
State Space Reduction for Sensor Networks
using Two-level Partial Order Reduction

Manchun Zheng1, David Sanán2, Jun Sun3, Yang Liu4, Jin Song Dong1 and Yu
Gu3

1 School of Computing, National University of Singapore
{zmanchun,dongjs}@comp.nus.edu.sg

2 School of Computer and Statistics,Trinity College Dublin
David.Sanan@cs.tcd.ie

3 Singapore University of Technology and Design
{sunjun,jasongu}@sutd.edu.sg

4 School of Computer Engineering, Nanyang Technological University
yangliu@ntu.edu.sg

Abstract. Sensor networks may be used to conduct critical tasks like
fire detection or surveillance monitoring. It is thus important to guar-
antee the correctness of such systems by systematically analyzing their
behaviors. Formal verification of wireless sensor networks is an extremely
challenging task as the state space of sensor networks is huge, e.g., due to
interleaving of sensors and intra-sensor interrupts. In this work, we de-
velop a method to reduce the state space significantly so that state space
exploration methods like model checking or systematic testing) can be
applied to a much smaller state space without missing a counterexample.
Our method explores the nature of networked NesC programs and uses
a novel two-level partial order reduction approach to reduce interleav-
ing among sensors and intra-sensor interrupts. Applying partial order
reduction for sensor network programs is highly non-trivial, due to the
interplay between inter-sensor message passing and interrupts or among
interrupts. We define systematic rules for identifying dependence at sen-
sor and network levels so that partial order reduction can be applied
effectively. We have proved the soundness of the proposed reduction tech-
nique, and present experimental results to demonstrate the effectiveness
of our approach.

1 Introduction

Sensor networks (SNs) are built based on small sensing devices (i.e., sensors) and
deployed in outdoor or indoor environments to conduct different tasks. Recently,
SNs have been experiencing an increasing application for various purposes, e.g.,
military surveillance, environment monitoring, theft detection, and so on [2].
Such systems are usually expected to run without human surveillance for a long
period like months or even years. Many of them are carrying out critical tasks,
failures or errors of which might cause a catastrophic loss in money, time, or even

human life. Therefore, it is highly desired that sensor network implementations
are reliable and correct.

In order to develop reliable and correct sensor networks, a variety of ap-
proaches and tools have been proposed. Static analysis of sensor networks (e.g.,
[3]) is difficult, given their dynamic nature. Therefore, most of the existing ap-
proaches rely on state space exploration, e.g., through simulation [15], random
walk [17], or model checking [13,19,20,23,4,5,17]. Although some of the tools were
able to detect and reveal bugs, all of them face the same challenge: the huge state
space of sensor networks. Given a network consisting of n sensors, each of which
has m states, the size of the state space is in the order of nm · 2C (n,2) where
2C (n,2) is the number of network topologies. In practice, a typical sensor program
might consist of hundreds/thousands of lines of code (LOC) and has a state space
of tens of thousands, considering only internal interrupts. As a result, existing
tools often cover only a fraction of the state space and/or take a long time. For
instance, the work in [4,5] is limited to a single sensor, whereas the approaches
in [13,19,17,25] work only for small networks. The solutions in [20,23] rely on ag-
gressive abstraction techniques and thus is limited to particular properties only.
Furthermore, T-Check [17] which is based on stateless model checking takes days
or even months to detect a faulty state. We refer the readers to Section 7 for the
detailed discussion of the related works.

In this work, we develop a method to significantly reduce the state space of
sensor networks while preserving important properties so that state space explo-
ration methods (like model checking or systematic testing) become more effec-
tive. Our targets are sensor networks developed in TinyOS/NesC, since TinyOS
and NesC are widely used in developing SNs. The operating system TinyOS [7]
provides an interrupt-driven execution model for SNs, with a library of hardware
services like data transmission, timer, etc. The programming language NesC
(Network-Embedded-System C) [10] is used to develop TinyOS applications,
with a component-based programming pattern.

Our method is a novel two-level partial order reduction (POR) which takes
advantage of unique features of sensor networks as well as NesC/TinyOS. Ex-
isting POR methods [11,6,9,24,12] reduce the state space of concurrent systems
by avoiding unnecessary interleaving of independent actions. In sensor networks,
there are two sources of “concurrency”. One is the interleaving of different sen-
sors, which would benefit from traditional POR. The other is the intra-sensor
interrupts. An interrupt can occur anytime and multiple interrupts may occur
in any sequence. As a result, interrupts generate a large number of states, just
as interleaving. To apply POR for interrupts is highly nontrivial because all
interrupts would modify the task queue and lead to different orders of sched-
uled tasks at runtime. Our method extends and combines two different POR
methods (one for intra-sensor interrupts and one for inter-sensor interleaving)
in order to achieve maximum reduction. We remark that applying two different
POR methods in this setting is complicated, due to the interplay between inter-
sensor message passing and interrupts within a sensor (e.g., a message retrieval
would generate interrupts).

Task 1

Task 2

Task 3

…

Task n
Interrupt

Handler

Task

Execution

p
re

e
m

p
t

re
s
u

m
e

post

Device

(a) TinyOS Execution Model

1 vo i d h and l e r d e v (){
2 // update s t a t u s o f dev ;
3 . . .
4 // s c h edu l e the
5 // comp l e t i on even t
6 pos t d ev comp l t a s k () ;
7 }
8
9 // comp l e t i on t a s k

10 t a s k vo i d dev comp l t a s k (){
11 // even t implemented
12 //by programmers
13 s i g n a l d e v done ev en t () ;
14 }

(b) Abstract Interrupt Handler

Fig. 1. Interrupt-driven Features

Our method preserves both safety properties and liveness properties in the
form of linear temporal logic (LTL) so that state space exploration methods can
be applied to a much-smaller state space without missing a counterexample. Our
method works as follows. Firstly, static analysis is performed to automatically
identify independent actions at both inter-sensor and intra-sensor levels, based
on the rules presented in Section ??. We propose a systematic way to detect
independence among interrupts by taking into account the shared task queue.
Secondly, we extend the cartesian semantics [12] in order to reduce network-level
interleaving. The original cartesian POR algorithm treats each process (in our
case, sensor) as a simple sequential program. However, in our work, we handle
intra-sensor concurrency caused by interrupts and thus the cartesian semantics
of SNs is different from the original one. The persistent set technique [6] is used
to minimize interleaving caused by interrupts inside each sensor. The two-level
POR algorithm is presented in Section ??.

We formally prove that our method is sound and complete, i.e., preserving
LTL-X properties which are LTL formulas without the X operator. The pro-
posed method has been implemented in the model checker NesC@PAT [25],
which analyzes properties of sensor networks by exploring the state space of
NesC programs. We have evaluated the efficiency of our method with a number
of SNs. The results show that our method reduces the size of the state space
significantly, e.g., the reduced state space is thousands of times smaller or even
more depending on the size of networks. We also approximated the reduction
ratio gained by T-Check [17] under POR setting and the data show that our two-
level POR obtains much better reduction ratio than T-Check’s POR algorithm,
as elaborated in Section 6.

2 Preliminaries

In this section, we firstly present the interrupt-driven feature of TinyOS/NesC
and then the formal definitions of sensor networks. For details on how to generate

a model from actual NesC programs, readers can refer to [25], which defines small
step operational semantics for NesC.

2.1 Interrupt-driven Sensors

In NesC programs, there are two execution contexts, interrupt handler and task
(a function), described as asynchronous and synchronous, respectively [10]. An
interrupt handler can always preempt a task if interrupts are not disabled. In
TinyOS execution model [14], a task queue schedules tasks for execution, in
FIFO order. As shown in Fig. 1(a), the execution of a task could be preempted
by interrupt handlers. An interrupt handler accesses low-level registers and en-
queues a task to invoke a certain function at a higher level of application code.
In our approach, we treat interrupt handlers as black boxes, as we assume that
behaviors of devices are correct. Variables are used to represent the status of a
certain device and thus low-level functions related to interrupt handlers are ab-
stracted, as shown by the pseudo code in Fig. 1(b). The execution of an interrupt
handler is modeled as one action. However, different orders of interrupt handler
executions lead to different orders of tasks in the task queue, making the state
space complex and large. In our model after a task is completed, all pending
interrupt handlers are executed before a new task is loaded for execution. This
is due to the assumption that devices work properly and thus hardware requests
are assumed to be completed during the executing period of a task.

The NesC language is an event oriented extension of C that adds new con-
cepts such as call , signal , and post . The semantics of call (e.g., lines 2 and 10
in Fig. 2(a)) and that of signal are similar to traditional function calls, invoking
certain functions (either commands or events). The keyword post (like lines 3
and 17 in Fig. 2(a)) is to enqueue a given task. Thus the task queue could
be modified during both synchronous and asynchronous execution contexts. In
other words, the task queue is shared by tasks and interrupt handlers. Fig. 2(a)
illustrates a fragment of a NesC program, which involves messaging and sens-
ing. The command call Read .read()/Send .send() invokes the corresponding com-
mand body that requests the sensing device/messaging device to read a data/to
send a packet, which will later trigger the completion event rd/sd to post a task
for signaling event Read .rdDone/Send .sendDone. We remark that rv is used to
denote the interrupt of a packet arrival, and trd , tsd , and trv are the tasks posted
by interrupt handlers of rd , sd and rv , respectively. With the assumption that
a packet arrival interrupt is possible, the state graph of event Boot .booted is
shown in Fig. 2(b), where each transition is labeled with the line number of the
executed statement or the triggered interrupt, and each state is numbered ac-
cording to the task queue. The task queues of different state numbers are listed
in the figure. For example in Fig. 2(b), initially, after executing call Read .read()
(line 2) the task queue still remains empty, while after executing the interrupt
handler rv , the completion task trv is enqueued and the task queue becomes
〈trv 〉 (i.e., state 1).

1 even t vo i d Boot . booted (){
2 c a l l Read . r ead () ;
3 pos t s e nd t a s k () ;
4 }
5 even t vo i d Read . rdDone (i n t v){
6 v a l u e += v ;
7 }
8 t a s k vo i d s e nd t a s k (){
9 busy = t r u e ;

10 c a l l Send . send (count) ;
11 }
12 even t vo i d Send . sendDone (){
13 busy = f a l s e ;
14 }
15 even t vo i d Rece i v e . r e c e i v e (){
16 count ++;
17 pos t s e nd t a s k () ;
18 }

(a) Example Code

0

0

1 6

2 7

9 8

6

3

4

11

5 10

12 13

14

15

0: empty

1: tst

2: tst , trd

3: trd

4: tst , trv

5: trd , tst

6: trv

7: trv , tst

8: trv , tst , trd

9: tst , trd , trv

10: trd , trv

11: tst , trv , trd

12: trd , tst , trv

13: trd , trv , tst

14: trv , trd

15: trv , trd , tst

2

3

rv

2 rv rd

rd rv rv rd 3 3

rv rd rv 3 rd 3

(b) State Graph of Event Boot .booted

Fig. 2. Interrupt-driven Sensor

2.2 Formal Definitions of Sensor Networks

The formal definitions of sensor networks are given in [25]. They are summarized
below only to make the presentation self-contained.

Definition 1 (Sensor Model). A sensor model S is a tuple S = (A,T ,R, init ,P)
where A is a finite set of variables; T is a queue which stores posted tasks in
FIFO order; R is a buffer that keeps incoming messages sent by other sensors;
init is the initial state; and P is a program composed by the running NesC pro-
gram M and interrupting devices H , i.e., P = M 4 H .

A state C of S is a tuple (V ,Q ,B ,P) where V is the current valuation of
variable set A; Q is a sequence of tasks (i.e., the content of T); B is a packet
(i.e., the content of R); and P is the program counter. In this work, we use V (C),

Q(C), B(C) and P(C) to denote the variable valuation, task queue, message
buffer and program counter of a state C , respectively.

The transition system of S is defined as a tuple T = (C, init ,→s), where C
is the set of all reachable states and →s is the sensor transition relation. The
transition relation →s is formally defined through the operational semantics of
NesC programming constructs [25]. A sensor transition t is defined as C

α→s C ′,
where C and C ′ are the states before and after executing the action α. We define
enable(C) to be the set of all actions enabled at state C , i.e., enable(C) = {α |
∃C ′ ∈ C,C α→ C ′}. Further, ex (C , α) (where α ∈ enable(C)) denotes the state
after executing α at state C .

∑
S (or simply

∑
if S is clear) denotes the set of

actions of S. We define itrQ(S) ⊆
∑

, as the set of hardware request actions.
Tasks(S) (or simply Tasks if S is clear) denotes the set of all tasks defined in S.
For a given NesC program, we assume that

∑
and Tasks are finite.

Definition 2 (Sensor Network Model). A sensor network model N is de-
fined as a tuple(R, {S0, · · · ,Sn}) where R is the network topology, and {S0, · · · ,Sn}
is a finite ordered set of sensor models, with Si (0 6 i 6 n) being the i th sensor
model.

A sensor network state C is defined as an ordered set of states {C0, · · · ,Cn}
where Ci (0 6 i 6 n) is the state of Si , denoted as C[i]. The sensor network
transition system corresponding to N is a 3-tuple T = (Γ, init , ↪→) where Γ is
the set of all reachable network states, init = {init0, · · · , initn} (initi is the initial
state of Si) being the initial network state of N , and ↪→ is the network transition

relation. A sensor network transition T̃ is defined as C α
↪→ C′ where C and C′ are

the network state before and after the transition, represented as C′ = Ex (C, α). A
network transition is generated either by a local sensor transition, e.g., updating
a local variable or triggering an interrupt; or a global transition which involves
network communication.

3 Two-level Independence Analysis

Inside a sensor, the interleaving between an interrupt handler and a non-post ac-
tion can be reduced, since interrupt handlers only modify the task queue whereas
non-post actions never access the task queue. For example, in Fig. 2(b), the in-
terleaving between line 2 and rv can be ignored. Moreover, for post statements
and interrupt handlers, their interleaving could be reduced if their corresponding
tasks access no common variables, like rd and rv at state 2, and line 3 and rd at
state 1. This is because that trd only accesses variable value which is never ac-
cessed by tst or trv . Therefore, it is important to detect the independence among
actions inside a sensor, which is referred to as local independence.

From the view of the network, each sensor only accesses its own and local
resources, unless it sends a message packet, modifying some other sensors’ mes-
sage buffers. Intuitively, the interleaving of local actions of different sensors can
be reduced without affecting verification results. This observation leads to the

0: empty

1: tst

2: tst , trd

3: trd

4: trd , tsd

2

rd

rd

3

rd

0.0

0.0

0.0

1.0

3.0 3.0

2.0

0.1 2.1

5.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

2

3

3

rd

9

2

3

rd

10 sd 6

2

4.0

rv

3

rv rd

rv

rd

rv rd

P11

P21

P12

P22

P13

P23

5: tsd

6: trv

7: trv , tst

8: trv , tst , trd

9: tst , trv , trd

Task Queue

2.0

Fig. 3. Motivating Example: Two-level POR

independence analysis at network level, referred to as global independence. Con-
sider a network with two sensors S1 and S2 implemented with the code shown
in Fig. 2(a). Applying partial order reduction at both network and sensor levels,
we are able to obtain a reduced state graph as shown in Fig. 3, where states
are numbered with the task queues of both sensors, e.g., state 2.1 shows that
the task queue of S1 is 〈tst , trd〉 and 〈tst〉 for S2. In this example, interleav-
ing between two sensors is only allowed when necessary, like at the shadowed
states labeled with 2.0 and 4.0. The sub-graph within each dashed rectangle is
established by executing actions from only one sensor, either S1 or S2. In each
sub-graph, local independence is used to prune unnecessary interleaving among
local actions. Dashed arrows indicate pruned local actions. For example, rectan-
gle p23 is constructed by removing all shadowed states and dashed transitions in
Fig. 2(b).

3.1 Local Independence

In the following, we present the definitions of local and global independence and
syntactic conditions which can be used to detect local and global independence.
In a sensor model S, an action may modify a variable or the task queue. Thus
local independence is defined to describe independent actions according to their
effect on the variables and the task queue.

Definition 3 (Local Independence). Given a state C , α1, α2 ∈
∑

, and
α1, α2 ∈ enable(C). Actions α1 and α2 are said to be local-independent, denoted
by α1 ≡LI α2, if the following conditions are satisfied:
1. ex (ex (C , α1), α2) =v ex (ex (C , α2), α1);
2. Q(ex (ex (C , α1), α2)) ' Q(ex (ex (C , α2)), α1) (refer to Definition 6 for ').

In the above definition, =v (referred to as v -equal) denotes that two states share
the same valuation of variables, message buffer, and the same running program.
That is, if C1 = (V1,Q1,B1,P1), C2 = (V2,Q2,B2,P2), then we have C1 =v C2

iff V1 = V2 ∧ B1 = B2 ∧ P1 = P2. If only the first condition in Definition 3 is
satisfied, α1 and α2 are said to be variable-independent, denoted as α1 ≡VI α2.
Let Wα and Rα be the set of variables written and only read by an action α,
respectively.

Lemma 1. ∀α1, α2 ∈
∑
. Wα1

∩ (Wα2
∪ Rα2

) = Wα2
∩ (Wα1

∪ Rα1
) = ∅ ⇒

α1 ≡VI α2.

Proof Suppose that α1, α2 ∈ enable(C0).Let C12 = ex (ex (C0, α1), α2) and
C21 = ex (ex (C0, α2), α1). Since Rα1

are only read by α1, trivially we have
Rα1

(C12) = Rα1
(C21) (1). Assume that C12 = C0(Wα1

/V ′1,Wα2
/V ′2) and C21 =

C0(Wα2
/V ′′2 ,Wα1

/V ′′1). Since V ′1 and V ′′1 are only dependent with Rα1
∪Wα1

,
with (1) and Wα1 ∩ Wα2 = ∅, we can imply that V ′1 = V ′′1 . Consequently,
Wα1(C12) = Wα1(C21). Similarly we can prove that Wα2(C12) = Wα2(C21),
and conclude that V (C12) = V (C21), i.e., α1 ≡VI α2. 2

Lemma 1 shows that two actions are independent if the variables modified by
one action are mutual exclusive with those accessed by the other. For example,
by Lemma 1, αl6 ≡VI αl13, where αl6(αl13) refers to an action executing the
statement at line 6 (line 13) of Fig. 2(a).

Interrupt handlers might run in parallel to form different orders of tasks in
the resultant task queue. Given a task t , Ptask(t) denotes the set of tasks posted
by a post statement in t or an interrupt handler of a certain interrupt request
in t . Formally, Ptask(t) = {t ′ | ∃α ∈ t . α = post(t ′) ∨ (α ∈ itrQ(S) ∧ t ′ =
tsk(ih(α)))}, where post(t) is a post statement to enqueue task t ; ih(αiq) denotes
the corresponding interrupt handler of a device request αiq , and tsk(αih) denotes
the completion task of αih . In the code in Fig. 2(a), Ptask(trv) = {tst}, due to
the post statement in line 17. As for tst (lines 8 to 11), it has a request for sending
a message (line 10), the interrupt handler of which will post the task tsd , and
thus, Ptask(tst) = {tsd}.

Note that more tasks can be enqueued while an enqueued task is executing.
We define Rtask(t) to represent all tasks enqueued by a given task t and the
tasks in its Ptask set in a recursive way. Formally, Rtask(t) = {t} ∪ Ptask(t) ∪
(∪t′∈Ptask(t)Rtask(t ′)). Since Tasks is finite, for every task t , Rtask(t) is also
finite and thus could be obtained statically at compile time. In Fig. 2(a), since
Ptask(tsd) = ∅, we have Rtask(tsd) = {tsd}. Similarly, we obtain that Rtask(tst) =
{tst , tsd} and Rtask(trv) = {trv , tst , tsd}. Let ϕ be a property and R(ϕ,S) be

the set of local variables of S accessed by ϕ. Let Ŵ (t) be the set of variables
modified by Rtask(t). We say that t is ϕ-S-safe, denoted as t ∈ safe(ϕ,S) iff

(Ŵ (t) ∩ R(ϕ,S)) = ∅. In the following, we define local independence of tasks
w.r.t. a certain property.

Definition 4 (Local Task Independence). Let ti , tj ∈ Tasks be two tasks.
Given a property ϕ, ti and tj are said to be local-independent, denoted as ti ≡TI

tj , iff (ti ∈ safe(ϕ,S) ∨ tj ∈ safe(ϕ,S)) ∧ ∀ t ′i ∈ Rtask(ti), t
′
j ∈ Rtask(tj). t ′i ∈

safe(ϕ,S) ∧ t ′j ∈ safe(ϕ,S) ∧ ∀αi ∈ t ′i , αj ∈ t ′j . αi ≡VI αj .

Though interrupt handlers in asynchronous context and post statements in syn-
chronous context both modify the task queue, we observe that task queues with
different orders of tasks might be equivalent. In the following we define the inde-
pendence of two task sequences, which is used to further define equivalent task
sequences.

Definition 5 (Task Sequence Independence). Let Qi = 〈ti0, · · · , tim〉,Qj =
〈tj0, · · · , tjn〉(m,n > 0) be two task sequences, where tiu(0 ≤ u ≤ m), tjv (0 ≤
v ≤ n) ∈ Tasks. Qi and Qj are said to be sequence-independent, denoted as
Qi ≡SI Qj , iff ∀ ti ∈ (∪mk=0Rtask(tik)), tj ∈ (∪nk=0Rtask(tjk)). ti ≡TI tj .

Let Swap(Q , i) = 〈q∩0 · · · q∩i+1q∩i · · ·∩ qn〉 denote the task sequence obtained by
swapping the two sub-sequences (i.e., qi and qi+1) of Q , where Q = 〈q∩0 q∩1 · · ·∩ qn〉.
Task sequence equivalence is defined in Definition 6. This observation is then
adopted to reduce unnecessary interleaving among interrupt handlers and post
actions.

Definition 6 (Task Sequence Equivalence). Given two task sequences Q
and Q ′, they are equivalent (Q ' Q ′) iff Q0 = Q ∧ ∃m > 0,Qm = Q ′ ∧ (∀ k ∈
[0,m). ∃ ik . qk

ik
≡SI qk

ik+1 ∧ Qk+1 = Swap(Qk , ik)) where qk
i is the i th sub-

sequence of Qk .

The above definition indicates that if a task sequence Q ′ can be obtained by
swapping adjacent independent sub-sequences of Q , then Q ' Q ′. The relation
' is reflexive, symmetric and transitive, as shown in Lemma 2.

Lemma 2 (Reflexivity, Symmetry and Transitivity of ').
1. Reflexivity: Q ' Q; (P1)
2. Symmetry: Q1 ' Q2 ⇒ Q2 ' Q1; (P2)
3. Transitivity: Q1 ' Q2 ∧Q2 ' Q3 ⇒ Q1 ' Q3. (P3)

Proof By Definition 6, m = 0⇒ Qm
1 = Q0

1 = Q , thus Q ' Q and P1 is proved.
Assume that Q1 ' Q2, if Q1 = Q2, by reflexivity it is trivial that Q2 ' Q1.

Suppose that Q1 6= Q2, then by Definition 6, we have Q0
1 = Q1 ⇒ ∃m > 0,Qm

1 =
Q2 ∧ (∀ 1 ≤ k ≤ m,∃ ik , q

k−1
ik
≡SI qk−1

ik+1 ∧ Qk
1 = Swap(Qk−1

1 , ik)) (1). Here qk
i

denotes the ith subsequences of Qk
1 . Let Qk

2 be the task sequence after swapping
adjacent independent task sequences in Q2 for k times, q̃k

i denote the ith subse-
quence of Qk

2 . Assume Q0
2 = Q2 and let Qk

2 = Swap(Qk−1
2 , im−(k−1)). Then we

have Q0
2 = Swap(Qm−1

1 , im)∧ q̃0
im

= qm−1
im+1 ∧ q̃0

im+1 = qm−1
im

, thus q̃0
im
≡SI ∧q̃0

im+1

and Q1
2 = Swap(Q0

2 , im) = Swap(Swap(Qm−1
1 , im), im) = Qm−1

1 . Suppose that
Qk

2 = Qm−k
1 = Swap(Qm−k−1

1 , im−k), then we have q̃k
im−k

= qm−k−1
im−k+1 and

q̃k
im−k+1 = qm−k−1

im−k
. By (1), we can infer that qm−k−1

im−k
≡SI qm−k−1

im−k+1 . There-

fore, q̃k
im−k

≡SI q̃k
im−k+1 and Qk+1

2 = Swap(Qk
2 , im−k) = Swap(Qm−k

1 , im−k) =

Swap(Swap(Q
m−(k+1)
1 , im−((k+1)−1), im−k) = Q

m−(k+1)
1 . Inductively, Qm

2 = Q0
1 =

Q1 and thus Q2 ' Q1. Consequently, P2 is proved.

Assume that Q1 ' Q2∧Q2 ' Q3. If Q1 = Q2 or Q2 = Q3, then trivially Q1 '
Q3. Suppose that Q1 6= Q2 and Q2 6= Q3, by Definition 6, there exist i1, i2, · · · , im
such that Q0

1 = Q1 ∧ qk−1
ik
≡SI qk−1

ik+1 ∧ Qk
1 = Swap(Qk−1

1 , ik) ∧ Qm
1 = Q2 and

j1, j2, · · · , jn such that Q0
2 = Q2∧qk−1

jk
≡SI qk−1

jk+1∧Qk
2 = Swap(Qk−1

2 , jk)∧Qn
2 =

Q3. Again, let Q̃0
1 = Q1, v = m + n, and ∀ 1 ≤ k ≤ v , let Q̃k

1 = Swap(Q̃k−1
1 , lk)

and (1 ≤ k ≤ m ⇒ lk = ik)∧ ((m + 1) ≤ k ≤ (m + n)⇒ lk = jk). Then we have

Q̃m
1 = Qm

1 = Q2 and thus Q̃m+n
1 = Qn

2 = Q3. Therefore Q1 ' Q3 and P3 is
proved. 2

The following lemma shows another property of task sequence equivalence.

Lemma 3. Q1 ' Q2 ⇒ Q∩1 Q ′ ' Q∩2 Q ′ ∧Q ′∩Q1 ' Q ′∩Q2.

Proof By Definition 6, there exists m ≥ 0 such that Q0 = Q1 ∧ Qm =
Q2 ∧ ∃ i0, i1, · · · , ik , · · · , im−1. qk

ik
≡SI qk

ik+1 ∧ Qk+1 = Swap(Qk , ik). Suppose
that Q3 = Q∩1 Q ′ and Q4 = Q∩2 Q ′, then Q0 = Q3 ∧Qm = Q4 ∧ ∀ i0, i1, · · · , ik , · · · ,
im−1. qk

ik
≡SI qk

ik+1 ∧ Qk+1 = Swap(Qk , ik). Thus Q3 ' Q4. Similarly, we can
prove Q ′∩Q1 ' Q ′∩Q2. 2

Given two states C and C ′, we said that C is equivalent to C ′, denoted by
C ∼= C ′, iff C =v C ′ ∧ Q(C) ' Q(C ′). Further, two state sets C, C′ are
said to be equivalent, denoted as C � C′, iff ∀C ∈ C. ∃C ′ ∈ C′. C ∼= C ′

and vice versa. We explore the execution of task sequences starting at a state
which is the completion point of a previous task, i.e., a state with the program
as (X 4 H) [25]. This is because that only after a task terminates can a new
task be loaded from the task queue for execution. The case when B(C) 6= 〈〉
which is related to network communication is ignored here but will be covered
in global independence analysis in Section 3.2.

Lemma 4. Given C = (V ,Q , 〈〉,X 4 H) and C ′ = (V ,Q ′, 〈〉,X 4 H), let
exs(Qi ,Ci) be the set of final states after executing all tasks of Qi starting at
state Ci . Q ' Q ′ ⇒ exs(Q ,C) � exs(Q ′,C ′).

Proof Let Q = Q0 = q0∩
1 q0∩

2 · · ·∩ q0
n . Since Q ' Q ′, we can assume that

Q ′ is obtained by applying m Swap actions on Q . Let k ∈ [0,m), by Defini-
tion 6, we have Qm = Q ′ and for each k there exists ik such that qk

ik
≡SI

qk
ik+1 ∧ Qk+1 = Swap(Qk , ik)). Let C k = (V ,Qk , 〈〉,X 4 H) (this implies

that C 0 = C and Cm = C ′), and C̃ k ∈ exs(Qk ,C k). By Definition 5 and

Lemma 1, ∀ C̃ k+1 ∈ exs(Qk+1,C k+1),V (C̃ k) = V (C̃ k+1). Moreover, since all

tasks and all interrupt handlers are completed after exs(Q ,C), thus ∀ C̃ k ∈
exs(Qk ,C k), C̃ k+1 ∈ exs(Qk+1,C k+1),P(C̃ k) = P(C̃ k+1) = X 4 H . Thus

C̃ k =v C̃ k+1.

Suppose that qk
ik

= 〈t1ik , · · · , t
i
ik
〉 and qk

ik+1 = 〈t1ik+1, · · · , t lik+1〉, and that q̃k
ik

=

〈̃t1ik , · · · , t̃
x
ik
〉 and q̃k

ik+1 = 〈̃t1ik+1, · · · , t̃
y
ik+1〉 being the task sequences introduced

by executing all tasks in qk
ik

and qk
ik+1 respectively. We remark that ∀ 1 ≤ u ≤

x , t̃uik ∈ ∪
l
v=1Ptask(tvik) and ∀ 1 ≤ u ≤ y , t̃uik+1 ∈ ∪lv=1Ptask(tvik+1) (1) and ∀ 1 ≤

u ≤ x , 1 ≤ v ≤ y , t̃uik ≡TI t̃vik+1(2). Then we have Q(C̃ k) = qk ′∩
1 q̃k∩

ik
q̃k∩
ik+1qk ′′

1 .
According to the semantics that interrupts are allowed to interleave a task at
any time, there exists C̃ k+1 such that Q(C̃ k+1) = qk ′∩

1 q̃k∩
ik+1q̃k∩

ik
qk ′′

1 . If q̃k
ik

=

〈〉 or q̃k
ik+1 = 〈〉, then Q(C̃ k) = Q(C̃ k+1), and by the reflexivity of ' we

can obtain Q(C̃ k) ' Q(C̃ k+1). Now consider the case of q̃k
ik
6= 〈〉 ∧ q̃k

ik+1 6=
〈〉. By (1), (2) and the definition of Rtask , ∪xu=1Rtask (̃tuik) ⊆ ∪iu=1Rtask(tuik)

and ∪yu=1Rtask (̃tuik+1) ⊆ ∪lu=1Rtask(tuik+1). Thus qk
ik
≡SI qk

ik+1 implies that

q̃k
ik
≡SI q̃k

ik+1 and Q(C̃ k) ' Q(C̃ k+1). Now we have proved that ∀ C̃ k ∈
exs(Qk ,C k),∃ C̃ k+1 ∈ exs(Qk+1,C k+1), C̃ k =v C̃ k+1 ∧ Q(C̃ k) ' Q(C̃ k+1)
(3).

Applying (3) to Q0 for m times, with the transitivity of the ' relation of task

sequences, we can conclude that ∀ C̃ 0 ∈ exs(Q0,C 0),∃ C̃m ∈ exs(Qm ,Cm), C̃ 0 =v

C̃m ∧Q(C̃ 0) ' Q(C̃m). Equivalently, ∀ C̃ ∈ exs(Q ,C),∃ C̃ ′ ∈ exs(Q ′,C ′), C̃ ∼=
C̃ ′. Similarly, we can prove vice versa. 2

Lemma 4 shows that executing two equivalent task sequences from v -equal states
will always lead to equivalent sets of final states. Given an action α, we use
ptsk(α) to denote the set of tasks that could be enqueued by executing α. With
the above lemma, the rule for deciding local independency between actions can
be obtained, as shown in Lemma 5.

Lemma 5. Given a state C , α1, α2 ∈ enable(C), (α1 ≡VI α2 ∧ ∀ t1 ∈
ptsk(α1), t2 ∈ ptsk(α2). t1 ≡TI t2)⇒ α1 ≡LI α2.

Proof Since α1 ≡VI α2, we only need to prove the second condition in Defini-
tion 3. Suppose that ex (C , α1), α2) = C12, ex (C , α2), α1) = C21 and Q(C) =
Q0. then Q(C12) = Q∩0 q∩1 q2 and Q(C21) = Q∩0 q ′∩2 q ′1. Trivially q1, q

′
1 ⊆ ptsk(α1)

and q2, q
′
2 ⊆ ptsk(α2). Since ∀ t1 ∈ ptsk(α1), t2 ∈ ptsk(α2). t1 ≡TI t2), ptsk(α1)∩

ptsk(α2) = ∅, and thus q1 = q ′1 and q2 = q ′2. Intuitively, q∩1 q2 ' q ′∩2 q ′1. There-
fore, Q(C12) ' Q(C21). 2

3.2 Global Independence

SNs are non-blocking, i.e., the execution of one sensor never blocks others. In
addition, a sensor accesses local resources only visible to itself most of the time,
except when it broadcasts a message to the network and fills in others’ message
buffers. In TinyOS, messages are queued for transmission and only when the
previous transmission has completed, can a new message be sent successfully.
This assures that during the execution of a task, at most one packet could be

successfully sent to the network. Thus, at network level, we explore the execution
of each sensor by tasks, and only allow interleaving among sensors when the tasks
are detected to involve network communication. Let N be a sensor network
with n sensors S1,S2 · · · Sn . In the following, we define global independence of
tasks. We use EnableT (C) to denote the set of enabled tasks at network state
C. Given t ∈ Tasks(Si), t ∈ EnableT (C) ⇔ C[i] = (V , 〈t , · · · 〉,B ,X 4 H).
Ex (C, t) represents the final states after executing task t (and interrupt handlers
caused by it) starting from C. For two network states C1 and C2, we say that
C1 and C2 are equivalent (C1 ∼= C2) iff ∀ 1 ≤ i ≤ n. C1[i] ∼= C2[i]. Similarly,
we say that two network state sets Γ and Γ ′ are equivalent (i.e., Γ � Γ ′) iff
∀ C ∈ Γ. ∃ C′ ∈ Γ ′. C ∼= C′ and vice versa.

Definition 7 (Global Independence). Let ti ∈ Tasks(Si) and tj ∈ Tasks(Sj)
such that Si 6= Sj . Tasks ti and tj are said to be global-independent, denoted
by ti ≡GI tj , iff ∀ C ∈ Γ. ti , tj ∈ EnableT (C) ⇒ ∀Ci ∈ Ex (C, ti). ∃ Cj ∈
Ex (C, tj). Ex (Ci , tj) � Ex (Cj , ti) and vice versa.

A data transmission would trigger a packet arrival interrupt at receivers and thus
is possible to interact with local concurrency inside sensors. In the following,
Sends(S) denotes the set of tasks that contain data transmission requests, and
Rcvs(S) denotes the set of completion tasks of packet arrival interrupts.

Given t ∈ Tasks(S), t is considered as rcv-independent, denoted as t ⊂RI

S, iff ∀ tr ∈ Rcvs(S), tp ∈ Posts(t). tr ≡TI tp . A rcv-independent task never
posts a task local-dependent with the completion task of any packet arrival
interrupts. Thus, we can ignore interleaving such tasks with other sensors’ tasks
that perform a data transmission. Intuitively, if t ∈ Sends(S), then interleaving
among sensors is necessary. We say that t is a global-safe task of S iff t ⊂GI

S ≡ t 6∈ Sends(S) ∧ t ⊂RI S. If t 6⊂GI S, then t is global-unsafe. The following
theorem indicates that a global-safe task is always global-dependent with any
task of other sensors.

Theorem 1. ∀ t1 ∈ Tasks(Si), t2 ∈ Tasks(Sj). Si 6= Sj , t1 ⊂GI Si ⇒ t1 ≡GI t2.

Proof Supposing that t2 6∈ Sends(Sj), since t1 6∈ Sends(Si), we can prove im-
mediately that t1 ≡GI t2. Suppose that t2 ∈ Sends(Sj) and Si is connected with
Sj . Thus after executing t2, the message buffer of Si might be modified. Sup-
pose that t1, t2 ∈ EnableT (C0) and C0[i] = (V , 〈t1〉∩qi), and let C2 ∈ Ex (C0, t2)
and C21 ∈ Ex (C2, t1). Let C21[i] = (V i

12, q
∩
i 〈t ′1 · · · trv · · · t ′m〉,∅,X 4 H), where

trv is the task posted by packet arrival interrupt handler of Si and for ev-
ery t ′k (1 ≤ k ≤ m) we have t ∈ Ptask(t1). It is immediately that there ex-
ists C1 ∈ Ex (C0, t1) such that there exists C12 ∈ Ex (C1, t2), C12[j] = C21[j],
C12[i] =v C21[i] and Q(C12[i]) = q∩i 〈t ′1, t ′2 · · · t ′m , trv 〉. Intuitively, B(C12[i]) 6= ∅,
since a packet arrival interrupt in Si is triggered after t2 is executed and the task
trv is enqueued to be the last element. By the definition of ⊂RI and Lemma 4,
we have Q(C12[i]) ' Q(C21[i]), and thus C12[i] ∼= C21[i]. It is obvious that for
all k(1 ≤ k ≤ n ∧ k 6= i , j , we have C12[i] = C21[i]. Consequently, C21 ∼= C12.
Similarly, we can prove vice versa. 2

4 Sensor Network Cartesian Semantics

Cartesian POR was proposed by Gueta et. al. to reduce nondeterminism in con-
current systems, which delays unnecessary context switches among processes [12].
Given a concurrent system with n processes and a state S , a cartesian vector
is composed by n prefixes, where the i th (1 ≤ i ≤ n) prefix refers to an trace
executing transitions only from the i th process from state S . For SNs, sensors
could be considered as concurrent processes and their message buffers could be
considered as “global variables”.

It has been shown that cartesian semantics is sound for local safety proper-
ties [12]. A global property that involves local variables of multiple processes is
converted into a local property by introducing a dummy process for observing
involved variables. In our case, we avoid this construction by considering global
property in the cartesian semantics for SNs. Let Gprop(N), or simply Gprop
since N is clear in this section, be the set of global properties defined for N .
Given an action α ∈ Tasks(S) and a global property ϕ ∈ Gprop, α is said to be
ϕ-safe, denoted as α ∈ safe(ϕ), iff Wα∩Rϕ = ∅ where Wα is the set of variables
written by α and Rϕ is the set of variables accessed by ϕ. If α 6∈ safe(ϕ), then
α is referred to as ϕ-unsafe.

4.1 Sensor Prefix

In order to allow sensor-level nondeterminism inside prefixes, we redefine Prefix
as a tree of traces rather than a sequential trace. Let Prefix (S) be the set of all
prefixes of sensor S; Prefix (S, C) be the set of prefixes of S starting at C; and
first(p) be the initial state of a prefix p. A prefix is defined as follows.

Definition 8 (Prefix).
A prefix p ∈ Prefix (S) is defined as a tuple (trunk , branch), where trunk =

〈C0, α1, C1, · · · , αm−1, Cm〉 ∧ m ≥ 0 ∧ ∀ 1 ≤ i < m. αi ∈
∑
S ∧ Ci

αi
↪→ Ci+1,

and branch ⊆ Prefix (S) ∧ ∀ b ∈ branch. first(b) = Cm .

Let p ∈ Prefix (S) and p = (ptr , br). We use trunk(p) to denote the sub-prefix
of p before branching prefixes (i.e., trunk(p) = ptr); branch(p) to denote the
set of branching prefixes of p (i.e., branch(p) = br). In Fig. 3, the dashed
rectangles p11, p12 and p11 are prefixes of S1, and p21, p22 and p21 are pre-
fixes of S2. More specifically, trunck(p23) = 〈(4.0), α2, (4.0)〉 and branch(p23) =
{〈(4.0), α3, (4.1), αrd , · · · 〉, 〈(4.0), αrv , (4.6), α3〉}. Given a prefix p ∈ Prefix (S),
the following definitions are defined for our POR approach.

– The set of states in p including those in its branching prefixes:
states(p) = {C0, · · · , Cm} ∪ (∪sp∈branch(p)states(sp)).

– The set of leaf prefixes of S: LeafPrefix (S) = {lp | ∀ lp ∈ Prefix (S). branch(lp)

= ∅}. Given lp ∈ LeafPrefix (S), l̂ast(lp) denote the last state of lp.
– The set of tree prefixes of S: TreePrefix (S) = Prefix (S)− LeafPrefix (S).
– The set of leaf prefixes of p: p ∈ LeafPrefix (S) ⇒ leaf (p) = p ∧ p ∈

TreePrefix (S)⇒ leaf (p) = ∪sp∈branch(p)leaf (sp).

– The set of final states of p: p ∈ LeafPrefix (S)⇒ last(p) = {l̂ast(p)} ∧ p ∈
TreePrefix (S)⇒ last(p) = ∪bp∈branch(p)last(bp).

– Subsequent prefixes A: ∀ lp ∈ LeafPrefix (S). lp A p ≡ l̂ast(lp) = first(p).
– Combination of leaf prefixes ̂ : ∀ p1 = 〈C0, α0, · · · , Ck 〉, p2 = 〈Ck , αk , Ck0 , αk0 ,
· · · , Ckm 〉. p1 ̂ p2 = 〈C0, α0, · · · , Ck , αk , Ck0 , · · · , Ckm 〉.

We also define tasks(p) (acts(p)) in a similar way to states(p) to denote
the set of all tasks (actions) executed in p. Moreover, lastT (p) (lastAct(p))
are defined in a similar way to last(p) to denote the set of last tasks (actions)
executed in p.

4.2 Sensor Network Cartesian Vector

Definition 9 (Sensor Network Cartesian Vector).
Given a global property ϕ ∈ Gprop, a vector (p1, · · · , pn) ∈ Prefixn is a sensor
network cartesian vector for N w.r.t. ϕ from a network state C if the following
conditions hold, where 1 ≤ i ≤ n:

1. pi ∈ Prefix (Si , C);
2. ∀ t ∈ tasks(pi). t 6⊂GI Si ⇒ t ∈ LastT (pi);
3. ∀α ∈ acts(pi). α 6∈ safe(ϕ)⇒ α ∈ lastAct(pi).

According to Definition 9, a vector (p0, p1, · · · , pn) from C is a valid sensor
network cartesian vector (SNCV) if for every 0 ≤ i ≤ n, pi is a prefix of Si
and each leaf prefix of pi ends with a ϕ-unsafe action or a global-unsafe task as
defined in Section 3.2. In Fig. 3, if ϕ is not given, then (p11, p21) is a valid SNCV
from the initial state.

To generate a sensor network cartesian vector for any explored state, we
assume the existence of an cartesian function φ: Γ ×Prefixn such that, for every
C ∈ Γ , φ(C) is a cartesian vector from C. Given a cartesian function φ, we
can build a cartesian semantics that uses φ as a guide for execution. When the
cartesian semantics starts the execution from a state C it selects a prefix p from
the vector φ(C) and executes the transitions of p. When the semantics reaches
a state C′ ∈ last(p), it executes the function φ again from C′.

The cartesian semantics generated by φ is formalized as two binary relations
→φ and ⇒φ on states, where →φ relates final states at the end of prefixes and
is transitively closed, and ⇒φ extends →φ to also include intermediate states.
In the following, we define the corresponding inference rules of →φ and ⇒φ .

[reflexivity]
C →φ C

i ∈ [1,n], ∃ p ∈ Prefix (C,Si) . C′ ∈ last(p)
[basis]

C →φ C′

C →φ C′, C′ →φ C′′
[transitivity]

C →φ C′′

Algorithm 1 State Space Generation

GetSuccessors(C, p, ϕ)

1: list ← ∅
2: if Next(p, C) 6= ∅ then
3: list ← Next(p, C)
4: else
5: scv ← GetNewCV (C, ϕ)

6: for all i ← 1 to n do
7: list ← list ∪ {Next(scv [i], C)}
8: end for
9: end if

10: return list

[reflexivity]
C ⇒φ C

i ∈ [1,n], ∃ p ∈ Prefix (C,Si) . C′ ∈ states(p)
[basis]

C ⇒φ C′

C →φ C′, C′ ⇒φ C′′
[pseudo − transitivity]

C ⇒φ C′′

5 Two-level POR Algorithm

In this section, we present our two-level POR, which extends the cartesian vector
approach [12] and combines it with a persistent set algorithm [11] to achieve
maximum reduction. In this section, we use N to denote a sensor network with
n sensors: S1, · · · ,Sn , and C denotes a network state of N .

5.1 Algorithms

Given a network state C, a prefix p (C ∈ states(p)) and a global property ϕ, the
state space of N is explored via a corresponding SNCV, as shown in Algorithm 1.
In this algorithm, GetNewCV (C, ϕ) generates a new SNCV from C, which will
be explained later. The relation Next : Prefix (S)× Γ → P(Γ) traverses a prefix

to find a set of successors of C. Formally, Next(p, C) = {C′ | ∃α ∈ acts(p), C α
↪→

C′}. The function CombineTree extends a leaf prefix with another prefix as its
branch, defined as CombineTree(lp ∈ LeafPrefix (S), sp ∈ Prefix (S)). Formally,
if lp A sp, after executing CombineTree(lp, sp), we have lp′ = (lp, {sp}). We
remark that CombineTree(lp, sp) has a side effect in lp by updating it with the
resultant prefix of the combination.

The method GetNewCV (C, ϕ) generates an SNCV from C w.r.t. ϕ, as shown
in Algorithm 2, and is in fact a φ function as discussed in Section 4.2. In this
algorithm, visited is the set of final states of prefixes that have been gener-
ated, and workingLeaf is the stack of leaf prefixes to be further extended. Con-
currency at network level is minimized by lines 7 and 18, where the relation

Algorithm 2 Sensor Network Cartesian Vector Generation

GetNewCV (C, ϕ)

1: scv ← (

n︷ ︸︸ ︷
〈〉, · · · , 〈〉)

2: for all Si ∈ N do
3: visited ← {C}
4: workingLeaf ← ∅
5: pi ← GetPrefix (Si , C, ϕ)
6: for all lp ∈ leaf (pi) do
7: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 6∈ visited then
8: workingLeaf .Push(lp)

9: visited = visited ∪ l̂ast(lp)
10: end if
11: end for
12: while workingLeaf 6= ∅ do

13: pk ← workingLeaf .Pop()

14: visited ← visited ∪ {l̂ast(pk)}
15: p′k ← GetPrefix (Si , l̂ast(pk), ϕ)
16: ConcatTree(pk , p

′
k)

17: for all lp ∈ leaf (p′k) do
18: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 6∈ visited then
19: workingLeaf .Push(lp)
20: end if
21: end for
22: end while
23: scv [i]← pi

24: end for
25: return scv

Extendable : Prefix (S) × {S1, · · · ,Sn} × Gprop → {True,False} is defined as
Extendable(p,S, ϕ) ≡ ∀α ∈ lastAct(p). α 6∈ Sends(S) ∧ α ∈ safe(ϕ). In other
words, a prefix is further extended (lines 15 to 21) only if it has not executed
a global-unsafe task or a ϕ-unsafe action. The function GetPrefix (Si , C, ϕ) pro-
duces a prefix of Si by executing actions and interrupt handlers of Si in parallel.
The i th element of the sensor cartesian vector scv (scv [i]) is initialized as pi ,
which is the prefix obtained by GetPrefix (Si , C, ϕ). And pi is then extended by
recursively combining each of its leaf prefixes with a new prefix obtained by
GetPrefix , as shown by lines 12 to 22.

Algorithm 3 shows how a sensor establishes a prefix from C w.r.t. ϕ. The
function ExecuteTask(t , p, ϕ, Cs) extends the initial prefix p by executing ac-
tions in task t , until a ϕ-unsafe action or a loop is encountered. Interrupt han-
dlers are delayed as long as the action being executed is a non-post statement,
which is reasonable due to Lemma 1 and Lemma 5. The details of ExecuteTask
is shown in Algorithm. 4. A persistent set approach has been implemented in
both ExecuteTask and RunInterrupts to constrain interleaving to happen only
between local-dependent actions, the details of which could be found in Algo-
rithms 5 and 6.

5.2 Correctness

In this section, we show that the above POR algorithms work properly and are
sound for model checking global properties and LTL-X properties. Lemmas 6
and 7 describe the correctness of Algorithm. 4 and 5, respectively.

Lemma 6. Given t ∈ Tasks(S), t ∈ EnableT (C) and ϕ, ExecuteTask(t , 〈C〉, ϕ, {C})
extends 〈C〉 by executing actions in t and enabled interrupt handlers, until t ter-

Algorithm 3 Prefix Generation

GetPrefix (S, C, ϕ)

1: p ← 〈C〉
2: t ← getCurrentTsk(C,S)
3: ExecuteTask(t , p, ϕ, {C},S)
4: if t is finished then
5: for all pi ∈ leaf (p) do

6: C′ ← l̂ast(pi)

7: irs ← GetItrs(C′,S)
8: p′i ← RunItrs(C′, itrs)
9: ConcatTree(pi , p

′
i)

10: end for
11: end if
12: return p

Algorithm 4 Task Execution

ExecuteTask(t , lp, ϕ, Cs,S)

1: {let α be the current action of t}
2: α← GetAction(t , C)
3: C ∈ l̂ast(lp)
4: {only post actions need to

interleave interrupts}
5: if α← post(t ′) then
6: itrs ← GetItrs(S, C)
7: {interleave α and interrupts itrs}
8: p ← RunItrs(C, itrs ∪ {α},S)
9: lp ← (lp, {p})

10: else
11: {non-post actions run indepen-

dently}
12: C′ ← ex (C, α)
13: tmp ← 〈C, α, C′〉
14: setPfx (C′, tmp)
15: lp ← (lp, {tmp})

16: end if
17: lps ← leaf (lp)
18: {stop executing t when t terminates or

a non-safe action is encountered}
19: if α 6∈ safe(ϕ) or terminate(t , α) then
20: return
21: end if
22: for all lp′ ∈ lps do
23: {extend lp only if there is no loop in

it}
24: if l̂ast(lp′) 6∈ Cs then
25: Cs ′ ← Cs ∪ states(lp′)
26: {continue to execute t to extend

lp′}
27: ExecuteTask(t , lp′, ϕ, Cs ′,S)
28: end if
29: end for

minates or a ϕ-unsafe action or a loop is encountered. 2

Lemma 7. Given a network state C where C[i] = (V ,Q ,B ,X 4 H), RunInterrupts
(C,Si .GetInterrupts(C′)) terminates and returns a valid prefix of Si . 2

Based on Lemma 4 and 5, we can show the correctness of Algorithm 2 in gener-
ating a prefix for a given state and a property, as shown in the following theorem.

Theorem 2. Given S, C and ϕ, Algorithm 3 terminates and returns a valid
prefix of S for some SNCV.

Proof By Lemma 6, after line 3 p is a valid prefix of S. If lines 5 to 10 are not
executed, then p is immediately returned. Suppose lines 5 to 10 are executed,
and at the beginning of the i th iteration of the for loop p is a valid prefix. By

Algorithm 5 Interleaving Interrupts

RunItrs(C, itrs,S)

1: if itrs ← ∅ then
2: return 〈〉
3: end if
4: p ← 〈C〉
5: {pis is the persistent set of itrs}
6: pis ← GetPerSet(itrs, C,S)
7: {interleave dependent actions}
8: for all α ∈ pis do
9: C′ ← ex (C, α)

10: lp ← 〈C, α, C′〉
11: setPfx (C′, lp)

12: {only allow interleaving if α is not a
post}

13: if α ∈
∑iq then

14: s ← RunItrs(C′, pis − {α},S)
15: lp ← (lp, {s})
16: end if
17: {add lp as a new branch to p}
18: p ← (tr(p), br(p) ∪ {lp})
19: end for
20: return p

Algorithm 6 Persistent Set

GetPerSet(itrs, C,S)

1: if ∃α′ ∈ itrs. α 6∈ itrQ(S) then
2: α = α′

3: else
4: α ∈ itrs
5: end if
6: pset ← {α}
7: work ← {α}
8: while work 6= ∅ do
9: α← work .Pop()

10: αs ← DepActions(α, itrs − pset) {Depedent actions of α}
11: pset = pset ∪ αs
12: work = work ∪ αs
13: end while
14: return pset

Lemma 7, p′i is a valid prefix of S. Let p̂ be the updated prefix after line 9,
and then leaf (p̂) = leaf (p) − pi ∪ leaf (p′i) since pi is combined with pi and no
longer a leaf prefix. By Lemma 7, p′i is a valid prefix and thus p̂ is a valid prefix.
Therefore, at the beginning of the (i +1)th iteration, p is a valid prefix. By Lem-
mas 6 and 7, both lines 3 and 8 terminates. Further, we assume that variables
are finite-domained, and therefore the size of leaf (p) is finite assuring that the
for loop terminates. 2

Theorem 3. For every state C, Algorithm 2 terminates and returns a valid
sensor network cartesian vector.

Proof We prove that at the beginning of each iteration of the while loop (lines 12
to 22) in Algorithm 2 the following conditions hold for any i (1 ≤ i ≤ n):

1. pi ∈ Prefix (Si , C);
2. workingPrefix = {p ∈ leaf (pi) | Extendable(p,Si , ϕ) ∧ l̂ast(p) 6∈ visited}.
By line 5, it is immediately true that first(pi) = C, and since the function

CombineTree never changes the first state of a given prefix, first(pi) = C holds

for all iterations. Since pi is extended by executing GetPrefix (Si , l̂ast(pi), ϕ),
which only executes actions of Si , thus pi ∈ Prefix (Si) always holds. Intuitively,
condition 1 holds for all iterations. In the following we prove condition 2 by
induction.

At the first iteration, by lines 6 to 11, we can immediately obtain that

workingPrefix = {lp ∈ leaf (pi) | Extendable(lp,Si , ϕ) ∧ l̂ast(lp) 6∈ visited}
and condition 2 holds. Suppose that at the beginning of the mth iteration, con-
dition 2 holds with workingLeaf = wm , pi = pm . After executing line 13, we
can obtain that workingPrefix = wm − {pk}. By lines 15 to 21, wokingPrefix =

wm−{pk}∪{lp ∈ leaf (p′k) | Extendable(lp,Si , ϕ) ∧ l̂ast(lp) 6∈ visited} (1). Let p̂k

be the new value of pk after executing line 16, by the definition of CombineTree,
we have p̂k = (pk , p

′
k) and thus leaf (p̂k) = leaf (p′k) (2). Consequently, we have

leaf (pi) = leaf (pm)−{pk}∪leaf (p̂k), since the leaf prefix pk has been extended to

be a tree prefix p̂k . Since wm = {p ∈ leaf (pm) | Extendable(p,Si , ϕ) ∧ l̂ast(p) 6∈
visited}, with (1) and (2), we can obtain that condition 2 holds at the beginning
of the (m + 1)th iteration, condition 2 holds. Therefore, we can conclude that
∀ t ∈ tasks(pi), α ∈ acts(pi). t 6⊂GI Si ⇒ t ∈ LastT (pi) ∧ α 6∈ safe(ϕ) ⇒
α ∈ lastAct(pi) holds when the while loop terminates. Thus the cartesian vector
generated by Algorithm 2 is a valid sensor cartesian vector.

For termination, we assume that all variables are finite-domained and thus
the state space of each sensor is finite. On one hand, the function GetPrefix (S, C, ϕ)
always terminates and returns a valid prefix, which has been proved in Theo-
rem 6. On the other hand, Algorithm 2 uses visited to store each state that has
been used to generate a new prefix, and by lines 7 and 18 a state is used at most
once to generate new prefix. Thus termination is guaranteed. 2

Let ϕ be a property, ψ be the set of propositions belonging to ϕ, and L(C)
be the valuation of the truth values of ψ in state C. Given two traces σ =
C0, α0, C1, α1, · · · , Ci , αi , · · · and σ′ = C′0, α′0, C′1, α′1, · · · , C′i , α′i , · · · , we then de-
fine two stuttering equivalent traces w.r.t. ϕ, denoted as , in the following defi-
nition.

Definition 10 (Stuttering Equivalent Traces). Two traces σ = C0, α0, C1, α1,
· · · , Ci , αi , · · · and σ′ = C′0, α′0, C′1, α′1, · · · , C′i , α′i , · · · are said to be stuttering
equivalent w.r.t. ϕ iff for every M = {m0,m1, · · · ,mi} (i ≥ 0) such that m0 = 0,
for all k ≥ 0, mk+1 = mk + nk ∧ L(Cmk

) = L(Cmk+1) = · · · = L(Cmk+(nk−1)) 6=
L(Cmk+1

), there exists P = {p0, p1, · · · , pi} such that p0 = 0, pk+1 = pk + qk ∧
L(Cmk

) = L(C′pk
) = L(C′pk+1) = · · · = L(C′pk+(qk−1)) ∧ L(C′pk+1) = L(Cmk+1

) and
vice versa.

Given a local state C = (V ,Q ,B ,P) for a certain sensor S, let trExs(C ,Q)
be the set of all possible traces after executing all tasks in Q . In the following, we

define task sequences that generate stuttering equivalent traces. Given two local
states C = (V ,Q ,B ,P) and C ′ = (V ,Q ′,B ,P), Q and Q ′ are stuttering equiv-
alent w.r.t. ψ (Q 'stψ Q ′) iff ∀σ ∈ trExs(C ,Q). ∃σ′ ∈ trExs(C ′,Q ′). σ ≡stψ σ

′

and vice versa.
The relation σ ≡stϕ is transitive [1], as indicated by Lemma 8.

Lemma 8. Given three task sequences Q, Q ′, Q ′′ such that Q 'stϕ Q ′ and
Q ′ 'stϕ Q ′′ then Q 'stϕ Q ′′.

Proof Immediate by definition of stuttering equivalence of task sequences and
by the transitivity of stuttering. 2

Lemma 9. Given two task sequences Q1 and Q2, Q1 ' Q2 w.r.t. ϕ ⇒ Q1 ≡stψ

Q2. 2

Lemma 10 illustrates that Algorithm 3 returns a prefix of traces stuttering
equivalent to those generated by the original semantics. It shows that for all
possible local interleaving from C for a certain sensor S, the sensor prefix obtained
by GetPrefix contains the same sequences of valuations for the set of propositions
ψ of the property ϕ.

Lemma 10. Given a state C, let p = GetPrefix (S, C, ϕ) be the prefix obtained
by Algorithm 3. For all σ ∈ exc(C,S), there exists σ′ ∈ traces(p) such that
σ ≡stψ σ

′, and vice versa. 2

Proof Since C , C ′ have the same valuation of variables V then L(C) = L(C ′)
(1). Interruptions do not modify the values of variables V in an state C , it holds
for σ and σ′ that for all j 0 ≤ j ≤ n such that αj ∈ itrQ(S), Cj ,αj ,Cj+1 then
L(Cj) = L(Cj+1) (2). Given σ = C ,α0,· · · ,Cr ,αr ,Cr+1,· · · ,αn−1,Cn By Algo-
rithm 4, ExecuteTask returns a trace σ′ = C ′,α′0,· · · ,Cs ,αs ,Cs+1,· · · ,α′n−1,C ′n
such that for every αr ∈ σ, αr ∈ t then there exist αs ∈ σ, αs ∈ t and αr = αs

and for all r< 0 ≤ r< < r αr< ∈ σ, αr< ∈ t there exist αs< ∈ σ′ such that
αr< = αs< , and for all r> n − 1 ≤ r> > r αr> ∈ σ, αr> ∈ t there exist
αs> ∈ σ′, αs> ∈ t such that αr> = αs> (3).Then by (1) and (2) L(Cr) = L(Cs)
and L(Cr+1) = L(Cs+1) therefore for all traces σ′ from a prefix p returned by
GetPrefix (C ′) holds that σ ≡stϕ σ

′ .
On the other hand, let σp = C = c0, αp0

,Cp0
,· · · ,αpn−1

,αpn
, Cpn+1

with
Cpn+1

= (V ,Q∩Qp ,B ,Pp) where σp is the result of removing all the actions
that do not modify the task queue, and Qp = tsk(αp0

)∩ · · ·∩ tsk(αpn
) therefore

Qp = Qσ(4). By Algorithm 4 and as it is shown in (3) all the Post actions αp

in σ belong to all the traces σ′ from a prefix p that ExecuteTask(C ′) returns,
and every αp is in the same relative positions w.r.t. other α′p such that α′p 6= αp .
Since C ′ = (V ,Q ′,B ,P) such that V ,B ,P are the same as in C then for all
the actions αint ∈ σ such that αint ∈ itrQ(S) and for all σ′ ∈ traces(p) there
exist an action α′int ∈ σ′ such that αint = α′int . For any αγ , where αγ is a post
action, let intsγ = {αγ0 , · · ·αγn} where for all i , 0 ≤ i ≤ n αγi ∈ itrQ and for
all αpk

∈ σp such that pk < γ0 then there exist a Post action α′γ such that

γ′ < γ and pk < γ′ < γ0 , and for all α′pk
∈ itrQ such that p′k > γn then

there exist a Post action α′′γ such that γ′′ > γ and p′k > γ′′ > γn . Let consider
the set dep{α}) which is defined as the fixed point of dep(X) = X ′ = {αj ∈
intsγ .∀α′j ∈ s, αj 6≡TI α

′
j ∪dep(X ′). By induction in the number of Post actions

in σp Qσ 'st Q ′σ is proven:
Base Case The number of Post actions in σp is zero. LetΩdep = {αϕ0

, · · · , αϕl
}

the set of actions such that for some t ∈ Rtask(tsk(αϕi
)), t 6∈ safe(ϕ,S). Since

by Definition 4 for all the actions αs ∈ σp .αs 6∈ Ωdep tsk(αs) ∈ safe(ϕ,S) then
the valuation of the truth values of ψ while executing tsk(αs) will not vary and
for all trace from t σt = Ct0 ,αt0 ,· · · ,αtm ,Ctm+1 for all i 0 ≤ i ≤ m L(Cti) =
L(Cti+1

) (1). Let σϕ = C = Cϕ0
, αϕ0

,· · · ,αϕl
,Cϕl+1

= (V ,Q∩Q ′p ,B ,Pσ) with
Q ′p = tsk(αϕ0

)∩ · · ·∩ tsk(αϕn
) and by (1) Q ′p 'st Qp . By Algorithms 4, 5 and 6

GetPrefix (C ′) returns a prefix p that contains a trace σ′ = C ′,α′0,· · · ,α′j ,Cα′j+1
,

σϕ,· · · ,α′n ,C ′n+1 = (V ,Q∩Q ′σ,B ,Pp) with Cσϕ = (V ,Q∩Qσϕ ,B ,Pγ) where for
all i , 0 ≤ i ≤ n α′n does not enqueue any task which modifies the valuation value
of ψ in any state and Qσϕ 'st Q ′σ. By lemma 8 Q ′′p 'st Q ′p and Q ′′p 'st Qp then
Qσ 'st Q ′σ.

Induction Step Let suppose that the number of Post actions in σp is n and
Qσ 'st Q ′σ. Suppose that the number of Post actions is n + 1. Let αγ = Post(t)
the first Post operation in σp = C = C0, αp0 ,Cp0 ,· · · ,αγ ,Cγ ,· · · ,αpm−1 ,Cpm

and Cγ = (V ,Q∩Qγ ,B ,Pγ) and Qγ = tsk(αγ0)∩ · · ·∩ tsk(αγn)∩t . Let Ωdep =
dep(αγ)∪αγ , as explained above all the enqueued tasks t = tsk(αint) such that
αint ∈ intsγ and αint 6∈ Ωdep do not alter the valuation of the propositions of ψ.
Let σϕ = C = Cϕ0

, αϕ0
,· · · ,αϕl

,Cϕl
,αγ , C ′γ = (V ,Q∩Q ′γ ,B ,Pϕ) such that for

all i , 0 ≤ i ≤ l αϕi ∈ ints and αϕi ∈ Ωdep that is, σϕ is composed by actions
in ints without the independent tasks and Q ′γ = tsk(αϕ0)∩ · · ·∩ αϕl−1

)∩t . There-
fore Q ′γ 'st Qγ . By Algorithms 4, 5 and 6 GetPrefix (C ′) returns a prefix p that
contains a trace σ′ = C ′,α′0,· · · ,α′j ,C′α′j , σϕ,· · · ,α′n−1,C′n where for all i , 0 ≤ i ≤ j

α′i does not enqueue any task which modifies the valuation value of ψ in any
state. Let σ′p = C ′,α′p0

,· · · ,σϕ,Cσϕ ,· · · ,α′pq−1
,C ′pq

the trace containing only ac-
tions from σ′ that modifies the task queue with Cσϕ = (V ,Q∩Q ′′γ ,B ,Pγ). There-
fore Q ′′γ 'st Q ′γ and Q ′′γ 'st Qγ . By the I.H. σγ = Cγ ,αγ+1,· · · ,αpm−1

, Cpm
=

(Vp ,Q
∩Q ′∩γ Qγ0 ,Bp ,Pp) there exist a sequence of tasks σ′γ = Cσϕ ,αp0 ,· · · ,α′pm−1

,
C ′pm

= (Vp ,Q
∩Q ′′∩γ Q ′γ0 ,Bp ,Pp) where ∩Q ′∩γ Qγ0 = Qσ, Q ′′∩γ Q ′γ0 = Q ′σ such that

Q ′γ0 'st Qγ0 . By By lemma 8 Qσ = Q ′∩γ Qγ0 'st Q ′σ = Q ′′∩γ Q ′γ0 and Qσ 'st Q ′σ
2

Lemma 11. Given a property ϕ, two configurations C = {C0, · · · ,Cns} ∈ N ,
and C′ = {C ′0, · · · ,C ′ns} ∈ N , and a sensor Si , then for any trace σ =
Ci , α0, · · · , αn−1,Cn = (Vσ,Qσ,Bσ,Pσ) where for all j 0 ≤ j < n αj ∈ ΣSi
and αn−1 holds some of the conditions 2., 3. from Definition 9 then Algorithm 2
returns a SNCV sncv = (p0, · · · , pns) such that there exist a trace σ′ in pi ,
σ′ = c′ = c′0, α

′
0, · · · , α′i , · · · , α′n−1, c′n , c′n = (Vσ,Q

′
σ,Bσ,Pσ) where σ ≡stϕ σ′

and Qσ 'st Q ′σ.

Proof By induction in the number of different tasks ntasks in σ:

Base Case ntasks = 1. Let σ = Ci ,α0,· · · ,αn−1,Cn = (Vσ,Qσ,Bσ,Pσ).
Let pi the prefix returned by σ′ = c′ = c′0, α

′
0, · · · , α′i , · · · , α′n−1, c′n , c′n =

(Vσ,Q
′
σ,Bσ,Pσ). Immediately, by Lemma 10 GetPrefix (C ′0) returns a prefix p

such that contains a trace σ′i = c′ = c′0,α′0,· · · ,α′i ,· · · ,α′n−1,c′n , c′n = (Vσ,Q
′
σ,Bσ,Pσ)

where σ ≡stϕ σ
′ and Qσ 'st Q ′σ.

Induction Step Let suppose that the hypothesis holds for σ containing
n tasks. Given a trace σ containing actions from n + 1 different tasks σ =
C0,α0,· · · ,αi ,Ci+1,· · · ,αn−1,Cn = (Vσ,Qσ,Bσ,Pσ) let αi an action such that for
all j 0 ≤ j < i there exist tj ∈ Tasks(S),ti ∈ Tasks(S). αi 6∈ itrQ(S) ⇒ αi ∈ ti
αj 6∈ itrQ(S)⇒ αj ∈ tj and tj 6= ti , or αi ∈ itrQ(S), αj ∈ itrQ(S) and αi = αj .
Let σi = C0,α0,· · · ,αi−1,Ci = (Vi ,Q

∩Qσ,Bi ,Pi). By Lemma 10 GetPrefix (C ′0)
returns a prefix p such that contains a trace σ′i = c′ = c′0, α

′
0, · · · , α′i , · · · , α′n−1, c′n ,

c′n = (Vi ,Q
′∩Q ′σ,Bi ,Pi) where σi ≡stϕ σ′ and Qσ 'st Q ′σ. Then considering

σii = Ci ,αi+1,· · · , αn−1,Cn = (Vσ,Qσ,Bσ,Pσ) σii has n tasks and by I.H.
and by transitivity of stuttering there exist a σ′ii = C ′i ,α

′
i+1,· · · , α′n−1,C ′n =

(Vσ,Q
′
σ,Bσ,Pσ) such that σii ≡stϕ σ

′
ii and Qσ 'st Q ′σ 2

Theorem 4. Let T be the transition system of N = 〈S0, · · · ,SN . Let T ′ be the
transition system obtained after applying the two-level partial order reduction
w.r.t. ϕ over N . Then T ′ and T are stuttering equivalent w.r.t. ϕ.

Proof Let ψ be the set of propositions belonging to ϕ we will proof that
for any trace σ from T σ = C0, α0, · · · , αn ,Cn+1 there exist a trace σ′ =
C ′0, α

′
0, · · · , α′n ,C ′n+1 such that σ ≡stϕ σ

′. We proof it by induction in the number
of changes in the valuation of ψ

Base Case If the number of changes in the valuation of ψ in σ is equal
to zero, it means that L(C0) = · · · = L(Cn). Since C0 belongs to T ′ then let
σ′ = C0 and σ′ ≡stϕ σ.

Induction Step Suppose that the number of changes in the valuation of ψ
in σ is m then there exits a σ′ = C0, α

′
0 · · ·α′n ,Cn+1 such that σ ≡stϕ σ

′ then it
also holds for m + 1 changes in the valuation of ψ in σ.

Let αi ∈ ΣSi the first action in σ such that αi 6∈ safe(ϕ). Let αk0 , · · · , αkm ,
for all kj , l , 0 ≤ kj ≤ i , 0 ≤ l ≤ N αkj ∈ Sl the last extendable action from a
task tp ∈ Tasks(Sl), tp 6⊂GI Sl (1) where each kj is ordered as follows: given two
last extendable actions αa ∈ Sαa

, αb ∈ Sαb
Sαa
6= Sαb

, let suppose αa is a Send
action and αb ∈ t , t 6⊂RI Sαb

then if there exist α′b which is a receive interrupt
handler in Sαa

and a < b′ < b then kb < ka otherwise ka , kb . The same reasoning
is applied when αb is Send action and αa ∈ t , t 6⊂RI Sαa . If αa and αb are both
Send actions or they belong to a task t 6⊂RI Sαb

then ka > kb if a > b and vice
verse.

By independence of global actions two consecutive actions αs−1 ∈ ΣSl
, αs 6∈

ΣSl
can be permuted for all s 0 ≤ s ≤ k0 and the trace · · · , Cs−1, αs−1, Cs ,αs ,

Cs+1,· · · is equivalent to the trace · · · ,C ′s−1,αs ,C ′s ,αs−1,c′s+1,· · · and it is possi-
ble to get a trace σk0 = c0, α

′
0, · · · , αk0 ,C

′
k0

such that for 0 ≤ j ≤ k0, αj ∈ ΣSl
.

Let CV = 〈p0, · · · pl , · · · , pN 〉 = GetNewCV (c0) by Algorithm 2, Theorem 3
and Lemma 10 there exits a traversal of pl σ

′
k0

= C0, α
′′
0 , · · · ,C ′′k0 such that

App Property SizeResult#State #Trans Time(s) OH(ms)
#States
wo POR

POR Ra-
tio

Anti-
theft(3391)

Deadlock free
3

X 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒
3alert)

X 1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle(332)3AllUpdated

2 X 3268 3351 3 2 111683 3× 10−2

3 X 208K 222K 74 3 >23.7M < 8× 10−3

4 X 838K 947K 405 4 >5.4G < 2× 10−4

5 X 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table 1. Experiment Results with NesC@PAT

#Node
NesC@PAT T-Check

wt POR #State
wo POR

Ratio #Bound
wt POR #State

wo POR
Ratio

#State Exh Time(s) #State Exh Time(s)

2 3012 Y 2 52.3K 6× 10−2 20 4765 Y 1 106.2K ≈ 4× 10−2

3 120K Y 20 >11.8M < 1× 10−2 12 66.2K N 1 13.5M ≈ 5× 10−3

50 12.6M Y 283 NA NA

4 368K Y 58 >2.7G < 1× 10−4 10 56.7K N 1 41.8M ≈ 1× 10−3

50 420.7M Y 1291 NA NA

5 4.2M Y 638 >616G < 7× 10−6 8 85.2K N 1 17.4M ≈ 1× 10−3

50 NA N >12600 NA NA

Table 2. Comparison with T-Check

σk0 ≡stϕ σ
′. Repeating this for all kj in (1) and by transitivity of stuttering [18]

we get that σkn = C0, α0, · · · , αn ,Cn+1 ≡stϕ σ
′
kn

= C0, α
′
0, · · · , αkn ,Ckn+1. Per-

muting again · · · ,Cs−1, αs−1,Cs , αs ,Cs+1, · · · , for all s kn+1 ≤ s ≤ i and by
Algorithm 2, Theorem 3, and Lemma 10 σi = C0, α0, · · · , αi ,Ci+1 ≡stϕ σ′i =
C0, α

′
0, · · · , α′i ,C ′i+1 and the number of changes in the valuations of ψ is n. By

I.H. and transitivity of stuttering σ ≡stϕ σ
′. 2

6 Experiments and Discussion

We implemented our approach in NesC@PAT [25], a domain-specific model
checker for sensor networks implemented using NesC programs. Static analysis
is conducted at compile time to identify the global and local independence rela-
tions among actions and tasks, and then Algorithm 1 is adopted for state space
exploration. In this section, we first evaluate the performance of the two-level
POR method using a number of real-world SN applications. Then a compari-
son between our POR and the POR implemented in T-Check [17] is provided,
since T-Check provides verification of TinyOS/NesC programs with a POR al-
gorithm. NesC@PAT, the experimental data and related documents can be ob-
tained from [1].

6.1 Enhancing NesC@PAT with Two-level POR

In this subsection, we present the verification results of an anti-theft applica-
tion and the Trickle algorithm [16]. The anti-theft application is taken from the
TinyOS distribution, which is a real-world application of sensor networks. It con-
sists of more than 3000 LOC of the NesC program running on each sensor. The
Trickle algorithm is widely used for code propagation in SNs, and we adopted a
simplified implementation to show the reduction effects. Experiments were con-
ducted on a PC with Intel Core 2 Duo CPU (2.33GHz) and 3.25GB memory
with Windows XP.

For the anti-theft application, we checked if a sensor turns on its theft led
whenever a theft is detected, i.e., 2(theft⇒3alert). In the Trickle algorithm, we
checked that eventually all the nodes are updated with the latest data among the
network, i.e., 3AllUpdated . We also checked a safety property to guarantee that
each node never performs a wrong update operation. These properties are verified
using NesC@PAT with the two-level POR. Results are presented in Table 1.
The results of the safety property against the Trickle algorithm are presented
in Table 2 for the comparison with T-Check. In Table 1, column OH shows the
computational overhead for static analysis at compile time, which depends on
the program size, the network size and the property to be checked. This overhead
is negligible (within 1 second) even for a large application like Anti-theft. The
second last column estimates the complete state space size so that we can use it
to calculate POR ratio (=#State wt POR

#State wo POR). For safety properties, #State wo POR

is estimated as S1 × S2 × · · · × Sn , where Si is the state space of the i th sensor;
whereas for LTL properties, it is further multiplied by the size of the Büchi
automaton of the corresponding LTL property. Note that this estimation is an
under approximation since the state space of a single sensor is calculated without
networked communication. Therefore, the PORRatio (both in Table 1 and 2) is
also an under approximation. With this under-estimation, our POR approach
achieves a reduction of at least 102-106. Further, the larger a network is, the
more reduction it will be.

6.2 Comparison with T-Check

We compared the performance of our POR approach and the POR method im-
plemented in T-Check, by checking the Trickle algorithm for the same safety
property, on the same testbed running Ubuntu 10.04. We focus on reachability
analysis as T-Check lacks support of LTL. We approximated the POR ratio by
the number of explored states, i.e., POR Ratio ≈ #State wt POR

#State wo POR, because T-
Check adopts stateless model checking. Moreover, there is no way to calculate
the state space of a single sensor and thus it is difficult to estimate the com-
plete state space like what we did for NesC@PAT. Thus, we had to set small
bounded numbers (around 10) in order to obtain the number of states explored
by T-Check without the POR setting. We present the comparison of both ap-
proaches in Table 2, where Exh indicates if all states are explored. The POR
method of T-Check treats all actions within the same sensor as dependent , i.e.,

it only reduces inter-sensor concurrency. Thus, our two-level approach would be
able to obtain better reduction since intra-sensor concurrency is also minimized.
Another observation is that T-Check explores more states per second, which is
reasonable since T-Check does not maintain the explored states. However, our
approach is more efficient in state space exploration, taking shorter time (102-
103). This is mainly because T-Check may explore the same path multiple times
due to its stateless model checking.

7 Related Work

This work is related to tools/methods on exploring state space of sensor net-
works. Approaches like SLEDE [13] and the work by McInnes [19] translate NesC
programs into formal description techniques (FDT) like Promela (supported by
SPIN) or CSPM (supported by FDR) and use existing model checkers to con-
duct verification tasks. Anquiro [20] is built based on the Bogor model checking
framework [21,22], for model checking WSN software written in C language for
Contiki OS [8]. Source codes are firstly abstracted and converted to Anquiro-
specific models, i.e., Bogor models with domain-specific extensions. Then Bogor
is used to model check the models against user-specified properties. Anquiro pro-
vides three levels of abstraction to generate Anquiro-specific models and state
hashing technique is adopted to reduce state space, and thus Anquiro is able
to verify a network with hundreds of nodes within half an hour. However, since
many low-level behaviors are abstracted away, Anquiro might not be able to
detect certain bugs. Moreover, translation-based approaches could cause inac-
curate results due to the semantic difference between NesC and FDTs. Hence,
approaches for direct verifying NesC programs have been developed.

Werner et. al. verified the ESAWN protocol by producing abstract behavior
models from TinyOS applications, and uses the C model checker CBMC to
verify the models [23]. The original ESAWN consists of 21000 LOC, and the
abstract behavior model contains 4400 LOC (including both C code and CBMC
statements). Our approach is comparable to this approach, since we support SNs
with thousands of LOC on each sensor to be explored. However, this approach is
only dedicated for checking ESAWN protocol and it abstracts away all platform-
related behaviors. Tos2CProver [4,5] translates embedded C code (which are
generated by the NesC compiler from NesC source code) to standard C, which
is then verified by CBMC. Partial order reduction (POR) is used to reduce state
space, and POR’s over-approximation is improved by reachablity checking. Our
work differs from this work in that this work only supports single-node TinyOS
applications instead of the whole network. T-Check [17] is built on TOSSIM [15]
and check the execution of SNs by DFS or random walk to find a violation of user-
specified properties. T-Check adopts stateless and bounded model checking and
is efficient to find bugs, and it was used to verify several TinyOS applications
and revealed some unknown bugs. However, T-Check might consume a large
amount of time (days or weeks) to find a violation if a large bounded number is
required due to the (equivalently)complete state space exploration. Our approach

complements T-Check as we propose a more effective POR which preserves LTL-
X.

This work is also related to research on partial order reduction in general.
Approaches that using static analysis to compute a sufficient subset of enabled
actions for exploration are proposed, such as persistent/sleep set [11] and ample
set [6] approaches. There are also dynamic methods which compute persistent
sets of transitions on the fly [9,24]. A cartesian POR [12] was presented to delay
context switches between processes for concurrent programs.

8 Conclusions

In this paper, we proposed a two-level POR to reduce the state space of SNs
significantly, based on the independence relations of actions between different
sensors and inside a single sensor. We extended cartesian semantics to deal with
concurrent systems with multiple levels of nondeterminism such as SNs. POR
was then developed based on static analysis of independence and the sensor
network cartesian semantics, and we also showed that it preserves LTL-X prop-
erties. We implemented this two-level POR approach in the NesC model checker
NesC@PAT and it had significantly improved the performance of verification,
by allowing sensor networks with thousands of LOC in each sensor to be model
checked exhaustedly, with a reduction ratio sometimes more than 106. One of
our future direction is to apply abstraction techniques like [20] to obtain an ab-
stracted model before applying POR, and the other is to adopt BDD techniques
to encode symbolic state space.

References

1. Experiment Materials. http://www.comp.nus.edu.sg/∼pat/NesC/por .

2. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor
Networks: a Survey. Computer networks, 38(4):393–422, 2002.

3. W. Archer, P. Levis, and J. Regehr. Interface contracts for TinyOS. In IPSN,
pages 158–165, Massachusetts, USA, 2007.

4. D. Bucur and M. Z. Kwiatkowska. Bug-Free Sensors: The Automatic Verification of
Context-Aware TinyOS Applications. In AMI, pages 101–105, Salzburg, Austria,
2009.

5. D. Bucur and M. Z. Kwiatkowska. On software verification for sensor nodes.
Journal of Systems and Software, 84(10):1693–1707, 2011.

6. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.

7. D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo. A Network-Centric
Approach to Embedded Software for Tiny Devices. In EMSOFT, pages 114–130,
2001.

8. A. Dunkels, B. Grönvall, and T. Voigt. Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors. In LCN, pages 455–462, 2004.

9. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In POPL, pages 110–121. ACM, 2005.

http://www.comp.nus.edu.sg/~pat/NesC/por

10. D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
Language: A Holistic Approach to Networked Embedded Systems. In PLDI, pages
1–11, 2003.

11. P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verification
of Deadlock Freedom and Safety Properties. Formal Methods in System Design,
2(2):149–164, 1993.

12. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian Partial-Order Reduc-
tion. In SPIN, pages 95–112, 2007.

13. Y. Hanna, H. Rajan, and W. Zhang. SLEDE: a domain-specific verification frame-
work for sensor network security protocol implementations. In WISEC, pages
109–118, 2008.

14. P. Levis and D. Gay. TinyOS Programming. Cambridge University Press, 1 edition,
2009.

15. P. Levis, N. Lee, M. Welsh, and D. E. Culler. TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications. In SenSys, pages 126–137, 2003.

16. P. Levis, N. Patel, D. E. Culler, and S. Shenker. Trickle: A Self-Regulating Al-
gorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In
NSDI, pages 15–28, California, USA, 2004.

17. P. Li and J. Regehr. T-Check: bug finding for sensor networks. In IPSN, pages
174–185, Stockholm, Sweden, 2010.

18. B. Luttik and N. Trcka. Stuttering congruence for chi. In SPIN, pages 185–199,
2005.

19. A. I. McInnes. Using CSP to Model and Analyze TinyOS Applications. In ECBS,
pages 79–88, California, USA, 2009.

20. L. Mottola, T. Voigt, F. Osterlind, J. Eriksson, L. Baresi, and C. Ghezzi. Anquiro:
Enabling Efficient Static Verification of Sensor Network Software. In SESENA,
pages 32–37, 2010.

21. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular
software model checking framework. In ESEC / SIGSOFT FSE, pages 267–276,
2003.

22. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: A Flexible Framework for Creating
Software Model Checkers. In TAIC PART, pages 3–22, 2006.

23. F. Werner and D. Faragó. Correctness of Sensor Network Applications by Software
Bounded Model Checking. In FMICS, pages 115–131, 2010.

24. Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Efficient Stateful Dynamic
Partial Order Reduction. In SPIN, volume 5156 of LNCS, pages 288–305. Springer,
2008.

25. M. Zheng, J. Sun, Y. Liu, J. S. Dong, and Y. Gu. Towards a model checker for
nesc and wireless sensor networks. In ICFEM, pages 372–387, 2011.

	State Space Reduction for Sensor Networks using Two-level Partial Order Reduction
	Introduction
	Preliminaries
	Interrupt-driven Sensors
	Formal Definitions of Sensor Networks

	Two-level Independence Analysis
	Local Independence
	Global Independence

	Sensor Network Cartesian Semantics
	Sensor Prefix
	Sensor Network Cartesian Vector

	Two-level POR Algorithm
	Algorithms
	Correctness

	Experiments and Discussion
	Enhancing NesC@PAT with Two-level POR
	Comparison with T-Check

	Related Work
	Conclusions

