24-10 Oracle OLAP Reference

Using the Aggregate Advisor

The returned Customer members with their text descriptions, related levels, and
related hierarchies, are shown as follows.

Customer

Member Description Hierarchy Level

31 Kosh Enterprises MARKET ROLLUP ACCOUNT

2 Consulting MARKET ROLLUP MARKET SEGMENT
4 Government MARKET ROLLUP MARKET SEGMENT
5 Manufacturing MARKET ROLLUP MARKET SEGMENT
6 Reseller MARKET ROLLUP MARKET SEGMENT
7 TOTAL_MARKET MARKET ROLLUP TOTAL_MARKET

1 ALL_ CUSTOMERS SHIPMENTS ROLLUP ALL_ CUSTOMERS

8 Asia Pacific SHIPMENTS_ ROLLUP REGION

9 Europe SHIPMENTS ROLLUP REGION

20 United Kingdom SHIPMENTS ROLLUP WAREHOUSE

21 United States SHIPMENTS ROLLUP WAREHOUSE

DBMS_AW 24-11

Summary of DBMS_AW Subprograms

Summary of DBMS_AW Subprograms

The following table describes the subprograms provided in DBMS_AW.

Table 24-1

DBMS_AW Subprograms

Subprogram

Description

ADD_DIMENSION_SOURCE
Procedure on page 24-14

ADVISE_CUBE Procedure on
page 24-15

ADVISE_DIMENSIONALITY
Function on page 24-16

ADVISE_DIMENSIONALITY
Procedure on page 24-18

ADVISE_REL Procedure on
page 24-20

ADVISE_SPARSITY
Procedure on page 24-21

AW_ATTACH Procedure on
page 24-23

AW_COPY Procedure on
page 24-24

AW_CREATE Procedure on
page 24-25

AW_DELETE on page 24-26

AW_DETACH Procedure on
page 24-26

AW_RENAME Procedure on
page 24-27

AW_TABLESPACE Function
on page 24-27

AW_UPDATE Procedure on
page 24-28

CONVERT Procedure on
page 24-29

EVAL_NUMBER Function on
page 24-29

EVAL_TEXT Function on
page 24-30

EXECUTE Procedure on
page 24-31

GETLOG Function on
page 24-32

INFILE Procedure on
page 24-32

24-12 Oracle OLAP Reference

Populates a table type named DBMS_AWS_DIMENSION
SOURCES_ T with information provided in its parameters about
the dimensions of the cube.

Suggests how to preaggregate a cube, based on a specified
percentage of the cube's data.

Returns a recommended composite definition for the cube and
a recommended dimension order.

Generates the OLAP DML commands for defining the
recommended composite and measures in a cube.

Suggests how to preaggregate a dimension, based on a
specified percentage of the dimension's members.

Analyzes a fact table for sparsity and populates a table with the
results of its analysis.

Attaches an analytic workspace to a session.

Creates a new analytic workspace and populates it with the
object definitions and data from another analytic workspace.

Creates a new, empty analytic workspace.

Deletes an analytic workspace

Detaches an analytic workspace from a session.
Changes the name of an analytic workspace.

Returns the name of the tablespace in which a particular
analytic workspace is stored.

Saves changes made to an analytic workspace.
Converts an analytic workspace from 9i to 10g storage format.

Returns the result of a numeric expression in an analytic
workspace.

Returns the result of a text expression in an analytic
workspace.

Executes one or more OLAP DML commands. Input and
output is limited to 4K. Typically used in an interactive session
using an analytic workspace.

Returns the session log from the last execution of the INTERP
or INTERPCLOB functions.

Executes the OLAP DML commands specified in a file.

Summary of DBMS_AW Subprograms

Table 24-1 (Cont.) DBMS_AW Subprograms

Subprogram Description

INTERP Function on Executes one or more OLAP DML commands. Input is limited

page 24-33 to 4K and output to 4G. Typically used in applications when
the 4K limit on output for the EXECUTE procedure is too
restrictive.

INTERPCLOB Function on Executes one or more OLAP DML commands. Input and

page 24-34 output are limited to 4G. Typically used in applications when

INTERP_SILENT Procedure
on page 24-35

OLAP_ON Function on
page 24-35

OLAP_RUNNING Function
on page 24-36

PRINTLOG Procedure on
page 24-36

RUN Procedure on page 24-37

SHUTDOWN Procedure on
page 24-39

SPARSITY_ADVICE_TABLE
Procedure on page 24-39

STARTUP Procedure on
page 24-39

the 4K input limit of the INTERP function is too restrictive.

Executes one or more OLAP DML commands and suppresses
the output. Input is limited to 4K and output to 4G.

Returns a boolean indicating whether or not the OLAP option
is installed in the database.

Returns a boolean indicating whether or not the OLAP option
has been initialized in the current session.

Prints a session log returned by the INTERP, INTERCLOB, or
GETLOG functions.

Executes one or more OLAP DML commands.

Shuts down the current OLAP session.

Creates a table which the ADVISE_SPARSITY procedure will
use to store the results of its analysis.

Starts an OLAP session without attaching a user-defined
analytic workspace.

DBMS_AW 24-13

ADD_DIMENSION_SOURCE Procedure

ADD DIMENSION_SOURCE Procedure

The ADD DIMENSION SOURCE procedure populates a table type named DBMS AWS
DIMENSION SOURCES T with information about the dimensions of a cube. This
information is analyzed by the ADVISE SPARSITY procedure.

Syntax
ADD DIMENSION SOURCE (

dimname IN VARCHAR2,

colname 1IN VARCHAR2,

sources IN OUT dbms_aw$ dimension sources t,

srcval IN VARCHAR2 DEFAULT NULL,

dimtype 1IN NUMBER DEFAULT NO_HIER,

hiercols IN columnlist t DEFAULT NULL,

partby IN NUMBER DEFAULT PARTBY DEFAULT) ;
Parameters

Table 24-2 ADD DIMENSION_SOURCE Procedure Parameters

Parameter Description

dimname A name for the dimension. For clarity, use the logical name of
the dimension in the analytic workspace.

colname The name of the column in the fact table that maps to the
dimension members for dimname.

sources The name of an object (such as a PL/SQL variable) defined with
a data type of DBMS_AW$ DIMENSION SOURCES_T, which will
be used to store the information provided by the other
parameters.

srcval The name of a dimension table, or a SQL statement that returns
the columns that define the dimension. If this parameter is
omitted, then colname is used.

dimtype One of the following hierarchy types:

DBMS_AW.HIER LEVELS Level-based hierarchy
DBMS_AW.HIER_PARENTCHILD Parent-child hierarchy
DBMS_AW.MEASURE Measure dimension
DBMS_AW.NO_ HIER No hierarchy

hiercols The names of the columns that define a hierarchy.

For level-based hierarchies, list the base-level column first and
the topmost-level column last. If the dimension has multiple
hierarchies, choose the one you predict will be used the most
frequently; only list the columns that define the levels of this one
hierarchy.

For parent-child hierarchies, list the child column first, then the
parent column.

For measure dimensions, list the columns in the fact table that
will become dimension members.

24-14 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Example

See Also

Table 24-2 (Cont) ADD_DIMENSION_SOURCE Procedure Parameters

Parameter Description
partby A keyword that controls partitioning. Use one of the following
values:

= DBMS_AW.PARTBY DEFAULT Allow the Sparsity Advisor to
determine whether or not partitioning is appropriate for
this dimension.

= DBMS_AW.PARTBY_ NONE Do not allow partitioning on this
dimension.

= DBMS_AW.PARTBY_ FORCE Force partitioning on this
dimension.

Important: Do not force partitioning on more than one
dimension.

= Aninteger value for the number of partitions you want
created for this dimension.

The following PL/SQL program fragment provides information about the TIME
dimension for use by the Sparsity Advisor. The source data for the dimension is stored
in a dimension table named TIME DIM. Its primary key is named MONTH_1ID, and the
foreign key column in the fact table is also named MONTH_ID. The dimension
hierarchy is level based as defined by the columns MONTH_ID, QUARTER_ ID, and
YEAR ID.

The program declares a PL/SQL variable named DIMSOURCES with a table type of
DBMS AWS DIMENSION SOURCES T to store the information.

DECLARE
dimsources dbms_aw$ dimension sources t;
BEGIN
dbms_aw.add_dimension_source('time', 'month_id', dimsources,
'time_dim', dbms_aw.hier levels,
dbms_aw$_columnlist t('month id', 'quarter id', 'year id'));
END;
/

"Using the Sparsity Advisor" on page 24-4.

ADVISE_CUBE Procedure

The ADVISE_CUBE procedure helps you determine how to preaggregate a standard
form cube in an analytic workspace. When you specify a percentage of the cube's data
to preaggregate, ADVISE_CUBE recommends a set of members to preaggregate from
each of the cube's dimensions.

The ADVISE_CUBE procedure takes an aggmap and a precompute percentage as
input. The aggmap must have a precompute clause in each of its RELATION
statements. The precompute clause must consist of a valueset. Based on the
precompute percentage that you specify, ADVISE_CUBE returns a set of dimension
members in each valueset.

DBMS_AW 24-15

ADD_DIMENSION_SOURCE Procedure

Syntax

Parameters

Example

See Also

ADVISE CUBE (
aggmap_name IN VARCHAR2,
precompute percentage IN INTEGER DEFAULT 20,
compressed IN BOOLEAN DEFAULT FALSE) ;

Table 24-3 ADVISE_CUBE Procedure Parameters

Parameter Description

aggmap_name The name of an aggmap associated with the cube.

Each RELATION statement in the aggmap must have a
precompute clause containing a valueset. ADVISE_CUBE
returns a list of dimension members in each valueset. If the
valueset is not empty, ADVISE_CUBE deletes its contents
before adding new values.

precompute percentage A percentage of the cube's data to preaggregate. The default is
20%.

compressed Controls whether the advice is for a regular composite (FALSE)
or a compressed composite (TRUE).

This example illustrates the ADVISE_CUBE procedure with a cube called UNITS
dimensioned by PRODUCT and TIME. ADVISE CUBE returns the dimension
combinations to include if you want to preaggregate 40% of the cube's data.

set serveroutput on
--- View valuesets
SQL>execute dbms_aw.execute ('describe prodvals');
DEFINE PRODVALS VALUESET PRODUCT
SQL>execute dbms_aw.execute ('describe timevals');
DEFINE TIMEVALS VALUESET TIME
--- View aggmap
SQL>execute dbms_aw.execute ('describe units_agg');
DEFINE UNITS AGG AGGMAP
RELATION product parentrel PRECOMPUTE (prodvals)
RELATION time_parentrel PRECOMPUTE (timevals)
SQL>EXECUTE dbms_aw.advise cube ('units_agg', 40);

---- The results are returned in the prodvals and timevals valuesets

"Using the Aggregate Advisor" on page 24-8.

ADVISE_DIMENSIONALITY Function

Syntax

The ADVISE DIMENSIONALITY function returns an OLAP DML definition of a
composite dimension and the dimension order for variables in the cube, based on the
sparsity recommendations generated by the ADVISE_SPARSITY procedure for a
particular partition.

ADVISE DIMENSIONALITY (
cubename IN VARCHAR2,
sparsedfn OUT VARCHAR2

24-16 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Parameters

Example

sparsename IN VARCHAR2 DEFAULT NULL,
partnum IN NUMBER DEFAULT 1,
advtable IN VARCHAR2 DEFAULT NULL)

RETURN VARCHAR2;

Table 24-4 ADVISE_DIMENSIONALITY Function Parameters

Parameter Description

cubename The same cubename value provided in the call to ADVISE
SPARSITY

sparsedfn The name of an object (such as a PL/SQL variable) in which the

definition of the composite dimension will be stored.

sparsename An object name for the composite. The default value is
cubename. cp.

partnum The number of a partition. By default, you see only the
definition of the first partition.

advtable The name of a table created by the SPARSITY ADVICE TABLE
procedure for storing the results of analysis.

The following PL/SQL program fragment defines two variables to store the
recommendations returned by the ADVISE DIMENSIONALITY function. SPARSEDIM
stores the definition of the recommended composite, and DIMLIST stores the
recommended dimension order of the cube.

DECLARE
sparsedim VARCHAR2 (500) ;
dimlist VARCHAR2 (500) ;
BEGIN
-- Calls to ADD DIMENSION SOURCE and ADVISE SPARSITY omitted here

dimlist := dbms_aw.advise dimensionality('units cube', sparsedim);

dbms_output.put_line('Sparse dimension: ' || sparsedim);
dbms_output.put line('Dimension list: ' || dimlist);
END;

/

The program uses DBMS_OUTPUT . PUT_LINE to display the results of the analysis.
The Sparsity Advisor recommends a composite dimension for the sparse dimensions,
which are PRODUCT, CUSTOMER, and TIME. The recommended dimension order for
UNITS_CUBE is CHANNEL followed by this composite.

Sparse dimension: DEFINE units cube.cp COMPOSITE <product customer times
Dimension list: channel units cube.cp<product customer times

The next example uses the Sparsity Advisor to evaluate the SALES table in the Sales
History sample schema. A WHILE loop displays the recommendations for all
partitions.

DECLARE
dimlist VARCHAR2 (500) ;
sparsedim VARCHAR2 (500) ;
counter NUMBER(2) := 1;

DBMS_AW 24-17

ADD_DIMENSION_SOURCE Procedure

maxpart NUMBER(2) ;
BEGIN
-- Calls to ADD DIMENSION SOURCE and ADVISE SPARSITY omitted here

select max(partnum) into maxpart from sh sparsity advice;
WHILE counter <= maxpart LOOP

dimlist := dbms_aw.advise dimensionality('sales cube', sparsedim,
'sales_cube composite', counter,'sh sparsity advice');

dbms_output.put_line('Dimension list: ' || dimlist);

dbms_output.put line('Sparse dimension: ' || sparsedim);

counter := counter+l;

END LOOP;

dbms_aw.advise dimensionality(defs, 'sales cube', 'sales cube composite’,

'DECIMAL', 'sh_sparsity advice');
dbms_output.put line('Definitions: ');
dbms_aw.printlog(defs) ;

END;
/

The Sparsity Advisor recommends 11 partitions; the first ten use the same composite.
The last partition uses a different composite. (The SH_SPARSITY ADVICE table shows
that TIME_ID is dense in the last partition, whereas it is very sparse in the other
partitions.)

Dimension list: sales cube composite<time channel product promotion customers>
Sparse dimension: DEFINE sales_cube composite COMPOSITE COMPRESSED <time channel product promotion customers>
Dimension list: sales cube composite<time channel product promotion customers>
Sparse dimension: DEFINE sales_ cube composite COMPOSITE COMPRESSED <time channel product promotion customers

Dimension list: time sales_cube composite<channel product promotion customer>
Sparse dimension: DEFINE sales cube composite COMPOSITE COMPRESSED <channel product promotion customers

See Also
"Using the Sparsity Advisor" on page 24-4.

ADVISE_DIMENSIONALITY Procedure

The ADVISE_DIMENSIONALITY procedure evaluates the information provided by the
ADVISE_SPARSITY procedure and generates the OLAP DML commands for defining
a composite and a variable in the analytic workspace.

Syntax
ADVISE DIMENSIONALITY (
output OouT CLOB,
cubename IN VARCHAR2,
sparsename IN VARCHAR2 DEFAULT NULL,
dtype IN VARCHAR2 DEFAULT 'NUMBER',
advtable IN VARCHAR2 DEFAULT NULL) ;

24-18 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Parameters

Table 24-5 ADVISE_DIMENSIONALITY Procedure Parameters

Parameter Description

output The name of an object (such as a PL/SQL variable) in which the
recommendations of the procedure will be stored.

cubename The same cubename value provided in the call to ADVISE
SPARSITY.

sparsename An object name for the sample composite. The default value is
cubename. cp.

dtype The OLAP DML data type of the sample variable.

advtable The name of the table created by the SPARSITY ADVICE
TABLE procedure in which the results of the analysis are stored.

Example

The following PL/SQL program fragment defines a variable named DEFS to store the
recommended definitions.

DECLARE
defs CLOB;
BEGIN
-- Calls to ADD DIMENSION SOURCE and ADVISE SPARSITY omitted here

dbms_aw.advise dimensionality(defs, 'units cube measure stored',
'units cube composite', 'DECIMAL');

dbms_output.put line('Definitions: ');

dbms_aw.printlog(defs) ;

END;

/

The program uses the DBMS OUTPUT.PUT_LINE and DBMS AW.PRINTLOG
procedures to display the recommended object definitions.

Definitions:
DEFINE units cube.cp COMPOSITE <product customer time>
DEFINE units_cube NUMBER VARIABLE <channel units_cube.cp<product customer times>>

In contrast to the Global schema, which is small and dense, the Sales cube in the Sales
History sample schema is large and very sparse, and the Sparsity Advisor
recommends 11 partitions. The following excerpt shows some of the additional OLAP
DML definitions for defining a partition template and moving the TIME dimension
members to the various partitions.

Definitions:

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

sales cube composite pl COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite p2 COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite p3 COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite p4 COMPOSITE COMPRESSED <time channel product promotion customers>
sales _cube composite p5 COMPOSITE COMPRESSED <time channel product promotion customers>
sales_cube composite p6 COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite p7 COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite p8 COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite p9 COMPOSITE COMPRESSED <time channel product promotion customers>
sales cube composite pl0 COMPOSITE COMPRESSED <time channel product promotion customers

DBMS_AW 24-19

ADD_DIMENSION_SOURCE Procedure

DEFINE sales_cube composite pll COMPOSITE <channel product promotion customers
DEFINE sales cube pt PARTITION TEMPLATE <time channel product promotion customers -
PARTITION BY LIST (time) -

(PARTITION pl VALUES () <sales cube composite pl<>> -
PARTITION p2 VALUES () <sales_cube_ composite p2<>> -
PARTITION p3 VALUES () <sales_cube composite p3<>> -
PARTITION p4 VALUES () <sales_cube composite p4<>> -
PARTITION p5 VALUES () <sales cube composite p5<>> -
PARTITION p6 VALUES () <sales cube composite p6<>> -
PARTITION p7 VALUES () <sales cube composite p7<>> -
PARTITION p8 VALUES () <sales_cube composite p8<>> -
PARTITION p9 VALUES () <sales_cube composite p9<>> -
PARTITION pl0 VALUES () <sales cube composite plO<>> -
PARTITION pll VALUES () <time sales cube composite pll<>>)

MAINTAIN sales cube pt MOVE TO PARTITION pl -
'06-JAN-98', '07-JAN-98', 'l14-JAN-98', '21-JAN-98', -
'24-JAN-98', '28-JAN-98', '06-FEB-98', '07-FEB-98', -
'08-FEB-98', 'l6-FEB-98', '21-FEB-98', '08-MAR-98', -
'20-MAR-98', '03-JAN-98', '26-JAN-98', '27-JAN-98'

MAINTAIN sales cube pt MOVE TO PARTITION pl -
'31-JAN-98', '11-FEB-98', 'l12-FEB-98', 'l13-FEB-98', -
'15-FEB-98', '17-FEB-98', 'l14-MAR-98', '18-MAR-98', -
'26-MAR-98', '30-MAR-98', '05-JAN-98', '08-JAN-98', -
'10-JAN-98', '16-JAN-98', '23-JAN-98', '01-FEB-98'

MAINTAIN sales cube pt MOVE TO PARTITION pl -
'14-FEB-98', '28-FEB-98', '05-MAR-98', '07-MAR-98', -
'15-MAR-98', '19-MAR-98', 'l17-JAN-98', '18-JAN-98', -
'22-JAN-98', '25-JAN-98', '03-FEB-98', 'l0-FEB-98', -
'19-FEB-98', '22-FEB-98', '23-FEB-98', '26-FEB-98'

See Also
"Using the Sparsity Advisor" on page 24-4.

ADVISE_REL Procedure

The ADVISE_REL procedure helps you determine how to preaggregate a standard
form dimension in an analytic workspace. When you specify a percentage of the
dimension to preaggregate, ADVISE_REL recommends a set of dimension members.

The ADVISE_ REL procedure takes a family relation, a valueset, and a precompute
percentage as input. The family relation is a standard form object that specifies the
hierarchical relationships between the members of a dimension. The valueset must be
defined from the dimension to be analyzed. Based on the precompute percentage that
you specify, ADVISE_REL returns a set of dimension members in the valueset.

Syntax
ADVISE REL (
family relation name IN VARCHAR2,
valueset name IN VARCHAR2,
precompute percentage IN INTEGER DEFAULT 20,
compressed IN BOOLEAN DEFAULT FALSE) ;

24-20 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Parameters
Table 24-6 ADVISE_REL Procedure Parameters
Parameter Description
family relation name The name of a family relation, which specifies a dimension and
the hierarchical relationships between the dimension members.
valueset name The name of a valueset to contain the results of the procedure.
The valueset must be defined from the dimension in the family
relation. If the valueset is not empty, ADVISE REL deletes its
contents before adding new values.
precompute_percentage A percentage of the dimension to preaggregate. The default is
20%.
compressed Controls whether the advice is for a regular composite (FALSE)
or a compressed composite (TRUE).
See Also

"Using the Aggregate Advisor" on page 24-8.

ADVISE_SPARSITY Procedure

The ADVISE SPARSITY procedure analyzes a fact table for sparsity using information
about its dimensions provided by the ADD DIMENSION SOURCE procedure. It
populates a table created by the SPARSITY ADVICE TABLE procedure with the

results of its analysis.

Syntax
ADVISE SPARSITY (
fact IN
cubename IN
dimsources IN
advmode IN
partby IN
advtable IN
Parameters

VARCHAR2,

VARCHAR2,
dbms_aw$_dimension_sources_t,

BINARY INTEGER DEFAULT ADVICE DEFAULT,
BINARY INTEGER DEFAULT PARTBY DEFAULT,
VARCHAR2 DEFAULT NULL) ;

Table 24-7 ADVISE_SPARSITY Procedure Parameters

Parameter Description

fact The name of the source fact table.

cubename A name for the facts being analyzed, such as the name of the
logical cube in the analytic workspace.

dimsources The name of the object type where the ADD_DIMENSION
SOURCE procedure has stored information about the cube's
dimensions.

advmode The level of advise you want to see. Select one of the following

values:

DBMS AW.ADVICE DEFAULT
DBMS_AW.ADVICE_ FAST
DBMS_ AW.ADVICE FULL

DBMS_AW 24-21

ADD_DIMENSION_SOURCE Procedure

Table 24-7 (Cont.) ADVISE_SPARSITY Procedure Parameters

Parameter

Description

partby

A keyword that controls partitioning. Use one of the following

values:

advtable

DBMS_AW.PARTBY_ DEFAULT Allow the Sparsity Advisor to
determine whether or not partitioning is appropriate.

DBMS_AW. PARTBY NONE Do not allow partitioning.
DBMS_AW.PARTBY_FORCE Force partitioning.

The name of a table created by the procedure for storing the

results of analysis.

Output Description
Table 24-8 describes the information generated by ADVISE SPARSITY.

Table 24-8 Output Column Descriptions

Column Datatype NULL Description

CUBENAME VARCHAR2 (100) NOT NULL The values of cubename in calls to ADVISE _SPARSITY,
typically the name of the logical cube.

FACT VARCHAR2 (4000) NOT NULL The values of fact in calls to ADVISE_SPARSITY; the name
of the fact table that will provide the source data for one or
more analytic workspace variables.

DIMENSION VARCHAR2 (100) NOT NULL The logical names of the cube's dimensions; the dimensions
described in calls to ADVISE DIMENSIONALITY.

DIMCOLUMN VARCHAR2 (100) The names of dimension columns in fact (the source fact
table), which relate to a dimension table.

DIMSOURCE VARCHAR2 (4000) The names of the dimension tables.

MEMBERCOUNT NUMBER (12,0) The total number of dimension members at all levels.

LEAFCOUNT NUMBER (12, 0) The number of dimension members at the leaf (or least
aggregate) level.

ADVICE VARCHAR2 (10) NOT NULL The sparsity evaluation of the dimension: DENSE, SPARSE,
or COMPRESSED.

POSITION NUMBER (4, 0) NOT NULL The recommended order of the dimensions.

DENSITY NUMBER (11, 8) A number that provides an indication of sparsity relative to
the other dimensions. The larger the number, the more
sparse the dimension.

PARTNUM NUMBER (6, 0) NOT NULL The number of the partition described in the PARTBY and
PARTTOPS columns. If partitioning is not recommended,
then 1 is the maximum number of partitions.

PARTBY CLOB A list of all dimension members that should be stored in
this partition. This list is truncated in SQL*Plus unless you
significantly increase the size of the LONG setting.

PARTTOPS CLOB A list of top-level dimension members for this partition.

Example

The following PL/SQL program fragment analyzes the sparsity characteristics of the

UNITS HISTORY FACT table.

DECLARE

dimsources dbms_aw$_dimension sources t;

24-22 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

See Also

BEGIN
-- Calls to ADD DIMENSION SOURCE for each dimension in the cube

dbms_aw.advise sparsity('units_history fact', 'units cube', dimsources,
dbms_aw.advice default);

END;

The following SELECT command displays the results of the analysis, which indicate
that there is one denser dimension (CHANNEL) and three comparatively sparse
dimensions (PRODUCT, CUSTOMER, and TIME).

SQL> SELECT fact, dimension, dimcolumn, membercount nmem, leafcount nleaf, advice, density
FROM aw_sparsity advice
WHERE cubename='units_cube';

FACT DIMENSION DIMCOLUMN NMEM NLEAF ADVICE DENSITY
units_history fact channel channel_id 3 3 DENSE .86545382
units history fact product item_id 36 36 SPARSE .98706809
units history fact customer ship to_id 61 62 SPARSE .99257713
units_history fact time month_id 96 80 SPARSE .99415964

"Using the Sparsity Advisor" on page 24-4.

AW_ATTACH Procedure

Syntax

The AW_ATTACH procedure attaches an analytic workspace to your SQL session so that
you can access its contents. The analytic workspace remains attached until you
explicitly detach it, or you end your session.

AW_ATTACH can also be used to create a new analytic workspace, but the AW _CREATE
procedure is provided specifically for that purpose.

AW _ATTACH (
awname IN VARCHAR2,
forwrite IN BOOLEAN DEFAULT FALSE,
createaw IN BOOLEAN DEFAULT FALSE,
attargs IN VARCHAR2 DEFAULT NULL,
tablespace IN VARCHAR2 DEFAULT NULL) ;
AW _ATTACH (
schema IN VARCHAR2,
awname IN VARCHAR2,
forwrite IN BOOLEAN DEFAULT FALSE,
createaw IN BOOLEAN DEFAULT FALSE,
attargs IN VARCHAR2 DEFAULT NULL,

tablespace IN VARCHAR2 DEFAULT NULL) ;

DBMS_AW 24-23

ADD_DIMENSION_SOURCE Procedure

Parameters

Example

See Also

Table 24-9 AW _ATTACH Procedure Parameters

Parameter Description

schema The schema that owns awname.

awname The name of an existing analytic workspace, unless createaw is specified as
TRUE. See the description of createaw.

forwrite TRUE attaches the analytic workspace in read /write mode, giving you
exclusive access and full administrative rights to the analytic workspace.
FALSE attaches the analytic workspace in read-only mode.

createaw TRUE creates an analytic workspace named awname. If awname already exists,
then an error is generated. FALSE attaches an existing analytic workspace
named awname.

attargs Keywords for attaching an analytic workspace, such as FIRST or LAST, as
described in the Oracle OLAP DML Reference under the AW command.

The following command attaches an analytic workspace named GLOBAL in read /write
mode.

SQL>execute dbms_aw.aw_attach('global', true);
The next command creates an analytic workspace named GLOBAL_PROGRAMS in the

user's schema. GLOBAL PROGRAMS is attached read /write as the last user-owned
analytic workspace.

SQL>execute dbms_aw.aw_attach('global programs', true, true, 'last');

This command attaches an analytic workspace named SH from the SH_AW schema in
read-only mode.

SQL>execute dbms aw.aw_attach('sh aw', 'sh');

"Managing Analytic Workspaces" on page 24-1.

AW_COPY Procedure

Syntax

The AW_COPY procedure copies the object definitions and data from one analytic
workspace into a new analytic workspace.

AW_COPY detaches the original workspace and attaches the new workspace first with
read /write access.

AW _COPY (
oldname IN VARCHAR2,
newname IN VARCHAR2,
tablespace IN VARCHAR2 DEFAULT NULL,
partnum IN NUMBER DEFAULT 8) ;

24-24 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Parameters

Example

See Also

Table 24-10 AW _COPY Procedure Parameters

Parameter Description

oldname The name of an existing analytic workspace that contains object definitions.
The workspace cannot be empty.

newname A name for the new analytic workspace that is a copy of oldname.

tablespace The name of a tablespace in which newname will be stored. If this parameter
is omitted, then the analytic workspace is created in the user's default
tablespace.

partnum The number of partitions that will be created for the AWSnewname table.

The following command creates a new analytic workspace named DEMO and copies the
contents of GLOBAL into it. The workspace is stored in a table named AWSDEMO, which
has three partitions and is stored in the user's default tablespace.

SQL>execute dbms_aw.aw_copy('global', 'demo', null, 3);

"Managing Analytic Workspaces" on page 24-1.

AW _CREATE Procedure

Syntax

Parameters

The AW_CREATE procedure creates a new, empty analytic workspace and makes it the
current workspace in your session.

The current workspace is first in the list of attached workspaces.

AW CREATE (
awname IN VARCHAR2 ,
tablespace IN VARCHAR2 DEFAULT NULL ,
partnum IN NUMBER DEFAULT 8);
AW _CREATE (
schema IN VARCHAR2 ,
awname IN VARCHAR2 ,

tablespace IN VARCHAR2 DEFAULT NULL) ;

Table 24-11 AW_CREATE Procedure Parameters

Parameter Description
schema The schema that owns awname.
awname The name of a new analytic workspace. The name must comply with the

naming requirements for a table in an Oracle database. This procedure
creates a table named AW$awname, in which the analytic workspace is

stored.

tablespace The tablespace in which the analytic workspace will be created. If you
omit this parameter, the analytic workspace is created in your default
tablespace.

partnum The number of partitions that will be created for the AWSawname table.

DBMS_AW 24-25

ADD_DIMENSION_SOURCE Procedure

Example

AW_DELETE

Syntax

Parameters

Example

The following command creates a new, empty analytic workspace named GLOBAL. The
new analytic workspace is stored in a table named AWSGLOBAL with eight partitions in
the user's default tablespace.

SQL>execute dbms aw.aw_create('global');

The next command creates an analytic workspace named DEMO in the GLOBAL AW
schema. AWSDEMO will have two partitions and will be stored in the GLOBAL
tablespace.

SQL>execute dbms_aw.aw_create('global aw.demo', 'global', 2);

The AW_DELETE procedure deletes an existing analytic workspace.

AW DELETE (
awname IN VARCHAR2) ;
AW_DELETE (
schema IN VARCHAR2,
awname IN VARCHAR2) ;

Table 24-12 AW _DELETE Procedure Parameters

Parameter Description
schema The schema that owns awname.
awname The name of an existing analytic workspace that you want to delete along

with all of its contents. You must be the owner of awname or have DBA rights
to delete it, and it cannot currently be attached to your session. The
AWSawname file is deleted from the database.

The following command deletes the GLOBAL analytic workspace in the user's default
schema.

SQL>execute dbms aw.aw_delete('global');

AW_DETACH Procedure

Syntax

The AW_DETACH procedure detaches an analytic workspace from your session so that
its contents are no longer accessible. All changes that you have made since the last
update are discarded. Refer to "AW_UPDATE Procedure" on page 24-28 for
information about saving changes to an analytic workspace.

AW_DETACH (
awname IN VARCHAR2) ;
AW DETACH (
schema IN VARCHAR2,
awname IN VARCHAR2) ;

24-26 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Parameters

Example

Table 24-13 AW _DETACH Procedure Parameters

Parameter Description
schema The schema that owns awname.
awname The name of an attached analytic workspace that you want to detach from

your session.

The following command detaches the GLOBAL analytic workspace.

SQL>execute dbms_aw.aw_detach('global');

AW_RENAME Procedure

Syntax

Parameters

Example

See Also

The AW_RENAME procedure changes the name of an analytic workspace.

AW _RENAME (
oldname IN VARCHAR2,
newname IN VARCHAR2);

Table 24-14 AW _RENAME Procedure Parameters

Parameter Description

oldname The current name of the analytic workspace. The analytic workspace
cannot be attached to any session.

newname The new name of the analytic workspace.

The following command changes the name of the GLOBAL analytic workspace to
DEMO.

SQL>execute dbms_aw.aw_rename ('global', 'demo');

"Procedure: Convert an Analytic Workspace from 9i to1l0g Storage Format" on
page 24-2.

AW_TABLESPACE Function

Syntax

The AW TABLESPACE function returns the name of the tablespace in which a
particular analytic workspace is stored.

AW_TABLESPACE (
awname IN VARCHAR2)
RETURN VARCHAR?2;
AW_TABLESPACE (
schema IN VARCHAR2,
awname IN VARCHAR2)

DBMS_AW 24-27

ADD_DIMENSION_SOURCE Procedure

Returns

Parameters

Example

RETURN VARCHAR2;

Name of a tablespace.

Table 24-15 AW _TABLESPACE Function Parameters

Parameter Description
schema The schema that owns awname.
awname The name of an analytic workspace.

The following example shows the tablespace in which the GLOBAL analytic workspace
is stored.

SQL> set serveroutput on

SQL> execute dbms_output.put line('Global is stored in tablespace ' ||
dbms_aw.aw_tablespace ('GLOBAL AW', 'GLOBAL'));

Global is stored in tablespace GLOBAL DATA

PL/SQL procedure successfully completed.

AW _UPDATE Procedure

Syntax

Parameters

Example

The AW_UPDATE procedure saves the changes made to an analytic workspace in its
permanent database table. For the updated version of this table to be saved in the
database, you must issue a SQL COMMIT statement before ending your session.

If you do not specify a workspace to update, AW_UPDATE updates all the user-defined
workspaces that are currently attached with read /write access.

AW _UPDATE (
awname IN VARCHAR2 DEFAULT NULL) ;
AW_UPDATE (
schema IN VARCHAR2 DEFAULT NULL,
awname IN VARCHAR2 DEFAULT NULL) ;

Table 24-16 AW _UPDATE Procedure Parameters

Parameter Description
schema The schema that owns awnarme.
awname Saves changes to awname by copying them to a table named AwSawname. If

this parameter is omitted, then changes are saved for all analytic workspaces
attached in read /write mode.

The following command saves changes to the GLOBAL analytic workspace to a table
named AWSGLOBAL.

SQL>execute dbms aw.aw_update('global');

24-28 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

See Also

"Managing Analytic Workspaces" on page 24-1.

CONVERT Procedure

Syntax

Parameters

Example

The CONVERT procedure converts an analytic workspace from Oracle9i to Oracle 10g
storage format.

See "Converting an Analytic Workspace to Oracle 10g Storage Format" on page 24-2.

CONVERT (
original aw IN VARCHAR2,
converted aw IN VARCHAR2,
tablespace IN NUMBER DEFAULT) ;

Table 24-17 CONVERT Procedure Parameters

Parameter Description

original_aw The analytic workspace in 9i storage format.
converted_aw The same analytic workspace in 10g storage format.

tablespace The name of a tablespace in which the converted workspace will be
stored. If this parameter is omitted, then the analytic workspace is
created in the user's default tablespace.

The following example shows how to convert a 9i compatible workspace called
GLOBAL AW to 10g storage format. The converted workspace must have the same
name as the original workspace, because the fully-qualified names of objects in the
workspace include the workspace name.

SQL>execute dbms_aw.rename ('global aw', 'global aw temp');
SQL>execute dbms_aw.convert ('global aw temp', 'global aw');

EVAL NUMBER Function

Syntax

The EVAL NUMBER function evaluates a numeric expression in an analytic workspace
and returns the resulting number.

You can specify the EVAL NUMBER function in a SELECT from DUAL statement to
return a numeric constant defined in an analytic workspace. Refer to the Oracle
Database SQL Reference for information on selecting from the DUAL table.

EVAL NUMBER (
olap numeric expression IN VARCHAR2)
RETURN NUMBER;

DBMS_AW 24-29

ADD_DIMENSION_SOURCE Procedure

Parameters

Example

Table 24-18 EVAL_NUMBER Function Parameters

Parameter Description
olap_numeric_ An OLAP DML expression that evaluates to a number. Refer to
expression the chapter on "Expressions" in the Oracle OLAP DML Reference

The following example returns the value of the DECIMALS option in the current
analytic workspace. The DECIMALS option controls the number of decimal places that
are shown in numeric output. In this example, the value of DECIMALS is 2, which is
the default.

SQL>set serveroutput on
SQL>select dbms_aw.eval number ('decimals') from dual;

DBMS_AW.EVAL NUMBER ('DECIMALS')

1 row selected.

EVAL_TEXT Function

Syntax

Parameters

Example

The EVAL_TEXT function evaluates a text expression in an analytic workspace and
returns the resulting character string.

You can specify the EVAL_TEXT function in a SELECT from DUAL statement to return a
character constant defined in an analytic workspace. Refer to the Oracle Database SQL
Reference for information on selecting from the DUAL table.

EVAL _TEXT (
olap text expression IN VARCHAR2)
RETURN VARCHAR2;

Table 24-19 EVAL _TEXT Function Parameters

Parameter Description

olap_text expression An OLAP DML expression that evaluates to a character string.
Refer to the chapter on "Expressions" in the Oracle OLAP DML
Reference

The following example returns the value of the NLS_LANGUAGE option, which
specifies the current language of the OLAP session. The value of NLS LANGUAGE in
this example is "AMERICAN".

SQL>set serveroutput on
SQL>select dbms_aw.eval text('nls_language') from dual;

DBMSiAWAEVALiTEXT(‘NLSiLANGUAGE')
AMERICAN
1 row selected.

24-30 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

EXECUTE Procedure

Syntax

Parameters

Example

The EXECUTE procedure executes one or more OLAP DML commands and directs the
output to a printer buffer. It is typically used to manipulate analytic workspace data
within an interactive SQL session. In contrast to the RUN Procedure, EXECUTE
continues to process commands after it gets an error.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON
If you are using a different program, refer to its documentation for the equivalent
setting.

Input and output is limited to 4K. For larger values, refer to the INTERP and
INTERPCLOB functions in this package.

This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

EXECUTE (
olap commands IN VARCHAR2
text ouT VARCHAR2) ;

Table 24-20 EXECUTE Procedure Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semicolons. See
"Guidelines for Using Quotation Marks in OLAP DML
Commands" on page 24-4.

text Output from the OLAP engine in response to the OLAP
commands.

The following sample SQL*Plus session attaches an analytic workspace named
XADEMO, creates a formula named COST_PP in XADEMO, and displays the new formula
definition.

SQL> set serveroutput on

SQL> execute dbms_aw.execute ('AW ATTACH xademo RW; DEFINE cost pp FORMULA LAG(analytic_cube
f.costs, 1, time, LEVELREL time_ levelrel)');

PL/SQL procedure successfully completed.
SQL> execute dbms_aw.execute ('DESCRIBE cost_pp');

DEFINE COST_PP FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
EQ lag(analytic_cube f.costs, 1, time, levelrel time.levelrel)

PL/SQL procedure successfully completed.

The next example show how EXECUTE continues to process commands after
encountering an error:

SQL> execute dbms_aw.execute('call nothing; colwidth=20");

DBMS_AW 24-31

ADD_DIMENSION_SOURCE Procedure

BEGIN dbms_aw.execute('call nothing; colwidth=20"); END;

*

ERROR at line 1:

ORA-34492: Analytic workspace object NOTHING does not exist.
ORA-06512: at "SYS.DBMS AW", line 90

ORA-06512: at "SYS.DBMS AW", line 119

ORA-06512: at line 1

SQL> execute dbms_aw.execute ('show colwidth');
20

PL/SQL procedure successfully completed.

GETLOG Function

This function returns the session log from the last execution of the INTERP or
INTERPCLOB functions in this package.

To print the session log returned by this function, use the DBMS_AW.PRINTLOG
procedure.

Syntax

GETLOG ()
RETURN CLOB;

Returns
The session log from the latest call to INTERP or INTERPCLOB.

Example

The following example shows the session log returned by a call to INTERP, then
shows the identical session log returned by GETLOG.

SQL>set serverout on size 1000000
SQL>execute dbms_aw.printlog(dbms aw.interp ('AW ATTACH xademo; LISTNAMES AGGMAP'));
2 AGGMAPs

ANALYTIC CUBE.AGGMAP.1
SALES MULTIKEY CUBE.AGGMAP.1

PL/SQL procedure successfully completed.

SQL>execute dbms_aw.printlog(dbms_aw.getlog()) ;
2 AGGMAPs

ANALYTIC CUBE.AGGMAP.1
SALES MULTIKEY CUBE.AGGMAP.1

PL/SQL procedure successfully completed.

INFILE Procedure

The INFILE procedure evaluates the OLAP DML commands in the specified file and
executes them in the current analytic workspace.

Syntax

INFILE (

24-32 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Parameters

Example

filename IN VARCHAR2) ;

Table 24-21 INFILE Procedure Parameters

Parameter Description

filename The name of a file containing OLAP DML commands.

The file path must be specified in a current directory object for your OLAP
session. Use the OLAP DML CDA command to identify or change the
current directory object.

The following example executes the OLAP DML commands specified in the file test_
setup. tst. The directory path of the file is specified in the OLAP directory object
called work dir.

SQL>execute dbms_aw.execute ('cda work dir');
SQL>execute dbms aw.infile('test setup.tst');

INTERP Function

Syntax

Parameters

Returns

The INTERP function executes one or more OLAP DML commands and returns the
session log in which the commands are executed. It is typically used in applications
when the 4K limit on output for the EXECUTE procedure may be too restrictive.

Input to the INTERP function is limited to 4K. For larger input values, refer to the
INTERPCLOB function of this package.

This function does not return the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

You can use the INTERP function as an argument to the PRINTLOG procedure in this
package to view the session log. See the example.

INTERP (
olap-commands IN VARCHAR2)
RETURN CLOB;

Table 24-22 INTERP Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands" on page 24-4.

The log file for the Oracle OLAP session in which the OLAP DML commands were
executed.

DBMS_AW 24-33

ADD_DIMENSION_SOURCE Procedure

Example

The following sample SQL*Plus session attaches an analytic workspace named
XADEMO and lists the members of the PRODUCT dimension.

SQL>set serverout on size 1000000
SQL> execute dbms_aw.printlog(dbms_aw.interp('AW ATTACH cloned; REPORT product'));
PRODUCT

L1.TOTALPROD
L2 .ACCDIV

L2 .AUDIODIV
L2.VIDEODIV
L3 .AUDIOCOMP
L3 .AUDIOTAPE

PL/SQL procedure successfully completed.

INTERPCLOB Function

The INTERPCLOB function executes one or more OLAP DML commands and returns
the session log in which the commands are executed. It is typically used in
applications when the 4K limit on input for the INTERP function may be too
restrictive.

This function does not return the output of the OLAP DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

You can use the INTERPCLOB function as an argument to the PRINTLOG procedure in
this package to view the session log. See the example.

Syntax

INTERPCLOB (
olap-commands IN CLOB)
RETURN CLOB;

Parameters

Table 24-23 INTERPCLOB Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands" on page 24-4.

Returns

The log for the Oracle OLAP session in which the OLAP DML commands were
executed.

Example

The following sample SQL*Plus session creates an analytic workspace named
ELECTRONICS, imports its contents from an EIF file stored in the dbs directory object,
and displays the contents of the analytic workspace.

SQL> set serverout on size 1000000
SQL> execute dbms_aw.printlog(dbms aw.interpclob('AW CREATE electronics; IMPORT
ALL FROM EIF FILE ''dbs/electronics.eif'' DATA DFNS; DESCRIBE'));

24-34 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

DEFINE GEOGRAPHY DIMENSION TEXT WIDTH 12
LD Geography Dimension Values

DEFINE PRODUCT DIMENSION TEXT WIDTH 12
LD Product Dimension Values

DEFINE TIME DIMENSION TEXT WIDTH 12

LD Time Dimension Values

DEFINE CHANNEL DIMENSION TEXT WIDTH 12
LD Channel Dimension Values

PL/SQL procedure successfully completed.

INTERP_SILENT Procedure

Syntax

Parameters

Example

The INTERP_SILENT procedure executes one or more OLAP DML commands and
suppresses all output from them. It does not suppress error messages from the OLAP
command interpreter.

Input to the INTERP_ SILENT function is limited to 4K. If you want to display the
output of the OLAP DML commands, use the EXECUTE procedure, or the INTERP or
INTERPCLOB functions.

INTERP_SILENT (
olap-commands IN VARCHAR2) ;

Table 24-24 INTERP_SILENT Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands" on page 24-4.

The following commands show the difference in message handling between EXECUTE
and INTERP_SILENT. Both commands attach the XADEMO analytic workspace in
read-only mode. However, EXECUTE displays a warning message, while INTERP_
SILENT does not.

SQL> execute dbms_aw.execute ('AW ATTACH xademo') ;
IMPORTANT: Analytic workspace XADEMO is read-only. Therefore, you will
not be able to use the UPDATE command to save changes to it.

PL/SQL procedure successfully completed.

SQL>execute dbms_aw.interp_silent ('AW ATTACH xademo') ;

PL/SQL procedure successfully completed.

OLAP_ON Function

The OLAP_ON function returns a boolean indicating whether or not the OLAP option is
installed in the database.

DBMS_AW 24-35

ADD_DIMENSION_SOURCE Procedure

Syntax

OLAP ON ()
RETURN BOOLEAN;

Returns
The value of the OLAP parameter in the VSOPTION table.

OLAP_RUNNING Function

The OLAP_RUNNING function returns a boolean indicating whether or not the OLAP
option has been initialized in the current session. Initialization occurs when you
execute an OLAP DML command (either directly or by using an OLAP PL/SQL or
Java package), query an analytic workspace, or execute the STARTUP Procedure.

Syntax
OLAP_RUNNING()
RETURN BOOLEAN;
Returns
TRUE if OLAP has been initialized in the current session, or FALSE if it has not.
Example
The following PL/SQL script tests whether the OLAP environment has been
initialized, and starts it if not.
BEGIN
IF DBMS AW.OLAP RUNNING () THEN
DBMS_OUTPUT.PUT LINE('OLAP is already running');
ELSE
DBMS_AW.STARTUP;
IF DBMS AW.OLAP RUNNING () THEN
DBMS_OUTPUT.PUT LINE('OLAP started successfully');
ELSE
DBMS OUTPUT.PUT LINE('OLAP did not start. Is it installed?');
END IF;
END IF;
END;
/
PRINTLOG Procedure

This procedure sends a session log returned by the INTERP, INTERPCLOB, or GETLOG
functions of this package to the print buffer, using the DBMS_OUTPUT package in
PL/SQL.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON SIZE 1000000

The SIZE clause increases the buffer from its default size of 4K.

If you are using a different program, refer to its documentation for the equivalent
setting.

24-36 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

Syntax

Parameters

Example

RUN Procedure

Syntax

PRINTLOG (
session-log IN CLOB);

Table 24-25 PRINTLOG Procedure Parameters

Parameter Description

session-log The log of a session.

The following example shows the session log returned by the INTERP function.

SQL>set serverout on size 1000000
SQL>execute dbms_aw.printlog(dbms_aw.interp ('DESCRIBE analytic_cube f.profit'));

DEFINE ANALYTIC CUBE.F.PROFIT FORMULA DECIMAL <CHANNEL
GEOGRAPHY PRODUCT TIME>
EQ analytic_cube.f.sales - analytic_cube.f.costs

PL/SQL procedure successfully completed.

The RUN procedure executes one or more OLAP DML commands and directs the
output to a printer buffer. It is typically used to manipulate analytic workspace data
within an interactive SQL session. In contrast to the EXECUTE Procedure, RUN stops
processing commands when it gets an error.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON
If you are using a different program, refer to its documentation for the equivalent
setting.

This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

RUN (

olap commands IN STRING,

silent IN BOOLEAN DEFAULT FALSE) ;
RUN (

olap commands IN CLOB,

silent IN BOOLEAN DEFAULT FALSE) ;
RUN (

olap commands IN STRING,

output ouT STRING) ;
RUN (

olap commands IN STRING,

output IN OUT CLOB);
RUN (

olap commands IN CLOB,

output ouUT STRING) ;
RUN (

DBMS_AW 24-37

ADD_DIMENSION_SOURCE Procedure

olap commands IN CLOB,
output IN OUT CLOB);

Parameters

Table 24—-26 EXECUTE Procedure Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semicolons. See
"Guidelines for Using Quotation Marks in OLAP DML
Commands" on page 24-4.

silent A boolean value that signals whether the output from the OLAP
DML commands should be suppressed. (Error messages from the
OLAP engine are never suppressed, regardless of this setting.)

output Output from the OLAP engine in response to the OLAP
commands.

Example

The following sample SQL*Plus session attaches an analytic workspace named
XADEMO, creates a formula named COST_PP in XADEMO, and displays the new formula
definition.

SQL> set serveroutput on

SQL> execute dbms_aw.run('AW ATTACH xademo RW; DEFINE cost pp FORMULA LAG(analytic_cube
f.costs, 1, time, LEVELREL time levelrel)');

PL/SQL procedure successfully completed.
SQL> execute dbms_aw.run('DESCRIBE cost pp');

DEFINE COST_PP FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
EQ lag(analytic_cube f.costs, 1, time, levelrel time.levelrel)

PL/SQL procedure successfully completed.

The next example shows how RUN stops executing commands after encountering an
error.

SQL> execute dbms_aw.execute ('show colwidth');
10

PL/SQL procedure successfully completed.

SQL> execute dbms_aw.run('call nothing; colwidth=20");
BEGIN dbms_aw.run('call nothing; colwidth=20"); END;

*

ERROR at line 1:

ORA-34492: Analytic workspace object NOTHING does not exist.
ORA-06512: at "SYS.DBMS AW", line 55

ORA-06512: at "SYS.DBMS AW", line 131

ORA-06512: at line 1

SQL> execute dbms_aw.execute('show colwidth');
10

PL/SQL procedure successfully completed.

24-38 Oracle OLAP Reference

Summary of DBMS_AW Subprograms

SHUTDOWN Procedure

Syntax

Parameters

The SHUTDOWN procedure terminates the current OLAP session.

By default, the SHUTDOWN procedure terminates the session only if there are no
outstanding changes to any of the attached read /write workspaces. If you want to
terminate the session without updating the workspaces, specify the force parameter.

SHUTDOWN (
force IN BOOLEAN DEFAULT NO) ;

Table 24-27 SHUTDOWN Procedure Parameters

Parameter Description

force When YES, this parameter forces the OLAP session to shutdown
even though one or more attached workspaces has not been
updated. Default is NO.

SPARSITY_ADVICE_TABLE Procedure

The SPARSITY ADVICE_TABLE procedure creates a table for storing the advice
generated by the ADVISE_SPARSITY procedure.

Syntax
SPARSITY ADVICE TABLE (
tblname IN VARCHAR2 DEFAULT) ;
Parameters
Table 24-28 SPARSITY_ADVICE_TABLE Procedure Parameters
Parameter Description
tblname The name of the table. The default name is AW _SPARSITY
ADVICE, which is created in your own schema.
Example
The following example creates a table named GLOBAL_SPARSITY ADVICE.
execute dbms_aw.sparsity advice table('global sparsity advice');
See Also
ADVISE_SPARSITY Procedure on page 24-21 for a description of the columns in
tbiname.
"Using the Sparsity Advisor" on page 24-4.
STARTUP Procedure

The STARTUP procedure starts up an OLAP session without attaching any
user-defined workspaces.

STARTUP initializes the OLAP processing environment and attaches the read-only
EXPRESS workspace, which contains the program code for the OLAP engine.

DBMS_AW 24-39

ADD_DIMENSION_SOURCE Procedure

Syntax

STARTUP ();

24-40 Oracle OLAP Reference

25

DBMS_AW_XML

The DBMS_AW_XML package builds an analytic workspace based on a logical model
described in an XML document. The XML can be created using the Oracle OLAP
Analytic Workspace Java APL

This chapter includes the following topics:

= Analytic Workspace Java API Overview

s Oracle OLAP XML Schema

= Summary of DBMS_AW_XML Subprograms

Analytic Workspace Java APl Overview

The Oracle OLAP Analytic Workspace API is a Java API for building and maintaining
standard form analytic workspaces. The API provides classes for describing a logical
cube, mapping the cube to a relational data source, and aggregating the cube's data.
You can also use the API to specify complex solves, such as allocations and forecasts,
and define custom measures and custom dimension members.

The Analytic Workspace API supports two deployment modes: It can be embedded in
a Java application, or it can be used to generate XML that serializes the object model
for execution by the EXECUTE function. The functionality of the API is identical
whether executed from a Java client through JDBC or directly in the database through
SQL.

The Analytic Workspace API does not use OLAP Catalog metadata.

Oracle OLAP XML Schema

The EXECUTE and EXECUTEFILE functions process XML that conforms to the Oracle
OLAP XML schema defined in awxml . xsd. The XML generated by the Analytic
Workspace Java API automatically conforms to awxml . xsd. You can also create your
own XML and validate it against the Oracle OLAP XML schema.

Example 25-1 provides an excerpt from an XML document that conforms to the Oracle
OLAP XML schema.

Tip: You can obtain AWXML . xsd, as well as the latest version of the
Oracle OLAP Analytic Workspace Java API Reference (Javadoc), from the
Oracle Technology Network Web site:

http://www.otn.oracle.com/products/bi/olap/olap.html

DBMS_AW_XML 25-1

http://www.otn.oracle.com/products/bi/olap/olap.html

Oracle OLAP XML Schema

Example 25-1 Oracle OLAP XML Document

<AWXML version = '1.0' timestamp = 'Mon Feb 11 13:29:11 2002' >
<AWXML.content>
<Create Id="Action3">
<ActiveObject >
<AW Name="GLOBAL AW.GLOBAL" LongName="GLOBAL AW.GLOBAL"

ShortName="GLOBAL AW.GLOBAL" PluralName="GLOBAL AW.GLOBAL"

Id="GLOBAL AW.GLOBAL.AW" Schema="GLOBAL AW" MetaDataFormat="10.2"

DefaultLanguage="AMERICAN" Languages="AMERICAN">

<Dimension Name="TIME" LongName="AMERICAN::Time"

ShortName="AMERICAN: :Time" PluralName="AMERICAN::Time"
Id="TIME.DIMENSION" Schema="GLOBAL AW" isTime="true"
isMeasure="false" UseNativeKey="true">

<Attribute Name="END DATE" LongName="AMERICAN::END DATE"
ShortName="AMERICAN: :END DATE" PluralName="AMERICAN::END DATE"
Id="TIME.END DATE.ATTRIBUTE" DataType="DATE"
Classification="END_DATE" InstallAsRelation="false"
IsDefaultOrder="false"/>

<Attribute Name="TIME SPAN" LongName="AMERICAN::TIME SPAN"
ShortName="AMERICAN: : TIME SPAN" PluralName="AMERICAN::TIME SPAN"
Id="TIME.TIME SPAN.ATTRIBUTE" DataType="INTEGER"
Classification="TIME_SPAN" InstallAsRelation="false"
IsDefaultOrder="false"/>

<Attribute Name="LONG DESCRIPTION"
LongName="AMERICAN: :Long Description"
ShortName="AMERICAN: : Long Description"
PluralName="AMERICAN: :Long Descriptions"
Id="TIME.LONG DESCRIPTION.ATTRIBUTE" DataType="TEXT"
Classification="MEMBER_LONG DESCRIPTION" InstallAsRelation="false"
IsDefaultOrder="false" IsMultilLingual="true"/>

25-2 Oracle OLAP Reference

Summary of DBMS_AW_XML Subprograms

Summary of DBMS_AW_XML Subprograms

The following table describes the subprograms provided in DBMS_AW EXECUTE.

Table 25-1 DBMS_AW_XML Subprograms

Subprogram Description
EXECUTE Function on Creates all or part of a standard form analytic workspace from
page 25-4 an XML document stored in a CLOB.

EXECUTEFILE Function on Creates all or part of a standard form analytic workspace from
page 25-5 an XML document stored in a text file.

DBMS_AW_XML 25-3

EXECUTE Function

EXECUTE Function

The EXECUTE function builds an analytic workspace using XML that conforms to the
Oracle OLAP XML schema. The XML is stored in a database object.

Syntax
EXECUTE (
xml_input IN CLOB)
RETURN VARCHAR2;
Parameters
Table 25-2 EXECUTE Function Parameters
Parameter Description
xml_input An XML document stored in a CLOB. The XML contains
instructions for building or maintaining an analytic workspace.
The XML describes a logical model, provides instructions for
loading data from relational tables, and defines aggregation and
other calculations to be performed on the data in the workspace.
Example

The following SQL program creates a CLOB and loads into it the contents of an XML
file. It then creates an analytic workspace named GLOBAL in the GLOBAL_AW schema
from the XML document in the CLOB.

--Use DBMS LOB package to create a clob
DECLARE
clb CLOB;
infile BFILE;
dname varchar2 (500) ;
BEGIN

-- Create a temporary clob
DBMS LOB.CREATETEMPORARY (clb, TRUE,10);

-- Create a BFILE use BFILENAME function
-- Use file GLOBAL.XML in the SCRIPTS directory object.
infile := BFILENAME ('SCRIPTS', 'GLOBAL.XML');

-- Open the BFILE
DBMS_LOB.fileopen(infile, dbms_lob.file readonly) ;

-- Load temporary clob from the BFILE
DBMS_LOB.LOADFROMFILE (clb, infile,DBMS LOB.LOBMAXSIZE, 1, 1);

-- Close the BFILE
DBMS LOB.fileclose(infile);

-- Create the GLOBAL analytic workspace
DBMS_OUTPUT.PUT LINE(DBMS AW XML.execute (clb));
DBMS_AW.AW UPDATE;

COMMIT;

-- Free the Temporary Clob

DBMS_LOB.FREETEMPORARY (clb) ;
EXCEPTION

25-4 Oracle OLAP Reference

Summary of DBMS_AW_XML Subprograms

WHEN OTHERS
THEN
DBMS_OUTPUT.PUT LINE (SQLERRM) ;
END;
/

EXECUTEFILE Function

Syntax

Returns

Parameters

Example

The EXECUTEFILE function builds an analytic workspace using XML that conforms to
the Oracle OLAP XML schema. The XML is stored in a text file.

EXECUTEFILE (
dirname IN VARCHAR2
filename IN VARCHAR2)

RETURN VARCHAR2;

The string SUCCESS if successful

Table 25-3 EXECUTEFILE Function Parameters

Parameter Description

dirname A directory object that identifies the physical directory where
xml_file is stored.

xml_file The name of a text file containing an XML document. The XML
contains instructions for building or maintaining an analytic
workspace. The XML describes a logical model, provides
instructions for loading data from relational tables, and defines
aggregation and other calculations to be performed on the data
in the workspace.

The following EXECUTEFILE function generates a standard form analytic workspace
from the XML statements stored in GLOBAL . XML, which is located in a directory
identified by the SCRIPTS directory object. The DBMS_OUTPUT . PUT_ LINE function
displays the "Success" message returned by EXECUTEFILE.

SQL> execute dbms_output.put line(dbms_aw xml.executefile ('SCRIPTS',
'"GLOBAL.XML'")) ;
Success

DBMS_AW_XML 25-5

EXECUTE Function

25-6 Oracle OLAP Reference

26

DBMS_AWM

The Analytic Workspace Manager package, DBMS_AWM, provides procedures for
building and maintaining analytic workspaces.

Note: You can access much of the functionality of the DBMS_AWM
package through the graphical user interface of the Analytic
Workspace Manager.

See Also:
» Chapter 1, "Creating Analytic Workspaces with DBMS_AWM"
» Chapter 2, "Creating OLAP Catalog Metadata with CWM2"

This chapter discusses the following topics:
= Parameters of DBMS_AWM Subprograms
= Summary of DBMS_AWM Subprograms

Parameters of DBMS_AWM Subprograms

The parameters cube name, dimension name, measure name,and level name
refer to the metadata entities in the OLAP Catalog that map to the relational source
cube.

The parameters aw_cube name or aw_dimension name refer to the target cube or
dimension within an analytic workspace.

Parameters with the suffix _spec refer to the named specifications for loading,
aggregating, and optimizing a target cube in an analytic workspace.

See Also: "Overview" on page 1-1 for definitions of the terms,

"non

"relational source cube", "multidimensional target cube", and
"relational target cube".

DBMS_AWM parameters are summarized in Table 26-1.

DBMS_AWM 26-1

Parameters of DBMS_AWM Subprograms

Table 26-1

Parameters of DBMS_AWM Procedures

Parameter

Description

cube_owner

cube name

dimension_owner

dimension name

aw_owner

aw_cube name

aw_dimension name

dimension_ load_ spec

cube load spec

aggregation spec

composite spec

Owner of the OLAP Catalog cube associated with the relational
source tables (star schema).

Name of the OLAP Catalog cube associated with the relational
source tables (star schema).

Owner of the OLAP Catalog dimension associated with the source
dimension lookup table.

Name of the OLAP Catalog dimension associated with the source
dimension lookup table.

Owner of the analytic workspace. Also the owner of cubes and
dimensions within the workspace.

Name of the target cube within an analytic workspace. For
information on naming requirements, see Table 26-13, " CREATE_
AWCUBE Procedure Parameters".

Name of the target dimension within an analytic workspace. For
information on naming requirements, see Table 26-18, " CREATE_
AWDIMENSION Procedure Parameters".

The name of a specification for loading an OLAP Catalog source
dimension into a target dimension in an analytic workspace.

The name of a specification for loading an OLAP Catalog source
cube into a target cube in an analytic workspace.

The name of a specification for creating the stored summaries for a
target cube in an analytic workspace.

The name of a specification for defining composites and
dimension order for a target cube in an analytic workspace.

26-2 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Summary of DBMS_AWM Subprograms

Table 26-2 lists the DBMS_ AWM subprograms in alphabetical order. Each subprogram is
described in detail further in this chapter.

To see the DBMS_ AWM subprograms listed by function, refer to "Understanding the

DBMS_AWM Procedures" on page 1-5.

Table 26-2 DBMS_AWM Subprograms

Subprogram

Description

ADD_AWCOMP_SPEC_COMP_MEMBER
Procedure on page 26-6

ADD_AWCOMP_SPEC_MEMBER Procedure
on page 26-7

ADD_AWCUBEAGG_SPEC_LEVEL
Procedure on page 26-8

ADD_AWCUBEAGG_SPEC_MEASURE
Procedure on page 26-8

ADD_AWCUBELOAD_SPEC_COMP
Procedure on page 26-9

ADD_AWCUBELOAD_SPEC_FILTER
Procedure on page 26-10

ADD_AWCUBELOAD_SPEC_MEASURE
Procedure on page 26-11

ADD_AWDIMLOAD_SPEC_FILTER
Procedure on page 26-12

AGGREGATE_AWCUBE Procedure on
page 26-13

CREATE_AWCOMP_SPEC Procedure on
page 26-14

CREATE_AWCUBE Procedure on page 26-15

CREATE_AWCUBE_ACCESS Procedure on
page 26-17

CREATE_AWCUBE_ACCESS_FULL
Procedure on page 26-19

CREATE_AWCUBEAGG_SPEC Procedure on
page 26-20

CREATE_AWCUBELOAD_SPEC Procedure
on page 26-33

CREATE_AWDIMENSION Procedure on
page 26-22

CREATE_AWDIMENSION_ACCESS
Procedure on page 26-24

CREATE_AWDIMENSION_ACCESS_FULL
Procedure on page 26-26

Adds a member to a composite in a composite
specification.

Adds a member to a composite specification.
Adds a level to an aggregation specification.

Adds a measure to an aggregation
specification.

Adds a composite specification to a cube load
specification.

Adds a WHERE clause to a cube load
specification.

Adds a measure to a cube load specification.

Adds a WHERE clause to a dimension load
specification.

Creates stored summaries for a cube in an
analytic workspace.

Creates a composite specification for a cube.

Creates containers within an analytic
workspace to hold a cube defined in the OLAP
Catalog.

Creates a script to enable relational access to a
cube in an analytic workspace.

Enables relational access to a cube in an
analytic workspace.

Creates an aggregation specification for a cube.
Creates a load specification for a cube.

Creates containers within an analytic
workspace to hold a dimension defined in the
OLAP Catalog.

Creates a script to enable relational access to a
dimension in an analytic workspace.

Enables relational access to a dimension in an
analytic workspace.

DBMS_AWM 26-3

Summary of DBMS_AWM Subprograms

Table 26-2 (Cont.) DBMS_AWM Subprograms

Subprogram

Description

UPGRADE_AW_TO_10_2 Procedure on

page 26-53

CREATE_AWDIMLOAD_SPEC Procedure on
page 26-27

CREATE_DYNAMIC_AW_ACCESS
Procedure on page 26-28

DELETE_AWCOMP_SPEC Procedure on
page 26-28

DELETE_AWCOMP_SPEC_MEMBER
Procedure on page 26-29

DELETE_AWCUBE_ACCESS Procedure on
page 26-29

DELETE_AWCUBE_ACCESS_ALL Procedure
on page 26-30
DELETE_AWCUBEAGG_SPEC Procedure on
page 26-31

DELETE_AWCUBEAGG_SPEC_LEVEL
Procedure on page 26-31

DELETE_AWCUBEAGG_SPEC_MEASURE
Procedure on page 26-32

DELETE_AWCUBELOAD_SPEC Procedure
on page 26-33

DELETE_AWCUBELOAD_SPEC_COMP
Procedure on page 26-33

DELETE_AWCUBELOAD_SPEC_FILTER
Procedure on page 26-33

DELETE_AWCUBELOAD_SPEC_MEASURE
Procedure on page 26-34

DELETE_AWDIMENSION_ACCESS
Procedure on page 26-35

DELETE_AWDIMENSION_ACCESS_ALL
Procedure on page 26-35

DELETE_AWDIMLOAD_SPEC Procedure on
page 26-36

DELETE_AWDIMLOAD_SPEC_FILTER
Procedure on page 26-37

REFRESH_AWCUBE Procedure on page 26-37

REFRESH_AWCUBE_VIEW_NAME
Procedure on page 26-39

REFRESH_AWDIMENSION Procedure on
page 26-39

26-4 Oracle OLAP Reference

Converts an analytic workspace from 10.1.0.4
to 10.2 format.

Creates a load specification for a dimension.

Upgrades standard form metadata to the
current release, which supports queries from
the OLAP API without the need for relational
views.

Deletes a composite specification.
Deletes a member of a composite specification.

Creates a script that deletes the enablement
views and metadata for a cube in an analytic
workspace.

Deletes the enablement views and metadata
for a cube in an analytic workspace.

Deletes an aggregation specification.

Removes a level from an aggregation
specification.

Removes a measure from an aggregation
specification.

Deletes a cube load specification.

Removes a composite specification from a cube
load specification.

Removes a WHERE clause from a cube load
specification.

Removes a measure from a cube load
specification.

Creates a script that deletes the enablement
views and metadata for a dimension in an
analytic workspace.

Deletes the enablement views and metadata
for a dimension in an analytic workspace.

Deletes a dimension load specification.

Removes a WHERE clause from a dimension
load specification.

Loads the data and metadata of an OLAP
Catalog source cube into a target cube in an
analytic workspace.

Creates metadata in the analytic workspace to
support user-defined enablement view names
for a cube.

Loads the data and metadata of an OLAP
Catalog source dimension into a target
dimension in an analytic workspace.

Summary of DBMS_AWM Subprograms

Table 26-2 (Cont.) DBMS_AWM Subprograms

Subprogram

Description

REFRESH_AWDIMENSION_VIEW_NAME
Procedure on page 26-41

SET_AWCOMP_SPEC_CUBE Procedure on
page 26-41

SET_AWCOMP_SPEC_MEMBER_NAME
Procedure on page 26-42

SET_AWCOMP_SPEC_MEMBER_POS
Procedure on page 26-42

SET_AWCOMP_SPEC_MEMBER_SEG
Procedure on page 26-44

SET_AWCOMP_SPEC_NAME Procedure on
page 26-45
SET_AWCUBE_VIEW_NAME Procedure on
page 26-45

SET_AWCUBEAGG_SPEC_AGGOP
Procedure on page 26-46

SET_AWCUBELOAD_SPEC_CUBE Procedure
on page 26-47

SET_AWCUBELOAD_SPEC_LOADTYPE
Procedure on page 26-47

SET_AWCUBELOAD_SPEC_NAME
Procedure on page 26-48

SET_AWCUBELOAD_SPEC_PARAMETER
Procedure on page 26-48

SET_AWDIMENSION_VIEW_NAME
Procedure on page 26-49

SET_AWDIMLOAD_SPEC_DIMENSION
Procedure on page 26-50

SET_AWDIMLOAD_SPEC_LOADTYPE
Procedure on page 26-51

SET_AWDIMLOAD_SPEC_NAME Procedure
on page 26-51

SET_AWDIMLOAD_SPEC_PARAMETER
Procedure on page 26-52

Creates metadata in the analytic workspace to
support user-defined enablement view names
for a dimension.

Changes the cube associated with a composite
specification.

Renames a member of a composite
specification.

Changes the position of a member in a
composite specification.

Changes the segment size associated with a
member of a composite specification.

Renames a composite specification.

Renames the relational views of an analytic
workspace cube.

Specifies an aggregation operator for
aggregating measures along a dimension of a
cube.

Changes the cube associated with a cube load
specification.

Changes the type of a cube load specification.
Renames of a cube load specification.
Sets parameters for a cube load specification.

Renames the relational views of an analytic
workspace dimension.

Changes the dimension associated with a
dimension load specification.

Changes the type of a dimension load
specification.

Renames a dimension load specification.

Sets a parameter for a dimension load
specification.

DBMS_AWM 26-5

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

This procedure adds a member to a composite in a composite specification. The
member may be a dimension or it may be a nested composite.

Composite members must be added in order. If you want to reorder the members, you
must drop and re-create the composite. Call DELETE AWCOMP SPEC MEMBER and
ADD AWCOMP SPEC MEMBER.

Syntax
ADD_AWCOMP_SPEC_COMP_MEMBER (
composite spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube_name IN VARCHAR2,
composite name IN VARCHAR2,
nested member name IN VARCHAR2,
nested member type IN VARCHARs,
dimension owner IN VARCHAR2 DEFAULT NULL,
dimension name IN VARCHAR2 DEFAULT NULL) ;
Parameters
Table 26-3 ADD_AWCOMP_SPEC_COMP_MEMBER Procedure Parameters
Parameter Description
composite_spec Name of a composite specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube name Name of the OLAP Catalog source cube.
composite name Name of a composite in the composite specification.
nested _member name Name of the member to add to the composite.
nested member type Type of the new member. The type can be either ' DIMENSION'
or ' COMPOSITE'.
dimension owner Owner of the OLAP Catalog source dimension to add to the
composite. If the new member is a nested composite instead of a
dimension, this parameter should be NULL (default).
dimension_name Name of the OLAP Catalog source dimension to add to the
composite. If the new member is a nested composite instead of a
dimension, this parameter should be NULL (default).
Example

The following statements add a composite COMP1, consisting of the PRODUCT and
GEOGRAPHY dimensions, to the composite specification AC_COMPSPEC.

execute DBMS_ AWM.Create AWComp_ spec
('AC_COMPSPEC' , 'XADEMO' ,'ANALYTIC CUBE');

execute DBMS AWM.Add AWComp Spec Member
('AC_COMPSPEC' ,'XADEMO' , 'ANALYTIC CUBE' ,'COMP1' ,'COMPOSITE');

execute DBMS_ AWM.Add AWComp Spec_Comp_ Member
('AC_COMPSPEC', 'XADEMO', 'ANALYTIC CUBE', 'COMP1', 'PROD COMP',
'DIMENSION', 'XADEMO', 'PRODUCT') ;

execute DBMS AWM.Add AWComp Spec_ Comp Member
('AC_COMPSPEC', 'XADEMO', 'ANALYTIC CUBE', 'COMP1', 'GEOG COMP',
'"DIMENSION', 'XADEMO', 'GEOGRAPHY') ;

26-6 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

See Also

» "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
s DELETE_AWCOMP_SPEC_MEMBER Procedure on page 26-29

= ADD_AWCOMP_SPEC_MEMBER Procedure on page 26-7

s CREATE_AWCOMP_SPEC Procedure on page 26-14

ADD_AWCOMP_SPEC_MEMBER Procedure

This procedure adds a member to a composite specification. The members of a
composite specification are composites and dimensions.

Syntax

Parameters

Example

ADD AWCOMP SPEC MEMBER (

composite spec IN VARCHAR2,

cube owner

IN VARCHAR2,

cube name IN VARCHAR2,

member name IN VARCHAR2,

member type IN VARCHAR2,

dimension owner IN VARCHAR2 DEFAULT NULL,
diimension name IN VARCHAR2 DEFAULT NULL) ;

Table 26-4 ADD_AWCOMP_SPEC_MEMBER Procedure Parameters

Parameter

Description

composite_ spec
cube owner
cube name
member name

member type

dimension_owner

dimension name

Name of a composite specification for a cube.
Owner of the OLAP Catalog source cube.

Name of the OLAP Catalog source cube.

Name of the member of the composite specification.

Type of the member. The type can be either ' DIMENSION' or
'COMPOSITE'.

Owner of the OLAP Catalog source dimension to add to the
composite specification. If the new member is a composite
instead of a dimension, this parameter should be NULL
(default).

Name of the OLAP Catalog source dimension to add to the
composite specification. If the new member is a composite
instead of a dimension, this parameter should be NULL
(default).

The following statements add the Time dimension and a composite called COMP1 to
the composite specification AC_COMPSPEC.

execute DBMS AWM.Add AWComp Spec Member
('AC_COMPSPEC' ,'XADEMO' ,'ANALYTIC CUBE' ,'TIMECOMP MEMBER' ,

'DIMENSION'

, 'XADEMO' , 'TIME') ;

execute DBMS_AWM.Add_AWComp_Spec_Member
('AC_COMPSPEC' ,'XADEMO' ,'ANALYTIC CUBE' ,'COMP1' ,'COMPOSITE');

DBMS_AWM 26-7

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

See Also

= "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
s CREATE_AWCOMP_SPEC Procedure on page 26-14

ADD_AWCUBEAGG_SPEC_LEVEL Procedure

Syntax

Parameters

Example

See Also

This procedure adds a level to an aggregation specification.

ADD_AWCUBEAGG SPEC LEVEL (

aggregation spec IN VARCHAR2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube_ name IN VARCHAR2,
aw_dimension_name IN VARCHAR2,
aw_level name IN VARCHAR2) ;

Table 26-5 ADD_AWCUBEAGG_SPEC_LEVEL Procedure Parameters

Parameter Description

aggregation_ spec Name of an aggregation specification for a cube in an analytic
workspace.

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

aw_cube name Name of the cube within the analytic workspace.

aw_dimension name Name of a dimension of the cube.

aw_level name Name of a level of the dimension.

The following statements add two levels of Product, one level of Channel, and one
level of Time to the aggregation specification AC_AGGSPEC.

execute dbms_awm.add_awcubeagg spec_ level

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AW PROD', 'L3')
execute dbms_awm.add awcubeagg spec level

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AW PROD', 'L2')
execute dbms_awm.add awcubeagg spec_level

('AC_AGGSPEC', 'MYSCHEMA', '"MYAW', 'AW ANACUBE', 'AW CHAN', 'STANDARD 2')
execute dbms_awm.add_awcubeagg spec_level

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AW TIME',6 'L2')

= "Aggregating the Data in an Analytic Workspace" on page 1-14
s CREATE_AWCUBEAGG_SPEC Procedure on page 26-20

ADD_AWCUBEAGG_SPEC_MEASURE Procedure

This procedure adds a measure to an aggregation specification.

26-8 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Syntax

Parameters

Example

See Also

ADD AWCUBEAGG_SPEC MEASURE (

aggregation spec IN VARCHARZ2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube name IN VARCHAR2,
aw_measure_name IN VARCHAR2);

Table 26-6 ADD_AWCUBEAGG_SPEC_MEASURE Procedure Parameters

Parameter Description

aggregation spec Name of an aggregation specification for a cube in an analytic
workspace.

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

aw_cube_name Name of the cube within the analytic workspace.

aw_measure_name Name of one of the measures of the cube.

The following statements add the Costs and Quota measures to the aggregation
specification for the cube AW _ANACUBE in the analytic workspace MYAW.

execute dbms_awm.add awcubeagg spec measure

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'XXF.COSTS')
execute dbms_awm.add awcubeagg spec_measure

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'XXF.QUOTA')

= "Aggregating the Data in an Analytic Workspace" on page 1-14
s CREATE_AWCUBEAGG_SPEC Procedure on page 26-20

ADD AWCUBELOAD _SPEC_COMP Procedure

Syntax

Parameters

This procedure adds a composite specification to a cube load specification.

ADD AWCUBELOAD SPEC COMP (

cube load spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube name IN VARCHAR2,
composite_ spec IN VARCHAR2) ;

Table 26-7 ADD_AWCUBELOAD _SPEC_COMP Procedure Parameters

Parameter Description

cube_load_ spec Name of a cube load specification.

cube_owner Owner of the OLAP Catalog source cube.

DBMS_AWM 26-9

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Table 26-7 (Cont) ADD_AWCUBELOAD_SPEC_COMP Procedure Parameters

Parameter Description
cube name Name of the OLAP Catalog source cube.
composite_spec Name of the composite specification to add to the cube

load specification.

Example
The following statement adds the composite specification AC_COMPSPEC to the cube
load specification AC_CUBELOADSPEC.
execute DBMS_AWM.add AWCubeLoad Spec_Comp
('AC_CUBELOADSPEC' ,'XADEMO', 'ANALYTIC CUBE', 'AC_COMPSPEC');
See Also

s "Creating Cubes in the Analytic Workspace" on page 1-4
s CREATE_AWCUBELOAD_SPEC Procedure on page 26-21
s CREATE_AWCOMP_SPEC Procedure on page 26-14

ADD_AWCUBELOAD_SPEC_FILTER Procedure

This procedure adds a filter condition to a cube load specification. The filter is a SQL
WHERE clause that will be used in the query against the source fact table.

Syntax
ADD AWCUBELOAD SPEC FILTER (
cube_load_spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2,
fact table owner IN VARCHAR2,
fact_table name IN VARCHAR2,
where _clause IN VARCHAR2) ;
Parameters

Table 26-8 ADD_AWCUBELOAD SPEC FILTER Procedure Parameters

Parameter Description

cube_load_spec Name of a cube load specification.

cube_owner Owner of the OLAP Catalog source cube.

cube_name Name of the OLAP Catalog source cube.

fact_table_ owner Owner of the fact table that is mapped to the OLAP Catalog
source cube.

fact_table name Name of the fact table that is mapped to the OLAP Catalog
source cube

where clause A SQL WHERE clause that specifies which rows to load from the
fact table.

26-10 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Example

See Also

The following statements create a cube load specification called AC_CUBELOADSPEC2.
When the target cube in the analytic workspace is refreshed with this specification,
only sales figures less than 25 will be loaded.

execute dbms_awm.create awcubeload spec
('AC_CUBELOADSPEC2', 'XADEMO', 'ANALYTIC CUBE', 'LOAD DATA');
execute dbms_awm.add awcubeload spec_measure
('AC_CUBELOADSPEC2', 'XADEMO', 'ANALYTIC CUBE', 'F.SALES',
'AW_SALES', 'Sales');
execute dbms_awm.add _awcubeload spec filter
('AC_CUBELOADSPEC2', 'XADEMO', 'ANALYTIC CUBE',
'XADEMO', 'XADEMO ANALYTIC FACTS', '''SALES'' < 25');

s "Creating Cubes in the Analytic Workspace" on page 1-4
s CREATE_AWCUBELOAD_SPEC Procedure on page 26-21

ADD_AWCUBELOAD_SPEC_MEASURE Procedure

Syntax

Parameters

This procedure adds a measure to a cube load specification.

If you add one or more measures to a cube load specification, only those measures will
be loaded. If you do not add measures to the cube load specification, then all the
cube's measures will be loaded.

You can use this procedure to specify the target name of the measure, its display name,
and its description in the analytic workspace. If you do not specify the target names, or
if you do not call this procedure at all, the source names from the OLAP Catalog are
used.

ADD AWCUBELOAD SPEC MEASURE (

cube load spec IN VARCHAR2,

cube owner IN VARCHAR2,

cube name IN VARCHAR2,

measure_name IN VARCHAR2,
aw_measure_name IN VARCHAR2 DEFAULT NULL,
aw_measure display name IN VARCHAR2 DEFAULT NULL,
aw_measure description IN VARCHAR2 DEFAULT NULL) ;

Table 26-9 ADD AWCUBELOAD SPEC MEASURE Procedure Parameters

Parameter Description

cube load_spec Name of a cube load specification.

cube_owner Owner of the OLAP Catalog source cube.

cube_name Name of the OLAP Catalog source cube.

measure_name Name of the OLAP Catalog source measure.

aw_measure_name Name of the target measure in the analytic workspace. If you do
E:; C?pecify a name, the measure name from the OLAP Catalog is

DBMS_AWM 26-11

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Table 26-9 (Cont) ADD_AWCUBELOAD_SPEC_MEASURE Procedure Parameters

Parameter Description

aw_measure_display Display name for the target measure in the analytic workspace.

name If you do not specify a display name, the display name for the
measure in the OLAP Catalog is used.

aw_measure_ Description for the target measure in the analytic workspace. If

description you do not specify a description, the description for the measure

in the OLAP Catalog is used.

Example
The following statements create a cube load specification called AC_CUBELOADSPEC2.
When the target cube in the analytic workspace is refreshed with this specification,
only the sales measure will be loaded.
The target sales measure will have the logical name AW_SALES, and its description will
be 'Sales'.
execute dbms_awm.create_ awcubeload spec
('AC_CUBELOADSPEC2', 'XADEMO', 'ANALYTIC CUBE', 'LOAD DATA');
execute dbms_awm.add awcubeload spec measure
('AC_CUBELOADSPEC2', 'XADEMO', 'ANALYTIC CUBE', 'F.SALES',
'AW_SALES', 'Sales');
See Also

s CREATE_AWCUBELOAD_SPEC Procedure on page 26-21
» REFRESH_AWCUBE Procedure on page 26-37

ADD_AWDIMLOAD_SPEC_FILTER Procedure

This procedure adds a filter condition to a dimension load specification. The filter is a
SQL WHERE clause that will be used in the query against the source dimension tables.

Syntax
ADD AWDIMLOAD SPEC FILTER (
dimension load spec IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension_table owner IN VARCHAR2,
dimension table name IN VARCHAR2,
where clause IN VARCHAR2) ;
Parameters

Table 26-10 ADD_AWDIMLOAD_SPEC_FILTER Procedure Parameters

Parameter Description

dimension load_spec Name of a dimension load specification.
dimension_ owner Owner of the OLAP Catalog source dimension.
dimension_ name Name of the OLAP Catalog source dimension.

dimension_table owner Owner of the dimension table that is mapped to the OLAP
Catalog source dimension.

26-12 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Example

See Also

Table 26-10 (Cont.) ADD_AWDIMLOAD_SPEC_FILTER Procedure Parameters

Parameter Description

dimension_ table name Name of the dimension table that is mapped to the OLAP
Catalog source dimension.

where clause A SQL WHERE clause that specifies which rows to load from the
dimension table into an analytic workspace.

The following statements create a load specification for the CHANNEL dimension in
XADEMO. When the target dimension is refreshed with this specification, only the
member DIRECT will be loaded.

execute dbms_awm.create awdimload spec
('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'FULL LOAD');
execute dbms_awm.add_awdimload_spec_filter
('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'XADEMO',
'XADEMO CHANNEL', '''CHAN STD CHANNEL'' = ''DIRECT''');

s "Creating Dimensions in the Analytic Workspace" on page 1-3

s CREATE_AWDIMLOAD_SPEC Procedure on page 26-27

AGGREGATE_AWCUBE Procedure

Syntax

Parameters

This procedure uses an aggregation specification to precompute and store aggregate
data for a cube in an analytic workspace.

The REFRESH_AWCUBE procedure loads detail data and sets up the internal workspace
structures that support dynamic aggregation. If you want to precompute and store
summarized data for the cube, you must use the AGGREGATE_AWCUBE procedure.

You must rerun AGGREGATE_AWCUBE after every refresh to ensure that the stored
summaries are consistent with the data.

AGGREGATE_AWCUBE executes an OLAP DML UPDATE command to save the changes
in the analytic workspace. AGGREGATE_AWCUBE does not execute a SQL COMMIT.

AGGREGATE_AWCUBE (

aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube name IN VARCHAR2,
aggregation spec IN VARCHAR2?) ;

Table 26-11 AGGREGATE_AWCUBE Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

aw_cube name Name of the cube within the analytic workspace.
aggregation_spec Name of an aggregation specification for the cube.

DBMS_AWM 26-13

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Example

See Also

The following statements create an aggregation plan AGGL1 for the target cube AC2 in
the analytic workspace MYSCHEMA . MYAW. The target cube was created from the source
cube XADEMO .ANALYTIC CUBE.

---- Create agg plan for analytic cube ---------------------"-------"— -
---- with levels 2 and 3 of product, standard 2 of channel, and 2 of time ----
---- with measures costs and quota ------------------mmmmo e

execute dbms_awm.create awcubeagg_spec

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2')
execute dbms_awm.add awcubeagg spec level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'PRODUCT', 'L3')
execute dbms_awm.add awcubeagg spec_level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'PRODUCT', 'L2')
execute dbms_awm.add_awcubeagg_spec_level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'CHANNEL', 'STANDARD 2')
execute dbms_awm.add awcubeagg spec level

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'TIME', 'L2'")
execute dbms_awm.add awcubeagg spec_measure

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'XXF.COSTS')
execute dbms_awm.add awcubeagg spec_measure

('AGG1', 'MYSCHEMA', 'MYAW', 'AC2', 'XXF.QUOTA')
execute dbms_awm.aggregate awcube ('MYSCHEMA', 'MYAW', 'AC2', 'AGGl')

= "Aggregating the Data in an Analytic Workspace" on page 1-14
s "CREATE_AWCUBEAGG_SPEC Procedure" on page 26-20

CREATE_AWCOMP_SPEC Procedure

Syntax

This procedure creates a composite specification for an OLAP Catalog source cube.
The composite specification determines how sparse data will be stored in the target

cube in an analytic workspace. It also determines the dimension order, which affects
the efficiency of data loads and queries.

A composite is a list of dimension value combinations that provides an index into one
or more sparse measures. Composites are named objects within an analytic workspace.
Composites are defined and maintained with OLAP DML commands.

Members of a composite specification are composites (whose members are
dimensions) and individual dimensions.

CREATE_AWCOMP_SPEC (

composite spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2) ;

26-14 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Parameters

Note

Example

See Also

Table 26-12 CREATE_AWCOMP_SPEC Procedure Parameters

Parameter Description

composite spec Name of a composite specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.

You can use the following procedures to modify an existing composite specification:
= SET_AWCOMP_SPEC_CUBE Procedure

s SET_AWCOMP_SPEC_MEMBER_NAME Procedure

s SET_AWCOMP_SPEC_MEMBER_POS Procedure

s SET_AWCOMP_SPEC_MEMBER_SEG Procedure

s SET_AWCOMP_SPEC_NAME Procedure

The following statements create a composite specification for the ANALYTIC CUBE in
XADEMO. It consists of the Time dimension followed by a composite called COMP1.

execute DBMS AWM.Create AWComp_ spec
('AC_COMPSPEC' , 'XADEMO' ,'ANALYTIC CUBE');
execute DBMS AWM.Add AWComp Spec Member
('AC_COMPSPEC' ,'XADEMO' , 'ANALYTIC CUBE' ,'TIMECOMP MEMBER' ,
'DIMENSION' , 'XADEMO' ,'TIME');
execute DBMS_AWM.Add AWComp Spec_Member
('AC_COMPSPEC' ,'XADEMO' ,'ANALYTIC CUBE' ,'COMP1' ,'COMPOSITE');

= "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
= ADD_AWCOMP_SPEC_MEMBER Procedure on page 26-7

= ADD_AWCOMP_SPEC_COMP_MEMBER Procedure on page 26-6

= ADD_AWCUBELOAD_SPEC_COMP Procedure on page 26-9

= DEFINE COMPOSITE in the Oracle OLAP DML Reference

CREATE_AWCUBE Procedure

This procedure creates the multidimensional framework within an analytic workspace
to hold a relational cube.

The relational cube, consisting of a star schema and OLAP Catalog metadata, is the
source for the target multidimensional cube in the analytic workspace. Data and
metadata are loaded from the source cube to the target cube by the REFRESH_AWCUBE
procedure.

CREATE_AWCUBE executes an OLAP DML UPDATE command to save the changes in
the analytic workspace. CREATE_AWCUBE does not execute a SQL COMMIT.

The multidimensional framework for the cube is in database standard form.

DBMS_AWM 26-15

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Syntax

Parameters

Example

Note: Before executing CREATE_AWCUBE to create a new workspace
cube, you must execute CREATE AWDIMENSION for each of the cube's
dimensions.

CREATE AWCUBE (

cube owner IN VARCHAR2,
cube name IN VARCHAR2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube_name IN VARCHAR2 DEFAULT NULL) ;

Table 26-13 CREATE_AWCUBE Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog source cube.

cube_name Name of the OLAP Catalog source cube.

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

aw_cube_name Name for the target cube within the analytic workspace.

If you specify a name for the cube in the analytic workspace, the name
must conform to general object naming conventions for SQL, and it
must be unique within the schema that owns the analytic workspace. To
test uniqueness, use a statement like the following.

select owner, cube name

from all olap2 cubes

union all

select aw_owner, aw_logical_name
from all olap2_aw_cubes;

Within the analytic workspace, you can generally reference the cube by
its simple target cube name. However, database standard form also
supports a full name for logical objects. For cubes, the full name is:

aw_owner.aw_cube_name.CUBE

The following statements create the structures for the XADEMO . ANALYTIC_CUBE in
the analytic workspace MYSCHEMA . MYAW. The name of the cube in the workspace is
AW_ANACUBE.

--- Create the dimensions in the analytic workspace ----

execute dbms_awm.create awdimension

('XADEMO', 'CHANNEL', 'MYSCHEMA', 'MYAW', 'AW CHAN');
execute dbms_awm.create awdimension

('XADEMO', 'GEOGRAPHY', 'MYSCHEMA', '"MYAW', 'AW GEOG');
execute dbms_awm.create_awdimension

('XADEMO', 'PRODUCT', '"MYSCHEMA', 'MYAW', 'AW PROD');
execute dbms_awm.create awdimension

('XADEMO', 'TIME', 'MYSCHEMA', 'MYAW', 'AW TIME');

--- Create the cube in the analytic workspace ----

26-16 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

See Also

execute dbms_awm.create awcube
('XADEMO', 'ANALYTIC CUBE', 'MYSCHEMA', 'MYAW','AW ANACUBE');

You can use statements like the following to verify that the cube has been created in
the analytic workspace.
--- View the cube in the analytic workspace ----
execute dbms_aw.execute
('aw attach MYSCHEMA.MYAW') ;
execute dbms_aw.execute
('limit name to obj (property''AWSROLE'') eq ''CUBEDEF''');

execute dbms_aw.execute
('report w 40 name');

AW_ANACUBE

Alternatively, you can query the Active Catalog to verify that the cube has been
created.

select * from all olap2 aw_cubes
where owner in 'myschema' and
aw_name in 'myaw' and
aw_logical name in 'aw_anacube';

s 'Creating and Refreshing a Workspace Cube" on page 1-10
s CREATE_AWDIMENSION Procedure on page 26-22

s REFRESH_AWCUBE Procedure on page 26-37

» CREATE_AWCUBE_ACCESS Procedure on page 26-17

» Chapter 3, "Active Catalog Views"

CREATE_AWCUBE_ACCESS Procedure

Syntax

This procedure generates a script that creates relational fact views of a cube in an
analytic workspace. The views are in embedded total format. The script can optionally
generate OLAP Catalog metadata that maps to the views of the workspace cube.

Relational views enable applications to query an analytic workspace using standard
SQL. Relational views are not used by the OLAP APL

Both dimension views and fact views are required for relational access to the
workspace cube. Use the CREATE_AWDIMENSION_ACCESS procedure to generate the
scripts that create the dimension views.

To accomplish the cube enablement process in a single step, use the CREATE_AWCUBE_
ACCESS_FULL procedure. This procedure both creates and runs the enablement script.

CREATE AWCUBE_ACCESS (

aw_owner IN VARCHAR2,
aw_name IN VARCHARZ2,
aw_cube_ name IN VARCHAR2,
access_type IN VARCHARZ2,

DBMS_AWM 26-17

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Parameters

Example

See Also

script directory IN VARCHAR2,

script name IN VARCHAR2,

open_mode IN VARCHAR2,

caller IN VARCHAR2 DEFAULT NULL,
spreadsheet mode IN VARCHAR2 DEFAULT 'YES',
auto adt mode IN VARCHAR?2 DEFAULT 'NO');

Table 26-14 CREATE_AWCUBE_ACCESS Procedure Parameters

Parameter Description
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.

aw_cube name

access_type

script_directory

script name

open_mode

caller

spreadsheet _mode

auto_adt mode

Name of the cube in the analytic workspace.

Controls whether or not the script generates OLAP Catalog
metadata for the views. Specify one of the following values:

. 'SQL' does not generate metadata.

. 'OLAP' generates metadata

The directory that will contain the script. This may be either a
directory object or a path set by the UTL._FILE_DIR parameter.

Name of the script file.

One of the following modes for opening the script file:

= 'W' overwrites any existing contents of the script file
= 'A' appends the new script to the existing contents of the
script file.

This parameter was used in earlier releases to identify the caller
of the procedure. It is not used in the current release. By default,
this parameter is null. It also accepts the value, 'EXTERNAL'.

Whether or not to use a MODEL clause in the SELECT FROM
OLAP_TABLE statement in the view definition. A SQL MODEL
significantly improves the performance of queries that use
OLAP_TABLE. By default, a MODEL clause is used. See
Chapter 34, "OLAP_TABLE".

Whether or not the abstract data types used by OLAP_TABLE are
automatically generated at runtime. By default, the abstract data
types are predefined and are not automatically generated by
OLAP_TABLE. See Chapter 34, "OLAP_TABLE".

The following statement creates an enablement script called aw_anacube
enable.sql in the /datl/scripts directory. You can run the script to create fact
views of the AW ANACUBE cube in workspace XADEMO . MYAW. The script will also
generate an OLAP Catalog cube called AW ANACUBE that maps to the views.

execute dbms_awm.create awcube access

('XADEMO',

'MYAW', 'AW _ANACUBE', 'OLAP',

'/datl/scripts/', 'aw_anacube enable.sql', 'w');

= "Enabling Relational Access" on page 1-17
= "CREATE_AWCUBE_ACCESS_FULL Procedure" on page 26-19

26-18 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

s "DELETE_AWCUBE_ACCESS Procedure" on page 26-29

s "SET_AWCUBE_VIEW_NAME Procedure" on page 26-45

s "CREATE_AWDIMENSION_ACCESS Procedure" on page 26-24
s "REFRESH_AWCUBE Procedure" on page 26-37

n Chapter 34, "OLAP_TABLE"

CREATE_AWCUBE_ACCESS_FULL Procedure

Syntax

Parameters

This procedure accomplishes the entire process of enabling a workspace cube for
relational access. Like CREATE_AWCUBE_ACCESS it produces an enablement script.
However it does not write the script to a file. Instead it writes the script to temporary
memory and runs the script.

The resulting views and metadata are identical to those created by the enablement
scripts produced by CREATE_AWCUBE_ACCESS.

Relational views enable applications to query an analytic workspace using standard
SQL. Relational views are not used by the OLAP APL

CREATE AWCUBE_ACCESS FULL (

run_id IN NUMBER,

aw_owner IN VARCHAR2,

aw_name IN VARCHARZ2,

aw_cube name IN VARCHAR2,

access_type IN VARCHARZ2,

spreadsheet mode IN VARCHAR2 DEFAULT 'YES',
auto_adt_mode IN VARCHAR2 DEFAULT 'NO');

Table 26-15 CREATE_AWCUBE_ACCESS_FULL Procedure Parameters

Parameter Description
run_id An assigned slot in a global temporary table for holding the record
associated with this operation. In most cases, simply specify "1".
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube name Name of the cube in the analytic workspace.
access_type Controls whether or not to generate OLAP Catalog metadata in addition
to the enablement views. Specify one of the following values:
= 'SQL' does not generate metadata
L] '"OLAP' generates metadata
spreadsheet_ Whether or not to use a MODEL clause in the SELECT FROM OLAP
mode TABLE statement in the view definition. A SQL MODEL significantly

improves the performance of queries that use OLAP_TABLE. By default,
a MODEL clause is used. See Chapter 34, "OLAP_TABLE".

auto_adt_mode Whether or not the abstract data types used by OLAP_TABLE are
automatically generated at runtime. By default, the abstract data types
are predefined and are not automatically generated by OLAP_TABLE. See
Chapter 34, "OLAP_TABLE".

DBMS_AWM 26-19

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

See Also

= "Enabling Relational Access" on page 1-17

s "CREATE_AWCUBE_ACCESS Procedure" on page 26-17
s "REFRESH_AWCUBE Procedure" on page 26-37

n Chapter 34, "OLAP_TABLE"

CREATE_AWCUBEAGG_SPEC Procedure

Syntax

Parameters

Note

Example

This procedure creates an aggregation specification for an OLAP Catalog cube. The
aggregation specification determines the summary data that will be stored with the
target cube in the analytic workspace.

The aggregation specification determines which of the cube's levels will be
pre-summarized. You can aggregate all of the cube's measures to these levels, or you
can choose individual measures. All of the measures are aggregated to the same levels.

Any levels that are not pre-aggregated will be aggregated dynamically as they are
queried. Determining which data to preaggregate will involve an evaluation of storage
and memory constraints and typical client queries. If you do not provide an
aggregation specification, no summaries will be stored and all aggregation will be
performed on demand.

An aggregation specification uses the aggregation subsystem of the OLAP DML. This
includes the AGGREGATE command, aggregation maps, and related functionality.

CREATE AWCUBEAGG SPEC (

aggregation spec IN VARCHAR2,
aw_owner IN VARCHARZ,
aw_name IN VARCHARZ2,
aw_cube name IN VARCHAR2);

Table 26-16 CREATE_AWCUBEAGG_SPEC Procedure Parameters

Parameter Description

aggregation_spec Name of an aggregation specification for a cube in an analytic
workspace.

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

aw_cube_name Name of the cube in the analytic workspace.

You can use the following procedure to modify an existing aggregation specification:
SET_AWCUBEAGG_SPEC_AGGOP Procedure

The following statements create an aggregation specification for the target cube AW_
ANACUBE in the analytic workspace MYSCHEMA . MYAW. It specifies that the Costs and
Sales measures should include stored totals for the third level of PRODUCT, the
STANDARD 2 level of CHANNEL, and the second level of TIME.

26-20 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

See Also

execute dbms_awm.create awcubeagg_spec

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE');
execute dbms_awm.add awcubeagg spec_level

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AW PROD', 'L3');
execute dbms_awm.add awcubeagg spec_level

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AW CHAN',

'STANDARD 2');
execute dbms_awm.add awcubeagg spec level

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AW TIME', 'L2');
execute dbms_awm.add awcubeagg spec_measure

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'XXF.COSTS');
execute dbms_awm.add awcubeagg spec_measure

('AC_AGGSPEC', 'MYSCHEMA', 'MYAW', 'AW ANACUBE', 'XXF.SALES');

= "Aggregating the Data in an Analytic Workspace" on page 1-14

= ADD_AWCUBEAGG_SPEC_LEVEL Procedure on page 26-8

= ADD_AWCUBEAGG_SPEC_MEASURE Procedure on page 26-8
s "AGGREGATE_AWCUBE Procedure" on page 26-13

= AGGREGATE Command in the Oracle OLAP DML Reference

CREATE_AWCUBELOAD_SPEC Procedure

Syntax

Parameters

This procedure creates a load specification for an OLAP Catalog cube. The load
specification determines how the cube's data will be loaded from the relational fact
table into an analytic workspace by the REFRESH_AWCUBE procedure.

A cube load specification defines a load type, which indicates whether the data or only
the load instructions should be loaded into the analytic workspace. The load
instructions are OLAP DML programs. If you choose to load only the instructions, you
can run these programs to perform the data load at a later time.

A separate specification created by CREATE _AWCOMP_SPEC can be associated with a
cube load specification. This specification specifies dimension order and determines
how sparse data will be stored within the analytic workspace.

CREATE AWCUBELOAD SPEC (

cube_load_spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2,
load type IN VARCHAR2) ;

Table 26-17 CREATE_AWCUBELOAD_SPEC Procedure Parameters

Parameter Description

cube load Name of a cube load specification.

spec

cube owner Owner of the OLAP Catalog source cube.

DBMS_AWM 26-21

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Note

Example

See Also

Table 26-17 (Cont.) CREATE_AWCUBELOAD_SPEC Procedure Parameters

Parameter Description
cube name Name of the OLAP Catalog source cube.
load_type '"LOAD_DATA' -- Load the data and metadata for an OLAP Catalog cube

into the analytic workspace target cube.

'LOAD_PROGRAM' -- This argument is no longer used.

You can use the following procedures to modify an existing cube load specification:
= SET_AWCUBELOAD_SPEC_CUBE Procedure

» SET_AWCUBELOAD_SPEC_LOADTYPE Procedure

= SET_AWCUBELOAD_SPEC_NAME Procedure

= SET_AWCUBELOAD_SPEC_PARAMETER Procedure

The following statement creates a cube load specification for the source cube
XADEMO.ANALYTIC CUBE. The load specification is used to refresh the target cube
AW _ANACUBE in MYSCHEMA . MYAW.

execute dbms_awm.create awcubeload spec

('AC_CUBELOADSPEC', 'XADEMO', 'ANALYTIC CUBE', 'LOAD DATA');
execute dbms_awm.refresh awcube

('MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AC_CUBELOADSPEC') ;

» "'Creating Cubes in the Analytic Workspace" on page 1-4
= ADD_AWCUBELOAD_SPEC_COMP Procedure on page 26-9
» REFRESH_AWCUBE Procedure on page 26-37

CREATE_AWDIMENSION Procedure

Syntax

CREATE_AWDIMENSION uses a source dimension in the OLAP Catalog to create the
standard form metadata for a target dimension in an analytic workspace. The
dimension members and attribute values are loaded by the REFRESH_AWDIMENSION
procedure.

CREATE_AWDIMENSION executes an OLAP DML UPDATE command to save the
changes in the analytic workspace. CREATE_AWDIMENSION does not execute a SQL
COMMIT.

Note: Before executing CREATE_AWCUBE to create a new workspace
cube, you must execute CREATE_AWDIMENSION for each of the cube's
dimensions.

The workspace must already exist before the first call to CREATE_
AWDIMENSION.

CREATE_AWDIMENSION (
dimension owner IN VARCHAR2,

26-22 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Parameters

Example

dimension name IN VARCHAR2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_dimension name IN VARCHAR2 DEFAULT NULL),

Table 26-18 CREATE_AWDIMENSION Procedure Parameters

Parameter Description

dimension_ owner Owner of the OLAP Catalog source dimension.

dimension_ name Name of the OLAP Catalog source dimension.
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.

aw_dimension_name Name for the target dimension within the analytic workspace.

If you specify a name for the dimension in the analytic workspace, the
name must conform to general object naming conventions for SQL,
and it must be unique within the schema that owns the analytic
workspace. To test uniqueness, use a statement like the following.

select owner, dimension name

from all olap2 dimensions

union all

select aw owner, aw_logical name

from all_olap2_aw_dimensions;
Within the analytic workspace, you can generally reference the
dimension by its simple target dimension name. However, database
standard form also supports a full name for logical objects. For
dimensions, the full name is:

aw_owner.aw_dimension name.DIMENSION

The following statements create analytic workspace dimensions for CHANNEL,
GEOGRAPHY, PRODUCT, TIME, and DIVISION in the workspace MYAW in the XADEMO
schema.

execute dbms_awm.create awdimension

('XADEMO', 'CHANNEL', '"MYSCHEMA', 'MYAW', 'AW CHAN');
execute dbms_awm.create awdimension

('XADEMO', 'GEOGRAPHY', 'MYSCHEMA', '"MYAW', 'AW GEOG');
execute dbms_awm.create awdimension

('XADEMO', 'PRODUCT', 'MYSCHEMA', 'MYAW', 'AW PROD');
execute dbms_awm.create awdimension

('XADEMO', 'TIME', '"MYSCHEMA', 'MYAW', 'AW TIME');
execute dbms_awm.create awdimension

('XADEMO', 'DIVISION', 'MYSCHEMA', 'MYAW', 'AW DIV');

You can use statements like the following to verify that the dimensions have been
created in the analytic workspace.

execute dbms_aw.execute

('aw attach MYSCHEMA.MYAW') ;
execute dbms_aw.execute

('limit name to obj (property''AWSROLE'') eq ''DIMDEF''');
execute dbms_aw.execute

('report w 40 name');

DBMS_AWM 26-23

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

See Also

AW_CHAN
AW_GEOG
AW_PROD
AW _TIME
AW DIV

Alternatively, you can query the Active Catalog to verify that the dimensions have
been created.

select * from all olap2 aw dimensions
where aw _owner in 'myschema' and aw name in 'myaw';

s "Creating and Refreshing a Workspace Dimension" on page 1-9
= REFRESH_AWDIMENSION Procedure on page 26-39

s CREATE_AWDIMENSION_ACCESS Procedure on page 26-24
s CREATE_AWCUBE Procedure on page 26-15

s Chapter 3, "Active Catalog Views"

CREATE_AWDIMENSION_ACCESS Procedure

Syntax

This procedure generates a script that creates relational views of a dimension in an
analytic workspace. The views are in the embedded total format. The script can
optionally generate OLAP Catalog metadata that maps to the views of the workspace
dimension.

Relational views enable applications to query an analytic workspace using standard
SQL. Relational views are not used by the OLAP APL

Both fact views and dimension views are required for relational access to a workspace
cube. Use the CREATE_AWCUBE_ACCESS procedure to generate the scripts that create
the fact views.

To accomplish the dimension enablement process in a single step, use the CREATE
AWDIMENSION ACCESS_ FULL procedure. This procedure both creates and runs the
enablement script.

CREATE AWDIMENSION ACCESS (

aw_owner IN VARCHARZ2,

aw_name IN VARCHAR2,
aw_dimension_name IN VARCHARZ2,

access_type IN VARCHAR2,

script directory IN VARCHAR2,

script name IN VARCHAR2,

open_mode IN VARCHAR2,

caller IN VARCHAR2 DEFAULT NULL,
spreadsheet mode IN VARCHAR2 DEFAULT 'YES',
auto_adt_mode IN VARCHAR2 DEFAULT 'NO');

26-24 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Parameters

Example

See Also

Table 26-19 CREATE_AWDIMENSION_ACCESS Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

aw_dimension_name Name of the dimension in the analytic workspace.
access_type Controls whether or not the script generates OLAP Catalog

metadata for the views. Specify one of the following values:
= 'SQL' does not generate metadata.

= 'OLAP' generates metadata

script directory The directory that will contain the script. This may be either a
directory object or a path set by the UTL_FILE_DIR parameter.

script name Name of the script file.

open_mode One of the following modes for opening the script file:

='W overwrites any existing contents of the script file

= 'A'appends the new script to the existing contents of the
script file.

caller This parameter was used in earlier releases to identify the caller
of the procedure. It is not used in the current release. By default,
this parameter is null. It also accepts the value, 'EXTERNAL'.

spreadsheet mode Whether or not to use a MODEL clause in the SELECT FROM
OLAP_TABLE statement in the view definition. A SQL MODEL
significantly improves the performance of queries that use
OLAP_TABLE. By default, a MODEL clause is used. See
Chapter 34, "OLAP_TABLE".

auto_adt_mode Whether or not the abstract data types used by OLAP_TABLE are
automatically generated at runtime. By default, the abstract data
types are predefined and are not automatically generated by
OLAP_TABLE. See Chapter 34, "OLAP_TABLE".

The following statement creates an enablement script called aw_prod_enable in the
/datl/scripts directory. You can run the script to create views of the AW PROD
dimension in workspace XADEMO . MYAW. The script will also generate an OLAP
Catalog dimension called AW _PROD that maps to the view.

execute dbms_awm.create awdimension access
('XADEMO', 'MYAW', 'AW_PROD', 'OLAP',
'/datl/scripts/', 'aw_prod enable', 'w');

= "Enabling Relational Access" on page 1-17

» "DELETE_AWDIMENSION_ACCESS Procedure" on page 26-35
s "SET_AWDIMENSION_VIEW_NAME Procedure" on page 26-49
s Chapter 34, "OLAP_TABLE"

DBMS_AWM 26-25

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

CREATE_AWDIMENSION_ACCESS_FULL Procedure

This procedure accomplishes the entire process of enabling a workspace dimension for

relational access. Like CREATE AWDIMENSION ACCESS it produces an enablement
script. However it does not write the script to a file. Instead it writes the script to
temporary memory and runs the script.

The resulting views and metadata are identical to those created by the enablement
scripts created by CREATE AWDIMENSION ACCESS.

Relational views enable applications to query an analytic workspace using standard
SQL. Relational views are not used by the OLAP APL

Syntax
CREATE AWDIMENSION ACCESS FULL (
run_id IN NUMBER,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_dimension _name IN VARCHAR2,
access_type IN VARCHAR2,
spreadsheet_mode IN VARCHAR2 DEFAULT 'YES',
auto_adt mode IN VARCHAR2 DEFAULT 'NO');
Parameters
Table 26-20 CREATE_AWDIMENSION_ACCESS_FULL Procedure Parameters
Parameter Description
run_id An assigned slot in a global temporary table for holding the record
associated with this operation. In most cases, simply specify "1".
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_dimension_name Name of the dimension in the analytic workspace.
access_type Controls whether or not to generate OLAP Catalog metadata in
addition to the enablement views. Specify one of the following
values:
= 'SQL' does not generate metadata
= 'OLAP' generates metadata
spreadsheet_mode Whether or not to use a MODEL clause in the SELECT FROM OLAP
TABLE statement in the view definition. A SQL MODEL significantly
improves the performance of queries that use OLAP_TABLE. By
default, a MODEL clause is used. See Chapter 34, "OLAP_TABLE".
auto_adt_mode Whether or not the abstract data types used by OLAP_TABLE are
automatically generated at runtime. By default, the abstract data
types are predefined and are not automatically generated by OLAP_
TABLE. See Chapter 34, "OLAP_TABLE".
See Also

= "Enabling Relational Access" on page 1-17

s "CREATE_AWDIMENSION_ACCESS Procedure” on page 26-24
s "REFRESH_AWDIMENSION Procedure" on page 26-39

n Chapter 34, "OLAP_TABLE"

26-26 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

CREATE_AWDIMLOAD SPEC Procedure

Syntax

Parameters

Note

Example

This procedure creates a load specification for an OLAP Catalog dimension. The load
specification determines how the dimension will be loaded from relational dimension
tables into an analytic workspace by the REFRESH AWDIMENSION procedure.

If you refresh a dimension without a load specification, only new dimension members
are loaded.

CREATE AWDIMLOAD SPEC (

dimension load spec IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
load_type IN VARCHAR2) ;

Table 26-21 CREATE_AWDIMLOAD_SPEC Procedure Parameters

Parameter Description

dimension load Name of the load specification.

SPec You can use the SET AWDIMLOAD_SPEC_NAME procedure to alter the
name.

dimension_ owner Owner of the OLAP Catalog source dimension.

dimension name Name of the OLAP Catalog source dimension.

load_type Specify one of the following;:

'FULL_LOAD ADDITIONS_ONLY' -- Only new dimension members
will be loaded when the dimension is refreshed. (Default)

'"FULL_LOAD' -- All dimension members in the workspace will be
deleted, then all the members of the source dimension will be loaded.

You can use the following procedures to modify an existing dimension load
specification:

» SET_AWDIMLOAD_SPEC_DIMENSION Procedure
» SET_AWDIMLOAD_SPEC_LOADTYPE Procedure

» SET_AWDIMLOAD_SPEC_NAME Procedure

» SET_AWDIMLOAD_SPEC_PARAMETER Procedure

The following statements create a load specification for the XADEMO . CHANNEL source
dimension and use it to load the target dimension AW _CHAN in the analytic workspace
MYSCHEMA . MYAW. The load specification includes a filter condition (WHERE clause)
that causes only the dimension member 'DIRECT' to be loaded.

execute dbms_awm.create awdimload spec

('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'FULL LOAD');
execute dbms_awm.add_awdimload_spec_filter

('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'XADEMO',

'XADEMO CHANNEL', '''CHAN STD CHANNEL'' = ''DIRECT''');
execute dbms_awm.refresh awdimension

DBMS_AWM 26-27

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

See Also

('MYSCHEMA', 'MYAW', 'AW CHAN', 'CHAN DIMLOADSPEC');

s "Creating Dimensions in the Analytic Workspace" on page 1-3

» REFRESH_AWDIMENSION Procedure on page 26-39

CREATE_DYNAMIC_AW_ACCESS Procedure

Syntax

Parameters

Example

See Also

This procedure upgrades standard form metadata created in a previous release of the
Oracle Database to the standard form used in the current release. The workspace must
already be in 10g storage format before the metadata can be upgraded.

Current standard form metadata supports direct queries by the OLAP API without the
need for relational views, abstract data types, or OLAP Catalog metadata.

If you do not call CREATE_DYNAMIC AW_ACCESS, the first DBMS_AWM procedure that
you call will attempt to upgrade the metadata.

CREATE_DYNAMIC AW ACCESS (
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2) ;

Table 26-22 CREATE_DYNAMIC_AW_ACCESS Procedure Parameters

Parameter Description
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.

The following statement upgrades the standard form metadata in the GLOBAL_AW
analytic workspace in the GLOBAL schema.

execute dbms_awm.create dynamic_aw access('global', 'global aw');

s "Converting an Analytic Workspace to Oracle 10g Storage Format" on page 24-2
= "Enabling Access by the OLAP API" on page 1-17

DELETE_AWCOMP_SPEC Procedure

Syntax

This procedure deletes a composite specification.

DELETE_AWCOMP_SPEC (

composite_ spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2) ;

26-28 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Parameters

See Also

Table 26-23 DELETE_AWCOMP_SPEC Procedure Parameters

Parameter Description

composite spec Name of a composite specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube name Name of the OLAP Catalog source cube.

CREATE_AWCOMP_SPEC Procedure on page 26-14

DELETE_AWCOMP_SPEC_MEMBER Procedure

Syntax

Parameters

See Also

This procedure removes a member of a composite specification. The member can be
either a dimension or composite.

DELETE AWCOMP_SPEC MEMBER (

composite spec IN VARCHAR2,
cube_owner IN VARCHAR?2,
cube name IN VARCHAR?2,
member name IN VARCHAR2) ;

Table 26-24 DELETE_AWCOMP_SPEC_MEMBER Procedure Parameters

Parameter Description

composite_spec Name of a composite specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
member name Name of the dimension or composite to delete.

ADD_AWCOMP_SPEC_MEMBER Procedure on page 26-7

DELETE_AWCUBE_ACCESS Procedure

Syntax

This procedure generates a script that you can run to drop the views and OLAP
Catalog metadata associated with a workspace cube. The script does not delete the
enablement metadata that is stored in the analytic workspace.

If you drop the workspace cube or the workspace itself, you should run this procedure
to clean up the associated enablement views and metadata.

You do not need to run this procedure if you are creating a new generation of
enablement views and metadata. The enablement process itself drops the previous
generation before creating the new views and metadata.

DELETE_AWCUBE_ACCESS (
aw_owner IN VARCHARZ,

DBMS_AWM 26-29

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

aw_name IN VARCHARZ,
aw_cube name IN VARCHAR2,
access_type IN VARCHAR2,
script directory IN VARCHAR2,
script name IN VARCHAR2,
open_mode IN VARCHAR2) ;
Parameters
Table 26-25 DELETE_AWCUBE_ACCESS Procedure Parameters
Parameter Description
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube name Name of the cube in the analytic workspace.
access_type Specifies whether or not OLAP Catalog metadata exists for the views:
= 'SQL' No metadata exists.
= 'OLAP' OLAP Catalog metadata exists
script_directory The directory that will contain the script. This may be either a
directory object or a path set by the UTL._FILE DIR parameter.
script_name Name of the script file.
open_mode One of the following modes for opening the script file:
= 'W' overwrites any existing contents of the script file
= 'A' appends the new script to the existing contents of the script
file.
See Also

= "Enabling Relational Access" on page 1-17

s "'CREATE_AWCUBE_ACCESS Procedure" on page 26-17

= "CREATE_AWCUBE_ACCESS_FULL Procedure" on page 26-19
s "SET_AWCUBE_VIEW_NAME Procedure" on page 26-45

DELETE_AWCUBE_ACCESS ALL Procedure

This procedure deletes

all the enablement views and metadata for a cube. It writes a

script to a temporary location in memory and runs the script.

Syntax
DELETE AWCUBE ACCESS ALL (
run_id IN NUMBER,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube_name IN VARCHAR2,
access_type IN VARCHAR2) ;

26-30 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Parameters
Table 26-26 DELETE_AWCUBE_ACCESS_ALL Procedure Parameters
Parameter Description
run_id An assigned slot in a global temporary table for holding the record
associated with this operation. In most cases, simply specify "1".
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube_name Name of the cube in the analytic workspace.
access_type Controls whether or not to generate OLAP Catalog metadata in addition
to the enablement views. Specify one of the following values:
= 'SQL' does not generate metadata
. 'OLAP' generates metadata
See Also

= "Enabling Relational Access" on page 1-17
» "CREATE_AWCUBE_ACCESS_FULL Procedure" on page 26-19

DELETE_AWCUBEAGG_SPEC Procedure

This procedure deletes an aggregation specification.

Syntax
DELETE AWCUBEAGG SPEC (
aggregation spec IN VARCHAR2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube_name IN VARCHAR2);
Parameters
Table 26-27 DELETE_AWCUBEAGG_SPEC Procedure Parameters
Parameter Description
aggregation_spec Name of an aggregation specification for a cube in an analytic
workspace.
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube name Name of the cube in the analytic workspace.
See Also

CREATE_AWCUBEAGG_SPEC Procedure on page 26-20

DELETE_AWCUBEAGG_SPEC_LEVEL Procedure

This procedure removes a level from an aggregation specification.

Syntax

DELETE AWCUBEAGG SPEC LEVEL (

DBMS_AWM 26-31

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

aggregation spec IN VARCHAR2,
aw_owner IN VARCHARZ,
aw_name IN VARCHAR2,
aw_cube_name IN VARCHAR2,
aw_dimension name IN VARCHAR2,
aw_level name IN VARCHAR2) ;
Parameters
Table 26-28 DELETE_AWCUBEAGG_SPEC_LEVEL Procedure Parameters
Parameter Description
aggregation_ spec Name of an aggregation specification for a cube in an analytic
workspace.
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube name Name of the cube in the analytic workspace.
aw_dimension name Name of a dimension of the cube.
aw_level name Name of a level of the dimension.
See Also

ADD_AWCUBEAGG_SPEC_LEVEL Procedure on page 26-8

DELETE_AWCUBEAGG_SPEC_MEASURE Procedure

This procedure removes a measure from an aggregation specification.

Syntax
DELETE_AWCUBEAGG SPEC MEASURE (
aggregation spec IN VARCHAR2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube name IN VARCHAR2,
aw_measure_name IN VARCHAR2);
Parameters
Table 26-29 DELETE_AWCUBEAGG_SPEC_MEASURE Procedure Parameters
Parameter Description
aggregation_spec Name of an aggregation specification for a cube in an analytic
workspace.
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube name Name of target cube in the analytic workspace.
aw_measure_name Name of the measure to remove.
See Also

ADD_AWCUBEAGG_SPEC_MEASURE Procedure on page 26-8

26-32 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

DELETE_AWCUBELOAD_SPEC Procedure

This procedure deletes a cube load specification.

Syntax
DELETE AWCUBELOAD SPEC (
cube load spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2) ;
Parameters
Table 26-30 DELETE_AWCUBELOAD_SPEC Procedure Parameters
Parameter Description
cube_load_spec Name of a cube load specification.
cube_ owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
See Also

CREATE_AWCUBELOAD_SPEC Procedure on page 26-21

DELETE_AWCUBELOAD SPEC_COMP Procedure

This procedure removes a composite specification from a cube load specification.

Syntax
DELETE_AWCUBELOAD SPEC COMP (
cube_load spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube name IN VARCHAR2,
composite spec IN VARCHAR2) ;
Parameters
Table 26-31 DELETE_AWCUBELOAD_SPEC_COMP Procedure Parameters
Parameter Description
cube load_spec Name of a cube load specification.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
composite_spec Name of the composite specification to delete.
See Also

ADD_AWCUBELOAD_SPEC_COMP Procedure on page 26-9

DELETE_AWCUBELOAD_SPEC_FILTER Procedure

This procedure removes the filter condition (WHERE clause) from a cube load
specification.

DBMS_AWM 26-33

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Syntax
DELETE AWCUBELOAD SPEC FILTER (
cube_load spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
fact_table_owner IN VARCHAR2,
fact_table name IN VARCHAR2);
Parameters
Table 26-32 DELETE_AWCUBELOAD_SPEC_FILTER Procedure Parameters
Parameter Description
cube_load_spec Name of a cube load specification.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
fact_table_owner Owner of the fact table that is mapped to this OLAP Catalog
source cube.
fact_table name Name of the fact table that is mapped to this OLAP Catalog
source cube
See Also

ADD_AWCUBELOAD_SPEC_FILTER Procedure on page 26-10

DELETE_AWCUBELOAD_SPEC_MEASURE Procedure

This procedure removes a measure from a cube load specification.

Syntax
DELETE AWCUBELOAD SPEC MEASURE (
cube_load_spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2,
measure name IN VARCHAR2) ;
Parameters
Table 26-33 DELETE_AWCUBELOAD_SPEC_MEASURE Procedure Parameters
Parameter Description
cube_load_ spec Name of a cube load specification.
cube owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
measure name Name of the measure to delete.
See Also

"ADD_AWCUBELOAD_SPEC_MEASURE Procedure" on page 26-11

26-34 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

DELETE_AWDIMENSION_ACCESS Procedure

Syntax

Parameters

See Also

This procedure generates a script that you can run to drop the views and OLAP
Catalog metadata associated with a workspace dimension. The script does not delete
the enablement metadata that is stored in the analytic workspace.

If you drop the workspace dimension or the workspace itself, you should run this
procedure to clean up the associated enablement views and metadata.

You do not need to run this procedure if you are creating a new generation of
enablement views and metadata. The enablement process itself drops the previous
generation before creating the new views and metadata.

DELETE AWDIMENSION ACCESS (

aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_dimension name IN VARCHARZ,
access_type IN VARCHAR2,
script directory IN VARCHAR2,
script_name IN VARCHAR2,
open_mode IN VARCHAR2) ;

Table 26-34 DELETE_AWDIMENSION_ACCESS Procedure Parameters

Parameter Description
aw_owner Analytic workspace owner
aw_name Analytic workspace name

aw_dimension_name Analytic workspace dimension name.

access_type Specifies whether or not OLAP Catalog metadata exists for the views:
M 'SQL' No metadata exists.
= 'OLAP' OLAP Catalog metadata exists

script_directory The directory that will contain the script. This may be either a
directory object or a path set by the UTL._FILE_DIR parameter.

script_name Name of the script file.
open_mode One of the following modes for opening the script file:
= 'W' overwrites any existing contents of the script file
. f'lA ' appends the new script to the existing contents of the script
ile.

s "CREATE_AWDIMENSION_ACCESS Procedure" on page 26-24
s "CREATE_AWCUBE_ACCESS_FULL Procedure" on page 26-19
s "SET_AWDIMENSION_VIEW_NAME Procedure" on page 26-49
= "Enabling Relational Access" on page 1-17

DELETE_AWDIMENSION_ ACCESS ALL Procedure

This procedure deletes all the enablement views and metadata for a dimension. It
writes a script to a temporary location in memory and runs the script.

DBMS_AWM 26-35

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Syntax
DELETE AWDIMENSION ACCESS ALL (
run_id IN NUMBER,
aw_owner IN VARCHAR2,
aw_name IN VARCHARZ,
aw_dimension name IN VARCHAR2,
access_type IN VARCHAR2) ;
Parameters
Table 26-35 DELETE_AWDIMENSION_ACCESS_ALL Procedure Parameters
Parameter Description
run_id An assigned slot in a global temporary table for holding the record
associated with this operation. In most cases, simply specify "1".
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_dimension_ Name of the dimension in the analytic workspace.
name
access_type Controls whether or not to generate OLAP Catalog metadata in addition
to the enablement views. Specify one of the following values:
n 'SQL' does not generate metadata
. 'OLAP' generates metadata
See Also

= "Enabling Relational Access" on page 1-17
s "CREATE_AWDIMENSION_ACCESS_FULL Procedure" on page 26-26

DELETE_AWDIMLOAD SPEC Procedure

This procedure deletes a dimension load specification.

Syntax

DELETE AWDIMLOAD SPEC (
dimension load spec IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2) ;

Parameters

Table 26-36 DELETE_AWDIMLOAD _SPEC Procedure Parameters

Parameter Description

dimension load_spec Name of a dimension load specification.
dimension owner Owner of the OLAP Catalog source dimension.

dimension name Name of the OLAP Catalog source dimension.

See Also
CREATE_AWDIMLOAD_SPEC Procedure on page 26-27

26-36 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

DELETE_AWDIMLOAD_SPEC_FILTER Procedure

Syntax

Parameters

See Also

This procedure removes the filter condition (WHERE clause) from a dimension load
specification.

DELETE AWDIMLOAD SPEC FILTER (

dimension load spec IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
dimension table owner IN VARCHAR2,
dimension table name IN VARCHAR2) ;

Table 26-37 DELETE_AWDIMLOAD _SPEC_FILTER Procedure Parameters

Parameter Description

dimension load_spec Name of a dimension load specification.
dimension owner Owner of the OLAP Catalog source dimension.
dimension name Name of the OLAP Catalog source dimension.

dimension_table owner Owner of the dimension table that is mapped to the OLAP
Catalog source dimension.

dimension_table name Name of the dimension table that is mapped to the OLAP
Catalog source dimension.

ADD_AWDIMLOAD_SPEC_FILTER Procedure on page 26-12

REFRESH_AWCUBE Procedure

This procedure loads data and metadata from an OLAP Catalog source cube into a
target cube in an analytic workspace.

REFRESH_AWCUBE executes an OLAP DML UPDATE command to save the changes in
the analytic workspace. REFRESH_AWCUBE does not execute a SQL COMMIT.

You can include a cube load specification to determine how the cube's data will be
refreshed. The cube load specification determines whether to load the data or only the
load program for execution at a later time. The cube load specification may include a
composite specification, which determines dimension order and handling of sparse
data.

If you do not include a load specification, all the data is loaded. If you do not include a
composite specification, the dimensions are ordered with Time as the fastest-varying
followed by a composite of all the other dimensions. The dimensions in the composite
are ordered in descending order according to size (number of dimension members).

Unless the load specification for the cube identifies individual measures (ADD_
AWCUBELOAD_ SPEC_ MEASURE), all of the cube's measures are loaded into the
workspace. Unless the load specification for the cube includes a filter condition (a
WHERE clause on the fact table), all the measures' data is loaded into the workspace.

Before the first call to REFRESH_AWCUBE, you must call REFRESH_AWDIMENSION for
each of the cube's dimensions. Before refreshing a cube that already contains data, you
must refresh any of its dimensions that have changed since the last refresh.

DBMS_AWM 26-37

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Syntax

REFRESH_AWCUBE (
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube_name IN VARCHAR2,
cube_load_spec IN VARCHAR2 DEFAULT NULL) ;

Parameters

Table 26-38 REFRESH_AWCUBE Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_cube name Name of the target cube in the analytic workspace.

cube_load_spec Name of the cube load specification. If you do not include a load
specification, all the fact data is loaded (default).

Note

All the OLAP Catalog metadata that defines the logical cube, including its
dimensionality, measures, and descriptions, is refreshed whenever you refresh the
workspace cube. The cube's data is refreshed according to the load specification. For
more information, see "Creating and Refreshing a Workspace Cube" on page 1-10

For information about the relationship between the refresh and aggregation processes,
see "Aggregating the Data in an Analytic Workspace" on page 1-14.

Example

The following statements create the target cube AW_ANACUBE from the source cube
XADEMO.ANALYTIC CUBE. They refresh all of target cube's dimensions, then they
create a load specification and refresh the target cube's data.

-- create cube, cube load spec, and refresh
execute dbms_awm.create awcube
('XADEMO', 'ANALYTIC CUBE', 'MYSCHEMA', 'MYAW','AW ANACUBE');
execute dbms_awm.create awcubeload spec
('AC_CUBELOADSPEC', 'XADEMO', 'ANALYTIC CUBE', 'LOAD DATA')
execute dbms_awm.refresh awdimension
('MYSCHEMA', 'MYAW', 'AW CHAN');
execute dbms_awm.refresh awdimension
('MYSCHEMA', 'MYAW', 'AW PROD');
execute dbms_awm.refresh awdimension
('MYSCHEMA', 'MYAW', 'AW GEOG');
execute dbms_awm.refresh awdimension
('MYSCHEMA', 'MYAW', 'AW TIME');
execute dbms_awm.refresh awcube
('MYSCHEMA', 'MYAW', 'AW ANACUBE', 'AC_CUBELOADSPEC')

See Also
s "Creating and Refreshing a Workspace Cube" on page 1-10

s "CREATE_AWCUBE Procedure" on page 26-15
s "REFRESH_AWCUBE Procedure" on page 26-37
s "CREATE_AWCOMP_SPEC Procedure" on page 26-14

26-38 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

s "CREATE_AWCUBE_ACCESS Procedure" on page 26-17

REFRESH_AWCUBE_VIEW_NAME Procedure

Syntax

Parameters

Note

See Also

This procedure creates metadata in the analytic workspace to support user-defined
names for the enablement views of a cube. Call SET_AWCUBE_VIEW_NAME to specify
the view names.

REFRESH AWCUBE_VIEW NAME (

aw_owner IN VARCHARZ2,
aw_name IN VARCHARZ,
aw_cube name IN VARCHAR2) ;

Table 26-39 REFRESH_AWCUBE_VIEW_NAME Procedure Parameters

Parameter Description

aw_owner Analytic workspace owner.
aw_name Analytic workspace name.
aw_cube_name Analytic workspace cube name.

For details about enablement view names, see "Specifying Names for Fact Views" on
page 1-20.

= "Enabling Relational Access" on page 1-17
s "SET_AWCUBE_VIEW_NAME Procedure" on page 26-45

REFRESH_AWDIMENSION Procedure

This procedure loads the dimension members and attribute values from an OLAP
Catalog source dimension into a target dimension in an analytic workspace.

REFRESH AWDIMENSION executes an OLAP DML UPDATE command to save the
changes in the analytic workspace. REFRESH_AWDIMENSION does not execute a SQL
COMMIT.

You can include a dimension load specification to determine how the dimension's
members will be refreshed in the workspace. If you do not include a load specification,
all dimension members are selected for loading, but only new members are actually
added to the target dimension.

You can select individual dimension members to load from the source tables by
specifying a filter condition (a WHERE clause on the dimension table).

Before the first call to REFRESH_AWCUBE, you must call REFRESH_AWDIMENSION for
each of the cube's dimensions. On all subsequent cube refreshes, you only need to call
REFRESH_AWDIMENSION if changes have been made to the source dimensions, for
example if new time periods have been added to a time dimension.

DBMS_AWM 26-39

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Syntax

REFRESH AWDIMENSION (
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_dimension _name IN VARCHAR2,
dimension load_spec IN VARCHAR2 DEFAULT NULL) ;

Parameters

Table 26-40 REFRESH_AWDIMENSION Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
aw_dimension_name Name of the target dimension within the analytic workspace.

dimension_load_spec Name of a dimension load specification. If you do not include a
load specification, new members are appended to the target
dimension (default)

Note

All the OLAP Catalog metadata that defines the logical dimension, including its levels,
hierarchies, attributes, and descriptions, is refreshed whenever you refresh the
workspace dimension. The dimension's data is refreshed according to the load
specification. For more information, see "Creating and Refreshing a Workspace
Dimension" on page 1-9

Example

The following statements refresh the dimensions of the XADEMO . ANALYTIC CUBE
source cube in the analytic workspace MYSCHEMA . MYAW.

-- Create dimension load specs and refresh dimensions

-- CHANNEL dimension
execute dbms_awm.create awdimload spec
('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'FULL LOAD');
execute dbms_awm.add awdimload spec filter
('CHAN DIMLOADSPEC', 'XADEMO', 'CHANNEL', 'XADEMO',
'XADEMO CHANNEL', '''CHAN STD CHANNEL'' = ''DIRECT''');
execute dbms_awm.refresh awdimension
('MYSCHEMA', 'MYAW', 'AW CHAN', 'CHAN DIMLOADSPEC');

-- PRODUCT dimension
execute dbms_awm.create awdimload spec
('PROD DIMLOADSPEC', 'XADEMO', 'PRODUCT', 'FULL LOAD');
execute dbms_awm.Set AWDimLoad Spec_Parameter
('PROD_DIMLOADSPEC', 'XADEMO', 'PRODUCT', 'UNIQUE RDBMS KEY', 'YES');
execute dbms_awm.refresh awdimension
('MYSCHEMA', 'MYAW', 'AW PROD', 'PROD DIMLOADSPEC');

-- GEOGRAPHY dimension
execute dbms_awm.create awdimload spec

('GEOG_DIMLOADSPEC', 'XADEMO', 'GEOGRAPHY', 'FULL LOAD');
execute dbms_awm.refresh awdimension

('MYSCHEMA', 'MYAW', 'AW GEOG', 'GEOG DIMLOADSPEC');

26-40 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

See Also

-- TIME dimension
execute dbms_awm.create awdimload spec

('TIME DIMLOADSPEC', 'XADEMO', 'TIME', 'FULL LOAD');
execute dbms_awm.refresh awdimension

('MYSCHEMA', 'MYAW', 'AW _TIME', 'TIME DIMLOADSPEC');

» 'Creating and Refreshing a Workspace Dimension" on page 1-9
s CREATE_AWDIMENSION Procedure on page 26-22

s "CREATE_AWDIMLOAD_SPEC Procedure" on page 26-27

s "CREATE_AWDIMENSION_ACCESS Procedure" on page 26-24

REFRESH_AWDIMENSION_VIEW_NAME Procedure

Syntax

Parameters

Note

See Also

This procedure creates metadata in the analytic workspace to support user-defined
names for the enablement views of a cube. Call SET AWDIMENSION VIEW NAME to
specify the view names.

REFRESH AWDIMENSION VIEW NAME (

aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_dimension name IN VARCHAR2);

Table 26-41 REFRESH_AWDIMENSION_VIEW_NAME Procedure Parameters

Parameter Description
aw_owner Analytic workspace owner.
aw_name Analytic workspace name.

aw_dimension_name Analytic workspace dimension name.

For details about enablement view names, see "Specifying Names for Dimension
Views" on page 1-20.

= "Enabling Relational Access" on page 1-17
s "SET_AWDIMENSION_VIEW_NAME Procedure" on page 26-49

SET AWCOMP_SPEC_CUBE Procedure

Syntax

This procedure associates a composite specification with a different cube.

SET AWCOMP_SPEC CUBE (

composite_ spec IN VARCHAR2,
old cube_owner IN VARCHAR2,
old_cube name IN VARCHAR2,
new _cube owner IN VARCHAR2,

DBMS_AWM 26-41

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

new_cube name IN VARCHAR2) ;
Parameters
Table 26-42 SET_AWCOMP_SPEC_CUBE Procedure Parameters
Parameter Description
composite_ spec Name of a composite specification.
old _cube owner Owner of the old OLAP Catalog source cube.
old cube name Name of the old OLAP Catalog source cube.
new_cube owner Owner of the new OLAP Catalog source cube.
new_cube name Name of the new OLAP Catalog source cube.
See Also

= "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
s CREATE_AWCOMP_SPEC Procedure on page 26-14

SET_AWCOMP_SPEC_MEMBER_NAME Procedure

This procedure changes the name of a member of a composite specification. The
member may be either a dimension or a composite.

Syntax
SET AWCOMP SPEC MEMBER NAME (
composite spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
old member name IN VARCHAR2,
new _member name IN VARCHAR2) ;
Parameters
Table 26-43 SET_AWCOMP_SPEC_MEMBER_NAME Procedure Parameters
Parameter Description
composite spec Name of a composite specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
old member name Old member name. Either a dimension or a composite.
new_member name New member name.
See Also

= "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
s CREATE_AWCOMP_SPEC Procedure on page 26-14

SET AWCOMP_SPEC_MEMBER_POS Procedure

This procedure sets the position of a member of a composite specification. The
member can be either a dimension or a composite.

26-42 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Syntax

Parameters

Example

See Also

SET_AWCOMP_SPEC_MEMBER POS |

composite spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
member name IN VARCHAR2,
member position IN NUMBER) ;

Table 26-44 SET_AWCOMP_SPEC_MEMBER_POS Procedure Parameters

Parameter Description

composite_ spec Name of a composite specification for a cube.

cube_owner Owner of the OLAP Catalog source cube.

cube_name Name of the OLAP Catalog source cube.

member name Member of the composite specification. Either a dimension or a
composite.

member position Position of the member within the composite specification.

The following statements create a composite specification for the ANALYTIC CUBE in
XADEMO. It includes two members: a time dimension called TIMECOMP_MEMBER and a
composite called COMP1.

---- The logical members of the specification are:

--- <TIME COMP1<PRODUCT, GEOGRAPHY>.

execute DBMS AWM.Create AWComp_ spec
('AC_COMPSPEC' , 'XADEMO' ,'ANALYTIC CUBE');

execute DBMS_AWM.Add_AWComp_Spec_Member
('AC_COMPSPEC' , 'XADEMO' , 'ANALYTIC CUBE' ,'TIMECOMP MEMBER' ,
'DIMENSION' , 'XADEMO' ,'TIME');

execute DBMS AWM.Add AWComp Spec Member
('AC_COMPSPEC' ,'XADEMO' ,'ANALYTIC CUBE' ,'COMP1' ,'COMPOSITE');

execute DBMS AWM.Add AWComp Spec_Comp Member
('AC_COMPSPEC', 'XADEMO', 'ANALYTIC CUBE', 'COMP1','PROD COMP',
'DIMENSION', 'XADEMO', 'PRODUCT') ;

execute DBMS_AWM.Add AWComp Spec_Comp Member
('AC_COMPSPEC', 'XADEMO', 'ANALYTIC CUBE', 'COMP1l', 'GEOG COMP',
'"DIMENSION', 'XADEMO', 'GEOGRAPHY') ;

---- With the following statement, the logical members of the specification
---- are reordered as follows.
--- <COMP1<PRODUCT, GEOGRAPHY> TIME>.

execute DBMS AWM.Set AWComp Spec_ Member Pos
('AC_COMPSPEC' ,'XADEMO' ,'ANALYTIC CUBE' ,'COMP1' ,1);

= "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
s CREATE_AWCOMP_SPEC Procedure on page 26-14

DBMS_AWM 26-43

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

SET_AWCOMP_SPEC_MEMBER_SEG Procedure

This procedure sets the segment size for a member of a composite specification. A
member is either a dimension or a composite.

A segment is an internal buffer used by the OLAP engine for storing data. The size of
segments affects the performance of data loads and queries against the data.

Syntax
SET AWCOMP_SPEC_MEMBER SEG (
composite spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube_name IN VARCHAR2,
member name IN VARCHAR2,
member segwidth IN NUMBER DEFAULT NULL) ;
Parameters
Table 26-45 SET_AWCOMP_SPEC_MEMBER_SEG Procedure Parameters
Parameter Description
composite_spec Name of a composite specification.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
member name Name of the dimension or composite.
member segwidth Segment size associated with a dimension or composite. If you
do not specify a segment size for a dimension, the value is the
maximum size of the dimension (number of dimension
members). If you do not specify a segment size for a composite,
the value is 10 million.
Example
The following statements set the segment size for the time dimension to zero (the
default setting in the analytic workspace) and the segment size for the COMP1
composite to 10,000,000.
execute DBMS AWM.Create AWComp spec
('AC_COMPSPEC' ,'XADEMO' , 'ANALYTIC CUBE');
execute DBMS_AWM.Add AWComp Spec_Member
('AC_COMPSPEC' ,'XADEMO' ,'ANALYTIC CUBE' ,'TIME DIM' |,
'DIMENSION' ,'XADEMO' ,'time');
execute DBMS AWM.Add AWComp Spec Member
('AC_COMPSPEC' ,'XADEMO' , 'ANALYTIC CUBE' ,'COMP1' ,'COMPOSITE');
execute DBMS_ AWM.Add AWComp Spec_Comp Member
('AC_COMPSPEC', 'XADEMO', 'ANALYTIC CUBE', 'COMP1', 'COMP1 PROD',
'DIMENSION', 'XADEMO', 'product');
execute DBMS AWM.Add AWComp Spec_Comp Member
('AC_COMPSPEC', 'XADEMO', 'ANALYTIC CUBE', 'COMP1', 'COMP1 GEOG',
'DIMENSION', 'XADEMO', 'geography');
execute DBMS AWM.Set AWComp Spec_Member Seg
('AC_COMPSPEC' , 'XADEMO', 'ANALYTIC CUBE', 'TIME DIM', 0);
execute DBMS AWM.Set AWComp Spec Member Seg
('AC_COMPSPEC' , 'XADEMO', 'ANALYTIC CUBE', 'COMP1l', NULL);
See Also

s "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12

26-44 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

= In Oracle OLAP DML Reference, search for "segment width"
s CREATE_AWCOMP_SPEC Procedure on page 26-14

SET_AWCOMP_SPEC_NAME Procedure

This procedure renames a composite specification.

Syntax
SET AWCOMP_SPEC NAME (
old composite_spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2,
new_composite spec IN VARCHAR2);
Parameters
Table 26-46 SET_AWCOMP_SPEC_NAME Procedure Parameters
Parameter Description
old _composite_ spec Old name of a composite specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube name Name of the OLAP Catalog source cube.
new_composite spec New name of the composite specification.
See Also

= "Managing Sparse Data and Optimizing the Workspace Cube" on page 1-12
s CREATE_AWCOMP_SPEC Procedure on page 26-14

SET_AWCUBE_VIEW_NAME Procedure

This procedure renames the relational views of an analytic workspace cube. The names
are stored in the analytic workspace and instantiated when you generate and run new

enablement scripts.

Syntax

SET AWCUBE_VIEW NAME (
aw_owner
aw_name
aw_cube name
hierarchy combo number
view name

Parameters

IN
IN
IN
IN
IN

VARCHAR2,
VARCHAR2,
VARCHAR2,
NUMBER,
VARCHAR2) ;

Table 26—-47 SET_AWCUBE_VIEW_NAME Procedure Parameters

Parameter Description

aw_owner Analytic workspace owner.
aw_name Analytic workspace name.
aw_cube name Analytic workspace cube name.

DBMS_AWM 26-45

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Note

See Also

Table 26-47 (Cont.) SET_AWCUBE_VIEW_NAME Procedure Parameters

Parameter Description

hierarchy combo number Number of the hierarchy combination.

view name Name for the fact view for this hierarchy combination.

For details about enablement view names, see "Specifying Names for Fact Views" on
page 1-20.

= "Enabling Relational Access" on page 1-17

s "'CREATE_AWCUBE_ACCESS Procedure" on page 26-17

» "DELETE_AWCUBE_ACCESS Procedure" on page 26-29

» "REFRESH_AWCUBE_VIEW_NAME Procedure" on page 26-39

SET_AWCUBEAGG_SPEC_AGGOP Procedure

Syntax

Parameters

This procedure sets the operator for aggregation along one of the dimensions in an
aggregation specification.

You can specify any aggregation operator that can be used with the OLAP DML
RELATION command. The default operator is addition (SUM). You can use this
procedure to override the aggregation operator associated with the source cube in the
OLAP Catalog.

Note: The DBMS_AWM package currently does not support weighted
aggregation operators. For example, if the OLAP Catalog specifies a
weighted sum or weighted average for aggregation along one of the
cube's dimensions, it is converted to the scalar equivalent (sum or
average) in the analytic workspace. Weighted operators specified by
SET AWCUBEAGG_SPEC_AGGOP are similarly converted.

SET AWCUBEAGG SPEC AGGOP (

aggregation spec IN VARCHAR2,
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_cube_ name IN VARCHAR2,
aw_measure_name IN VARCHAR2,
aw_dimension name IN VARCHAR2,
aggregation operator IN VARCHAR2) ;

Table 26-48 SET_AWCUBEAGG_SPEC_AGGOP Procedure Parameters

Parameter Description

aggregation spec Name of the aggregation specification in the analytic workspace.
aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

26-46 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Note

See Also

Table 26-48 (Cont.) SET_AWCUBEAGG_SPEC_AGGOP Procedure Parameters

Parameter

Description

aw_cube name
aw_measure_name
aw_dimension_ name

aggregation operator

Name of the target cube in the analytic workspace.
Name of a measure to aggregate.
Name of a dimension of the cube.

Aggregation operator for aggregation along this dimension. See
Table 1-10, " Aggregation Operators".

See "Aggregating the Data in an Analytic Workspace" on page 1-14 for details on
aggregation methods supported in the OLAP Catalog and in the analytic workspace.

= "Aggregating the Data in an Analytic Workspace" on page 1-14
s CREATE_AWCUBEAGG_SPEC Procedure on page 26-20

= RELATION command entry in Oracle9i OLAP DML Reference help

» Chapter on Aggregation in Oracle OLAP DML Reference

SET_AWCUBELOAD_SPEC_CUBE Procedure

This procedure associates a cube load specification with a different cube.

Syntax

Parameters

See Also

SET_AWCUBELOAD SPEC CUBE (

cube_load_spec IN VARCHAR2,
old cube owner IN VARCHAR2,
old cube name IN VARCHAR2,
new_cube_ owner IN VARCHAR2,
new_cube_name IN VARCHAR2) ;

Table 26-49 SET_AWCUBELOAD_SPEC_CUBE Procedure Parameters

Parameter

Description

cube load spec
old_cube_owner
old cube_ name

new_cube owner

new_cube name

Name of a cube load specification.

Owner of the old OLAP Catalog source cube.
Name of the old OLAP Catalog source cube.
Owner of the new OLAP Catalog source cube.

Name of the new OLAP Catalog source cube.

CREATE_AWCUBELOAD_SPEC Procedure on page 26-21

SET_AWCUBELOAD_SPEC_LOADTYPE Procedure

This procedure resets the load type for a cube load specification. The load type
indicates how data will be loaded into the analytic workspace.

DBMS_AWM 26-47

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Syntax
SET AWCUBELOAD SPEC LOADTYPE (
cube_load spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
load type IN VARCHAR2) ;
Parameters
Table 26-50 SET_AWCUBELOAD_SPEC_LOADTYPE Procedure Parameters
Parameter Description
cube_load_spec Name of a load specification for a cube.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
load_type '"LOAD_DATA' -- Load the data and metadata for an OLAP Catalog cube
into the analytic workspace target cube.
'LOAD_PROGRAM' -- This argument is no longer used.
See Also

CREATE_AWCUBELOAD_SPEC Procedure on page 26-21

SET_AWCUBELOAD_SPEC_NAME Procedure

This procedure renames a cube load specification.

Syntax
SET_AWCUBELOAD SPEC NAME (
old _cube_load_spec IN VARCHAR2,
cube owner IN VARCHAR2,
cube name IN VARCHAR2,
new cube load spec IN VARCHAR2) ;
Parameters
Table 26-51 SET_AWCUBELOAD_SPEC_NAME Procedure Parameters
Parameter Description
o0ld _cube_ load_ spec Old name of a cube load specification.
cube owner Owner of the OLAP Catalog source cube.
cube name Name of the OLAP Catalog source cube.
new_cube load_ spec New name of the cube load specification.
See Also

CREATE_AWCUBELOAD_SPEC Procedure on page 26-21

SET_AWCUBELOAD_SPEC_PARAMETER Procedure

This procedure sets parameters for a cube load specification.

26-48 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Syntax
SET AWCUBELOAD SPEC PARAMETER (
cube_load spec IN VARCHAR2,
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
parameter name IN VARCHARZ,
parameter value IN VARCHAR2 DEFAULT NULL) ;
Parameters
Table 26-52 SET_AWCUBELOAD_SPEC_PARAMETER Procedure Parameters
Parameter Description
cube_load_spec Name of a cube load specification.
cube_owner Owner of the OLAP Catalog source cube.
cube_name Name of the OLAP Catalog source cube.
parameter name 'DISPLAY NAME' -- Whether to use the OLAP Catalog source cube
name or the target cube display name as the display name for the
target cube in the analytic workspace.
parameter value Value of DISPLAY NAME is the display name for the target cube in
the analytic workspace. If you do not specify this parameter, the
display name for the source cube in the OLAP Catalog will be used
as the display name for the target cube in the analytic workspace.
Example
The following statement specifies a target cube display name for the AC
CUBELOADSPEC cube load specification.
execute dbms_awm.set awcubeload spec parameter
('AC_CUBELOADSPEC', 'XADEMO', 'ANALYTIC CUBE',
'DISPLAY NAME', 'My AW Analytic Cube Display Name')
See Also

CREATE_AWCUBELOAD_SPEC Procedure on page 26-21

SET_AWDIMENSION_VIEW_NAME Procedure

This procedure renames the relational views of an analytic workspace dimension. The
names are stored in the analytic workspace and instantiated when you generate and
run new enablement scripts.

Syntax
SET AWDIMENSION VIEW NAME (
aw_owner IN VARCHAR2,
aw_name IN VARCHAR2,
aw_dimension_name IN VARCHAR2,
hierarchy name IN VARCHAR2,
view name IN VARCHAR2) ;

DBMS_AWM 26-49

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Parameters
Table 26-53 SET_AWDIMENSION_VIEW_NAME Procedure Parameters
Parameter Description
aw_owner Analytic workspace owner
aw_name Analytic workspace name
aw_dimension _name Analytic workspace dimension name
hierarchy name Analytic workspace hierarchy name
view_name Name for the view of the dimension hierarchy.
Note
For details about enablement view names, see "Specifying Names for Dimension
Views" on page 1-20.
See Also

= "Enabling Relational Access" on page 1-17

s "CREATE_AWDIMENSION_ACCESS Procedure" on page 26-24

= "DELETE_AWDIMENSION_ACCESS Procedure" on page 26-35

= "REFRESH_AWDIMENSION_VIEW_NAME Procedure" on page 26-41

SET_AWDIMLOAD_SPEC_DIMENSION Procedure

This procedure associates a dimension load specification with a different dimension.

Syntax

SET AWDIMLOAD SPEC DIMENSION (
dimension load spec IN VARCHAR2,
old dimension owner IN VARCHAR2,
old dimension name IN VARCHAR2,
new_dimension owner IN VARCHAR2,
new_dimension name IN VARCHAR2) ;

Parameters

Table 26-54 SET_AWDIMLOAD_SPEC_DIMENSION Procedure Parameters

Parameter Description

dimension load_spec Name of a dimension load specification.

old dimension_owner Owner of the old OLAP Catalog source dimension.
old_dimension_name Name of the old OLAP Catalog source dimension.
new_dimension owner Owner of the new OLAP Catalog source dimension.

new_dimension name Name of the new OLAP Catalog source dimension.

See Also
CREATE_AWDIMLOAD_SPEC Procedure on page 26-27

26-50 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

SET_AWDIMLOAD_SPEC_LOADTYPE Procedure

This procedure resets the load type for a dimension load specification. The load type
indicates how dimension members will be loaded into the analytic workspace.

Syntax

Parameters

See Also

By default only new members are loaded when the dimension is refreshed.

SET AWDIMLOAD SPEC LOADTYPE (

dimension load spec IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
load_type IN VARCHAR2) ;

Table 26-55 SET_AWDIMLOAD_SPEC_LOADTYPE Procedure Parameters

Parameter

Description

dimension load spec
dimension_owner
dimension_ name

load type

Name of a dimension load specification.
Owner of the OLAP Catalog source dimension.
Name of the OLAP Catalog source dimension.

Specify one of the following:

'FULL_LOAD ADDITIONS ONLY' -- Only new dimension
members will be loaded when the dimension is refreshed.
(Default)

'FULL_LOAD' -- When the dimension is refreshed, all
dimension members in the workspace will be deleted, then all
the members of the source dimension will be loaded.

CREATE_AWDIMLOAD_SPEC Procedure on page 26-27

SET_AWDIMLOAD_SPEC_NAME Procedure

This procedure renames a dimension load specification.

Syntax

Parameters

SET AWDIMLOAD SPEC NAME (

old dimension load spec IN VARCHAR2,
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
new_dimension load spec IN VARCHAR2);

Table 26-56 SET_AWDIMLOAD_SPEC_NAME Procedure Parameters

Parameter

Description

old dimension load
spec

dimension_owner

Old name of the dimension load specification.

Owner of the OLAP Catalog source dimension.

DBMS_AWM 26-51

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

Table 26-56 (Cont.) SET_AWDIMLOAD_SPEC_NAME Procedure Parameters

Parameter Description

dimension_ name Name of the OLAP Catalog source dimension.
new_dimension load New name for the dimension load specification.
spec

See Also

CREATE_AWDIMLOAD_SPEC Procedure on page 26-27

SET_AWDIMLOAD_SPEC_PARAMETER Procedure

This procedure sets parameters for a dimension load specification.

Syntax
SET_AWDIMLOAD SPEC_PARAMETER (
dimension_load_spec IN
dimension owner IN
dimension name IN
parameter name IN
parameter value IN
Parameters

VARCHAR2,
VARCHAR2,

VARCHAR2,

VARCHAR2,

VARCHAR2 DEFAULT NULL) ;

Table 26-57 SET_AWDIMLOAD _SPEC_PARAMETER Procedure Parameters

Parameter Description

dimension load spec Name of a dimension load specification.

dimension_ owner Owner of the OLAP Catalog source dimension.

dimension_ name Name of the OLAP Catalog source dimension.

26-52 Oracle OLAP Reference

Summary of DBMS_AWM Subprograms

Example

See Also

Table 26-57 (Cont.) SET_AWDIMLOAD_SPEC_PARAMETER Procedure Parameters

Parameter

Description

parameter_ name

parameter value

One of the following:

'"UNIQUE RDBMS_KEY' -- Whether or not the members of this
dimension are unique across all levels in the source tables.

'"DISPLAY NAME' -- Display name for the target dimension in
the analytic workspace.

'"P_DISPLAY NAME' -- Plural display name for the target
dimension in the analytic workspace.

Values of UNIQUE RDBMS_KEY can be either 'YES' or 'NO'.
The defaultis 'NO'.

NO -- Dimension member names are not unique across levels in
the RDBMS tables. The corresponding dimension member names
in the analytic workspace include the level name as a prefix.
(Default)

YES -- Dimension member names are unique across levels in the
RDBMS tables. The corresponding dimension member names in
the analytic workspace have the same names as in the source
relational dimension.

Value of DISPLAY NAME is the display name for the target
dimension in the analytic workspace. If you do not specify this
parameter, the display name for the source dimension in the
OLAP Catalog will be used as the display name for the target
dimension in the analytic workspace.

Value of P_DISPLAY_ NAME is the plural display name for the
target dimension in the analytic workspace. If you do not specify
this parameter, the plural display name for the source dimension
in the OLAP Catalog will be used as the plural display name for
the target dimension in the analytic workspace.

The following statements set parameters for the product dimension in the load
specification PROD_LOADSPEC. These parameters prevent level prefixes on dimension
member names, and they specify a display name and plural display name for the

target dimension.

execute dbms_awm.Set AWDimLoad Spec_Parameter
('PROD_LOADSPEC', 'XADEMO', 'PRODUCT', 'UNIQUE RDBMS KEY', 'YES')
execute dbms_awm.Set AWDimLoad Spec Parameter
('PROD_LOADSPEC', 'XADEMO', 'PRODUCT', 'DISPLAY NAME',
'My AW Product Display Name')
execute dbms_awm.Set AWDimLoad_Spec_Parameter
('PROD_LOADSPEC', 'XADEMO', 'PRODUCT', 'P_DISPLAY NAME',
'My AW Product Plural Display Name')

CREATE_AWDIMLOAD_SPEC Procedure on page 26-27

UPGRADE_AW TO 10 _2 Procedure

This procedure upgrades an analytic workspace from 10.1.0.4 to 10.2. It first converts
the database format, if necessary, then converts the standard form metadata.

Syntax

UPGRADE_AW TO 10 2 (
aw_owner

IN VARCHAR2,

DBMS_AWM 26-53

ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

aw_name IN VARCHAR2;
Parameters
Table 26-58 UPGRADE_AW_TO_10_2 Parameters
Parameter Description
aw_owner Owner of the analytic workspace.
aw_name Name of the analytic workspace.
Example

The following SQL command upgrades an analytic workspace named GLOBAL, owned
by GLOBAL AW, from 10.1.0.2 to 10.2.

execute dbms_awm.upgrade_aw_to_10 2('global aw', 'global');

26-54 Oracle OLAP Reference

27

DBMS_ODM

The OLAP Data Management package, DBMS_ODM, provides procedures for creating
materialized views specific to the requirements of the OLAP APL

See Also: Oracle OLAP Application Developer’s Guide for information
on summary management for Oracle OLAP

This chapter includes the following topics:

= Materialized Views for the OLAP API

= Example: Automatically Generate the Minimum Grouping Sets for a Cube
= Example: Manually Choose the Grouping Sets for a Cube

= Summary of DBMS_ODM Subprograms

Materialized Views for the OLAP API

Summary management for relational warehouses is managed by the query rewrite
facility in the Oracle Database. Query rewrite enables a query to fetch aggregate data
from materialized views rather than recomputing the aggregates at runtime.

When the OLAP API queries a warehouse stored in relational tables, it uses query
rewrite whenever possible. However, the OLAP API can only use query rewrite when
the materialized views have a specific format. The procedures in the DBMS_ODM
package create materialized views that satisfy the requirements of the OLAP APL

When the source data is stored in an analytic workspace, materialized views are not
used. The native multidimensional structures within analytic workspaces support both
stored summarization and run-time aggregation. You can use the DBMS_AWM package,
Analytic Workspace Manager, or the OLAP Analytic Workspace Java API to move
your data from a star schema to an analytic workspace.

Materialized Views Created by DBMS_OMDM

The DBMS_ODM package creates a set of materialized views based on a cube defined in
the OLAP Catalog. The cube must be mapped to a star schema with a single fact table
containing only lowest level data.

Scripts generated by DBMS_ODM procedures create the following materialized views:

= A dimension materialized view for each hierarchy of each of the cube's
dimensions

= A single fact materialized view, created with GROUP BY GROUPING SETS syntax,
for the cube's measures

DBMS_ODM 27-1

Example: Automatically Generate the Minimum Grouping Sets for a Cube

Generating the Grouping Sets

A grouping set identifies a unique combination of levels. With grouping sets, you can
summarize your data symmetrically, for example sales at the month level across all
levels of geography, or you can summarize it asymmetrically, for example sales at the
month level for cities and at the quarter level for states.

The DBMS_ODM package provides two ways of calculating the grouping sets included
in the fact materialized view. You can execute a single procedure that automatically
calculates the grouping sets. Or you can manually choose the grouping sets.

Automatically Calculate the Grouping Sets
To automatically calculate the grouping sets, execute the CREATESTDFACTMV
procedure with one of the following options:

= Fully materialize the cube. Include all level combinations in the materialized view.

= Partially materialize the cube. Include a subset of the level combinations in the
materialized view.

= Materialize the cube using a percentage of the cube's level combinations.

The first two options summarize the data symmetrically. The third option typically
produces asymmetrical summarization.

Manually Calculate the Grouping Sets

To manually calculate the grouping sets:

1. Execute the CREATEDIMLEVTUPLE procedure to list all the levels in the cube.
Choose the levels to include in the grouping sets.

2. Execute the CREATECUBELEVELTUPLE procedure to create a table containing all
the combinations of the levels you chose in the previous step. Edit the table to
choose the level combinations (grouping sets) to include in the fact materialized
view.

When you manually choose the grouping sets, you can specify either symmetrical or
asymmetrical summarization.

Aggregation Operators

Addition is the default aggregation method used in the materialized views. If you
want to use a different aggregation method, you must specify it in the OLAP Catalog
metadata for each of the cube's dimensions. The same aggregation method must be
specified for each dimension, otherwise DBMS_ODM uses addition.

You can use Enterprise Manager or the CWM2_OLAP_CUBE package to specify the
aggregation method. See "SET_AGGREGATION_OPERATOR Procedure" on page 9-6.

Example: Automatically Generate the Minimum Grouping Sets for a Cube

This example shows how to automatically generate a minimum set of materialized
views for the cube UNITS CUBE in the GLOBAL schema. This cube has dimensions for
Channel, Customer, Product, and Time. The Customer dimension has two hierarchies,
which share the same lowest level.

The dimensions of the UNITS CUBE are described in Table 27-1. The levels in each
hierarchy are listed from lowest (the "leaf" level) to highest (the most aggregate). The
position of a level in a hierarchy determines whether it is among the minimum

27-2 Oracle OLAP Reference

Example: Automatically Generate the Minimum Grouping Sets for a Cube

grouping sets. For the rules for creating the minimum grouping sets, refer to

"MINIMUM Grouping Sets" on page 27-12.

Table 27-1

Dimensions of GLOBAL.UNITS_CUBE

Dimension Hierarchy

Levels

CHANNEL CHANNEL_ROLLUP

Channel

All_ Channels

CUSTOMER MARKET ROLLUP

Ship to

Account

Market Segment

Total Market

SHIPMENTS ROLLUP

Ship_to
Warehouse

Region

All Customers

PRODUCT PRODUCT_ ROLLUP

Item

Family

Class

Total Product

TIME CALENDAR

Month

Quarter

Year

To generate the materialized views:

1. Identify a scripts directory. The directory can be specified in the UTL._FILE_DIR
initialization parameter, or you can define a directory object with statements like

the following.

CREATE OR REPLACE DIRECTORY GLOBALDIR AS '/users/global/scripts';
GRANT ALL ON DIRECTORY GLOBALDIR TO PUBLIC;

2. Generate the scripts for the dimension materialized views. The following
statements create the scripts chanmv. sql, custmv. sql, prodmv.sql, and

timemv.sql in the /users/global/scripts directory.

exec dbms_odm.createdimmv_gs

('global', 'channel', 'chanmv.sgl', 'GLOBALDIR');

exec dbms_odm.createdimmv_gs

('global', 'customer', 'custmv.sql',6 'GLOBALDIR');

exec dbms_odm.createdimmv_gs

('global', 'product', 'prodmv.sqgl', 'GLOBALDIR');

exec dbms_odm.createdimmv_gs
('global', 'time', 'timemv.sql',

'"GLOBALDIR') ;

3. Run these scripts to create the dimension materialized views. The scripts will
create one materialized view for the CHANNEL dimension, one for the PRODUCT
dimension, one for the TIME dimension, and one for each of the two hierarchies of

the CUSTOMER dimension.

@/users/global/scripts/chanmv
@/users/global/scripts/custmv
@/users/global/scripts/prodmv

DBMS_ODM 27-3

Example: Manually Choose the Grouping Sets for a Cube

@/users/global/scripts/timemv

4. Once you have created the dimension materialized views, execute the following

procedure to create a script for the fact materialized view.

exec dbms_odm.createstdfactmv

('global', 'units cube', 'units cube mv.sql', 'GLOBALDIR',

false, 'MINIMUM');

This statement creates a script called units_cube_mv.sql in the directory

/users/global/scripts.
5. Run the script to create the fact materialized view.

@/users/global/scripts/units cube mv

The script creates a materialized view with the grouping sets identified in Table 27-2.

Table 27-2 Minimum Grouping Sets for Units Cube

CHANNEL_DIM CUSTOMER_DIM PRODUCT_DIM TIME_DIM
CHANNEL SHIP_TO (MARKET ROLLUP hierarchy) ITEM QUARTER
CHANNEL SHIP_TO (MARKET ROLLUP hierarchy) ITEM YEAR
CHANNEL SHIP_TO (MARKET ROLLUP hierarchy) FAMILY MONTH
CHANNEL SHIP_TO (MARKET ROLLUP hierarchy) TOTAL_PRODUCT MONTH
CHANNEL SHIP_TO (SHIPMENTS_ROLLUP hierarchy) ITEM QUARTER
CHANNEL SHIP_TO (SHIPMENTS_ROLLUP hierarchy) ITEM YEAR
CHANNEL SHIP_ TO (SHIPMENTS_ROLLUP hierarchy) FAMILY MONTH
CHANNEL SHIP_ TO (SHIPMENTS_ROLLUP hierarchy) TOTAL_PRODUCT MONTH
CHANNEL ACCOUNT ITEM MONTH
CHANNEL TOTAL_MARKET ITEM MONTH
CHANNEL ALL_CUSTOMERS ITEM MONTH
ALL_CHANNELS SHIP_TO (MARKET_ROLLUP hierarchy) ITEM MONTH
ALL_CHANNELS SHIP_ TO (SHIPMENTS_ROLLUP hierarchy) ITEM MONTH
ALL_CHANNELS ACCOUNT FAMILY QUARTER
ALL_CHANNELS WAREHOUSE FAMILY QUARTER
ALL_CHANNELS TOTAL_MARKET TOTAL_PRODUCT YEAR
ALL_CHANNELS ALL_CUSTOMERS TOTAL_PRODUCT YEAR

Example: Manually Choose the Grouping Sets for a Cube

This example creates materialized views for the cube PRICE CUBE in the GLOBAL

schema.

This cube contains unit costs and unit prices for different products over time. The
dimensions are PRODUCT, with levels for products, families of products, classes of
products, and totals, and TIME with levels for months, quarters, and years.

You want to summarize product families by month and product classes by quarter.

27-4 Oracle OLAP Reference

Example: Manually Choose the Grouping Sets for a Cube

Identify a scripts directory. The directory can be specified in the UTL._FILE DIR
initialization parameter, or you can define a directory object with a statement like
the following.

CREATE OR REPLACE DIRECTORY GLOBALDIR AS '/users/global/scripts';
GRANT ALL ON DIRECTORY GLOBALDIR TO PUBLIC;

Generate the scripts for the dimension materialized views. The following
statements create the scripts prodmv. sql and timemv.sqgl in the
/users/global/scripts directory.

exec dbms_odm.createdimmv_gs

('global', 'product', 'prodmv.sgl', 'GLOBALDIR');
exec dbms_odm.createdimmv_gs

('global', 'time', 'timemv.sql', 'GLOBALDIR');

Run these scripts to create the dimension materialized views. The scripts will
create one materialized view for the PRODUCT dimension and one for the TIME
dimension.

Create the table of dimension levels for the fact materialized view.

exec dbms_odm.createdimlevtuple ('global', 'price cube');

The table of levels, sys.olaptablevels, is a temporary table specific to your
session. It lists all the levels in PRICE CUBE. You can view the table as follows.

select * from sys.olaptablevels;

SCHEMA NAME DIMENSION NAME DIMENSION OWNER CUBE NAME LEVEL NAME SELECTED

GLOBAL TIME GLOBAL PRICE_CUBE YEAR 1
GLOBAL TIME GLOBAL PRICE_CUBE QUARTER 1
GLOBAL TIME GLOBAL PRICE_CUBE MONTH 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE TOTAL_PRODUCT 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE CLASS 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE FAMILY 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE ITEM 1

All the levels are initially selected with "1" in the SELECTED column.

Since you want the materialized view to include only product families by month
and product classes by quarter, you can deselect all other levels. You could edit the
table with a statement like the following.

update SYS.OLAPTABLEVELS set selected = 0
where LEVEL NAME in ('ITEM', 'TOTAL PRODUCT', 'YEAR');
select * from sys.olaptablevels;

SCHEMA NAME DIMENSION NAME DIMENSION OWNER CUBE NAME LEVEL NAME SELECTED

GLOBAL TIME GLOBAL PRICE_CUBE YEAR 0
GLOBAL TIME GLOBAL PRICE_CUBE QUARTER 1
GLOBAL TIME GLOBAL PRICE_CUBE MONTH 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE TOTAL PRODUCT 0
GLOBAL PRODUCT GLOBAL PRICE_CUBE CLASS 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE FAMILY 1
GLOBAL PRODUCT GLOBAL PRICE_CUBE ITEM 0

Next create the table sys.olaptableveltuples. This table, which is also a
session-specific temporary table, contains all the possible combinations of the
levels that you selected in the previous step. Each combination of levels, or

DBMS_ODM 27-5

Example: Manually Choose the Grouping Sets for a Cube

grouping set, has an identification number. All the grouping sets are initially
selected with "1" in the SELECTED column.

exec dbms_odm.createcubeleveltuple('global', 'price cube');

select ID, SCHEMA NAME, CUBE NAME, DIMENSION NAME, DIMENSION OWNER,
LEVEL NAME, SELECTED
from sys.olaptableveltuples;

ID SCHEMA NAME CUBE_NAME DIMENSION NAME DIMENSION OWNER LEVEL NAME SELECTED

1 GLOBAL PRICE_CUBE PRODUCT GLOBAL FAMILY 1
2 GLOBAL PRICE_CUBE PRODUCT GLOBAL CLASS 1
3 GLOBAL PRICE_CUBE PRODUCT GLOBAL FAMILY 1
4 GLOBAL PRICE CUBE PRODUCT GLOBAL CLASS 1
1 GLOBAL PRICE CUBE TIME GLOBAL MONTH 1
2 GLOBAL PRICE_CUBE TIME GLOBAL MONTH 1
3 GLOBAL PRICE_CUBE TIME GLOBAL QUARTER 1
4 GLOBAL PRICE_CUBE TIME GLOBAL QUARTER 1

There are four grouping sets numbered 1, 2, 3, and 4. Each grouping set identifies
a unique combination of the levels Quarter and Month in the TIME dimension
and CLASS and FAMILY in the PRODUCT dimension.

7. Since you want the materialized view to include only product families by month
and product classes by quarter, you can deselect the other level combinations. You
could edit the sys.olaptableveltuples table with a statement like the
following.

update sys.olaptableveltuples set selected = 0
where ID in ('2', '3');

select ID, SCHEMA NAME, CUBE NAME, DIMENSION NAME, DIMENSION OWNER,
LEVEL NAME, SELECTED
from sys.olaptableveltuples where SELECTED = 'l1';

ID SCHEMA NAME CUBE NAME DIMENSION NAME DIMENSION OWNER LEVEL NAME SELECTED

1 GLOBAL PRICE_CUBE PRODUCT GLOBAL FAMILY 1
4 GLOBAL PRICE_CUBE PRODUCT GLOBAL CLASS 1
1 GLOBAL PRICE_CUBE TIME GLOBAL MONTH 1
4 GLOBAL PRICE CUBE TIME GLOBAL QUARTER 1

8. To create the script that will generate the fact materialized view, run the
CREATEFACTMV_GS procedure.

exec dbms_odm.createfactmv_gs
('global', 'price cube',
'price cost mv.sql', 'GLOBALDIR',TRUE) ;

The grouping sets specified in the CREATE MATERIALIZED VIEW statement for
the cube are:

GROUP BY GROUPING SETS (

(TIME DIM.YEAR ID, TIME DIM.QUARTER ID, TIME DIM.MONTH ID,
PRODUCT DIM.TOTAL PRODUCT ID, PRODUCT DIM.CLASS ID, PRODUCT DIM.FAMILY ID),

(TIME_DIM.YEAR ID, TIME DIM.QUARTER ID,
PRODUCT DIM.TOTAL PRODUCT ID, PRODUCT DIM.CLASS ID))

27-6 Oracle OLAP Reference

Example: Manually Choose the Grouping Sets for a Cube

9. Gototheusers/global/scripts directory and run the price_cost_mv
script to create the fact materialized view.

DBMS_ODM 27-7

Summary of DBMS_ODM Subprograms

Summary of DBMS_ODM Subprograms

Table 27-3 DBMS_ODM Subprograms

Subprogram Description

CREATECUBELEVELTUPLE Creates a table of level combinations to be included in the
Procedure on page 27-9 materialized view for a cube.

CREATEDIMLEVTUPLE Creates a table of levels to be included in the materialized

Procedure on page 27-9

CREATEDIMMYV_GS Procedure on
page 27-10

CREATEFACTMYV_GS Procedure
on page 27-11

CREATESTDFACTMYV Procedure
on page 27-11

view for a cube.

Generates a script that creates a materialized view for
each hierarchy of a dimension.

Generates a script that creates a materialized view for the
fact table associated with a cube. The materialized view
includes individual level combinations that you have
previously specified.

Generates a script that creates a materialized view for the
fact table associated with a cube. The materialized view is
automatically constructed according to general
instructions that you provide.

27-8 Oracle OLAP Reference

Summary of DBMS_ODM Subprograms

CREATECUBELEVELTUPLE Procedure

Syntax

Parameters

See Also

This procedure creates the table sys.olaptableveltuples, which lists all the level
combinations to be included in the materialized view for the cube. By default, all level
combinations are selected for inclusion in the materialized view. You can edit the table
to deselect any level combinations that you do not want to include.

Use this procedure to manually specify the grouping sets for the fact table.

Before calling this procedure, call CREATEDIMLEVTUPLE to create the table of levels
for the cube.

CREATECUBELEVELTUPLE (
cube owner IN VARCHAR2,
cube name IN VARCHAR2);

Table 27-4 CREATECUBELEVELTUPLE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube name Name of the cube.

"Example: Manually Choose the Grouping Sets for a Cube" on page 27-4

CREATEDIMLEVTUPLE Procedure

Syntax

Parameters

This procedure creates the table sys.olaptablevels, which lists all the levels of all
the dimensions of the cube. By default, all levels are selected for inclusion in the
materialized view. You can edit the table to deselect any levels that you do not want to
include.

Use this procedure to manually specify the grouping sets for the fact table.

After calling this procedure, call CREATECUBELEVELTUPLE to create the table of level
combinations (level tuples) for the cube.

CREATEDIMLEVTUPLE (
cube owner IN varchar2,
cube name IN varchar?) ;

Table 27-5 CREATEDIMLEVTUPLE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube name Name of the cube.

DBMS_ODM 27-9

CREATECUBELEVELTUPLE Procedure

See Also
"Example: Manually Choose the Grouping Sets for a Cube" on page 27-4

CREATEDIMMV_GS Procedure

This procedure generates a script that creates a materialized view for each hierarchy of
a dimension. You must call this procedure for each dimension of a cube.

The process of creating the dimension materialized views is the same whether you
generate the fact materialized view automatically or manually.

Note: This procedure is overloaded, so that it is backwardly
compatible with earlier versions that did not include the
partitioning parameter.

Syntax
CREATEDIMMV_GS (
dimension owner IN VARCHAR2,
dimension name IN VARCHAR2,
output file IN VARCHAR2,
output path IN VARCHAR2,
partitioning IN BOOLEAN,
tablespace mv IN VARCHAR2 DEFAULT NULL,
tablespace index IN VARCHAR2 DEFAULT NULL) ;
Parameters
Table 27-6 CREATEDIMMV_GS Procedure Parameters
Parameter Description
dimension_owner Owner of the dimension.
dimension name Name of the dimension.
output file File name for the output script.
output path Directory path where output_file will be created. This may
be either a directory object or a path set by the UTL._FILE DIR
parameter.
partitioning TRUE turns on partitioning; FALSE turns it off.
tablespace mv The name of the tablespace in which the materialized view will
be created. When this parameter is omitted, the materialized
view is created in the user's default tablespace.
tablespace index The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user's default tablespace.
See Also

"Example: Automatically Generate the Minimum Grouping Sets for a Cube" on
page 27-4

"Example: Manually Choose the Grouping Sets for a Cube" on page 27-4

27-10 Oracle OLAP Reference

Summary of DBMS_ODM Subprograms

CREATEFACTMV_GS Procedure

Syntax

Parameters

See Also

This procedure generates a script that creates a materialized view for the fact table
associated with a cube.

Use this procedure to manually specify the grouping sets for the fact table.

Prior to calling this procedure, you must call CREATEDIMLEVTUPLE and
CREATECUBELEVELTUPLE to create the sys.olaptableveltuples table. The
materialized view will include all level combinations selected in the
sys.olaptableveltuples table.

CREATEFACTIMV_GS (

cube owner IN VARCHAR2,

cube name IN VARCHAR2,

outfile IN VARCHARZ,

outfile path IN VARCHAR2,

partitioning IN BOOLEAN,

tablespace mv IN VARCHAR2 DEFAULT NULL,
tablespace index IN VARCHAR2 DEFAULT NULL) ;

Table 27-7 CREATEFACTMV_GS Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube name Name of the cube.

output_file File name for the output script.

output_path Directory path where output_file will be created.This may be
either a directory object or a path set by the UTL,_FILE DIR
parameter.

partitioning TRUE turns on partitioning; FALSE turns it off.

tablespace mv The name of the tablespace in which the materialized view will

be created. When this parameter is omitted, the materialized
view is created in the user's default tablespace.

tablespace_index The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user's default tablespace.

"Manually Calculate the Grouping Sets" on page 27-2
"Example: Manually Choose the Grouping Sets for a Cube" on page 27-4

CREATESTDFACTMYV Procedure

This procedure generates a script that creates a materialized view for the fact table
associated with a cube.

This procedure automatically generates and updates the tables of levels and level
tuples. If you want to edit these tables yourself, you must use the
CREATEDIMLEVTUPLE, CREATECUBELEVELTUPLE, and CREATEFACTMV_GS
procedures.

DBMS_ODM 27-11

CREATECUBELEVELTUPLE Procedure

Syntax

Parameters

CREATESTDFACTMV (

cube_owner

cube_name
outfile

IN VARCHAR2,
IN VARCHAR2,
IN VARCHAR2,

outfile path IN VARCHAR2,

partitioning IN BOOLEAN,
materialization level IN VARCHAR2,
materialization pct IN NUMBER DEFAULT NULL,
tablespace mv IN VARCHAR2 DEFAULT NULL,
tablespace index IN VARCHAR2 DEFAULT NULL) ;

Table 27-8 CREATESTDFACTMYV Procedure Parameters

Parameter

Description

cube owner
cube name
outfile

outfile path

partitioning

materialization level

materialization pct

tablespace_mv

tablespace_index

Owner of the cube.
Name of the cube.
File name for the output script.

Directory path where output_file will be created.This may be
either a directory object or a path set by the UTL_FILE DIR
parameter.

TRUE turns on partitioning; FALSE turns it off.

The level of materialization. This parameter identifies the level
combinations that will be included in the materialized view.
Specify one of the following values:

s FULL — Fully materialize the cube's data. Include every
level combination in the materialized view.

= MINIMUM — Minimally materialize the cube's data. See
"MINIMUM Grouping Sets" on page 27-12.

s PERCENT — Materialize the cube's data based on a
percentage of the cube's level combinations. For example,
consider a cube that has two dimensions with three levels
and one dimension with four levels. This cube has 36
possible level combinations (3*3*4). If you choose to
materialize the cube by 30%, then 12 level combinations will
be included in the materialized view.

The percentage of level combinations to materialize. Specify this
parameter only if you have specified PERCENT for the
materialization_level.

The name of the tablespace in which the materialized view will
be created. When this parameter is omitted, the materialized
view is created in the user's default tablespace.

The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user's default tablespace.

MINIMUM Grouping Sets

If you choose minimal materialization, your fact materialized view will contain a
grouping set for each of the following hierarchy combinations:

» The top level of each hierarchy

= One level above the lowest of each hierarchy

27-12 Oracle OLAP Reference

Summary of DBMS_ODM Subprograms

See Also

= Top level of one hierarchy and the lowest level of all other hierarchies.

= One level above the lowest of one hierarchy and the lowest level of all other
hierarchies.

"Automatically Calculate the Grouping Sets" on page 27-2

"Example: Automatically Generate the Minimum Grouping Sets for a Cube" on
page 27-2

DBMS_ODM 27-13

CREATECUBELEVELTUPLE Procedure

27-14 Oracle OLAP Reference

28

OLAP_API_SESSION_INIT

The OLAP_API_SESSION_INIT package provides procedures for maintaining a table
of initialization parameters for the OLAP APL

This chapter contains the following topics:
m Initialization Parameters for the OLAP API
= Viewing the Configuration Table

s Summary of OLAP_API_SESSION_INIT Subprograms

Initialization Parameters for the OLAP API

The OLAP_API SESSION_ INIT package contains procedures for maintaining a
configuration table of initialization parameters. When the OLAP API opens a session,
it executes the ALTER SESSION commands listed in the table for any user who has
the specified roles. Only the OLAP API uses this table; no other type of application
executes the commands stored in it.

This functionality provides an alternative to setting these parameters in the database
initialization file or the init . ora file, which would alter the environment for all
users.

During installation, the table is populated with ALTER SESSION commands that have
been shown to enhance the performance of the OLAP API. Unless new settings prove
to be more beneficial, you do not need to make changes to the table.

The information in the table can be queried through the ALL._OLAP_ALTER_SESSION
view alias, which is also described in this chapter.

Note: This package is owned by the SYS user. You must explicitly be
granted execution rights before you can use it.

Viewing the Configuration Table

ALL_OLAP_ALTER_SESSION is the public synonym for V$SOLAP_ALTER SESSION,
which is a view for the OLAPSALTER SESSION table. The view and table are owned
by the SYS user.

ALL_OLAP_ALTER_SESSION View

Each row of AL, OLAP_ALTER SESSION identifies a role and a session initialization
parameter. When a user opens a session using the OLAP API, the session is initialized
using the parameters for roles granted to that user. For example, if there are rows for

OLAP_API_SESSION_INIT 28-1

Viewing the Configuration Table

the OLAP_ DBA role and the SELECT CATALOG_ROLE, and a user has the OLAP_DBA
role, then the parameters for the OLAP DBA role will be set, but those for the SELECT _
CATALOG_ROLE will be ignored.

Table 28-1 ALL_OLAP_ALTER SESSION Column Descriptions

Column Datatype NULL Description
ROLE VARCHAR2 (30) NOT NULL A database role
CLAUSE_TEXT VARCHAR2 (3000) An ALTER SESSION command

28-2 Oracle OLAP Reference

Summary of OLAP_API_SESSION_INIT Subprograms

Summary of OLAP_API_SESSION_INIT Subprograms

The following table describes the subprograms provided in OLAP_API SESSION
INIT.

Table 28-2 OLAP_API_SESSION_INIT Subprograms

Subprogram Description

ADD_ALTER_SESSION Specifies an ALTER SESSION parameter for OLAP API users
Procedure on page 28-4 with a particular database role.

CLEAN_ALTER_SESSION Removes orphaned data, that is, any ALTER SESSION
Procedure on page 28-4 parameters for roles that are no longer defined in the database.

DELETE_ALTER_SESSION Removes a previously defined ALTER SESSION parameter for
Procedure on page 28-4 OLAP API users with a particular database role.

OLAP_API_SESSION_INIT 28-3

ADD_ALTER_SESSION Procedure

ADD ALTER SESSION Procedure

Syntax

Parameters

Example

This procedure specifies an ALTER SESSION parameter for OLAP API users with a
particular database role. It adds a row to the OLAPSALTER SESSION table.

ADD ALTER SESSION (
role name IN VARCHAR2,
session parameter IN VARCHAR2) ;

The role name and session parameter are added as a row in OLAPSALTER _
SESSION.

Table 28-3 ADD_ALTER_SESSION Procedure Parameters

Parameter Description
role_ name The name of a valid role in the database. Required.
session parameter A parameter that can be set with a SQL ALTER SESSION

command. Required.

The following call inserts a row in OLAPSALTER SESSION that turns on query rewrite
for users with the OLAP_DBA role.

call olap api session init.add alter session(
"OLAP DBA', 'SET QUERY REWRITE ENABLED=TRUE') ;

The ALL._OLAP_ALTER_SESSION view now contains the following row.

ROLE CLAUSE TEST

OLAP DBA ALTER SESSION SET QUERY REWRITE ENABLED=TRUE

CLEAN_ALTER_SESSION Procedure

Syntax

Examples

This procedure removes all ALTER SESSION parameters for any role that is not
currently defined in the database. It removes all orphaned rows in the OLAPSALTER _
SESSION table for those roles.

CLEAN ALTER SESSION () ;

The following call deletes all orphaned rows.

call olap_api_session init.clean_alter session();

DELETE_ALTER_SESSION Procedure

This procedure removes a previously defined ALTER SESSION parameter for OLAP
API users with a particular database role. It deletes a row from the OLAPSALTER _
SESSION table.

28-4 Oracle OLAP Reference

Summary of OLAP_API_SESSION_INIT Subprograms

Syntax
DELETE_ALTER_SESSION (
role name IN VARCHAR2,
session_parameter IN VARCHAR2) ;
Parameters
The role_name and session_parameter together uniquely identify a row in
OLAP$ALTER_SESSION.
Table 28-4 DELETE_ALTER SESSION Procedure Parameters
Parameter Description
role_name The name of a valid role in the database. Required.
session_parameter A parameter that can be set with a SQL ALTER SESSION
command. Required.
Examples

The following call deletes a row in OLAPSALTER_SESSION that contains a value of
OLAP_DBAin the first column and QUERY REWRITE ENABLED=TRUE in the second
column.

call olap api session init.delete alter session(
"OLAP DBA', 'SET QUERY REWRITE ENABLED=TRUE') ;

OLAP_API_SESSION_INIT 28-5

ADD_ALTER_SESSION Procedure

28-6 Oracle OLAP Reference

29

OLAP_CONDITION

OLAP_CONDITION is a SQL function that dynamically executes an OLAP DML
command during a query of an analytic workspace.

See Also:

» Chapter 34, "OLAP_TABLE".

» Oracle OLAP DML Reference for information on analytic workspace
objects and the syntax of individual OLAP DML commands.

This chapter includes the following topics:
s OLAP_CONDITION Overview

= OLAP_CONDITION Examples

= OLAP_CONDITION Syntax

OLAP_CONDITION Overview

OLAP_CONDITION modifies an analytic workspace within the context of a SELECT
FROM OLAP_TABLE statement. You can specify OLAP_CONDITION like other Oracle
functions, typically in the WHERE clause.

You can use OLAP_CONDITION to set an option, execute a LIMIT command, execute
an OLAP model or forecast, or run a program. The changes made to the workspace
can be transitory or they can persist in your session upon completion of the query.

Entry Points in the Limit Map

Parameters of OLAP_CONDITION identify an invocation of OLAP TABLE, specify an
entry point in the limit map, and provide the OLAP DML command to be executed at
that entry point.

The target limit map must include a ROW2CELL column. OLAP CONDITION uses this
column to identify an instance of OLAP TABLE. Within that instance OLAP
CONDITION executes the OLAP DML command at one of three possible entry points.
The entry point that you specify will determine whether the condition affects the data
returned by the query and whether the condition remains in effect upon completion of
the query.

OLAP CONDITION can be triggered at any of the following points:

= Before the status of the dimensions in the limit map is saved (which occurs before
the result set is calculated).

OLAP_CONDITION 29-1

OLAP_CONDITION Examples

» After the result set has been calculated and before it is fetched. (Default)

s After the result set has been fetched and the status of the dimensions in the limit
map has been restored.

The entry points are described in detail in Table 29-2, " Entry Points for OLAP_
CONDITION in the OLAP_TABLE Limit Map".

Dynamically Modifying a Workspace during a Query

There are several mechanisms for modifying an analytic workspace on the fly during
the execution of OLAP_TABLE. In addition to OLAP_CONDITION, you can use syntax
supported by the OLAP_TABLE function itself: The PREDMLCMD and POSTDMLCMD
clauses in the limit map, as well as the olap_command parameter. OLAP_CONDITION
has the advantage of portability, since it is not embedded within OLAP_TABLE, and
versatility, since it can be applied at different entry points.

OLAP_TABLE saves the status of dimensions in the limit map before executing the
LIMIT commands that generate the result set for the query. After the data is fetched,
OLAP_TABLE restores the status of the dimensions. You can specify a PREDMLCMD
clause in the limit map to cause an OLAP DML command to execute before the
dimension status is saved. Modifications resulting from the PREDMLCMD clause remain
in the workspace after execution of OLAP_TABLE, unless reversed with a POSTDMLCMD
clause. For more information, see "Limit Map Parameter" on page 34-15.

The olap_command parameter of OLAP_TABLE specifies an OLAP DML command that
executes immediately before the result set is fetched. In some circumstances, the olap_
command parameter may contain an OLAP DML FETCH command, which itself
manages the fetch. Limits set by the olap_command parameter are only in effect during
the execution of OLAP TABLE. For more information, see "OLAP Command
Parameter" on page 34-13.

OLAP_CONDITION Examples

Several sample queries using OLAP_CONDITION are shown in Example 29-2. These
examples use the PRICE CUBE in the GLOBAL analytic workspace. The cube has a
time dimension, a product dimension, and measures for unit cost and unit price.

See Also: "OLAP_CONDITION Syntax" on page 29-6 for complete
descriptions of the syntax used in these examples.

The examples are based on a view called unit cost price view. The SQL for
creating this view is shown in Example 29-1. For information about creating views of
analytic workspaces, see "OLAP_TABLE Overview" on page 34-1.

Example 29—1 View of PRICE_CUBE in GLOBAL Analytic Workspace

-- Create the logical row
SQL>CREATE TYPE unit cost price row AS OBJECT (

aw_unit cost NUMBER,
aw_unit price NUMBER,
aw_product VARCHAR?2 (50) ,
aw_product gid NUMBER (10) ,
aw_time VARCHAR2 (20) ,
aw_time gid NUMBER (10) ,
r2c RAW(32)) ;

-- Create the logical table

29-2 Oracle OLAP Reference

OLAP_CONDITION Examples

SQL>CREATE TYPE unit cost price table AS TABLE OF unit cost price row;

-- Create the view
SQL>CREATE OR REPLACE VIEW unit cost price view AS
SELECT aw_unit cost, aw_unit price, aw_product, aw_product gid,
aw_time, aw_time gid, r2c
FROM TABLE (OLAP_TABLE (
'global DURATION SESSION',
'unit cost price table',

[
’

'"MEASURE aw_unit cost FROM price cube unit cost
MEASURE aw_unit price FROM price cube unit price
DIMENSION product WITH
HIERARCHY product parentrel
INHIERARCHY product inhier
GID aw_product gid FROM product gid
ATTRIBUTE aw_product FROM product short description
DIMENSION time WITH
HIERARCHY time parentrel
INHIERARCHY time inhier
GID aw_time gid FROM time gid
ATTRIBUTE aw_time FROM time short description
ROW2CELL r2c'));

-- query the view

SQL>SELECT * FROM unit cost price view
WHERE aw_product = 'Hardware'
AND aw_time in ('2000', '2001', '2002', '2003'
ORDER BY aw_time;

AW UNIT COST AW UNIT PRICE AW PRODUCT AW _PRODUCT GID AW TIME AW TIME GID R2C

211680.12 224713.71 Hardware 3 2000 3 00..
195591.60 207513.16 Hardware 3 2001 3 00...
184413.05 194773.78 Hardware 3 2002 3 00...

73457.31 77275.06 Hardware 3 2003 3 00..

Example 29-2 Queries of UNIT_COST_PRICE_VIEW Using OLAP_CONDITION

The queries in this example use OLAP_CONDITION to modify the query of UNIT
COST_PRICE_VIEW in Example 29-1. In each query, OLAP_CONDITION uses a
different entry point to limit the TIME dimension to the year 2000.

In the first query, OLAP_CONDIITON uses entry point 0. The limited data is returned
by OLAP TABLE, and the limit remains in effect in the analytic workspace.

SQL>SELECT * FROM unit_cost_price_view
WHERE aw_product = 'Hardware'
AND aw_time in ('2000', '2001', '2002', '2003')
AND OLAP CONDITION (r2c,
'limit time to time short description eq ''2000''', 0)=1
ORDER BY aw_time;

AW _UNTT_COST AW UNIT PRICE AW_PRODUCT AW_PRODUCT GID AW _TIME AW TIME GID R2C

211680.12 224713.71 Hardware 3 2000 3 00...

--Check status in the analytic workspace
SQL>exec dbms_aw.execute('rpr time short description');

TIME TIME SHORT DESCRIPTION

OLAP_CONDITION 29-3

OLAP_CONDITION Examples

3 2000

-- Reset status
SQL>exec dbms_aw.execute('allstat');

In the next query, OLAP_CONDIITON uses entry point 1. The limited data is returned
by OLAP_TABLE, but the limit does not remain in effect in the analytic workspace.

Note that the third parameter is not required in this case, since entry point 1 is the
default.

SQL>SELECT * FROM unit_cost_price view
WHERE aw_product = 'Hardware'
AND aw_time in ('2000', '2001', '2002', '2003'
AND OLAP_CONDITION (r2c,
'limit time to time short description eq ''2000''', 1)=1
ORDER BY aw_time;

AW_UNIT COST AW UNIT PRICE AW_PRODUCT AW _PRODUCT GID AW _TIME AW TIME GID R2C

211680.12 224713.71 Hardware 3 2000 3 00...

--Check status in the analytic workspace
SQL>exec dbms_aw.execute('rpr time short description');

TIME TIME_SHORT DESCRIPTION
19 Jan-98
20 Feb-98
21 Mar-98
22 Apr-98

1 1998
2 1999
3 2000
4 2001
85 2002
102 2003
119 2004

-- Reset status
SQL>exec dbms_aw.execute('allstat');

In the final query, OLAP_CONDIITON uses entry point 2. The limit does not affect the
data returned by OLAP_TABLE, but the limit remains in effect in the analytic
workspace.

SQL>SELECT * FROM unit_cost_price_view
WHERE aw_product = 'Hardware'
AND aw_time in ('2000', '2001', '2002', '2003')
AND OLAP CONDITION (r2c,
'limit time to time short description eq ''2000''', 2)=1
ORDER BY aw_time;

AW UNIT COST AW UNIT PRICE AW PRODUCT AW PRODUCT GID AW TIME AW TIME GID R2C

211680.12 224713.71 Hardware 3 2000 3 00...
195591.60 207513.16 Hardware 3 2001 3 00...

29-4 Oracle OLAP Reference

OLAP_CONDITION Examples

184413.05 194773.78 Hardware 3 2002
73457.31 77275.06 Hardware 3 2003

--Check status in the analytic workspace
SQL>exec dbms_aw.execute('rpr time short description');

TIME TIME SHORT DESCRIPTION

3 2000

OLAP_CONDITION 29-5

OLAP_CONDITION Syntax

OLAP_CONDITION Syntax

The OLAP_CONDITION function executes an OLAP DML command at one of three
entry points in the limit map used in a call to OLAP_TABLE.

Syntax

OLAP_CONDITION (
ra2c IN RAW (32),
expression IN VARCHAR2,
event IN NUMBER DEFAULT 1) ;
RETURN NUMBER;

Parameters

Table 29-1 OLAP_CONDITION Function Parameters

Parameter Description

r2c The name of a column specified by a ROW2CELL clause in the limit map.
This parameter is used by OLAP_CONDITION to identify a particular
invocation of OLAP_TABLE.

The ROW2CELL column is used in the processing of the single-row
functions. (See Chapter 30, "OLAP_EXPRESSION") OLAP_CONDITION
simply uses it as an identifier.

For information on creating a ROW2CELL column, see "Limit Map
Parameter" on page 34-15.

expression A single OLAP DML command to be executed within the context of the
OLAP_TABLE function identified by the r2c parameter. For information
on the OLAP DML, see the Oracle OLAP DML Reference.

event The event during OLAP_TABLE processing that will trigger the execution
of the OLAP DML command specified by the expression parameter. This
parameter can have the value 0, 1, or 2, as described in Table 29-2

Returns
The number 1 to indicate a successful invocation of OLAP_CONDITION.

Note

The entry points for OLAP_CONDITION are described in Table 29-2. Refer to "Order of
Processing in OLAP_TABLE" on page 34-21 to determine where each entry point
occurs.

Table 29-2 Entry Points for OLAP_CONDITION in the OLAP_TABLE Limit Map

Entry Point Description

0 Execute the OLAP DML command after the PREDMLCMD clause of the limit map
is processed and before the status of the dimensions in the limit map is saved.

The entry point is between steps 1 and 2 in "Order of Processing in OLAP_
TABLE" on page 34-21.

If OLAP_CONDITION limits any of the dimensions in the limit map, the limits
remain in the workspace after the execution of OLAP_TABLE (unless a command
in the POSTDMLCMD clause of the limit map changes the status).

29-6 Oracle OLAP Reference

OLAP_CONDITION Syntax

Example

Table 29-2 (Cont.) Entry Points for OLAP_CONDITION in the OLAP_TABLE Limit Map

Entry Point Description

1

Execute the OLAP DML command after the conditions of the WHERE clause are
satisfied and before the data is fetched. (Default.)

The entry point is between steps 4 and 5 in "Order of Processing in OLAP_
TABLE" on page 34-21.

If an OLAP DML command (other than FETCH) is specified in the olap_command
parameter of OLAP TABLE, it is executed after OLAP_CONDITION and before the
data is fetched. (The use of a FETCH command in the olap_command parameter, or
in OLAP_CONDITION itself, is not generally recommended. See "Using FETCH in
the olap_command Parameter" on page 34-14.)

If OLAP_CONDITION limits any of the dimensions in the limit map, the limits
remain in effect for the duration of the query only.

Execute the OLAP DML command after the data is fetched and the status of
dimensions in the limit map has been restored.

The entry point is after step 8 in "Order of Processing in OLAP_TABLE" on
page 34-21.

If OLAP_CONDITION limits any dimensions, the limits remain in the analytic
workspace after the query completes.

See "OLAP_CONDITION Examples" on page 29-2.

OLAP_CONDITION 29-7

OLAP_CONDITION Syntax

29-8 Oracle OLAP Reference

30

OLAP_EXPRESSION

OLAP_EXPRESSION is a SQL function that dynamically executes a single-row numeric
function in an analytic workspace and returns the results.

See Also:

» Oracle OLAP Application Developer’s Guide for information about
using OLAP_EXPRESSION to create custom measures.

» Oracle OLAP DML Reference for information on analytic workspace
objects and the syntax of individual OLAP DML commands.

» Chapter 31, "OLAP_EXPRESSION_BOOL"
s Chapter 32, "OLAP_EXPRESSION_DATE"
» Chapter 33, "OLAP_EXPRESSION_TEXT"
s Chapter 29, "OLAP_CONDITION"

s Chapter 34, "OLAP_TABLE"

This chapter includes the following topics:
s OLAP_EXPRESSION Overview

= OLAP_EXPRESSION Examples

= OLAP_EXPRESSION Syntax

OLAP_EXPRESSION Overview

OLAP_EXPRESSION acts as a numeric single-row function within the context of a
SELECT FROM OLAP_TABLE statement. You can specify OLAP_EXPRESSION in the
same way you specify other Oracle single-row functions, notably in the select list,
WHERE , and ORDER BY clauses.

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. Oracle supports a number of predefined single-row functions, for example COS,
LOG, and ROUND which return numeric data, and UPPER and LOWER which return
character data. For more information on single-row functions, refer to the Oracle
Database SQL Reference.

The OLAP single-row functions, OLAP_EXPRESSION and its variants for text, date,
and boolean data, return the result of an OLAP DML expression that you specify. The
OLAP DML supports a rich syntax for specifying computations ranging from simple

OLAP_EXPRESSION 30-1

OLAP_EXPRESSION Examples

arithmetic expressions to statistical, financial, and time-series operations. You can use
OLAP_EXPRESSION to dynamically perform any valid numeric expression within an
analytic workspace and retrieve its results. For more information on OLAP DML
expressions, refer to the Oracle OLAP DML Reference.

OLAP_EXPRESSION and OLAP_TABLE

OLAP_TABLE uses a limit map to present the multidimensional data from an analytic
workspace in tabular form. The limit map specifies the columns of the logical table.
When an OLAP_EXPRESSION function is specified in the select list of the query, OLAP_
TABLE generates additional columns for the results of the function.

To use OLAP_EXPRESSION, you must specify a ROW2CELL clause in the limit map
used by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE
populates with information used by the OLAP single-row functions.

See Also: "Limit Maps" on page 34-1 and "Limit Map: ROW2CELL
Clause" on page 34-20

OLAP_EXPRESSION Examples

The following script was used to create the view unit_cost_price_view, whichis
used in Example 30-1 and Example 30-2 to illustrate the use of OLAP EXPRESSION.
For information about creating views of analytic workspaces, see "OLAP_TABLE
Overview" on page 34-1.

Sample View: GLOBAL.UNIT_COST_PRICE_VIEW

-- Create the logical row
CREATE TYPE unit cost price row AS OBJECT (

aw_unit_cost NUMBER,
aw_unit price NUMBER,
aw_product VARCHAR2 (50) ,
aw_time VARCHAR2 (20) ,
r2c RAW (32)) ;

/
-- Create the logical table
CREATE TYPE unit_cost_price_table AS TABLE OF unit_cost_price_row;
/
-- Create the view
CREATE OR REPLACE VIEW unit cost price view AS
SELECT aw_unit cost, aw _unit price, aw product, aw_time, r2c
FROM TABLE (OLAP_TABLE (
'global DURATION SESSION',
'unit_cost_price table',

(N}
I

'"MEASURE aw_unit cost FROM price cube unit cost
MEASURE aw unit price FROM price cube unit price
DIMENSION product WITH
HIERARCHY product parentrel
INHIERARCHY product_inhier
ATTRIBUTE aw_product FROM product short description
DIMENSION time WITH
HIERARCHY time parentrel
INHIERARCHY time_inhier
ATTRIBUTE aw_time FROM time short description
ROW2CELL r2c'));
/

The following query shows some of the aggregate data in the view.

30-2 Oracle OLAP Reference

OLAP_EXPRESSION Examples

SQL>SELECT * FROM unit_cost_price view
WHERE aw_product = 'Hardware'
AND aw_time in ('2000', '2001', '2002', '2003'
ORDER BY aw_time;

AW UNTT COST AW _UNIT PRICE AW PRODUCT AW TIME R2C

211680.12 224713.71 Hardware 2000 00...
195591.60 207513.16 Hardware 2001 00...
184413.05 194773.78 Hardware 2002 00...
73457.31 77275.06 Hardware 2003 00...

Example 30-1 OLAP_EXPRESSION: Time Series Function in a WHERE Clause

This example uses the view described in "Sample View: GLOBAL.UNIT_COST_
PRICE_VIEW" on page 30-2.

The following SELECT statement calculates an expression with an alias of PERIODAGO,
and limits the result set to calculated values greater than 50,000. The calculation uses
the LAG function to return the value of the previous time period.

SQL>SELECT aw_time time, aw unit cost unit cost,
OLAP_EXPRESSION (r2c,
'LAG (price_cube unit _cost, 1, time,
LEVELREL time levelrel)') periodago
FROM unit cost price view
WHERE aw_product = 'Hardware'
AND OLAP_EXPRESSION (r2c,
'LAG (price_cube unit cost, 1, time,
LEVELREL time levelrel)') > 50000;

This SELECT statement produces these results.

TIME UNIT_COST PERIODAGO
2003 73457.31 184413.05
2004 73457.31
1999 231095.4 162526.92
2000 211680.12 231095.4
2001 195591.6 211680.12
2002 184413.05 195591.6
Q2-99 57587.34 57856.76
Q3-99 59464 .25 57587.34
Q4-99 56187.05 59464.25
Q1-00 53982.32 56187.05
Q2-00 53629.74 53982.32
Q3-00 53010.65 53629.74
Q4-00 51057.41 53010.65
Q1-01 49691.22 51057.41

Example 30-2 OLAP_EXPRESSION: Numeric Calculation in an ORDER BY CLause

This example uses the view described in "Sample View: GLOBAL.UNIT_COST_
PRICE_VIEW" on page 30-2.

This example subtracts costs from price, and gives this expression an alias of MARKUP.
The rows are ordered by markup from highest to lowest.

SQL>SELECT aw_time time, aw unit cost unit cost, aw_unit price unit_price,
OLAP_EXPRESSION (r2c,
'PRICE CUBE_UNIT PRICE - PRICE CUBE UNIT COST') markup
FROM unit cost price view

OLAP_EXPRESSION 30-3

OLAP_EXPRESSION Examples

WHERE aw_product = 'Hardware'
AND aw_time in ('1998', '1999', '2000', '2001')
ORDER BY OLAP EXPRESSION (r2c,
'"PRICE_CUBE_UNIT PRICE - PRICE CUBE UNIT COST') DESC;

This SELECT statement produces these results.

TIME UNIT _COST UNIT PRICE MARKUP

1999 231095.40 245412.91 14317.51
2000 211680.12 224713.71 13033.59
2001 195591.60 207513.16 11921.56
1998 162526.92 173094 .41 10567.49

30-4 Oracle OLAP Reference

OLAP_EXPRESSION Syntax

OLAP_EXPRESSION Syntax

The OLAP_EXPRESSION function dynamically executes an OLAP DML numeric
expression within the context of an OLAP_TABLE function. In addition to returning a
custom measure, OLAP EXPRESSION can be used in the WHERE and ORDER BY
clauses to modify the result set of the query of the analytic workspace.

Syntax
OLAP_EXPRESSION (
r2c IN RAW(32),
numeric_expression IN VARCHAR2)
RETURN NUMBER;
Parameters
Table 30-1 OLAP_EXPRESSION Function Parameters
Parameter Description
r2c The name of a column specified by a ROW2CELL clause in the limit map.
OLAP_TABLE populates this column with information used by the OLAP
single-row functions, including OLAP_EXPRESSION. See "Limit Map
Parameter" on page 34-15.
numeric An OLAP DML expression that returns a numeric result. Search for
expression "expressions" in the Oracle OLAP DML Reference. See also "Guidelines for
Using Quotation Marks in OLAP DML Commands" on page 24-4.
Returns
An evaluation of numeric_expression for each row of the table object returned by the
OLAP_TABLE function.
OLAP EXPRESSION returns numeric data. To return text, boolean, or date data, use
the OLAP_ EXPRESSION TEXT, OLAP EXPRESSION BOOL, or OLAP EXPRESSION
DATE functions.
Example

See "OLAP_EXPRESSION Examples" on page 30-2.

OLAP_EXPRESSION 30-5

OLAP_EXPRESSION Syntax

30-6 Oracle OLAP Reference

31

OLAP_EXPRESSION_BOOL

OLAP_EXPRESSION BOOL is a SQL function that dynamically executes a single-row
boolean function in an analytic workspace and returns the results.

See Also: Chapter 30, "OLAP_EXPRESSION"

This chapter includes the following topics:
s OLAP_EXPRESSION_BOOL Overview
= OLAP_EXPRESSION_BOOL Example
= OLAP_EXPRESSION_BOOL Syntax

OLAP_EXPRESSION_BOOL Overview

OLAP_EXPRESSION_ BOOL acts as a boolean single-row function within the context of
a SELECT FROM OLAP_TABLE statement. You can specify OLAP_EXPRESSION_BOOL
in the same way you specify other Oracle single-row functions, notably in the select
list and WHERE clauses.

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. Oracle supports a number of predefined single-row functions, for example COS,
LOG, and ROUND which return numeric data, and UPPER and LOWER which return
character data. For more information on single-row functions, refer to the Oracle
Database SQL Reference.

The OLAP single-row functions, OLAP_EXPRESSION and its variants for text, date,
and boolean data, return the result of an OLAP DML expression that you specify. The
OLAP DML supports a rich syntax for specifying computations ranging from simple
arithmetic expressions to statistical, financial, and time-series operations.

You can use OLAP_EXPRESSION_ BOOL to dynamically perform any valid boolean
expression within an analytic workspace and retrieve its results. For more information
on boolean expressions in the OLAP DML, search for "boolean expression” in the
Oracle OLAP DML Reference.

OLAP_EXPRESSION_BOOL and OLAP_TABLE

OLAP TABLE uses a limit map to present the multidimensional data from an analytic
workspace in tabular form. The limit map specifies the columns of the logical table.
When an OLAP_EXPRESSION BOOL function is specified in the select list of the query,
OLAP TABLE generates an additional column for the results of the function.

OLAP_EXPRESSION_BOOL 31-1

OLAP_EXPRESSION_BOOL Example

To use OLAP_EXPRESSION_BOOL, you must specify a ROW2CELL clause in the limit
map used by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE
populates with information used by the OLAP single-row functions.

See Also: "Limit Maps" on page 34-1 and "Limit Map: ROW2CELL
Clause" on page 34-20

OLAP_EXPRESSION_BOOL Example

The following script was used to create the view awunits_view, which is used in
Example 31-1 to illustrate the use of OLAP EXPRESSION BOOL.

See Also: See "OLAP_TABLE Overview" on page 34-1 for
information about creating views of analytic workspaces.

Sample View: GLOBAL_AW.AWUNITS_VIEW

-- Create the logical row
CREATE TYPE awunits_row AS OBJECT (

awtime VARCHAR2 (12),
awcustomer VARCHAR2 (30) ,
awproduct VARCHAR2 (30) ,
awchannel VARCHAR2 (30),
awunits NUMBER (16) ,
r2c RAW(32)) ;

/
-- Create the logical table
CREATE TYPE awunits _table AS TABLE OF awunits row;
/
-- Create the view
CREATE OR REPLACE VIEW awunits_view AS
SELECT awunits,
awtime, awcustomer, awproduct, awchannel, r2c
FROM TABLE (OLAP_TABLE (
'global aw.globalaw DURATION SESSION',

'awunits_ table',

[
I

'"MEASURE awunits FROM units_cube aw units aw
DIMENSION awtime FROM time aw WITH
HIERARCHY time aw parentrel
DIMENSION awcustomer FROM customer aw WITH
HIERARCHY customer aw parentrel
(customer aw hierlist ''MARKET ROLLUP AW'')
INHIERARCHY customer aw_inhier
DIMENSION awproduct FROM product aw WITH
HIERARCHY product aw parentrel
DIMENSION channel aw WITH
HIERARCHY channel aw parentrel
ATTRIBUTE awchannel FROM channel aw short description
ROW2CELL r2c'))
WHERE awunits IS NOT NULL;
/
The following query shows some of the aggregate data in the view. For all products in
all markets during the year 2001, it shows the number of units sold through each
channel.

SQL> SELECT awchannel, awunits FROM awunits view
WHERE awproduct = '1'
AND awcustomer = '7'
AND awtime = '4';

31-2 Oracle OLAP Reference

OLAP_EXPRESSION_BOOL Example

AWCHANNEL AWUNITS
All Channels 415392
Direct Sales 43783
Catalog 315737
Internet 55872

The following statements show the descriptions of the Product, Customer, and Time
dimension members used in the query.

SQL>execute dbms_aw.execute ('limit product aw to ''1''');
SQL>execute dbms_aw.execute ('rpr product aw short description');

PRODUCT AW PRODUCT_AW_SHORT DESCRIPTION

1 Total Product

SQL>execute dbms_aw.execute('limit customer aw to ''7''');
SQL>execute dbms_aw.execute ('rpr customer aw_short description');

CUSTOMER AW CUSTOMER_AW_SHORT DESCRIPTION

7 Total Market

SQL>execute dbms_aw.execute('limit time aw to ''4''');
SQL>execute dbms_aw.execute ('rpr time aw_short description');

TIME AW TIME AW _SHORT DESCRIPTION

Example 31-1 OLAP_EXPRESSION_BOOL Function in a SELECT List

This example uses the view described in "Sample View: GLOBAL_AW.AWUNITS_
VIEW" on page 31-2.

The following SELECT statement calculates an expression with an alias of lowest__
units, which indicates whether or not the number of units of each product was less
than 500.

SQL>SELECT awproduct products,
olap expression bool (r2c, 'units cube aw units _aw le 500') lowest units
FROM awunits_ view

WHERE awproduct > 39
AND awproduct < 46
AND awcustomer = '7!'
AND awchannel = 'Internet'
AND awtime = '4';

PRODUCTS LOWEST UNITS

40 0

41 1

42 1

43 1

44 1

45 0

OLAP_EXPRESSION_BOOL 31-3

OLAP_EXPRESSION_BOOL Example

This query shows that products 41-44 all had less than 500 units. These products are
the documentation sets in German, French, Spanish, and Italian. The selected products
are shown as follows.

SQL>execute dbms_aw.execute
('limit product aw to product aw gt 39 and product aw lt 46');
SQL>execute dbms_aw.execute ('rpr product aw short description');

PRODUCT AW PRODUCT_AW_SHORT DESCRIPTION
40 0/S Documentation Set - English

41 0/S Documentation Set - German

42 0/S Documentation Set - French

43 0/S Documentation Set - Spanish

44 0/S Documentation Set - Italian

45 0/S Documentation Set - Kanji

31-4 Oracle OLAP Reference

OLAP_EXPRESSION_BOOL Syntax

OLAP_EXPRESSION_BOOL Syntax

Syntax

Parameters

Returns

Example

The OLAP_EXPRESSION_BOOL function dynamically executes an OLAP DML boolean
expression within the context of an OLAP_TABLE function.

OLAP_EXPRESSION BOOL (
ra2c IN RAW(32),
boolean expression IN VARCHAR2)
RETURN NUMBER;

Table 31-1 OLAP_EXPRESSION_BOOL Function Parameters

Parameter Description
r2c The name of a column populated by a ROW2CELL clause in a call to
OLAP_ TABLE.

ROW2CELL is a component of a limit map parameter of the OLAP_TABLE
function. See "Limit Map Parameter" on page 34-15.

boolean_ A boolean calculation that will be performed in the analytic workspace.

expression Search for "boolean expression” in the Oracle OLAP DML Reference. See
also "Guidelines for Using Quotation Marks in OLAP DML Commands"
on page 24-4.

An evaluation of boolean_expression for each row of the table object returned by the
OLAP_TABLE function.

OLAP_EXPRESSION BOOL returns boolean data. To return numeric, date, or text data,
use the OLAP_EXPRESSION, OLAP EXPRESSION DATE, or OLAP EXPRESSION
TEXT functions.

Refer to "OLAP_EXPRESSION" on page 30-1 for more examples of OLAP single-row
functions.

OLAP_EXPRESSION_BOOL 31-5

OLAP_EXPRESSION_BOOL Syntax

31-6 Oracle OLAP Reference

32

OLAP_EXPRESSION_DATE

OLAP_EXPRESSION DATE is a SQL function that dynamically executes a single-row
date function in an analytic workspace and returns the results.

See Also: Chapter 30, "OLAP_EXPRESSION"

This chapter includes the following topics:
= OLAP_EXPRESSION_DATE Overview
= OLAP_EXPRESSION_DATE Syntax

OLAP_EXPRESSION_DATE Overview

OLAP_EXPRESSION DATE acts as a single-row function within the context of a
SELECT FROM OLAP_TABLE statement. You can specify OLAP_EXPRESSION_DATE
in the same way you specify other Oracle single-row functions, notably in the select
list and WHERE and ORDER BY clauses.

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. Oracle supports a number of predefined single-row functions, for example COS,
LOG, and ROUND which return numeric data, and UPPER and LOWER which return
character data. For more information on single-row functions, refer to the Oracle
Database SQL Reference.

The OLAP single-row functions, OLAP_EXPRESSION and its variants for text, date,
and boolean data, return the result of an OLAP DML expression that you specify. The
OLAP DML supports a rich syntax for specifying computations ranging from simple
arithmetic expressions to statistical, financial, and time-series operations.

You can use OLAP_EXPRESSION DATE to dynamically calculate any valid date
expression within an analytic workspace and retrieve its results. For more information
on date expressions in the OLAP DML, search for "working with dates in text
expressions” and DATEFORMAT in the Oracle OLAP DML Reference.

OLAP_EXPRESSION_DATE and OLAP_TABLE

OLAP TABLE uses a limit map to present the multidimensional data from an analytic
workspace in tabular form. The limit map specifies the columns of the logical table.
When an OLAP_EXPRESSION DATE function is specified in the select list of the query,
OLAP TABLE generates an additional column for the results of the function.

OLAP_EXPRESSION_DATE 32-1

OLAP_EXPRESSION_DATE Overview

To use OLAP_EXPRESSION_DATE, you must specify a ROW2CELL clause in the limit
map used by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE
populates with information used by the OLAP single-row functions.

See Also: "Limit Maps" on page 34-1 and "Limit Map: ROW2CELL
Clause" on page 34-20

32-2 Oracle OLAP Reference

OLAP_EXPRESSION_DATE Syntax

OLAP_EXPRESSION_DATE Syntax

The OLAP_EXPRESSION_DATE function dynamically executes an OLAP DML date
expression within the context of an OLAP_TABLE function.

Syntax
OLAP_EXPRESSION DATE (
r2c IN RAW(32),
date expression IN VARCHAR2)
RETURN NUMBER;
Parameters
Table 32-1 OLAP_EXPRESSION_DATE Function Parameters
Parameter Description
r2c The name of a column populated by a ROW2CELL clause in a call to
OLAP_ TABLE.
ROW2CELL is a component of a limit map parameter of the OLAP_TABLE
function. See "Limit Map Parameter" on page 34-15.
date_ A date expression in the analytic workspace. Search for "working with
expression dates in text expressions" and DATEFORMAT in the Oracle OLAP DML
Reference. See also "Guidelines for Using Quotation Marks in OLAP DML
Commands" on page 24-4.
Returns
An evaluation of date_expression for each row of the table object returned by the OLAP
TABLE function.
OLAP_EXPRESSION DATE returns date data. To return numeric, boolean, or text data,
use the OLAP_EXPRESSION, OLAP_EXPRESSION BOOL, or OLAP EXPRESSION
TEXT functions.
Example

Refer to "OLAP_EXPRESSION Examples" on page 30-2 and "OLAP_EXPRESSION_
BOOL Example" on page 31-2 for examples of OLAP single-row functions.

OLAP_EXPRESSION_DATE 32-3

OLAP_EXPRESSION_DATE Syntax

32-4 Oracle OLAP Reference

33

OLAP_EXPRESSION_TEXT

OLAP_EXPRESSION TEXT is a SQL function that dynamically executes a single-row
character function in an analytic workspace and returns the results.

See Also: Chapter 30, "OLAP_EXPRESSION"

This chapter includes the following topics:
s OLAP_EXPRESSION_TEXT Overview
s OLAP_EXPRESSION_TEXT Syntax

OLAP_EXPRESSION_TEXT Overview

OLAP_EXPRESSION_TEXT acts as a single-row character function within the context
of a SELECT FROM OLAP_TABLE statement. You can specify OLAP_EXPRESSION
TEXT in the same way you specify other Oracle single-row functions, notably in the
select list and WHERE and ORDER BY clauses.

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. Oracle supports a number of predefined single-row functions, for example COS,
LOG, and ROUND which return numeric data, and UPPER and LOWER which return
character data. For more information on single-row functions, refer to the Oracle
Database SQL Reference.

The OLAP single-row functions, OLAP_EXPRESSION and its variants for text, date,
and boolean data, return the result of an OLAP DML expression that you specify. The
OLAP DML supports a rich syntax for specifying computations ranging from simple
arithmetic expressions to statistical, financial, and time-series operations.

You can use OLAP_EXPRESSION TEXT to dynamically calculate any valid text
expression within an analytic workspace and retrieve its results. For more information
on text expressions in the OLAP DML, search for "text expression” in the Oracle OLAP
DML Reference.

OLAP_EXPRESSION_TEXT and OLAP_TABLE

OLAP TABLE uses a limit map to present the multidimensional data from an analytic
workspace in tabular form. The limit map specifies the columns of the logical table.
When an OLAP_EXPRESSION TEXT function is specified in the select list of the query,
OLAP TABLE generates an additional column for the results of the function.

OLAP_EXPRESSION_TEXT 33-1

OLAP_EXPRESSION_TEXT Overview

To use OLAP_EXPRESSION_TEXT, you must specify a ROW2CELL clause in the limit
map used by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE
populates with information used by the OLAP single-row functions.

See Also: "Limit Maps" on page 34-1 and "Limit Map: ROW2CELL
Clause" on page 34-20

33-2 Oracle OLAP Reference

OLAP_EXPRESSION_TEXT Syntax

OLAP_EXPRESSION_TEXT Syntax

The OLAP_EXPRESSION_TEXT function dynamically executes an OLAP DML text
expression within the context of an OLAP_TABLE function.

Syntax

OLAP_EXPRESSION TEXT (
ra2c IN RAW(32),
text expression IN VARCHAR2)
RETURN NUMBER;

Parameters

Table 33-1 OLAP_EXPRESSION_TEXT Function Parameters

Parameter Description

r2c The name of a column populated by a ROW2CELL clause in a call to
OLAP_ TABLE.

ROW2CELL is a component of a limit map parameter of the OLAP_TABLE
function. See "Limit Map Parameter" on page 34-15.

text_ A text expression in the analytic workspace. Search for "text expression”
expression in the Oracle OLAP DML Reference. See also "Guidelines for Using
Quotation Marks in OLAP DML Commands" on page 24-4.

Returns
An evaluation of text_expression for each row of the table object returned by the OLAP_
TABLE function.

OLAP_EXPRESSION TEXT returns character data. To return numeric, boolean, or date
data, use the OLAP_EXPRESSION, OLAP EXPRESSION BOOL, or OLAP
EXPRESSION DATE functions.

Example

Refer to "OLAP_EXPRESSION Examples" on page 30-2 and "OLAP_EXPRESSION_
BOOL Example" on page 31-2 for examples of OLAP single-row functions.

OLAP_EXPRESSION_TEXT 33-3

OLAP_EXPRESSION_TEXT Syntax

33-4 Oracle OLAP Reference

34

OLAP_TABLE

OLAP_TABLE is a SQL function that extracts multidimensional data from an analytic
workspace and presents it in the two-dimensional format of a relational table.

See Also:

» Oracle OLAP Application Developer’s Guide

» Oracle OLAP DML Reference

s Chapter 29, "OLAP_CONDITION"

s Chapter 30, "OLAP_EXPRESSION"

This chapter contains the following topics:
s OLAP_TABLE Overview

= OLAP_TABLE Examples

= OLAP_TABLE Syntax

OLAP_TABLE Overview

OLAP_TABLE is the fundamental mechanism in the Database for querying an analytic
workspace. Within a SQL statement, you can specify an OLAP_TABLE function call
wherever you would provide the name of a table or view.

OLAP_TABLE returns a table of objects that can be joined to relational tables and views,
and to other tables of objects populated by OLAP_TABLE.

OLAP_TABLE is used internally by the tools and APlIs that access analytic workspaces.
For example, Analytic Workspace Manager, the Active Catalog views, the OLAP Java
APIs, and the DBMS_AW package all use OLAP_TABLE to obtain data and other
information from analytic workspaces.

Note: The OLAP tools and APIs that use OLAP_TABLE require
database standard form, but OLAP TABLE itself does not use standard
form metadata. See the Oracle OLAP Application Developer’s Guide for
information on standard form.

Limit Maps
OLAP_TABLE uses a limit map to map dimensions and measures defined in an
analytic workspace to columns in a logical table. The limit map combines with the

OLAP_TABLE 34-1

OLAP_TABLE Overview

WHERE clause of a SQL SELECT statement to generate a series of OLAP DML LIMIT
commands that are executed in the analytic workspace.

OLAP_TABLE can use a limit map in conjunction with a predefined logical table, or it
can use the information in a limit map to dynamically generate a logical table at
runtime.

See Also: "Limit Map Parameter” on page 34-15.

Logical Tables

The logical table populated by OLAP_TABLE is actually a table type whose rows are
user-defined object types, also known as Abstract Data Types or ADTs.

A user-defined object type is composed of attributes, which are equivalent to the
columns of a table. The basic syntax for defining a row is as follows.

CREATE TYPE object name AS OBJECT (

attributel datatype,
attribute2 datatype,
attributen datatype) ;

A table type is a collection of object types; this collection is equivalent to the rows of a
table. The basic syntax for creating a table type is as follows.

CREATE TYPE table name AS TABLE OF object name;

See Also:

» Oracle Database Application Developer’s Guide - Object-Relational
Features for information about object types

» "Create Type" in the Oracle Database SQL Reference

Using OLAP_TABLE With Predefined ADTs

You can predefine the table of objects or generate it dynamically. When you create the
table type in advance, it is available in the database for use by any invocation of
OLAP_ TABLE. Queries that use predefined objects typically perform better than
queries that dynamically generate the objects.

Example 34-1 shows how to create a view of an analytic workspace using predefined
ADTs.

Example 34-1 Template for Creating a View Using Predefined ADTs

SET ECHO ON
SET SERVEROUT ON

DROP TYPE table obj;
DROP TYPE row obj;

CREATE TYPE row obj AS OBJECT (

column first datatype,
column next datatype,
column n datatype) ;

/

CREATE TYPE table obj AS TABLE OF row obj;

/

CREATE OR REPLACE VIEW view name AS
SELECT column first, column next, column n
FROM TABLE (OLAP_TABLE (

34-2 Oracle OLAP Reference

OLAP_TABLE Overview

'analytic workspace',

'table obj',
'olap command',
'limit map'));

/

COMMIT;

/

GRANT SELECT ON view name TO PUBLIC;

Example 34-2 uses OLAP_TABLE with a predefined table type to create a relational
view of the TIME dimension in the GLOBAL analytic workspace of the GLOBAL AW
schema. The first parameter in the OLAP TABLE call is the name of the analytic
workspace. The second is the name of the predefined table type. The forth is the limit
map that specifies how to map the workspace dimension to the columns of the
predefined table type. The third parameter is not specified.

Example 34-2 Sample View of the TIME Dimension Using Predefined ADTs
CREATE TYPE time cal row AS OBJECT (

time id varchar2 (32),
cal_short label varchar2(32),
cal_end date date,

cal timespan number (6)) ;

CREATE TYPE time cal table AS TABLE OF time cal row;

CREATE OR REPLACE VIEW time cal view AS
SELECT time_id, cal _short label, cal end date, cal_ timespan
FROM TABLE (OLAP_TABLE (
'global aw.global duration session',
'time cal table',

[
r

'DIMENSION time_id from time with
HIERARCHY time_ parentrel
INHIERARCHY time inhier
ATTRIBUTE cal short label from time short description
ATTRIBUTE cal end date from time end date
ATTRIBUTE cal timespan from time time span'));

Using OLAP_TABLE With Automatic ADTs

If you do not supply the name of a table type as an argument, OLAP_TABLE uses
information in the limit map to generate the logical table automatically. In this case,
the table type is only available at runtime within the context of the calling SQL
SELECT statement.

Example 34-3 shows how to create a view of an analytic workspace using automatic
ADTs.

Example 34-3 Template for Creating a View Using Automatic ADTs

SET ECHO ON
SET SERVEROUT ON

CREATE OR REPLACE VIEW view name AS
SELECT column first, column next, column n
FROM TABLE (OLAP_TABLE (
'analytic workspace',

[
I

'olap command',

OLAP_TABLE 34-3

OLAP_TABLE Overview

'limit map'));
/
COMMIT;
/

GRANT SELECT ON view name TO PUBLIC;

Example 344 creates the same view produced by Example 34-2, but it automatically
generates the ADTs instead of using a predefined table type. It uses AS clauses in the
limit map to specify the data types of the target columns.

Example 34-4 View of the TIME Dimension Using Automatic ADTs

CREATE OR REPLACE VIEW time cal view AS
SELECT time id, cal_short label, cal end date, cal_timespan

FROM TABLE (OLAP_TABLE (

'global aw.global duration session',

null,
null,

'"DIMENSION time id AS varchar2(32) FROM time WITH
HIERARCHY time parentrel
INHIERARCHY time inhier
ATTRIBUTE cal short label AS VARCHAR2(32) from time short description

ATTRIBUTE cal end date AS DATE
ATTRIBUTE cal_timespan AS NUMBER (6)

from time end date
from time time span'));

When automatically generating ADTs, OLAP_TABLE uses default relational data types
for the target columns unless you override them with AS clauses in the limit map. The
default data type conversions used by OLAP_TABLE are described in Table 34-1.

Table 34-1

Default Data Type Conversions

Analytic Workspace Data Type

SQL Data Type

ID
TEXT

TEXT (n)

NTEXT

NTEXT (n)

NUMBER

NUMBER (p, s)

LONGINTEGER

INTEGER

SHORTINTEGER

INTEGER WIDTH 1

BOOLEAN

DECIMAL

SHORTDECIMAL

DATE

DAY, WEEK, MONTH, QUARTER, YEAR

DATETIME

34-4 Oracle OLAP Reference

CHAR (8)
VARCHAR?2 (4000)
VARCHAR2 (n)
NVARCHAR2 (4000)
NVARCHAR?2 (n)
NUMBER
NUMBER (p, s)
NUMBER (19)
NUMBER (10)
NUMBER (5)
NUMBER (3)
NUMBER (1)
BINARY DOUBLE
BINARY FLOAT
DATE

DATE

TIMESTAMP

OLAP_TABLE Overview

Table 34-1 (Cont.) Default Data Type Conversions

Analytic Workspace Data Type SQL Data Type

COMPOSITE VARCHAR2 (4000)

Other VARCHAR2 (4000)
Using a MODEL Clause

You can specify a MODEL clause in a SELECT FROM OLAP TABLE statement to
significantly improve query performance. The MODEL clause causes OLAP TABLE to
use an internal optimization.

You can use the following syntax to maximize the performance advantage of the
MODEL clause with OLAP_TABLE. This is the recommended syntax for views of
analytic workspaces.

SELECT column first, column next, column n
FROM TABLE (OLAP_TABLE (
'analytic workspace',
'table obj',
'olap command',
'limit map'))
MODEL
DIMENSION BY (dimensions, gids)
MEASURES (measures, attributes, rowtocell)
RULES UPDATE SEQUENTIAL ORDER() ;

The MODEL clause must include DIMENSION BY and MEASURES subclauses that
specify the columns in the table object. DIMENSION BY should list all the dimensions,
as defined in the limit map. The list should include the GID columns for applications
that use the OLAP API or BI Beans. MEASURES should list all the measures, attributes,
ROW2CELL columns, and any other columns excluded from the DIMENSION BY list.

A MODEL clause lets you view the results of a query as a multidimensional array and
specify calculations (rules) to perform on individual cells and ranges of cells within the
array. You can specify calculation rules in the MODEL clause with OLAP_TABLE, but
they will affect response time. If you wish to obtain the full benefit of the performance
optimization, you should specify UPDATE and SEQUENTIAL ORDER in the RULES
clause.

The UPDATE keyword indicates that you are not adding any custom members in the
DIMENSION BY clause. If you do not include this keyword, the SQL WHERE clauses for
measures will be discarded, which can significantly degrade performance.

The SEQUENTIAL ORDER keyword prevents Oracle from evaluating the rules to
ascertain their dependencies.

See Also:

» Oracle Database SQL Reference and Oracle Database Data
Warehousing Guide for more information on SQL models.

» Oracle OLAP Application Developer’s Guide for examples of OLAP_
TABLE queries that include a MODEL clause.

OLAP_TABLE 34-5

OLAP_TABLE Examples

OLAP_TABLE Examples

Because different applications have different requirements, several different formats
are commonly used for fetching data into SQL from an analytic workspace. The
examples in this chapter show how to create views using a variety of different formats.

See Also: "OLAP_TABLE Syntax" on page 34-12 for complete
descriptions of the syntax used in these examples.

Although these examples are shown as views, the SELECT statements can be extracted
from them and used directly to fetch data from an analytic workspace into an
application.

Note: The examples in this section use predefined ADTs. You could
modify them to use automatic ADTs. See "Using OLAP_TABLE With
Automatic ADTs" on page 34-3.

The examples in this section do not include a MODEL clause. In
general, you should specify a MODEL clause for performance reasons, as
described in "Using a MODEL Clause" on page 34-5.

Example: Creating Views of Embedded Total Dimensions

Example 34-5 shows the PL/SQL script used to create an embedded total view of the
TIME dimension in the GLOBAL analytic workspace. This view is similar to the view in
Example 34-2, but it specifies both a Calendar and a Fiscal hierarchy, and it includes
HATTRIBUTE subclauses for hierarchy-specific End Date attributes.

The INHIERARCHY subclause identifies a valueset in the analytic workspace that lists
all the dimension members in each hierarchy of a dimension. OLAP_TABLE saves the
status of all dimensions in the limit map that have INHIERARCHY subclauses during

the processing of the limit map. See "Order of Processing in OLAP_TABLE" on

page 34-21.

Example 34-5 Script for an Embedded Total Dimension View Using OLAP_TABLE
CREATE TYPE awtime row AS OBJECT (

awtime id VARCHAR2 (12) ,
awtime short label VARCHAR2 (12),
awtime cal end date DATE,
awtime fis end date DATE) ;

/

CREATE TYPE awtime table AS TABLE OF awtime row;

/

CREATE OR REPLACE VIEW awtime view AS
SELECT awtime_id, awtime short label,
awtime_cal_end_date, awtime_fis end date
FROM TABLE (OLAP_TABLE (
'global DURATION SESSION',

'awtime table',

[
I

'"DIMENSION awtime id FROM time WITH
HIERARCHY time_parentrel
(time_hierlist ''CALENDAR'')
INHIERARCHY time inhier
HATTRIBUTE awtime cal end date FROM time cal end date
HIERARCHY time parentrel

34-6 Oracle OLAP Reference

OLAP_TABLE Examples

(time_hierlist ''FISCAL'')
INHIERARCHY time inhier

HATTRIBUTE awtime fis end date

FROM time fis end date

ATTRIBUTE awtime short label FROM time short description'));

/
SQL>SELECT * FROM awtime view;

AWTIME_ID AWTIME_SHORT LABEL AWTIME_CAL_END DATE AWTIME_FIS_END DATE

19 Jan-98 31-JAN-98 31-JAN-98
20 Feb-98 28-FEB-98 28-FEB-98
21 Mar-98 31-MAR-98 31-MAR-98
22 Apr-98 30-APR-98 30-APR-98
23 May-98 31-MAY-98 31-MAY-98
24 Jun-98 30-JUN-98 30-JUN-98
98 Q1-03 31-MAR-03 30-SEP-03
99 02-03 30-JUN-03 31-DEC-03
1 1998 31-DEC-98 30-JUN-99
102 2003 31-DEC-03 30-JUN-04
119 2004 31-DEC-04 30-JUN-05
2 1999 31-DEC-99 30-JUN-00
3 2000 31-DEC-00 30-JUN-01
4 2001 31-DEC-01 30-JUN-02
85 2002 31-DEC-02 30-JUN-03
Note: Be sure to verify that you have created the views correctly

by issuing SELECT statements against them. Only at that time will
any errors in the call to OLAP_TABLE show up.

Example: Creating Views of Embedded Total Measures

In a star schema, a separate measure view is needed with columns that can be joined to
each of the dimension views. Example 34-6 shows the PL/SQL script used to create a
measure view with a column populated by a ROW2CELL clause to support custom

measures.

See Also:

information on ROW2CELL.

"Limit Map: ROW2CELL Clause" on page 34-20 for

Example 34-6 Script for a Measure View Using OLAP_TABLE

CREATE TYPE awunits_row AS OBJECT (

awtime VARCHAR2 (12) ,
awcustomer VARCHAR2 (30),
awproduct VARCHAR2 (30) ,
awchannel VARCHAR2 (30),
awunits NUMBER (16) ,
r2c RAW(32)) ;

/

CREATE TYPE awunits table AS TABLE

/

OF awunits_ row;

CREATE OR REPLACE VIEW awunits view AS

SELECT awunits,

awtime, awcustomer, awproduct, awchannel, r2c

FROM TABLE (OLAP_TABLE (

OLAP_TABLE 34-7

OLAP_TABLE Examples

'global DURATION SESSION',

'awunits_table',

[}
'

'MEASURE awunits FROM units_cube units
DIMENSION awtime FROM time WITH
HIERARCHY time parentrel
DIMENSION awcustomer FROM customer WITH
HIERARCHY customer parentrel
(customer_hierlist ''MARKET ROLLUP'')
INHIERARCHY customer inhier
DIMENSION awproduct FROM product WITH
HIERARCHY product_ parentrel
DIMENSION channel WITH
HIERARCHY channel parentrel
ATTRIBUTE awchannel FROM channel short description
ROW2CELL r2c'))
WHERE awunits IS NOT NULL;

SQL>SELECT awchannel, awunits FROM awunits_view
WHERE awproduct = '1'

AND awcustomer = '7'

AND awtime = '4';
AWCHANNEL AWUNITS
All Channels 415392
Direct Sales 43783
Catalog 315737
Internet 55872

Example: Creating Views in Rollup Form

Rollup form uses a column for each hierarchy level to show the full parentage of each
dimension member. The only difference between the syntax for rollup form and the
syntax for embedded total form is the addition of a FAMILYREL clause in the
definition of each dimension in the limit map.

See Also: "Limit Map: DIMENSION Clause: WITH HIERARCHY
Subclause" on page 34-18 for information on FAMILYREL.

Example 34-7 shows the PL/SQL script used to create a rollup view of the PRODUCT
dimension. It shows a dimension view to highlight the differences in the syntax of the
limit map from the one used for the embedded total form, as shown in Example 34-5,
"Script for an Embedded Total Dimension View Using OLAP_TABLE". Note that the
target columns for these levels are listed in the FAMILYREL clause from most
aggregate (CLASS) to least aggregate (ITEM), which is the order they are listed in the
level list dimension. The family relation returns four columns. The most aggregate
level (all products) is omitted from the view by mapping it to null.

Example 34-8 shows the alternate syntax for the FAMILYREL clause, which uses QDRs
to identify exactly which columns will be mapped from the family relation.

The limit maps in Example 34-7 and Example 34-8 generate identical views.

Example 34-7 Script for a Rollup View of Products Using OLAP_TABLE
CREATE TYPE awproduct row AS OBJECT (

class VARCHAR2 (50) ,
family VARCHAR2 (50) ,
item VARCHAR2 (50)) ;

/
CREATE TYPE awproduct table AS TABLE OF awproduct row;

34-8 Oracle OLAP Reference

OLAP_TABLE Examples

/
CREATE OR REPLACE VIEW awproduct view AS
SELECT class, family, item
FROM TABLE (OLAP_TABLE (
'global DURATION QUERY',

'awproduct table',

L}
I

'DIMENSION product WITH
HIERARCHY product parentrel
FAMILYREL null, class, family, item
FROM product familyrel USING product levellist
LABEL product_short description'));

SQL> SELECT * FROM awproduct_view
ORDER BY class, family, item;

CLASS FAMILY ITEM

Hardware CD-ROM Envoy External 6X CD-ROM
Hardware CD-ROM Envoy External 8X CD-ROM
Hardware CD-ROM External 6X CD-ROM
Hardware CD-ROM External 8X CD-ROM
Hardware CD-ROM Internal 6X CD-ROM
Hardware CD-ROM Internal 8X CD-ROM
Hardware CD-ROM

Hardware Desktop PCs Sentinel Financial
Hardware Desktop PCs Sentinel Multimedia

Software/Other Operating Systems Unix/Windows l-user pack
Software/Other Operating Systems Unix/Windows 5-user pack
Software/Other Operating Systems

Software/Other

Example 34-8 Script Using QDRs in the FAMILYREL Clause of OLAP_TABLE
CREATE OR REPLACE TYPE awproduct row AS OBJECT (

class VARCHAR2 (50) ,

family VARCHAR2 (50)

item VARCHAR2 (50)) ;
/
CREATE TYPE awproduct table AS TABLE OF awproduct row;
/

CREATE OR REPLACE VIEW awproduct_view AS
SELECT class, family, item
FROM TABLE (OLAP_TABLE (
'global DURATION QUERY',

'awproduct table',

[
’

'DIMENSION product WITH
HIERARCHY product parentrel
FAMILYREL class, family, item FROM
product familyrel (product levellist ''CLASS''),
product familyrel (product levellist ''FAMILY''),
product familyrel (product levellist ''ITEM'')
LABEL product short description'));

SQL> SELECT * FROM awproduct_view
ORDER BY by class, family, item;

OLAP_TABLE 34-9

OLAP_TABLE Examples

CLASS FAMILY ITEM

Hardware CD-ROM Envoy External 6X CD-ROM
Hardware CD-ROM Envoy External 8X CD-ROM
Hardware CD-ROM External 6X CD-ROM
Hardware CD-ROM External 8X CD-ROM
Hardware CD-ROM Internal 6X CD-ROM
Hardware CD-ROM Internal 8X CD-ROM
Hardware CD-ROM

Hardware Desktop PCs Sentinel Financial
Hardware Desktop PCs Sentinel Multimedia

Software/Other Operating Systems Unix/Windows l-user pack
Software/Other Operating Systems Unix/Windows 5-user pack
Software/Other Operating Systems

Software/Other

Using OLAP_TABLE with the FETCH Command

Oracle Express Server applications that are being revised for use with Oracle Database
can use an OLAP DML FETCH command instead of a limit map to map workspace
objects to relational columns.

The FETCH command is supplied in the third parameter of OLAP TABLE, which
specifies a single OLAP DML command. See "OLAP Command Parameter” on
page 34-13.

The script shown in Example 34-9 fetches data from two variables (SALES and COST)
in the GLOBAL analytic workspace, and calculates two custom measures (COST _
PRIOR_PERIOD and PROFIT). This example also shows the use of OLAP TABLE
directly by an application, without creating a view.

Important: The FETCH statement in Example 34-9 is formatted with
indentation for readability. In reality, the entire FETCH statement must
be entered on one line, without line breaks or continuation characters.

Example 34-9 Script Using FETCH with OLAP_TABLE

CREATE TYPE measure row AS OBJECT (

time VARCHAR2 (20) ,
geography VARCHAR2 (30) ,
product VARCHAR2 (30) ,
channel VARCHAR2 (30) ,
sales NUMBER (16) ,
cost NUMBER (16) ,
cost_prior period NUMBER (16) ,
profit NUMBER (16)) ;

/

CREATE TYPE measure_table AS TABLE OF measure_ row;

/

SELECT time, geography, product, channel,
sales, cost, cost prior period, profit
FROM TABLE (OLAP_TABLE (

'xademo DURATION SESSION',

'measure_table',

'FETCH time, geography, product, channel, analytic_cube f.sales,
analytic _cube f.costs,
LAG(analytic cube f.costs, 1, time, LEVELREL time member levelrel),

34-10 Oracle OLAP Reference

OLAP_TABLE Examples

analytic_cube f.sales - analytic_cube_f.costs',
ll))

WHERE channel = 'STANDARD 2.TOTALCHANNEL' AND
product = 'L1.TOTALPROD' AND
geography = 'L1.WORLD'

ORDER BY time;

This SQL SELECT statement returns the following result set:

GEOGRAPHY PRODUCT

CHANNEL

COST

COST PRIOR PERIOD

PROFIT

27

.APR96

L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD
L1.WORLD L1.TOTALPROD

rows selected.

STANDARD 2.
STANDARD 2.
STANDARD 2.
STANDARD 2.
STANDARD 2.
STANDARD 2.
STANDARD 2.
STANDARD 2.
STANDARD 2.

TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL
TOTALCHANNEL

118247112
46412113
26084848
26501765
30468054
19910347
27781702
33912508

8859808

2490243
1078031
560379
615399
649004
462632
582693
698166
188851

2490243

560379
615399
649004
462632
582693

OLAP_TABLE 34-11

115756869
45334082
25524469
25886367
29819049
19447715
27199009
33214342

8670957

OLAP_TABLE Syntax

OLAP_TABLE Syntax

Syntax

Parameters

Returns

The OLAP_TABLE function returns multidimensional data in an analytic workspace as
a logical table.

The order in which OLAP _TABLE processes information specified in its input
parameters is described in "Order of Processing in OLAP_TABLE" on page 34-21.

OLAP_TABLE (
analytic_workspace IN VARCHAR2,
table object IN VARCHAR2,
olap command IN VARCHAR2,
limit mapl IN VARCHAR2,
limit map2 IN VARCHAR2,
limit map8 IN VARCHAR2)
RETURN TYPE;

Table 34-2 OLAP_TABLE Function Parameters

Parameter Description

analytic_workspace The name of the analytic workspace with the source data. This parameter
also specifies how to attach the workspace to your session. See "Analytic
Workspace Parameter” on page 34-12.

table_object The name of a table of objects that has been defined to structure the
multidimensional data in tabular form. See "Table Object Parameter" on
page 34-13.

olap_command An optional OLAP DML command. See "OLAP Command Parameter" on
page 34-13.

limit_map]1...8 A keyword-based map that identifies the source objects in the analytic

workspace and the target columns in a table of objects. You can define up to
eight limit maps in order to circumvent the 4000 byte VARCHAR?2 limit. The
limit maps are concatenated. Be sure to include a space character if needed
between the strings. See "Limit Map Parameter" on page 34-15.

A table type whose rows are objects (ADTs) that identify the selected workspace data.
See "Logical Tables" on page 34-2.

Analytic Workspace Parameter

The first parameter of the OLAP TABLE function provides the name of the analytic
workspace where the source data is stored. It also specifies how long the analytic
workspace will be attached to your OLAP session, which opens on your first call to
OLAP_TABLE.

This parameter is always required by OLAP_TABLE.
The syntax of this parameter is:

' [owner.] aw_name DURATION QUERY | SESSION'

34-12 Oracle OLAP Reference

OLAP_TABLE Syntax

owner

QUERY

SESSION

For example:

'olapuser.xademo DURATION SESSION'

Specify owner whenever you are creating views that will be accessed by other users.
Otherwise, you can omit the owner if you own the analytic workspace. It is required
only when you are logged in under a different user name than the owner.

Attaches an analytic workspace for the duration of a single query. Use QUERY only
when you need to see updates to the analytic workspace made in other sessions.

SESSION attaches an analytic workspace and keeps it attached at the end of the query.
It provides better performance than QUERY because it keeps the OLAP session open.
This performance difference is significant when the function is called without either a
table_object parameter or AS clauses in the limit map; in this case, the OLAP_TABLE
function must determine the appropriate table definition. See "Using OLAP_TABLE
With Automatic ADTs" on page 34-3.

Table Object Parameter

The second parameter identifies the name of a predefined table of objects, as described
in "Using OLAP_TABLE With Predefined ADTs" on page 34-2.

This parameter is optional. Omit this parameter if you are using automatic ADTs.
The syntax of this parameter is:

'table name'

For example:

'product_dim tbl'

When you specify the table_name parameter, the column data types for the returned
data are predefined. In this case you cannot use AS clauses in the limit map.

When you omit the table_name parameter, the column data types for the returned data
are generated at runtime. You can either provide the target data types with AS clauses
in the limit map, or you can use the default data types described in Table 34-1,

" Default Data Type Conversions". See "Using OLAP_TABLE With Automatic ADTs"
on page 34-3.

OLAP Command Parameter

The third parameter of the OLAP_TABLE function is a single OLAP DML command. If
you want to execute more than one command, then you must create a program in your
analytic workspace and call the program in this parameter. The power and flexibility
of this parameter comes from its ability to process virtually any data manipulation
commands available in the OLAP DML.

The order in which OLAP_TABLE processes the olap_command parameter is specified in
"Order of Processing in OLAP_TABLE" on page 34-21.

The syntax of this parameter is:

OLAP_TABLE 34-13

OLAP_TABLE Syntax

'olap command'

There are two distinct ways of using the olap_command parameter:

s To make changes in the workspace session immediately before the data is fetched
(after all the limits have been applied)

» To specify the source data directly instead of using a limit map

Both methods are described in the following sections.

Using olap_command with a Limit Map

You may want your application to modify the analytic workspace on the fly during the
execution of OLAP_TABLE.

A common use of the olap_command parameter is to limit one or more dimensions. If
you limit any of the dimensions that have INHIERARCHY clauses in the limit map,
then the status of those dimensions is changed only during execution of this call to
OLAP_TABLE; the limits do not affect the rest of your OLAP session. However, other
commands (for example, commands that limit dimensions not referenced with
INHIERARCHY clauses) can affect your session.

If you want a limit on a dimension in the limit map to stay in effect for the rest of your
session, and not just during the command, specify it in the PREDMLCMD clause of the
limit map or specify an OLAP_CONDITION function in the SQL. SELECT statement.

The following is an example of a LIMIT command in the olap_command parameter.

'LIMIT product TO product_member levelrel ''L2''!'

See Also: Chapter 29, "OLAP_CONDITION".

Using FETCH in the olap_command Parameter

If you specify an OLAP DML FETCH command in the olap_command parameter, OLAP
TABLE uses it, instead of the instructions in the limit map, to fetch the source data for
the table object. Because of this usage, the olap_command parameter is sometimes
referred to as the data map. In general, you should not specify a limit map if you
specify a FETCH command.

Note: Normally, you should only use the FETCH command with
OLAP_TABLE if you are upgrading an Express application that used
the FETCH command for SNAPL If you are upgrading, note that the
full syntax is the same in Oracle as in Express 6.3. You can use the
same FETCH commands in OLAP_TABLE that you used previously
in SNAPIL The syntax of the FETCH command is documented in the
Oracle OLAP DML Reference

FETCH specifies explicitly how analytic workspace data is mapped to a table object.
The basic syntax is:

FETCH expression...

Enter one expression for each target column, listing the expressions in the same order
they appear in the row definition. Separate expressions with spaces or commas.You
must enter the entire statement on one line, without line breaks or continuation marks
of any type.

34-14 Oracle OLAP Reference

OLAP_TABLE Syntax

See Also: "Using OLAP_TABLE with the FETCH Command" on
page 34-10.

Limit Map Parameter

The fourth (and last) parameter of the OLAP TABLE function maps workspace objects
to relational columns and identifies the role of each one. See "Limit Maps" on
page 34-1.

The limit map can also specify special instructions to be executed by OLAP_TABLE. For
example: It can cause an OLAP DML command to execute before or after the limit map
is processed; it can specify a ROW2CELL column for the OLAP_CONDITION and OLAP
EXPRESSION functions. (See Chapter 29 and Chapter 30.)

The order in which OLAP_TABLE processes information in the limit map is specified in
"Order of Processing in OLAP_TABLE" on page 34-21.

The limit map parameter is generally a required parameter. It can only be omitted
when you specify a FETCH command in the olap_command parameter. See "OLAP
Command Parameter” on page 34-13.

You can supply the entire text of the limit map as a parameter to OLAP_TABLE, or you
can store all or part of the limit map in a text variable in the analytic workspace and
reference it using ampersand substitution. For example, the following OLAP_TABLE
query uses a limit map stored in a variable called 1imitmapvar in the GLOBAL
analytic workspace of the GLOBAL_AW schema.

SELECT * FROM TABLE (OLAP_ TABLE (
'global aw.global DURATION SESSION',

[N
’

[
r

'&(global aw.global!limitmapvar)');

If you supply the limit map as text within the call to OLAP_TABLE, then it has a
maximum length of 4000 characters, which is imposed by PL/SQL. If you store the
limit map in the analytic workspace, then the limit map has no maximum length.

The syntax of the limit map has numerous clauses, primarily for defining dimension
hierarchies. Pay close attention to the presence or absence of commas, since syntax
errors will prevent your limit map from being parsed. The syntax of the limit map is
summarized in Example 34-10. Individual syntax components are described in the
following sections.

OLAP_TABLE 34-15

OLAP_TABLE Syntax

Note: Several objects must be predefined within the workspace to
support the mapping of dimension hierarchies in the limit map. These
objects are already defined in standard form workspaces. If the
workspace does not conform to standard form, you may need to
prepare the workspace by defining objects such as:

= a parent relation, which identifies the parent of each dimension
member within a hierarchy.

= a hierarchy dimension, which lists the hierarchies of a dimension.

= an inhierarchy variable or valueset, which specifies which
dimension members belong to each level of a hierarchy.

= agrouping ID variable, which identifies the depth within a
hierarchy of each dimension member.

= afamily relation, which provides the full parentage of each
dimension member in a hierarchy.

s alevel dimension, which lists the levels of a dimension.

Instructions for creating these workspace objects are provided in the
Oracle OLAP Application Developer’s Guide.

Example 34-10 Syntax of an OLAP_TABLE Limit Map

' [MEASURE column [AS datatype] FROM {measure | AW EXPR expression}]

DIMENSION [column [AS datatype] FROM] dimension
[WITH
[HIERARCHY [column [AS datatype] FROM] parent relation

[(hierarchy dimension ''hierarchy name'')]

[INHIERARCHY inhierarchy obj]

[GID column [AS datatype] FROM gid variable]

[PARENTGID column [AS datatype] FROM gid variable]

[FAMILYREL columnl [AS datatypel],
column2 [AS datatypel],

. columnn [AS datatypel
FROM {expressionl, expression2, ... expressiomn |
family relation USING level dimension }

[LABEL label variable]]

[HATTRIBUTE column [AS datatype] FROM hier attribute variable]

]
[ATTRIBUTE column [AS datatype] FROM attribute variable]

]
ROW2CELL column]
LOOP composite dimension]
PREDMLCMD olap command]
POSTDMLCMD olap command] '

Where:

column is the name of a column in the target table.
datatype is the data type of column.

measutre is a measure in the analytic workspace.

expression is a formula or qualified data reference for objects in the analytic workspace.

34-16 Oracle OLAP Reference

OLAP_TABLE Syntax

dimension is a dimension in the analytic workspace.

parent_relation is a self-relation in the analytic workspace that defines the hierarchies
for dimension.

hierarchy_dimension is a dimension in the analytic workspace that contains the names
of the hierarchies for dimension.

hierarchy_name is a member of hierarchy_dimension.

inhierarchy_obj is a variable or valueset in the analytic workspace that identifies which
dimension members are in each level of the hierarchy.

gid_variable is a variable in the analytic workspace that contains the grouping ID of
each dimension member in the hierarchy.

family_relation is a self-relation that provides the full parentage of each dimension
member in the hierarchy.

level_dimension is a dimension in the analytic workspace that contains the names of the
levels for the hierarchy.

label_variable is a variable in the analytic workspace that contains descriptive text
values for dimension.

hier_attribute_variable is a variable in the analytic workspace that contains attribute
values for hierarchy_name.

attribute_variable is a variable in the analytic workspace that contains attribute values
for dimension.

composite_dimension is a composite dimension used in the definition of measure.

olap_command is an OLAP DML command.

Limit Map: MEASURE Clause

The MEASURE clause maps a variable, formula, or relation in the analytic workspace to
a column in the target table.

MEASURE column [AS datatype] FROM {measure | AW EXPR expression]
The AS subclause specifies the data type of the target column. You can specify an AS

subclause when the table of objects has not been predefined. See "Using OLAP_TABLE
With Automatic ADTs" on page 34-3.

In the FROM subclause, you can either specify the name of a workspace measure or an
OLAP expression that evaluates to a measure. For example:

AW _EXPR analytic cube sales - analytic cube cost
or
AW EXPR LOGDIF (analytic_cube sales, 1, time, LEVELREL time.lvlrel)

You can list any number of MEASURE clauses. This clause is optional when, for
example, you wish to create a dimension view.

Limit Map: DIMENSION Clause

The DIMENSION clause identifies a dimension or conjoint in the analytic workspace
that dimensions one or more measures or attributes, or provides the dimension
members for one or more hierarchies in the limit map.

DIMENSION [column [AS datatype] FROM] dimension

OLAP_TABLE 34-17

OLAP_TABLE Syntax

The column subclause is optional when you do not want the dimension members
themselves to be represented in the table. In this case, you should include a dimension
attribute that can be used for data selection.

For a description of the AS subclause, see "Limit Map: MEASURE Clause" on
page 34-17.

Every limit map should have at least one DIMENSION clause. If the limit map contains
MEASURE clauses, then it should also contain a single DIMENSION clause for each
dimension of the measures, unless a dimension is being limited to a single value. If the
measures are dimensioned by a composite, then you must identify each dimension in
the composite with a DIMENSION clause. For the best performance when fetching a
large result set, identify the composite in a LOOP clause. See "Limit Map: LOOP
Clause" on page 34-20.

A dimension can be named in only one DIMENSION clause. Subclauses of the
DIMENSION clause identify the dimension hierarchies and attributes.

Limit Map: WITH Subclause for Dimension Hierarchies and Attributes

The WITH subclause introduces a HIERARCHY or ATTRIBUTE subclause. If you do not
specify hierarchies or attributes, then omit the WITH keyword. If you specify both
hierarchies and attributes, then precede them with a single WITH keyword. The syntax
of the WITH clause is included in Example 34-10, "Syntax of an OLAP_TABLE Limit
Map". It is shown without the rest of the limit map syntax in Example 34-11.

Example 34-11 WITH Subclause of Limit Map DIMENSION Clause

[WITH
[HIERARCHY [column [AS datatype] FROM] parent relation

[(hierarchy dimension ''hierarchy name'')]

[INHIERARCHY inhierarchy obj]

[GID column [AS datatype] FROM gid variable]

[PARENTGID column [AS datatype] FROM gid variable]

[FAMILYREL columnl [AS datatypel,
column2 [AS datatype]l,

. columnn [AS datatypel]
FROM {expressionl, expression2,... expressionn |
family relation USING level dimension}
[LABEL label variable]l
[HATTRIBUTE column [AS datatype] FROM hier attribute variable]

]
[ATTRIBUTE column [AS datatype] FROM attribute variable]

Limit Map: DIMENSION Clause: WITH HIERARCHY Subclause

The HIERARCHY subclause identifies the parent self-relation in the analytic workspace
that defines the hierarchies for the dimension.

HIERARCHY [column [AS datatype] FROM] parent relation

[(hierarchy dimension ''hierarchy name'')]...
For a description of the column subclause, see "Limit Map: DIMENSION Clause" on
page 34-17.

If the dimension has more than one hierarchy, specify a hierarchy_dimension phrase.
hierarchy_dimension identifies a dimension in the analytic workspace which holds the
names of the hierarchies for this dimension. hierarchy_name is a member of hierarchy_

34-18 Oracle OLAP Reference

OLAP_TABLE Syntax

dimension. The hierarchy dimension is limited to hierarchy_name for all workspace
objects that are referenced in subsequent subclauses for this hierarchy (that is,
INHIERARCHY, GID, PARENTGID, FAMILYREL, and HATTRIBUTE).

To include multiple hierarchies for the dimension, specify a HIERARCHY subclause for
each one.

The HIERARCHY subclause is optional when the dimension does not have a hierarchy,
or when the status of the dimension has been limited to a single level of the hierarchy.

The keywords in the HIERARCHY subclause are described as follows:

INHIERARCHY inhierarchy_obj

The INHIERARCHY subclause identifies a boolean variable or a valueset in the
analytic workspace that identifies the dimension members in each level of the
hierarchy. It is required when there are members of the dimension that are omitted
from the hierarchy. It is good practice to include an INHIERARCHY subclause,
because OLAP_TABLE saves the status of all dimensions with INHIERARCHY
subclauses during the processing of the limit map.

GID column [AS datatype] FROM gid_variable

The GID subclause maps an integer variable in the analytic workspace, which
contains the grouping ID for each dimension member, to a column in the target
table. The grouping ID variable is populated by the OLAP DML GROUPINGID
command.

For a description of the AS subclause, see "Limit Map: MEASURE Clause" on
page 34-17.

The GID subclause is required for Java applications that use the OLAP APIL
PARENTGID column [AS datatype] FROM gid_variable

The PARENTGID subclause calculates the grouping IDs for the parent relation
using the GID variable in the analytic workspace. The parent GIDs are not stored
in a workspace object. Instead, you specify the same GID variable for the
PARENTGID clause that you used in the GID clause.

For a description of the AS subclause, see "Limit Map: MEASURE Clause" on
page 34-17.

The PARENTGID clause is recommended for Java applications that use the OLAP
APL

FAMILYREL columnl [AS datatype], column2 [AS datatype],
... columnn [AS datatype]
FROM {expressionl, expression2, ... expressionn |
family_relation USING level_dimension }
[LABEL label_variable]

The FAMILYREL subclause is used primarily to map a family relation in the
analytic workspace to multiple columns in the target table. List the columns in the
order of level_dimension (a dimension in the analytic workspace that holds the
names of all the levels for the dimension). If you do not want a particular level
included, then specify null for the target column. For a description of the AS
subclause, see "Limit Map: MEASURE Clause" on page 34-17.

The tabular data resulting from a FAMILYREL clause is in rollup form, in which
each level of the hierarchy is represented in a separate column, and the full
parentage of each dimension member is identified within the row. See "Example:
Creating Views in Rollup Form" on page 34-8.

OLAP_TABLE 34-19

OLAP_TABLE Syntax

The LABEL keyword identifies a text attribute that provides more meaningful
names for the dimension members.

You can use multiple FAMILYREL clauses for each hierarchy.
= HATTRIBUTE column [AS datatype] FROM hier_attribute_variable

The HATTRIBUTE subclause maps a hierarchy-specific attribute variable,
dimensioned by hierarchy_dimension in the analytic workspace, to a column in the
target table.

Limit Map: DIMENSION Clause: WITH ATTRIBUTE Subclause

The ATTRIBUTE subclause maps an attribute variable in the analytic workspace to a
column in the target table.

ATTRIBUTE column [AS datatype] FROM attribute variable

If attribute_variable has multiple dimensions, then values are mapped for all members
of dimension, but only for the first member in the current status of additional
dimensions. For example, if your attributes have a language dimension, then you must
set the status of that dimension to a particular language. You can set the status of
dimensions in a PREDMLCMD clause. See "Limit Map: PREDMLCMD Clause" on

page 34-20.

Limit Map: ROW2CELL Clause

The ROW2CELL clause creates a RAW column, between 16 and 32 characters wide, in the
target table and populates it with information that is used by the OLAP_EXPRESSION
functions. The OLAP_CONDITION function also uses the ROW2CELL column. Specify a
ROW2CELL column when creating a view that will be used by these functions. See
Chapter 29 and Chapter 30.

ROW2CELL column

Limit Map: LOOP Clause

The LOOP clause identifies a single named composite that dimensions one or more
measures specified in the limit map. It improves performance when fetching a large
result set; however, it can slow the retrieval of a small number of values.

LOOP sparse dimension

Limit Map: PREDMLCMD Clause

The PREDMLCMD clause specifies an OLAP DML command that is executed before the
data is fetched from the analytic workspace into the target table. It can be used, for
example, to execute an OLAP model or forecast whose results will be fetched into the
table. The results of the command are in effect during execution of the limit map, and
continue into your session after execution of OLAP_TABLE is complete. See "Order of
Processing in OLAP_TABLE" on page 34-21.

PREDMLCMD olap command

Limit Map: POSTDMLCMD Clause

The POSTDMLCMD clauses specifies an OLAP DML command that is executed after the
data is fetched from the analytic workspace into the target table. It can be used, for
example, to delete objects or data that were created by commands in the PREDMLCMD
clause, or to restore the dimension status that was changed in a PREDMLCMD clause.
See "Order of Processing in OLAP_TABLE" on page 34-21.

34-20 Oracle OLAP Reference

OLAP_TABLE Syntax

POSTDMLCMD olap command

Order of Processing in OLAP_TABLE

The following list identifies the order in which the OLAP_TABLE function processes
instructions in the limit map that can change the status of dimensions in the analytic
workspace.

1.

Execute any OLAP DML command specified in the PREDMLCMD parameter of the
limit map.

Save the current status of all dimensions in the limit map so that it can be restored
later (PUSH status).

Keep in status only those dimension members specified by INHIERARCHY
subclauses in the limit map (LIMIT KEEP).

Within the status set during step 3, keep only those dimension members that
satisfy the WHERE clause of the SQL SELECT statement containing the OLAP
TABLE function (LIMIT KEEP).

Execute any OLAP DML command specified in the olap_command parameter of the
OLAP_TABLE function. (If olap_command includes a FETCH, fetch the data.)

Fetch the data (unless a FETCH command was specified in the olap_command
parameter).

Restore the status of all dimensions in the limit map (POP status).

Execute any OLAP DML command specified in the POSTDMLCMD parameter of the
limit map.

OLAP_TABLE 34-21

OLAP_TABLE Syntax

34-22 Oracle OLAP Reference

A

abstract data types, 34-2

automatic, 34-3

predefining, 34-2
Active Catalog, 1-5,3-1,3-2,19-2,34-1

direct metadata access, 3-5, 3-7, 3-8
ADD_DIMENSION_SOURCE procedure, 24-14
ADT

See abstract data types
ADVISE_CUBE procedure, 24-15
ADVISE_DIMENSIONALITY function, 24-16
ADVISE_DIMENSIONALITY procedure, 24-18
ADVISE_REL procedure, 24-8,24-20
ADVISE_SPARSITY procedure, 24-21
Aggregate Advisor, 24-8 to 24-11
aggregate cache

performance statistics, 6-3
aggregation

in analytic workspaces, 1-4,1-14, 24-8 to 24-11,

26-13, 26-20

operators, 1-16, 5-3, 6-2
aggregation specifications, 1-4, 1-5, 1-10, 1-12, 3-6

creating, 1-14, 26-20

DBMS_AWM methods on, 1-8
ALL_AW_CUBE_AGG_LEVELS view, 4-3
ALL_AW_CUBE_AGG_MEASURES view, 4-3
ALL_AW_CUBE_AGG_PLANS view, 4-4
ALL_AW_CUBE_ENABLED_HIERCOMBO

view, 4-4

ALL_AW_CUBE_ENABLED_VIEWS view, 4-4
ALL_AW_DIM_ENABLED_VIEWS view, 4-5
ALL_AW_LOAD_CUBE_DIMS view, 4-6
ALL_AW_LOAD_CUBE_FILTS view, 4-6
ALL_AW_LOAD_CUBE_MEASURES view, 4-7
ALL_AW_LOAD_CUBE_PARMS view, 4-7
ALL_AW_LOAD_CUBES view, 4-5
ALL_AW_LOAD_DIM_FILTERS view, 4-8
ALL_AW_LOAD_DIM_PARMS view, 4-9
ALL_AW_LOAD_DIMENSIONS view, 4-8
ALL_AW_OB]J view, 4-9
ALL_AW_PROP view, 4-10
ALL_OLAP2_AGGREGATION_USES view, 5-3
ALL_OLAP2_AW_ATTRIBUTES view, 3-4
ALL_OLAP2_AW_CUBE_AGG_LVL view, 3-5
ALL_OLAP2_AW_CUBE_AGG_MEAS view, 3-6

Index

ALL_OLAP2_AW_CUBE_AGG_OP view, 3-6
ALL_OLAP2_AW_CUBE_AGG_SPECS view, 3-6
ALL_OLAP2_AW_CUBE_DIM_USES view, 3-7
ALL_OLAP2_AW_CUBE_MEASURES view, 3-7
ALL_OLAP2_AW_CUBES view, 3-5
ALL_OLAP2_AW_DIM_HIER_LVL_ORD view, 3-8
ALL_OLAP2_AW_DIM_LEVELS view, 3-8
ALL_OLAP2_AW_DIMENSIONS view, 3-8
ALL_OLAP2_AW_MAP_ATTR_USE view (obsolete)

See ALL_OLAP2_AW_ATTRIBUTES view
ALL_OLAP2_AW_MAP_DIM_USE view (obsolete)

See ALL_OLAP2_AW_DIMENSIONS view
ALL_OLAP2_AW_MAP_MEAS_USE view (obsolete)

See ALL_OLAP2_AW_CUBE_MEASURES view
ALL_OLAP2_AW_PHYS_OBJ_PROP view, 3-9
ALL_OLAP2_AWS view, 3-4
ALL_OLAP2_CATALOG_ENTITY_USES view, 5-4
ALL_OLAP2_CATALOGS view, 5-4
ALL_OLAP2_CUBE_DIM_USES view, 5-5
ALL_OLAP2_CUBE_MEAS_DIM_USES view, 5-6
ALL_OLAP2_CUBE_MEASURE_MAPS view, 5-5
ALL_OLAP2_CUBE_MEASURES view, 5-5
ALL_OLAP2_CUBES view, 5-4
ALL_OLAP2_DIM_ATTR_USES view, 5-7
ALL_OLAP2_DIM_ATTRIBUTES view, 5-6
ALL_OLAP2_DIM_HIER_LEVEL_USES view, 5-7
ALL_OLAP2_DIM_HIERARCHIES view, 5-7
ALL_OLAP2_DIM_LEVEL_ATTR_MAPS view, 5-8
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES view, 5-8
ALL_OLAP2_DIM_LEVELS view, 5-8
ALL_OLAP2_DIMENSIONS view, 5-6
ALL_OLAP2_ENTITY_EXT_PARMS view, 5-9
ALL_OLAP2_ENTITY_PARAMETERS view, 5-10
ALL_OLAP2_FACT_LEVEL_USES view, 5-11
ALL_OLAP2_FACT_TABLE_GID view, 5-12
ALL_OLAP2_HIER_CUSTOM_SORT view, 5-12
ALL_OLAP2_JOIN_KEY_COLUMN_USES

view, 5-13
allocation operators, 6-2
ALTER SESSION commands, 28-1
analytic workspace maintenance views, 1-5,4-1
analytic workspace management APIs, 25-1,

26-1 to 26-53
Analytic Workspace Manager, 1-1, 1-19, 26-1, 34-1
analytic workspace objects

defining in XML, 25-1

Index-1

obtaining names in SQL, 4-9
analytic workspaces
accessing from SQL, 24-1 to 24-39
Active Catalog, 3-1
aggregation, 1-4, 1-14, 24-8, 26-13, 26-20
converting to 10g storage format, 1-17, 3-4, 24-2
creating with DBMS_AWM, 1-9
creating with OLAP Analytic Workspace Java
API, 25-1
creating with XML, 25-1
dimensions, 1-12
enabling for SQL access, 26-1,26-17, 26-19, 26-24,
26-26, 26-30, 26-35, 26-39, 26-41, 26-45, 26-49
enabling for the OLAP API, 1-17
importing from Oracle 9i, 24-2
list of, 3-4
maintenance views, 4-1
performance counters, 6-5
refreshing, 1-5,1-6,1-9,1-10, 1-11, 1-12, 1-16, 1-20,
26-37, 26-39
see also database standard form
storage format, 1-17, 3-4, 24-2
views of, 1-20, 1-21, 26-19, 26-26, 26-30, 26-35
attributes
viewing, 5-7
AW_ATTACH procedure, 24-23
AW_COPY procedure, 24-24
AW_CREATE procedure, 24-25
AW_DELETE procedure, 24-26
AW_DETACH procedure, 24-26
AW_RENAME procedure, 24-27
AW_TABLESPACE function, 24-27
AW_UPDATE procedure, 24-28
AWXML
see OLAP Analytic Workspace Java API
AWXML.xsd, 25-1
AWXML.xsd schema, 25-1

Cc

caches
performance statistics, 6-3
composite specifications, 1-5,4-1, 4-3, 4-6, 26-14
DBMS_AWM methods on, 1-8
composites, 1-12,26-14
composites (regular and compressed)
defined, 24-5
CONVERT procedure, 24-29
cube load specifications, 1-4, 1-5, 4-5, 26-21
DBMS_AWM methods on, 1-7
cubes, 1-5
creating, 2-8,7-1,9-1
creating in analytic workspaces, 1-4,26-15
DBMS_AWM methods on, 1-6
in analytic workspaces, 3-5
naming in analytic workspaces, 26-2
populating in analytic workspaces, 26-37
source, 26-1
target, 26-1
valid, 22-1

Index-2

viewing, 5-4
custom measures, 30-1,32-1, 33-1
creating with OLAP Analytic Workspace Java
API, 25-1
examples with OLAP_EXPRESSION, 30-2 to 30-4
CWM2, 1-3,2-1t02-14
directing output, 2-14
read APIs, 2-14
write APIs, 2-1to2-9
CWM2_OLAP_CATALOG package, 7-1to7-6
CWM2_OLAP_CLASSIFY package, 8-1to 8-9
CWM2_OLAP_CUBE package, 9-1to9-10
CWM2_OLAP_DELETE package, 10-1 to 10-9
CWM2_OLAP_DIMENSION package, 11-1to 11-7
CWM2_OLAP_DIMENSION_ATTRIBUTE
package, 12-1to 12-8
CWM2_OLAP_EXPORT package, 13-1 to 13-10
CWM2_OLAP_HIERARCHY package, 14-1to 14-7
CWM2_OLAP_LEVEL package, 15-1to 15-8
CWM2_OLAP_LEVEL_ATTRIBUTE
package, 16-1to 16-8
CWM2_OLAP_MANAGER package, 1-9,1-11,2-11,
2-13,17-1to 17-5
CWM2_OLAP_MEASURE package, 18-1to 18-7
CWM2_OLAP_METADATA_REFRESH
package, 19-1to 19-4
CWM2_OLAP_PC_TRANSFORM
package, 20-1to 20-7
CWM2_OLAP_TABLE_MAP package, 21-1to 21-14
CWM2_OLAP_VALIDATE package, 22-1 to 22-7
CWM2_OLAP_VERIFY_ACCESS
package, 23-1to 23-3

D

data type conversions, 1-11, 34-4

database cache, 6-3

database initialization, 28-1

database standard form, 3-1, 24-4,26-15, 34-1
see also analytic workspaces
version, 3-4
views of, 3-1to 3-9

DBMS_AW
SPARSITY_ADVICE_TABLE procedure, 24-39

DBMS_AW package, 24-1 to 24-39, 34-1
ADD_DIMENSION_SOURCE procedure, 24-14
ADVISE_CUBE procedure, 24-15
ADVISE_DIMENSIONALITY function, 24-16
ADVISE_DIMENSIONALITY procedure, 24-18
ADVISE_REL procedure, 24-20
ADVISE_SPARSITY procedure, 24-21
AW_ATTACH procedure, 24-23
AW_COPY procedure, 24-24
AW_CREATE procedure, 24-25
AW_DELETE procedure, 24-26
AW_DETACH procedure, 24-26
AW_RENAME procedure, 24-27
AW_TABLESPACE function, 24-27
AW_UPDATE procedure, 24-28
CONVERT procedure, 24-29

EVAL_NUMBER function, 24-29
EVAL_TEXT function, 24-30
EXECUTE procedure, 24-31
GETLOG function, 24-32
INFILE procedure, 24-32
INTERP function, 24-33
INTERP_SILENT function, 24-35
INTERPCLOB function, 24-34
OLAP_ON function, 24-35,24-36
PRINTLOG procedure, 24-36
RUN procedure, 24-37
SHUTDOWN procedure, 24-39
STARTUP procedure, 24-39
DBMS_AW$_COLUMNLIST_T table, 24-5
DBMS_AW$_DIMENSION_SOURCE_T object
type, 24-5
DBMS_AW$_DIMENSION_SOURCES_T table
type, 24-5
DBMS_AW_XML package, 25-1
DBMS_AWM package, 1-1to 1-26, 3-1, 26-1 to 26-53
DBMS_ODM package, 27-1 to 27-12
dimension alias, 5-5
dimension attributes
creating, 12-1
reserved, 12-1
viewing, 5-6
dimension load specifications, 1-3, 1-5, 26-27, 26-39
DBMS_AWM methods on, 1-7
dimension tables, 2-9
defining OLAP Catalog metadata for, 2-2
dimension views
defining for workspace objects, 1-21, 26-24
dimensions, 1-5
creating, 2-2,11-1
creating in analytic workspaces, 1-3,26-22
DBMS_AWM methods on, 1-5
embedded-total, 20-6
in analytic workspaces, 3-7, 3-8
naming in analytic workspaces, 26-2
ordering in analytic workspaces, 1-4,1-13
parent-child, 20-1
populating in analytic workspaces, 26-39
valid, 22-1
viewing, 5-6
directory object, 1-18, 2-14, 17-4, 20-1, 20-6, 26-18,
26-25, 26-30, 26-35, 27-10, 27-11, 27-12
DISPLAY_NAME, 4-9,26-53
dynamic performance views, 6-1 to 6-6

E

embedded-total cubes, 22-2
embedded-total dimension views, 1-17,1-21, 34-6
embedded-total fact tables, 2-10
embedded-total fact view, 1-18,34-7
embedded-total key, 2-10,22-2
enabling for relational access, 1-4,1-17

See Also analytic workspaces

enabling for SQL access

End Date, 12-1,16-1

end-date attribute, 22-2

ET Key, 12-2,16-2
EVAL_NUMBER function, 24-29
EVAL_TEXT function, 24-30
EXECUTE procedure, 24-31

F

fact tables, 2-9,5-11
defining OLAP Catalog metadata for, 2-7
joining with dimension tables, 2-9
supported configurations, 2-9
fact views
defining from workspace objects, 1-23,26-17,
26-19, 26-26, 26-30, 26-35
FETCH command (OLAP DML), 34-10, 34-14
fixed views, 6-1

GETLOG function, 24-32
grouping IDs, 1-22,2-10, 5-12, 12-2, 16-2, 20-3, 22-2
parent, 1-22

H

hierarchies
creating, 14-1
custom sorting, 5-12, 21-5
defined, 14-1
viewing, 5-7,5-13

INFILE procedure, 24-32
initialization parameters, 28-1
init.ora file, 28-1
INTERACTIONEXECUTE function
see DBMS_AW_XML package
INTERP function, 24-33
INTERP_SILENT procedure, 24-35
INTERPCLOB function, 24-34

J

Java API
Analytic Workspace, 25-1

L

level attributes
creating, 16-1
defined, 16-1
reserved, 16-1
viewing, 5-8
levels
creating, 15-1
in analytic workspaces, 3-5, 3-8
viewing, 5-8
limit maps, 34-1, 34-14, 34-15 to 34-20
order of processing, 34-21

Index-3

syntax, 34-15
Long Description, 12-1,16-1

materialized views

for OLAP API, 27-1
measure folders

creating, 7-1

defined, 5-4,7-1

viewing, 5-4
measures

creating, 18-1

defined, 18-1

in analytic workspaces, 3-6, 3-7

viewing, 5-5
metadata descriptors, 8-1 to 8-9
Metadata Reader tables

refreshing, 2-10,2-12,2-14
metadata upgrade, 26-53
MR_REFRESH procedure, 19-4
MRV_OLAP views, 2-12,2-14,19-1,19-2
multidimensional data

enabling for SQL access, 1-17,26-1,26-17, 26-19,

26-24, 26-26, 26-30, 26-35

multidimensional data model

Active Catalog, 3-1

database standard form, 3-1
multidimensional target cube, 1-2

(0]

object types
automatic, 34-2
predefining, 34-2
syntax for creating, 34-2
OLAP Analytic Workspace Java API, 2-1,3-1,4-9,
4-10, 34-1
OLAP API, 34-1
Metadata Reader tables, 2-12,2-14
optimization, 28-1
OLAP Catalog, 2-12,19-1
exporting, 13-1
metadata entities, 2-2
metadata entity size, 2-2
metadata entity size limitations, 2-13
overview, 2-1,3-1
preprocessors, 20-1
read APIs, 2-14,4-1,5-1,19-1
viewing, 2-14,5-1,19-1
write APIs, 2-1to2-9
OLAP Catalog metadata
committing, 2-10
creating for a dimension table, 2-3
creating for a fact table, 2-8
creating for DBMS_AWM, 1-3, 2-1
creating for the OLAP API, 2-1
deleting, 10-1
exporting, 13-1
mapping, 2-5,2-7,2-9,5-5, 5-8,5-13, 21-1, 22-2

Index-4

mapping to embedded-total tables, 2-2,2-9
mapping to star and snowflake schemas, 2-2,2-9
validating, 2-10 to 2-12, 22-1, 23-1
OLAP DML
executing in SQL, 24-1 to 24-37, 29-1 to 29-7,
30-1 to 30-4, 31-1 to 31-5, 32-1 to 32-3,
33-1 to 33-3
quotation marks in, 24-4
OLAP performance views, 6-1
OLAP XML schema, 25-1
OLAP_API_SESSION_INIT package, 28-1to 28-5
OLAP_CONDITION function, 29-1 to 29-7, 34-14
OLAP_EXPRESSION function, 24-4, 30-1 to 30-5
OLAP_EXPRESSION_BOOL function, 31-1 to 31-5
OLAP_EXPRESSION_DATE function, 32-1 to 32-3
OLAP_EXPRESSION_TEXT function, 33-1 to 33-3
OLAP_ON function, 24-35,24-36
OLAP_PAGE_POOL_SIZE parameter, 6-3
OLAP_TABLE function, 34-1 to 34-20
custom measures, 30-5
data map parameter, 34-14
data type conversions, 34-4
examples, 34-6
FETCH command, 34-10,34-14
limit map, 34-1, 34-14, 34-15 to 34-20
retrieving session log, 24-32
specifying a ROW2CELL column, 34-20
specifying an OLAP DML command, 34-12,
34-13, 34-20
specifying the analytic workspace, 34-12
specifying the limit map, 34-12
specifying the logical table, 34-12, 34-13
with MODEL clause, 34-5
optimization
OLAP API, 28-1
OLAP_TABLE, 34-5
Oracle Enterprise Manager, 1-3
Oracle Warehouse Builder, 1-3
OUTFILE command
affect on DBMS_AW.EXECUTE, 24-31
affect on DBMS_AW.RUN, 24-37

P

P_DISPLAY_NAME, 4-9,26-53
page pool

performance statistics, 6-3
Parent ET Key, 12-2,16-2
Parent Grouping ID, 12-2,16-2
performance counters, 6-1 to 6-6
PGA allocation, 6-3
print buffer, 24-31,24-37
PRINTLOG procedure, 24-36
Prior Period, 12-1,16-2
properties

obtaining in SQL, 4-10

Q

quotation marks

in OLAP DML, 24-4

R

refreshing the cache, 2-12,3-2,19-1,19-2

relational source cube, 1-2

relational target cube, 1-2

reserved dimension attributes, 12-1

reserved level attributes, 16-1

ROW2CELL column, 29-1,29-6, 30-2, 31-2, 32-2,
34-20

RUN procedure, 24-37

S

segwidth, 26-44
SERVEROUTPUT option, 1-9,1-11, 2-11, 2-13, 2-14,
17-1, 24-31, 24-36, 24-37
session
shutting down, 24-39
starting up, 24-39
session cache
performance statistics, 6-3
session counters, 6-6
session logs
printing, 24-36
retrieving, 24-32
session statistics, 6-5
Short Description, 12-1,16-1
SHUTDOWN procedure, 24-39
single-row functions, 30-1, 31-1, 32-1, 33-1
snowflake schema, 2-9
solved data, 1-2,1-21, 1-23,2-10
solved_code, 2-10,5-7,14-4
sparse data, 1-12,26-14
Sparsity Advisor, 24-4 to 24-7
SPARSITY_ADVICE_TABLE column
descriptions, 24-21
SPARSITY_ADVICE_TABLE procedure, 24-39
SQL
embedding OLAP commands, 24-1 to 24-36,
29-1 to 29-7, 30-1 to 30-4, 31-1 to 31-5,
32-1 to 32-3, 33-1 to 33-3
managing analytic workspaces, 24-1 to 24-39
standard form
see database standard form
star schema, 2-9
STARTUP procedure, 24-39

T

table type, 34-12,34-13
automatic, 34-2
predefining, 34-2
syntax for creating, 34-2
time dimensions
creating, 2-5
Time Span, 12-1,16-2
time-span attribute, 22-2
transaction statistics, 6-6
tuples, 24-5

U

UNIQUE_RDBMS_KEY, 4-9,26-53

unsolved data, 1-2,2-10

upgrading, 26-53

UTL_FILE_DIR parameter, 1-18,2-14, 17-4, 20-1,
20-6, 26-18, 26-25, 26-30, 26-35, 27-10, 27-11, 27-12

\'}

V$AW_AGGREGATE_OP view, 6-2
V$SAW_ALLOCATE_OP view, 6-2
VSAW_CALC view, 6-3
V$AW_OLAP view, 6-5
V$AW_SESSION_INFO view, 6-6
validating OLAP Catalog metadata, 2-10 to 2-12
views
Active Catalog, 3-1
analytic workspace maintenance information, 4-1
creating embedded total dimensions, 1-21, 34-6
creating embedded total measures, 34-7
creating for analytic workspaces, 1-18
creating rollup form, 34-8
objects in analytic workspaces, 3-1 to 3-9
OLAP Catalog metadata, 5-1
template for creating with OLAP_TABLE, 34-2,
34-3

w

workspace objects
obtaining names in SQL, 4-9

X

XML document
example, 25-2

Y

Year Ago Period, 12-2,16-2

Index-5

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Creating Analytic Workspaces with DBMS_AWM
	Overview
	Creating OLAP Catalog Metadata for the Source Cube
	Creating Dimensions in the Analytic Workspace
	Creating Cubes in the Analytic Workspace
	Aggregating the Cube's Data in the Analytic Workspace
	Enabling Access to the Analytic Workspace
	Viewing Metadata Created by DBMS_AWM

	Understanding the DBMS_AWM Procedures
	Methods on Dimensions
	Methods on Cubes
	Methods on Dimension Load Specifications
	Methods on Cube Load Specifications
	Methods on Aggregation Specifications
	Methods on Composite Specifications

	Creating and Refreshing a Workspace Dimension
	Creating and Refreshing a Workspace Cube
	Managing Sparse Data and Optimizing the Workspace Cube
	Aggregating the Data in an Analytic Workspace
	Enabling Access by the OLAP API
	Enabling Relational Access
	Procedure: Generate and Run the Enablement Scripts
	Procedure: Run the Enablement Scripts Automatically
	The OLAP API Enabler Procedures
	Disabling Relational Access
	Specifying Names for Dimension Views
	Specifying Names for Fact Views
	Column Structure of Dimension Views
	Column Structure of Fact Views
	Example: Enable a Workspace Cube for Relational Access

	2 Creating OLAP Catalog Metadata with CWM2
	Understanding OLAP Catalog Metadata
	OLAP Catalog Metadata Entities
	Creating a Dimension
	Procedure: Create an OLAP Dimension
	Example: Create a Product Dimension
	Procedure: Create a Time Dimension
	Example: Create a Time Dimension

	Creating a Cube
	Procedure: Create a Cube
	Example: Create a Costs Cube

	Mapping OLAP Catalog Metadata
	Mapping to Columns
	Joining Fact Tables with Dimension Tables

	Validating and Committing OLAP Catalog Metadata
	Validating OLAP Catalog Metadata
	Viewing Validity Status
	Refreshing Metadata Tables for the OLAP API

	Invoking the Procedures
	Security Checks and Error Conditions
	Size Requirements for Parameters
	Case Requirements for Parameters

	Directing Output
	Viewing OLAP Catalog Metadata

	3 Active Catalog Views
	Understanding the Active Catalog
	Standard Form Classes
	Active Catalog and Standard Form Classes

	Active Catalog Metadata Cache
	Example: Query an Analytic Workspace Cube
	Summary of Active Catalog Views
	ALL_OLAP2_AWS
	ALL_OLAP2_AW_ATTRIBUTES
	ALL_OLAP2_AW_CUBES
	ALL_OLAP2_AW_CUBE_AGG_LVL
	ALL_OLAP2_AW_CUBE_AGG_MEAS
	ALL_OLAP2_AW_CUBE_AGG_OP
	ALL_OLAP2_AW_CUBE_AGG_SPECS
	ALL_OLAP2_AW_CUBE_DIM_USES
	ALL_OLAP2_AW_CUBE_MEASURES
	ALL_OLAP2_AW_DIMENSIONS
	ALL_OLAP2_AW_DIM_HIER_LVL_ORD
	ALL_OLAP2_AW_DIM_LEVELS
	ALL_OLAP2_AW_PHYS_OBJ
	ALL_OLAP2_AW_PHYS_OBJ_PROP

	4 Analytic Workspace Maintenance Views
	Building and Maintaining Analytic Workspaces
	Example: Query Load and Enablement Parameters for Workspace Dimensions
	Summary of Analytic Workspace Maintenance Views
	ALL_AW_CUBE_AGG_LEVELS
	ALL_AW_CUBE_AGG_MEASURES
	ALL_AW_CUBE_AGG_PLANS
	ALL_AW_CUBE_ENABLED_HIERCOMBO
	ALL_AW_CUBE_ENABLED_VIEWS
	ALL_AW_DIM_ENABLED_VIEWS
	ALL_AW_LOAD_CUBES
	ALL_AW_LOAD_CUBE_DIMS
	ALL_AW_LOAD_CUBE_FILTERS
	ALL_AW_LOAD_CUBE_MEASURES
	ALL_AW_LOAD_CUBE_PARMS
	ALL_AW_LOAD_DIMENSIONS
	ALL_AW_LOAD_DIM_FILTERS
	ALL_AW_LOAD_DIM_PARMS
	ALL_AW_OBJ
	ALL_AW_PROP

	5 OLAP Catalog Metadata Views
	Access to OLAP Catalog Views
	OLAP Catalog Metadata Cache
	Views of the Dimensional Model
	Views of Mapping Information
	ALL_OLAP2_AGGREGATION_USES
	ALL_OLAP2_CATALOGS
	ALL_OLAP2_CATALOG_ENTITY_USES
	ALL_OLAP2_CUBES
	ALL_OLAP2_CUBE_DIM_USES
	ALL_OLAP2_CUBE_MEASURES
	ALL_OLAP2_CUBE_MEASURE_MAPS
	ALL_OLAP2_CUBE_MEAS_DIM_USES
	ALL_OLAP2_DIMENSIONS
	ALL_OLAP2_DIM_ATTRIBUTES
	ALL_OLAP2_DIM_ATTR_USES
	ALL_OLAP2_DIM_HIERARCHIES
	ALL_OLAP2_DIM_HIER_LEVEL_USES
	ALL_OLAP2_DIM_LEVELS
	ALL_OLAP2_DIM_LEVEL_ATTRIBUTES
	ALL_OLAP2_DIM_LEVEL_ATTR_MAPS
	ALL_OLAP2_ENTITY_DESC_USES
	ALL_OLAP2_ENTITY_EXT_PARMS
	ALL_OLAP2_ENTITY_PARAMETERS
	ALL_OLAP2_FACT_LEVEL_USES
	ALL_OLAP2_FACT_TABLE_GID
	ALL_OLAP2_HIER_CUSTOM_SORT
	ALL_OLAP2_JOIN_KEY_COLUMN_USES
	ALL_OLAP2_LEVEL_KEY_COL_USES

	6 OLAP Dynamic Performance Views
	V$ Tables for OLAP
	Summary of OLAP Dynamic Performance Views
	V$AW_AGGREGATE_OP
	V$AW_ALLOCATE_OP
	V$AW_CALC
	V$AW_LONGOPS
	V$AW_OLAP
	V$AW_SESSION_INFO

	7 CWM2_OLAP_CATALOG
	Understanding Measure Folders
	Example: Creating a Measure Folder
	Summary of CWM2_OLAP_CATALOG Subprograms
	ADD_CATALOG_ENTITY Procedure

	8 CWM2_OLAP_CLASSIFY
	OLAP Catalog Metadata Descriptors
	Example: Creating Descriptors
	Summary of CWM2_OLAP_CLASSIFY Subprograms
	ADD_ENTITY_CARDINALITY_USE

	9 CWM2_OLAP_CUBE
	Understanding Cubes
	Example: Creating a Cube
	Summary of CWM2_OLAP_CUBE Subprograms
	ADD_DIMENSION_TO_CUBE Procedure

	10 CWM2_OLAP_DELETE
	Deleting OLAP Catalog Metadata
	Rebuilding OLAP Catalog Metadata
	Using Wildcards to Identify Metadata Entities
	Using a Command Report

	Summary of CWM2_OLAP_DELETE Subprograms
	DELETE_CUBE Procedure

	11 CWM2_OLAP_DIMENSION
	Understanding Dimensions
	Example: Creating a CWM2 Dimension
	Summary of CWM2_OLAP_DIMENSION Subprograms
	CREATE_DIMENSION Procedure

	12 CWM2_OLAP_DIMENSION_ATTRIBUTE
	Understanding Dimension Attributes
	Example: Creating a Dimension Attribute
	Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
	CREATE_DIMENSION_ATTRIBUTE Procedure

	13 CWM2_OLAP_EXPORT
	Exporting and Importing OLAP Catalog Metadata
	Rebuilding OLAP Catalog Metadata
	Using the Oracle Export and Import Utilities
	Using Wildcards to Identify Metadata Entities

	Creating a Metadata Command Script
	Creating an Export Parameter File
	Summary of CWM2_OLAP_Export Subprograms
	EXPORT_CUBE Procedure

	14 CWM2_OLAP_HIERARCHY
	Understanding Hierarchies
	Example: Creating a Hierarchy
	Summary of CWM2_OLAP_HIERARCHY Subprograms
	CREATE_HIERARCHY Procedure

	15 CWM2_OLAP_LEVEL
	Understanding Levels
	Example: Creating a Level
	Summary of CWM2_OLAP_LEVEL Subprograms
	ADD_LEVEL_TO_HIERARCHY Procedure

	16 CWM2_OLAP_LEVEL_ATTRIBUTE
	Understanding Level Attributes
	Example: Creating Level Attributes
	Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
	CREATE_LEVEL_ATTRIBUTE Procedure

	17 CWM2_OLAP_MANAGER
	Managing Output in a SQL*Plus Session
	Example: Using a Log File
	Summary of CWM2_OLAP_MANAGER Subprograms
	BEGIN_LOG Procedure

	18 CWM2_OLAP_MEASURE
	Understanding Measures
	Example: Creating a Measure
	Summary of CWM2_OLAP_MEASURE Subprograms
	CREATE_MEASURE Procedure

	19 CWM2_OLAP_METADATA_REFRESH
	Views of Cached OLAP Catalog Metadata
	Views of Cached Active Catalog Metadata
	Summary of CWM2_OLAP_METADATA_REFRESH Subprograms
	MR_REFRESH Procedure

	20 CWM2_OLAP_PC_TRANSFORM
	Prerequisites
	Parent-Child Dimensions
	Solved, Level-Based Dimensions
	Example: Creating a Solved, Level-Based Dimension Table
	Grouping ID Column
	Embedded Total Key Column

	Summary of CWM2_OLAP_PC_TRANSFORM Subprograms
	CREATE_SCRIPT Procedure

	21 CWM2_OLAP_TABLE_MAP
	Understanding OLAP Catalog Metadata Mapping
	Example: Mapping a Dimension
	Example: Mapping a Cube
	Summary of CWM2_OLAP_TABLE_MAP Subprograms
	MAP_DIMTBL_HIERLEVELATTR Procedure

	22 CWM2_OLAP_VALIDATE
	About OLAP Catalog Metadata Validation
	Structural Validation
	Mapping Validation
	Validation Type
	Using Wildcards to Identify Metadata Entities

	Summary of CWM2_OLAP_VALIDATE Subprograms
	VALIDATE_ALL_CUBES Procedure

	23 CWM2_OLAP_VERIFY_ACCESS
	Validating the Accessibility of an OLAP Cube
	Summary of CWM2_OLAP_VERIFY_ACCESS Subprograms
	VERIFY_CUBE_ACCESS Procedure

	24 DBMS_AW
	Managing Analytic Workspaces
	Converting an Analytic Workspace to Oracle 10g Storage Format

	Embedding OLAP DML in SQL Statements
	Methods for Executing OLAP DML Commands
	Guidelines for Using Quotation Marks in OLAP DML Commands

	Using the Sparsity Advisor
	Data Storage Options in Analytic Workspaces
	Selecting the Best Data Storage Method
	Using the Sparsity Advisor
	Example: Evaluating Sparsity in the GLOBAL Schema

	Using the Aggregate Advisor
	Aggregation Facilities within the Workspace
	Example: Using the ADVISE_REL Procedure

	Summary of DBMS_AW Subprograms
	ADD_DIMENSION_SOURCE Procedure

	25 25 DBMS_AW_XML
	Analytic Workspace Java API Overview
	Oracle OLAP XML Schema
	Summary of DBMS_AW_XML Subprograms
	EXECUTE Function

	26 DBMS_AWM
	Parameters of DBMS_AWM Subprograms
	Summary of DBMS_AWM Subprograms
	ADD_AWCOMP_SPEC_COMP_MEMBER Procedure

	27 DBMS_ODM
	Materialized Views for the OLAP API
	Materialized Views Created by DBMS_OMDM
	Generating the Grouping Sets
	Aggregation Operators

	Example: Automatically Generate the Minimum Grouping Sets for a Cube
	Example: Manually Choose the Grouping Sets for a Cube
	Summary of DBMS_ODM Subprograms
	CREATECUBELEVELTUPLE Procedure

	28 OLAP_API_SESSION_INIT
	Initialization Parameters for the OLAP API
	Viewing the Configuration Table
	ALL_OLAP_ALTER_SESSION View

	Summary of OLAP_API_SESSION_INIT Subprograms
	ADD_ALTER_SESSION Procedure

	29 OLAP_CONDITION
	OLAP_CONDITION Overview
	Entry Points in the Limit Map
	Dynamically Modifying a Workspace during a Query

	OLAP_CONDITION Examples
	OLAP_CONDITION Syntax

	30 OLAP_EXPRESSION
	OLAP_EXPRESSION Overview
	Single-Row Functions
	OLAP_EXPRESSION and OLAP_TABLE

	OLAP_EXPRESSION Examples
	OLAP_EXPRESSION Syntax

	31 OLAP_EXPRESSION_BOOL
	OLAP_EXPRESSION_BOOL Overview
	Single-Row Functions
	OLAP_EXPRESSION_BOOL and OLAP_TABLE

	OLAP_EXPRESSION_BOOL Example
	OLAP_EXPRESSION_BOOL Syntax

	32 OLAP_EXPRESSION_DATE
	OLAP_EXPRESSION_DATE Overview
	Single-Row Functions
	OLAP_EXPRESSION_DATE and OLAP_TABLE

	OLAP_EXPRESSION_DATE Syntax

	33 OLAP_EXPRESSION_TEXT
	OLAP_EXPRESSION_TEXT Overview
	Single-Row Functions
	OLAP_EXPRESSION_TEXT and OLAP_TABLE

	OLAP_EXPRESSION_TEXT Syntax

	34 OLAP_TABLE
	OLAP_TABLE Overview
	Limit Maps
	Logical Tables
	Using OLAP_TABLE With Predefined ADTs
	Using OLAP_TABLE With Automatic ADTs
	Using a MODEL Clause

	OLAP_TABLE Examples
	Example: Creating Views of Embedded Total Dimensions
	Example: Creating Views of Embedded Total Measures
	Example: Creating Views in Rollup Form
	Using OLAP_TABLE with the FETCH Command

	OLAP_TABLE Syntax

	Index
	A
	automatic, 34-3
	predefining, 34-2
	direct metadata access, 3-5, 3-7, 3-8
	See abstract data types
	performance statistics, 6-3
	in analytic workspaces, 1-4, 1-14, 24-8 to 24-11, 26-13, 26-20
	operators, 1-16, 5-3, 6-2
	creating, 1-14, 26-20
	DBMS_AWM methods on, 1-8
	See ALL_OLAP2_AW_ATTRIBUTES view
	See ALL_OLAP2_AW_DIMENSIONS view
	See ALL_OLAP2_AW_CUBE_MEASURES view
	defining in XML, 25-1
	obtaining names in SQL, 4-9
	accessing from SQL, 24-1 to 24-39
	Active Catalog, 3-1
	aggregation, 1-4, 1-14, 24-8, 26-13, 26-20
	converting to 10g storage format, 1-17, 3-4, 24-2
	creating with DBMS_AWM, 1-9
	creating with OLAP Analytic Workspace Java API, 25-1
	creating with XML, 25-1
	dimensions, 1-12
	enabling for SQL access, 26-1, 26-17, 26-19, 26-24, 26-26, 26-30, 26-35, 26-39, 26-41, 26-45, 26-49
	enabling for the OLAP API, 1-17
	importing from Oracle 9i, 24-2
	list of, 3-4
	maintenance views, 4-1
	performance counters, 6-5
	refreshing, 1-5, 1-6, 1-9, 1-10, 1-11, 1-12, 1-16, 1-20, 26-37, 26-39
	see also database standard form
	storage format, 1-17, 3-4, 24-2
	views of, 1-20, 1-21, 26-19, 26-26, 26-30, 26-35
	viewing, 5-7
	see OLAP Analytic Workspace Java API

	C
	performance statistics, 6-3
	DBMS_AWM methods on, 1-8
	defined, 24-5
	DBMS_AWM methods on, 1-7
	creating, 2-8, 7-1, 9-1
	creating in analytic workspaces, 1-4, 26-15
	DBMS_AWM methods on, 1-6
	in analytic workspaces, 3-5
	naming in analytic workspaces, 26-2
	populating in analytic workspaces, 26-37
	source, 26-1
	target, 26-1
	valid, 22-1
	viewing, 5-4
	creating with OLAP Analytic Workspace Java API, 25-1
	examples with OLAP_EXPRESSION, 30-2 to 30-4
	directing output, 2-14
	read APIs, 2-14
	write APIs, 2-1 to 2-9

	D
	see also analytic workspaces
	version, 3-4
	views of, 3-1 to 3-9
	SPARSITY_ADVICE_TABLE procedure, 24-39
	ADD_DIMENSION_SOURCE procedure, 24-14
	ADVISE_CUBE procedure, 24-15
	ADVISE_DIMENSIONALITY function, 24-16
	ADVISE_DIMENSIONALITY procedure, 24-18
	ADVISE_REL procedure, 24-20
	ADVISE_SPARSITY procedure, 24-21
	AW_ATTACH procedure, 24-23
	AW_COPY procedure, 24-24
	AW_CREATE procedure, 24-25
	AW_DELETE procedure, 24-26
	AW_DETACH procedure, 24-26
	AW_RENAME procedure, 24-27
	AW_TABLESPACE function, 24-27
	AW_UPDATE procedure, 24-28
	CONVERT procedure, 24-29
	EVAL_NUMBER function, 24-29
	EVAL_TEXT function, 24-30
	EXECUTE procedure, 24-31
	GETLOG function, 24-32
	INFILE procedure, 24-32
	INTERP function, 24-33
	INTERP_SILENT function, 24-35
	INTERPCLOB function, 24-34
	OLAP_ON function, 24-35, 24-36
	PRINTLOG procedure, 24-36
	RUN procedure, 24-37
	SHUTDOWN procedure, 24-39
	STARTUP procedure, 24-39
	creating, 12-1
	reserved, 12-1
	viewing, 5-6
	DBMS_AWM methods on, 1-7
	defining OLAP Catalog metadata for, 2-2
	defining for workspace objects, 1-21, 26-24
	creating, 2-2, 11-1
	creating in analytic workspaces, 1-3, 26-22
	DBMS_AWM methods on, 1-5
	embedded-total, 20-6
	in analytic workspaces, 3-7, 3-8
	naming in analytic workspaces, 26-2
	ordering in analytic workspaces, 1-4, 1-13
	parent-child, 20-1
	populating in analytic workspaces, 26-39
	valid, 22-1
	viewing, 5-6

	E
	See Also analytic workspaces

	F
	defining OLAP Catalog metadata for, 2-7
	joining with dimension tables, 2-9
	supported configurations, 2-9
	defining from workspace objects, 1-23, 26-17, 26-19, 26-26, 26-30, 26-35

	G
	parent, 1-22

	H
	creating, 14-1
	custom sorting, 5-12, 21-5
	defined, 14-1
	viewing, 5-7, 5-13

	I
	see DBMS_AW_XML package

	J
	Analytic Workspace, 25-1

	L
	creating, 16-1
	defined, 16-1
	reserved, 16-1
	viewing, 5-8
	creating, 15-1
	in analytic workspaces, 3-5, 3-8
	viewing, 5-8
	order of processing, 34-21
	syntax, 34-15

	M
	for OLAP API, 27-1
	creating, 7-1
	defined, 5-4, 7-1
	viewing, 5-4
	creating, 18-1
	defined, 18-1
	in analytic workspaces, 3-6, 3-7
	viewing, 5-5
	refreshing, 2-10, 2-12, 2-14
	enabling for SQL access, 1-17, 26-1, 26-17, 26-19, 26-24, 26-26, 26-30, 26-35
	Active Catalog, 3-1
	database standard form, 3-1

	O
	automatic, 34-2
	predefining, 34-2
	syntax for creating, 34-2
	Metadata Reader tables, 2-12, 2-14
	optimization, 28-1
	exporting, 13-1
	metadata entities, 2-2
	metadata entity size, 2-2
	metadata entity size limitations, 2-13
	overview, 2-1, 3-1
	preprocessors, 20-1
	read APIs, 2-14, 4-1, 5-1, 19-1
	viewing, 2-14, 5-1, 19-1
	write APIs, 2-1 to 2-9
	committing, 2-10
	creating for a dimension table, 2-3
	creating for a fact table, 2-8
	creating for DBMS_AWM, 1-3, 2-1
	creating for the OLAP API, 2-1
	deleting, 10-1
	exporting, 13-1
	mapping, 2-5, 2-7, 2-9, 5-5, 5-8, 5-13, 21-1, 22-2
	mapping to embedded-total tables, 2-2, 2-9
	mapping to star and snowflake schemas, 2-2, 2-9
	validating, 2-10 to 2-12, 22-1, 23-1
	executing in SQL, 24-1 to 24-37, 29-1 to 29-7, 30-1 to 30-4, 31-1 to 31-5, 32-1 to 32-3, 33-1 to 33-3
	quotation marks in, 24-4
	custom measures, 30-5
	data map parameter, 34-14
	data type conversions, 34-4
	examples, 34-6
	FETCH command, 34-10, 34-14
	limit map, 34-1, 34-14, 34-15 to 34-20
	retrieving session log, 24-32
	specifying a ROW2CELL column, 34-20
	specifying an OLAP DML command, 34-12, 34-13, 34-20
	specifying the analytic workspace, 34-12
	specifying the limit map, 34-12
	specifying the logical table, 34-12, 34-13
	with MODEL clause, 34-5
	OLAP API, 28-1
	OLAP_TABLE, 34-5
	affect on DBMS_AW.EXECUTE, 24-31
	affect on DBMS_AW.RUN, 24-37

	P
	performance statistics, 6-3
	obtaining in SQL, 4-10

	Q
	in OLAP DML, 24-4

	R
	S
	shutting down, 24-39
	starting up, 24-39
	performance statistics, 6-3
	printing, 24-36
	retrieving, 24-32
	embedding OLAP commands, 24-1 to 24-36, 29-1 to 29-7, 30-1 to 30-4, 31-1 to 31-5, 32-1 to 32-3, 33-1 to 33-3
	managing analytic workspaces, 24-1 to 24-39
	see database standard form

	T
	automatic, 34-2
	predefining, 34-2
	syntax for creating, 34-2
	creating, 2-5

	U
	V
	Active Catalog, 3-1
	analytic workspace maintenance information, 4-1
	creating embedded total dimensions, 1-21, 34-6
	creating embedded total measures, 34-7
	creating for analytic workspaces, 1-18
	creating rollup form, 34-8
	objects in analytic workspaces, 3-1 to 3-9
	OLAP Catalog metadata, 5-1
	template for creating with OLAP_TABLE, 34-2, 34-3

	W
	obtaining names in SQL, 4-9

	X
	example, 25-2

	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

