
Bus-Aware Multicore WCET Analysis through TDMA Offset Bounds

Timon Kelter, Heiko Falk, Peter Marwedel

Technical University of Dortmund

{timon.kelter,heiko.falk,peter.marwedel}@tu-dortmund.de

Sudipta Chattopadhyay, Abhik Roychoudhury

National University of Singapore

{sudiptac,abhik}@comp.nus.edu.sg

Abstract—In the domain of real-time systems, the analysis of
the timing behavior of programs is crucial for guaranteeing the
schedulability and thus the safeness of a system. Static analyses
of the WCET (Worst-Case Execution Time) have proven to be
a key element for timing analysis, as they provide safe upper
bounds on a program’s execution time. For single-core systems,
industrial-strength WCET analyzers are already available, but
up to now, only first proposals have been made to analyze the
WCET in multicore systems, where the different cores may
interfere during the access to shared resources. An important
example for this are shared buses which connect the cores
to a shared main memory. The time to gain access to the
shared bus may vary significantly, depending on the used bus
arbitration protocol and the access timings. In this paper, we
propose a new technique for analyzing the duration of accesses
to shared buses. We implemented a prototype tool which uses
the new analysis and tested it on a total of 26 realworld
benchmarks. Results demonstrate that our analysis achieves the
same precision as the best existing approach while drastically
outperforming it in matters of analysis time.

Keywords-Multicores; WCET analysis; Shared bus;

I. INTRODUCTION

With the rising importance of multicore systems in the

processor market, including the embedded systems or cyber-

physical domain, there is a growing need for tools to

verify the timing behavior of such systems, and as such

the WCET. For embedded systems, this may be the most

important metric, because they often must work under real-

time conditions where a response must be delivered in a

predefined time. Therefore, fine-grained WCET analyses

have been developed for single-core systems in the last

decade [1], resulting in a variety of commercially available

tools. In contrast, for multicores only first proposals exist.

One of the major difficulties in analyzing the WCET for

multicore platforms is that programs running on different

cores may interfere with each other, for example during

accesses to a common shared bus which connects the cores

to a shared main memory. A possible approach to resolve

these interferences is to implement a Time Division Multiple

Access (TDMA) bus arbitration protocol which assigns a

fixed-length time slot to each core in round robin fashion.

In a scenario with nc cores each having a TDMA time

slot of length sl cycles this leads to a maximum delay of

Dmax = ((nc − 1)sl) + (e − 1) cycles for a bus access

which occupies the bus for e cycles. This maximum delay

is encountered when the access request is issued e − 1

cycles before the end of the executing core’s slot. The bus

cannot be granted then, since the access would span into

the slot of the next core. On the other hand, the bus access

is granted instantly, if the access request is issued when the

bus is assigned to the executing core for at least e remaining

cycles. Thus, an important problem is to determine tighter

bounds on the durations of bus accesses. Dmax cycles, as

mentioned, is a valid but highly overestimated bound. In

this paper, we present a new type of analysis which safely

bounds the access time for TDMA-arbitrated resources with

high precision and moderate analysis times thus enabling a

tighter WCET estimation. The results can be used to avoid

pessimistic hardware overdimensioning and to derive tighter

system schedules.

The rest of this paper is organized as follows: In Section

II, we will present related work, Section III introduces our

system model used in the analyses and Section IV and

V introduce the overall analysis framework as well as the

general analysis concepts respectively. Section VI presents

our new analyses which are evaluated in Section VII. Finally,

we provide a summary of our results and give directions for

future work in Section VIII.

II. RELATED WORK

The first approaches to multicore WCET analysis only

modeled the shared resources to some extent. Suhendra [2]

and Zhang [3] analyzed the effects of a shared L2 cache

without considering the interference on a shared bus that

is used to access the shared cache. [3] provides a bound

on the number of additional cache misses due to the inter-

core interference, whereas [2] eliminates the interference

altogether by exploring different scenarios of locking and

partitioning the shared cache. A similar approach is pursued

by Hardy [4], where cache bypassing is used to eliminate

the cache conflicts between different cores.

Gustavsson [5] investigates a totally different approach,

where the whole multicore system is modeled as a set of

timed automata. The WCET is obtained by proving special

predicates through model checking. This approach allows

for a detailed system modeling, but does not scale very well

as all system states have to be explored in the course of the

WCET analysis, leading to a state explosion.

For analyses that include the shared bus, the choice of

the bus arbitration method is crucial. Pitter [6] compared

the predominant arbitration methods and TDMA arbitration

resulted as the most predictable method. Therefore, most

of the works which include a bus analysis are restricted

to TDMA bus arbitration. To provide a better access time

estimation than the mentioned Dmax cycles, Andrei [7]

tries to determine the precise time at which every single

memory access takes place. The bus delay estimation is then

performed separately for each access. The main problem

is, that accesses in loops with an iteration count of i

can potentially have i different access times associated to

the same memory access. Therefore, the analysis has to

unroll all loops virtually to determine the access times for

each access individually, which makes the analysis runtime

dependent on the loop iteration counts.

Chattopadhyay [9] circumvents this costly unrolling by

aligning each loop head execution to the first TDMA slot

during the analysis. However, this artificial alignment of

each loop iteration results in an additional penalty term to be

added in WCET estimation. Therefore, the analysis proposed

in [9] is far more efficient but also less precise than [7]. The

analysis which we propose in the following, will present a

compromise between the two approaches, being almost as

precise as [7] and only slightly less efficient than [9].

Finally, Pellizzoni [8] derives the worst-case bus delays

in a multicore system analytically with the help of memory

traffic arrival curves. This approach is different from ours

since we do not require such curves.

A different direction in static timing analysis is the adap-

tion of multicore hardware to exhibit better predictability

properties. Paolieri [10] proposed a multicore architecture

in which the WCET of basic blocks is measurable, whereas

Mische [11] developed a superscalar SMT processor, which

provides built-in real-time capabilities. These approaches are

orthogonal to ours since we focus on estimating the WCET

of tasks on existing hardware platforms.

III. SYSTEM AND APPLICATION MODEL

We assume a system architecture where nc ≥ 2 cores

are present in a single processor. Each of the cores has an

in-order pipeline and a private L1-Cache and all the cores

are connected to a shared TDMA-arbitrated memory bus

with a uniform TDMA slot size of sl cycles per core. The

bus is used to access a shared L2-Cache, which itself is

linked to the main memory. The bus, the L2 cache and the

main memory may be located on-chip or off-chip. We do

not allow split transactions on the bus, therefore, for the

maximum duration T max of a bus transaction, T max ≤ sl

must hold. An access to the TDMA bus may incur a variable

delay, depending on when the access is performed, but the

delay cannot exceed Dmax cycles. As explained in the

introduction, this bound is not tight in general. Due to

T max ≤ sl and Dmax ≥ ((nc − 1)sl), the maximum bus

delay will at least be (nc − 1) times as big as the maximum

memory latency. Thus, the bus access delay is the factor with

the greatest variability and also with the greatest potential

for overestimations during WCET analysis. This underlines

the need for precise analyses of the bus access delays. In

this paper we will provide such an analysis using a fixed

TDMA schedule. The optimization of the TDMA schedule

itself is out of the scope of the paper.

All the caches in the considered system are non-inclusive

and use the least-recently-used (LRU) replacement policy.

The cache hierarchy can be easily extended e.g. with more

private cache levels, because we apply the generic frame-

work from [12] to determine which accesses from cache

level i−1 hit cache level i. We only model instruction caches

and thus assume that data accesses occur via a different bus

and do not interfere with the instruction accesses in any

other way. The integration of a data cache analysis into our

analysis would remove these restrictions. We do not allow

self-modifying code hereby removing the need to deal with

cache-coherency in our model. Also, all shared libraries are

duplicated for each core that uses them.

The input task dependencies are given as acyclic task

graphs with a fixed mapping of tasks to cores. Each edge

(x, y) in the task graph denotes that task y can start exe-

cution only after task x has finished. We use fixed-priority,

non-preemptive1 scheduling. For each loop L in the tasks,

the minimum and maximum loop iteration counts Bmin
L and

Bmax
L are given and the control flow graphs (CFGs) of the

tasks are assumed to be well structured (reducible).

IV. ANALYSIS FRAMEWORK

We embed our new analyses into the CHRONOS timing

analyzer framework from [9]. Figure 1 shows the analysis

process. The framework first analyzes the cache behavior

of each task in isolation and then computes the maximum

possible cache interference in the shared L2 cache. This in-

terference information is used to update the worst-case cache

states of the individual tasks. The cache analysis assigns

to each single access one of the following categories for

each cache level: “Always Hit” (AH), “Always Miss” (AM),

“First Miss” / “Persistent” (PS) or “Unknown Behavior”

(UNKNOWN). PS means that the first execution of the in-

struction suffers a cache miss, but every following execution

hits the cache, which is most useful for instructions inside

of loops. For details on the cache analysis, the interested

reader is referred to [9], since we are only using its results

here. In the next analysis step, the cache information is

used to compute BCET2 and WCET values per task. This

module (marked in bold in Figure 1) has been equipped

with our new analysis technique, whereas all other modules

have not been modified. After the tasks’ BCETs and WCETs

were computed, the overall system worst-case response time

1A preemptive scheduling would require the integration of a cache-
related preemption-delay (CRPD) analysis which is out of the scope of
this paper.

2Best-Case Execution Time

Figure 1. The analysis framework

(WCRT) is determined. This process repeats as long as the

task interference changes, e.g. due to altered task lifetimes.

In the following, we will focus on the determination of single

task WCETs with given cache states as this is our main

contribution. Nevertheless, all of our analyses are applicable

to the computation of BCETs as well.

V. STATIC ANALYSIS OF TDMA OFFSETS

Our new analysis builds upon concepts which are heavily

used in the analysis of other architectural features. To

establish the link between those existing analyses and our

new analysis, we first give a short overview of existing

static analysis techniques. We also demonstrate why those

techniques are not sufficient in our scenario.

A. Abstract Interpretation In Timing Analysis

A static timing analysis is usually composed of a microar-

chitectural analysis and a path analysis [1]. The microarchi-

tectural analysis is responsible for determining abstract hard-

ware states which describe the possible concrete hardware

states at every basic block entry. This microarchitectural

analysis is normally based on abstract interpretation, a

technique for static program analysis, which can provide

safe approximations of program or, in this case, hardware

states. In the past it was successfully employed to analyze

cache, branch prediction and pipeline behavior. With these

hardware states, a basic block WCET can be computed,

which in turn can be fed into the path analysis to compute

the longest path through the program. The abstract hardware

states which are used in our analysis model the state of the

shared TDMA bus, i.e. at which points in time the execution

(a) Offset interval

(b) Offset set

Figure 2. Different abstract representations for possible start offsets of a
basic block

of a block may start. Since the TDMA schedule is cyclic,

we can revert to representing only offsets instead of absolute

times. An offset o in our case can be computed from an

absolute time t as o = (t mod ncsl). To model the fact

that a block can be entered with more than one offset we

devise two offset representations:

• An offset interval I = [omin, omax]

• An offset set S = {o1, o2, . . . , on}

These offset representations are the abstract hardware states

that will be used in the analyses. An example for the

different representations can be found in Figure 2. While

Figure 2(b) shows the offset set representation with the

represented offsets marked in gray, Figure 2(a) presents the

same offset information, again marked in gray, for the offset

interval representation. Obviously, the set representation is

more precise, but it also requires greater effort to maintain

the sets during the analysis, thus leading to a typical tradeoff

between analysis precision and analysis duration.

In the following, we use a special definition of basic

blocks. A basic block b = (i1, . . . , ik) in our definition is a

sequence of instructions which may only be entered at i1 and

only be exited at ik and which, in addition, must also either

not contain any instruction which potentially accesses the

shared bus, or the block contains only a single instruction.

The information whether an instruction potentially accesses

the shared bus can be extracted from the cache information.

In our case it may access the bus when it may access the L2

cache. This splits up a standard basic block which contains

l potential bus accesses into at most 2l + 1 basic blocks

whose WCET is either fixed (no bus access) or variable (bus

access). The basic blocks execute in-order, since we required

an in-order pipeline. A generalization of our concepts to

out-of-order execution is possible, but it is omitted due

to size constraints. With this notion of basic blocks and

the results from the other microarchitectural analyses which

yield WCET values for the blocks without bus accesses, we

can formulate the offset analysis as a data flow problem. The

data flow analysis requires a function u which updates the

computed state after the execution of a basic block b and a

function m which merges the states at control flow joins in

the control flow graph. Given the set ETb ⊆ N of possible

execution times of b and either an offset set Sb or an offset

interval Ib, we have

u (Sb) =











offexecute b never accesses bus

offexecute ∪ offaccess b may access bus

offaccess b always accesses bus

(1)

u (Ib) = [min (u (set (Ib))) , max (u (set (Ib)))] (2)

with set ([omin, omax]) = {omin, . . . , omax} and

offexecute = {(o + e) mod slnc|o ∈ Sb, e ∈ ETb}

offaccess = {(o + Φp (o, e)) mod slnc|o ∈ Sb, e ∈ ETb}

The Φp (o, e) function returns the time needed to finish

the bus access (including the bus delay), when the bus

request is issued by core p ∈ {0, . . . , nc − 1}, begins at

offset o ∈ {0, . . . , ncsl − 1} and needs e ∈ {1, . . . , T max}
cycles to complete after the bus access was granted. In the

TDMA arbitration we can define Φp (o, e) as:

Φp (o, e) = e +











slp − o if o < slp

0 if slp ≤ o ≤ sl(p + 1) − e

slnc − o + slp else

Note that ETb may for example model the fact that we

have a block with variable-latency instructions or a block

whose L2 instruction memory access was classified as

UNKNOWN. The merge functions for the two offset rep-

resentations are:

m (S1, . . . , Sj) =
⋃

i∈{1,...,j}

Si (3)

m (I1, . . . , Ij) = [min (Sm) , max (Sm)] (4)

where Sm = m (set (I1) , . . . , set (Ij)). With these func-

tions, we can establish a standard data flow analysis on

the interprocedural control flow graph of each task (with

given starting offsets for the task start block) which ter-

minates after all offset data has stabilized. Unfortunately,

this analysis will not be very precise, because branches and

loops in the control flow force us to repeatedly merge the

offset information, which quickly leads to results where a

block can be reached with arbitrary offsets. In this situation,

we cannot provide a better estimation than the pessimistic

assumption that each bus access is delayed by Dmax cycles.

The imprecision that stems from branches can be reduced

through the offset set representation which allows to track

the offset development in more detail. Loops pose a bigger

problem. They can only be handled effectively with the

concept of contexts in the analysis.

Since the functions u and m are defined for both offset

sets S and offset intervals I , we will formulate our analyses

based on an abstract offset data structure O in the following

which may be either an offset set or an offset interval.

Figure 3. Mapping of a start offset to possible end offsets for a single loop
iteration. The iteration takes 3sl to ncsl cycles in this example, depending
on which path through the loop body is taken

B. Abstract hardware states and contexts

Usually, the hardware states presented in Section V-A are

computed in a context-insensitive way, meaning that the

abstract interpretation computes states which are valid for

all execution contexts of a basic block, where an execution

context denotes a certain loop iteration or calling context.

This behavior is insufficient for some analyses like e.g.

the cache analysis, where the first loop iteration may have

a significantly different cache behavior than the following

ones. For this purpose, analysis contexts were introduced,

which describe the hardware states for a certain execution

context. The known methods for dealing with contexts

during bus access duration analysis are the following:

• The loop is virtually unrolled by a factor equal to its

loop bound and thus, each loop iteration is explicitly

analyzed [7]. This method, called full virtual unrolling

is very precise but also very inefficient for larger loop

bounds. It results in the analysis of Bmax
L analysis

contexts, which each represents exactly one execution

context.

• The analysis is performed for a fixed offset o, and a

delay is added that represents the maximum additional

delay that can occur due to execution with offsets s 6= o.

This is the approach from [9], and we will refer to it

under the name fixed-alignment approach. It results in

a single analysis context which represents all Bmax
L

execution contexts.

In the next section, we will present a third, novel approach

to context handling in bus access duration analysis, which

will analyze 1 ≤ x ≤ Bmax
L contexts to provide a com-

promise between analysis duration and analysis precision.

Our approach is based on an analysis of TDMA offsets as

presented above.

VI. COMPUTING LOOP OFFSET BOUNDS

Our approach is based upon the observation that for each

loop iteration which starts from a given set of offsets, we

can compute the set of offsets in which the iteration may

terminate. Therefore, our goal is to track the development

of the TDMA offsets of the loop header block and thus to

provide more precise offset bounds than by using the data

flow analysis from Section V. This requires:

• A structural analysis to find loops in the CFG, and to

build a directed acyclic graph (DAG) from each loop or

procedure body. Nested loops are represented as single

nodes in the surrounding DAG. Due to this, we required

our input tasks to be reducible in Section III.

• An analysis that computes the set of offsets that may

be reached when a loop body is executed once with

given starting offsets.

The overall analysis will then proceed in a hierarchical way,

starting at the beginning of the task entry procedure and

descending into called procedures or loops only when they

are discovered in the CFG. The structural analysis is already

present in the CHRONOS framework, whereas a single-

iteration offset analysis is presented in Section VI-A. Section

VI-B then introduces the core analysis which combines the

single-iteration results into a complete loop WCET.

A. Determination of offset results for single iterations

As mentioned, we are interested in determining the offsets

that can be reached after a single execution of the loop

body finishes. This will be called a loop iteration in the

following, in contrast to a loop execution which denotes

the (possibly) repeated execution of the loop body until the

loop condition is false. Figure 3 shows a scenario where

a loop iteration, starting from a single, given offset may

end at various different offsets, e.g. due to different paths

through the loop. These single-iteration offset results can be

determined by iterating over the loop’s basic block DAG in

topological order, as sketched in the following.

In our analysis of a single loop iteration, each basic block

is seen as a transformation function which maps input offsets

Oin (either an offset set or an offset interval as explained in

Section V-A) to resulting offsets Oout and produces WCET

values which are valid for the given Oin. Algorithm 1 shows

the analysis of single basic blocks. Function calls (lines 11

- 14) or blocks which represent inner loops (line 2) are

handled by specialized analysis functions. Note that function

calls terminate basic blocks in our model. The WCET and

offsets which result from bus accesses (lines 4 - 8) or simple

instructions (line 10) are computed with the known ETb

values and Φp and u functions from Section V-A, where

p is the core which executes the currently analyzed task.

Each DAG analysis, on either a procedure or a loop body,

then composes the single-block results in topological order

and forms its own WCET and offset result out of them.

Algorithm 2 shows this for the case of a single loop iteration,

where bsink and bheader are the sink and header node of loop

l, respectively and pred (bi) returns the set of predecessor

blocks for block bi. By supplying the starting offsets to

the loop iteration analysis (lines 3 - 4), this information

becomes part of the analysis context, as explained in Section

V-B. The iteration analysis then analyzes the behavior of

each single block (lines 9 - 11) and propagates the results

to the successor blocks (lines 6 - 7). Finally the results

per loop iteration are summarized (line 13). The analysis

of procedures in “AnalyzeProcedure” works analogously as

“AnalyzeLoopIteration”. This implies that recursive calls

must be converted to standard loops before our analysis can

handle them. For the analysis of complete loop executions

(all iterations) in “AnalyzeLoop”, we need to combine the

context-sensitive single iteration results to form an overall

loop WCET and offset result. This will be discussed in the

next section.

Algorithm 1 AnalyzeBlock

Require: block b, offsets Oin

1: if b is head of inner loop linner then

2: return AnalyzeLoop (linner , Oin)
3: else if b consists of bus access instruction then

4: wcet = 0

5: for all offset o ∈ Oin, e ∈ ETb do

6: wcet = max (wcet, Φp (o, e))
7: end for

8: return 〈wcet, u (Oin)〉
9: else

10: result = 〈max (ETb) , u (Oin)〉
11: if b is terminated by call to function f then

12: tmp = AnalyzeProcedure (f, result.offsets)
13: result = 〈tmp.wcet + result.wcet, tmp.offsets〉
14: end if

15: return result

16: end if

Algorithm 2 AnalyzeLoopIteration

Require: loop l, offsets Oin

1: for all blocks bi of loop l in topological order do

2: if bi = bheader then

3: wStart = 0
4: oStart = Oin

5: else

6: wStart = maxbd∈pred(bi) (wFinish [bd])
7: oStart = m ({oF inish [bd] | bd ∈ pred (bi)})
8: end if

9: 〈wcetbi
, Obi

〉 = AnalyzeBlock (bi, oStart)
10: wFinish [bi] = wStart + wcetbi

11: oF inish [bi] = Obi

12: end for

13: return 〈wFinish [bsink] , oF inish [bsink]〉

B. Deriving full loop WCETs

To implement “AnalyzeLoop” for a given loop l and

starting offsets Oin,l, full unrolling could be performed by

analyzing all iterations and supplying the offset results from

one iteration as inputs to the next one. Alternatively, only

a single iteration can be analyzed, with a forced alignment

at the TDMA schedule border and an added alignment

penalty as suggested in [9]. Section V-B already mentioned

that our goal is to avoid these two approaches, because

they are computationally too expensive or lose precision,

respectively. In this section we devise two new methods

which present a compromise between those two extremes.

Global Convergence Analysis: Starting with the initial

offset information O1
in = Oin,l we iteratively analyze

single loop iterations i ∈ {1, 2, . . .} and record the WCET

wceti and offset result Oi
out. With the merge function m

from Section V-A the offset inputs Oi
in for iteration i are

then computed as m
(

Oi−1
in , Oi−1

out

)

instead of simply setting

Oi
in = Oi−1

out as it would be the case in the fully unrolling

approach. m
(

Oi−1
in , Oi−1

out

)

is a superset of Oi−1
out , therefore

the Oi
in increase monotonically and converge towards the set

of all offsets with which the loop can possibly be entered.

The analysis stops after iteration j when either j = Bmax
l

or O
j
in = O

j+1
in is true. In the first case we have hit the

loop bound and thus have performed full unrolling implicitly,

therefore this is the undesired case. In the second case we

have reached a fixpoint of the starting offsets and thus the

result from iteration j stays valid for all following iterations.

In total there can’t be more than ncsl iterations, which is

the number of possible offset values. The final loop WCET

can then be easily computed as:

wcetl (Oin,l) =

(

j
∑

i=1

wceti

)

+ (Bmax
l − j) · wcetj (5)

The offset result for the loop is equal to the offset result

from iteration j, because this result stays valid for all

following iterations.

Graph Tracking Analysis: The global convergence analy-

sis is superior to the static unrolling insofar, that it implicitly

unrolls the loops selectively, as long as new information can

be obtained. This is more suitable than a static unrolling,

but it still relies on the idea of unrolling the first j iterations

and handling the rest of the iterations under a single analysis

context.

The drawback is that cyclic progressions of offsets cannot

be captured by the analysis. Consider e.g. a loop in which

all even iterations start with offset x and all odd iterations

start with offset y ≥ x, because only the even iterations

have to wait for the TDMA bus access, whereas the odd

iterations can then proceed with direct bus access. The global

convergence analysis will analyze the first two iterations

(j = 2), compute O
j
in = {x, y} and use this offset

information for all following iterations. This is clearly valid,

but still imprecise. The example shows the need to handle

cyclic contexts which do not distinguish the first j execution

Figure 4. An example offset graph

contexts from the remaining ones, but which distinguish

groups of execution contexts which repeat cyclically. In our

case, a cyclic context consists of all iterations starting with

offset o, which leads to slnc contexts. Thus, we can identify

a cyclic context via the offset which it represents.

To obtain the final timing results using cyclic contexts we

construct a weighted, directed graph from the contexts and

compute the loop WCET by solving a flow problem on that

graph. This graph G = (V, E, c), also called offset graph

in the following, has V = {v+, v−} ∪ Voff with source

v+, sink v−, context nodes Voff = {v0, ..., vslnc
}, E =

Eenter∪Eexit∪Etransition and weight function c : E → N.

We have

Eenter =
{

(v+, vx) | x ∈ Oin,l

}

(6)

Eexit =
{

(vx, v−) | x ∈ [0, slnc]
}

(7)

For all edges e ∈ (Eenter ∪ Eexit) we set the weight c (e)
to 0. Etransition is then constructed by iteratively analyzing

single iterations. For each iteration i, we compute wceti and

Oi
out from Oi

in using Algorithm 2. O1
in is set to Oin,l and for

the other iterations Oi
in = Oi−1

out applies. After the analysis

of each iteration we extend Etransition by all edges e =
(vi, vo) with i ∈ Oi

in, o ∈ Oi
out and c (e) = wceti. If any of

these edges already exists, we update its weight by setting it

to max (c (e) , wceti). We stop the iteration analyses when

we reach an iteration where no edge is added or updated. An

example for such a graph is given in Figure 4 where the first

iteration starts with offset s and the succeeding iterations

alternate between starting offset x and y as sketched in the

example at the beginning of this section.

The offset graph can then be used to obtain the final loop

WCET by solving a dynamic flow problem [13]. In contrast

to standard flow problems, dynamic flow problems have an

explicit notion of time built into the problem formulation.

Based on the offset graph we can derive two different

dynamic flow problems: one for determining the WCET

and one for the resulting offsets. The basis of the problem

formulation is a flow function x : E × T → N, which

specifies for each edge e = (u, v) the amount of flow x (e, t)

which leaves u at the discrete time instant t. This flow arrives

at v at time t + τ (e) where τ (e) is the constant runtime

of the edge. Conceptually, in our graph, a single time step

of the flow problem corresponds to a single iteration of

the loop, which implies T = {0, ..., Bmax
l }. Thus a flow

of x(e, t) = 1 through an edge e = (v, w) ∈ Etransition

represents the loop iteration t which starts at offset v and

ends at offset w and has a maximum runtime of c(e).
Therefore we set τ (e) = 1 for all e ∈ Etransition,

since these edges model single loop iterations, and we set

τ (e) = 0 for all e ∈ Eenter ∪ Eexit, modeling entry into

and exit from the loop. Both dynamic flow problems share a

common constraint that ensures that all flow which enters a

node at a time step must leave it in the same step (i.e. there

must be one loop iteration per time step):

∀t ∈ T : ∀v ∈ Voff :
∑

e∈δ−(v)

x (e, t − τ (e)) =
∑

e∈δ+(v)

x (e, t)

Here, δ− (v) and δ+ (v) denote the sets of incoming and

outgoing edges at node v ∈ V . For the start node v+ and

the sink node v− we need to provide explicit bounds on the

flow. We want F units of flow to leave v+ at time 0 and to

arrive at v− at time Bmax
l (i.e. we can model F full loop

executions in a single flow problem). Therefore we have:
∑

e∈δ+(v+)

x (e, 0) = F (8)

∀e∈δ+(v+) : ∀t ∈ T \ {0} : x (e, t) = 0 (9)
∑

e∈δ−(v−)

x (e, Bmax
l) = F (10)

∀e∈δ−(v−) : ∀t ∈ T \ {Bmax
l } : x (e, t) = 0 (11)

For the WCET analysis we only model the single worst-case

loop execution scenario by setting F = 1 and by maximizing

the objective function

max
∑

e∈E

∑

t∈T

c (e)x (e, t) (12)

The loop WCET is then given by the value of the objective

function.

For the offset analysis, we use F = slnc flow units

which must arrive at the sink between time step Bmin
L and

Bmax
L . We therefore need different sink flow constraints

which replace Equations 10 and 11:
∑

e∈δ−(v−)

∑

t∈Tleave

x (e, t) = F (13)

∀e∈δ−(v−) : ∀t ∈ T \ Tleave : x (e, t) = 0 (14)

with Tleave =
{

t | Bmin
l ≤ t ≤ Bmax

l

}

(15)

The flow of each of the flow units through the graph models

a possible loop execution scenario. If K is the (unknown)

set of offsets with which the loop can be left, then we

have |K| ≤ slnc since this is the total number of possible

offsets. With F = slnc flow units we can thus model at

least one loop execution scenario which terminates with

offset k for each offset k ∈ K . Therefore we can compute

an overapproximation of K by maximizing the objective

function

max |
{

z | ∃t ∈ Tleave : x
((

vz, v
−
)

, t
)

> 0
}

| (16)

The offsets Oout,l which result after the loop execution are

then given as the elements of the set from Equation 16 with

K ⊆ Oout,l. A formal proof of correctness is omitted due

to space constraints, but can be given by induction over the

number of loop iterations combined with the prerequisite

that the offset graph was correctly constructed.

Using either the global convergence or the graph tracking

analysis, the analysis of tasks as a whole now only requires

the offset information at the entry point of the task, which

is provided by the overall analysis framework through the

known processor mapping and task dependencies. All inter-

nal offset information, and with this, the WCET of the task,

can then be computed through the presented framework.

C. Offset analysis in architectures without timing anomalies

Timing anomalies are a phenomenon which complicates

WCET analysis. According to the definition from [15] a

system shows timing anomalies whenever local worst-case

behaviour does not forcedly lead to global worst-case be-

haviour, thus for example whenever a cache hit instead of a

cache miss does trigger the global worst-case behaviour. This

may be the case e.g. on systems with instruction prefetching

and speculative execution [14]. In the static analysis of

systems with timing anomalies it is not feasible to prune

the search space of the analysis [15]. Therefore in a cache

analysis for a system exposing timing anomalies we may not

assume an UNKNOWN access to be a cache miss (AM), but

instead we must then consider both possibilities, a hit and a

miss, in the analysis. On systems without timing anomalies

we can safely assume the local worst-case (AM) to increase

the analysis performance and precision.

In our offset analysis we did not prune the search space

(the set of reachable offsets) at any point up to now. To

increase the analysis precision for timing-anomaly-free ar-

chitectures we can thus reduce the offset result of any merge

or update operation to the offset o which is reached by the

local worst-case path. Therefore, the differentiation between

offset sets and offset intervals is of no importance for the

analysis any longer, because we are only tracking single

offsets after this reduction. The graph-based analysis is then

ideally suited to track the development of the worst-case

offsets inside of loops using the known ILPs from Section

VI-B to compute the total loop WCET. This reduction to the

local worst-case makes the analysis highly precise, because

the main source of imprecision, the divergence of offset

information, is eliminated.

D. Extensions for further micro-architectural analyses

In an analysis that includes the analysis of more microar-

chitectural features like pipeline and branch prediction, the

computed overapproximations of the hardware states must

become part of the analysis context, in addition to the offset

information. For the global convergence analysis, this means

that a global overapproximation of the hardware states at

the loop header is built and used in the analyses. For the

offset graph, every context node must be annotated with an

overapproximation of the hardware states with which the

node may be entered, including cache, pipeline and branch

prediction states. In such a scenario, the graph must be

iteratively refined until

1) No more edges are added or updated

2) The hardware states on all nodes have converged

Alternatively it is also possible to construct only a single,

global overapproximation of the hardware states, depending

on which degree of precision is required.

VII. EXPERIMENTAL RESULTS

In the following, the different approaches to bus-aware

WCET analysis are compared. As mentioned, we have

implemented our approaches based upon the code from

[9] which enables a precise comparison. The prototype

tool analyzes executables compiled for the SIMPLESCALAR

platform and includes a thorough cache analysis. Unfortu-

nately, no pipeline or branch prediction analysis is integrated

yet, so all instruction latencies are set to 1 cycle. Section

VI-D nevertheless introduced the general concept of how

to perform such an integration. It can be expected that the

classification of the approaches with respect to precision and

analysis time stays the same even after additional microar-

chitectural analyses were integrated, since the number of

analysis contexts is directly dependent on the analysis type

as explained in V-B. The number of contexts in turn has the

biggest influence on the analysis precision and duration. All

experiments were run on an Intel Xeon 2.13GHz machine

with 4GB of main memory under Debian Linux. Concerning

the solution of the dynamic flow problems during the graph-

tracking analysis, we used the CPLEX ILP solver in the

experiments.

The experiments were performed on a subset of the MRTC

test bench [16] where the tasks are independent from one

another. Thus we map each MRTC test case i ∈ [0, 23] from

Table I to core (i mod nc) with priority i, where 0 is the

highest priority. We also tested the presented algorithms with

the publicly available PapaBench [17] and Debie [18]

benchmarks which are an unmanned aerial vehicle control

software and a space debris monitoring software, respec-

tively. The mapping of tasks to cores was done manually

for these two benchmarks. The default system configuration

is a 2-core system with 1KB L1 cache (direct-mapped, block

size 32 byte) and 2KB L2 cache (4-way associative, block

Benchmark LOC sbyte L D ∅B

adpcm 468 12480 18 0 69
bs 79 480 1 0 4
bsort100 74 1024 3 1 100
cnt 72 1552 4 1 40
cover 228 9312 3 0 60
crc 66 1936 3 0 102
edn 196 8000 11 2 61
fdct 148 5088 2 0 8
fft 97 8368 7 2 88
fir 188 1056 2 1 375
insertsort 20 752 2 1 10
jfdcint 165 5424 3 0 26
lms 146 4576 10 0 50
ludcmp 71 4544 11 2 4
matmult 81 1536 5 2 20
mergesort 266 9152 23 3 126
minver 135 6160 17 2 2
ndes 201 6256 12 0 19
nsichneu 2362 63632 1 0 2
qurt 87 1952 1 0 19
select 55 3120 4 2 8
sqrt 42 912 2 0 12
st 98 60528 1 0 1000
statemate 1128 11728 4 0 20
Debie 24528 1622912 39 0 157
PapaBench 4663 200256 10 0 3

Table I
BENCHMARK PROPERTIES

size 64 byte). Only for Debie, the cache configuration was

changed to 2KB L1 cache (2-way associative) and 8KB L2

cache to account for the bigger program sizes of Debie. In

any case, the L1 hit penalty is 0 cycles, the L2 hit penalty

is 1 cycle and the main memory access time is 5 cycles

modeling a Flash-based main memory. The default TDMA

schedule assigns a slot of 80 cycles to each core. A more

detailed overview of the used benchmarks is provided in

Table I, including the byte size sbyte of the “text” section

of the executable (excluding startup code), the lines of code

LOC (excluding comments and empty lines), the number of

loops L, the maximum loop nesting level D and the average

loop bound ∅B. The Debie and PapaBench benchmarks

consist of 35 resp. 32 individual tasks which have a relatively

simple structure, especially since they have no nested loops.

A. Precision gain

In this section, we will distinguish between the approaches

that assume no timing anomalies on the target hardware

and those which do not make such an assumption. The

fully unrolling and fixed-alignment analyses that are built

into CHRONOS do make this assumption. Therefore, strictly

speaking, only the comparison to our approaches with the

extension from Section VI-C is feasible. In Figure 5(a), we

have listed the WCET results for the different approaches

on the MRTC test bench subset with the mentioned default

machine configuration. In Figure 5 as well as in the follow-

ing, all WCET results are relative to the WCET result of

the fully unrolling analysis which does not consider timing

anomalies . We use the following shorthands for the different

approaches:

75,00%

100,00%

125,00%

150,00%

175,00%

200,00%

225,00%

250,00%

275,00%

300,00%

ad
pc

m bs

bs
or

t1
00 cn

t

co
ve

r
cr

c
ed

n
fd

ct fft fir

in
se

rts
or

t

jfd
ci
nt

lm
s

lu
dc

m
p

m
at

m
ul
t

m
er

ge
so

rt

m
in
ve

r

nd
es

ns
ic
hn

eu qu
rt

se
le
ct

sq
rt

st
at

em
at

e st

D
eb

ie

P
ap

aB
en

ch

av
er

ag
e

F- OC+ OT+ OT-

481% 356% 402% 321%
371%

358%

(a) WCET results per benchmark and average WCET results for 〈nc, sl〉 = 〈2, 80〉

0,00%

100,00%

200,00%

300,00%

400,00%

500,00%

600,00%

700,00%

800,00%

<2,10> <2,20> <2,40> <2,80> <4,80> <2,160>

W F- OC+ OT+ OT-

(b) Average WCET results for varying number of cores and
TDMA slot sizes 〈nc, sl〉

Figure 5. WCET result summary for MRTC, Debie and PapaBench. All results are relative to the WCET computed with U-. The W approach is not
shown in Figure 5(a) since its results are greater than 300% for 21 out of the 26 benchmarks (average performance of W: 414%)

W Assume worst-case bus delay of Dmax cycles

for each bus access

F- Fixed alignment (No timing anomalies) [9]

OC+ Offset analysis (Global convergence, allow

timing anomalies)

OT+ Offset analysis (Graph-tracking, allow timing

anomalies)

OT- Offset analysis (Graph-tracking, no timing

anomalies - with extensions from Sec. VI-C)

U- Full virtual unrolling (No timing anomalies)

The results for OC- are not displayed here, because the

graph-tracking is the most suitable method for the case

without timing anomalies. As can be seen in Figure 5(a)

OT- almost always (except for minver) reaches the same

precision as U- (100% = U-). It also outperforms F- which

does not analyze cyclic contexts (compare Section VI-B), but

instead analyzes all the loop iterations with a fixed alignment

and finally adds a penalty term to the result which accounts

for the ignored actual alignment of the loop iterations. This

leads to imprecision because the actual blocking time due

to bus accesses may be much lower than the blocking time

for the fixed-alignment situation plus the penalty.

In contrast to OT-, our general analyses OC+ and OT+ are

less precise, which was expected, but still they outperform

F- on benchmarks which show deeply nested loops or loops

with high loop bounds, like for example mergesort,

edn, ludcmp or select. On benchmarks which have a

flat structure with many branches, like statemate, OC+

and OT+ are outperformed by F-, because they lose track

of the offsets and must revert to worst-case assumptions.

Nevertheless, even in those cases, they are still much more

precise than the pessimistic assumption (W) that all bus

accesses incur maximum delay, which results in an average

WCET ratio of 414%. A surprising result is, that OT+ is

worse than OC+ on average for the MRTC test bench subset.

This is possible, because the global convergence analysis

implicitly unrolls the first iterations as discussed in Section

VI-B, whereas the graph-tracking analysis summarizes the

iteration behavior in the offset graph. Therefore, once the

offset information gets highly imprecise, the graph will be

imprecise for all iterations, whereas the global convergence

may achieve a better precision during its implicit unrolling.

For loops with few iterations, this can have a strong impact

on the precision of the WCET estimations. The graph

tracking only shows its strength on the rather sparse graphs

of OT-.

On Debie and PapaBench F- performs much better

than on the MRTC test bench, because there are no nested

loops at all and the loop bounds are rather small. Nev-

ertheless, F- is still outperformed by OT-, and also OT+

performs consistently better than OC+ which emphasizes

its applicability for realworld programs.

All presented results of the offset analyses use the offset

interval representation, from Section V-A. Using the offset

set representation the WCET estimation is further reduced

by a maximum of 89% for bsort100 (avg. 1.3%) when

combined with graph-tracking, or by a maximum of 0.3% for

bs (avg. 0.0%) when combined with the global convergence.

This underlines the suitability of the combination of offset

sets with the graph tracking analysis.

To evaluate the impact of different TDMA slot sizes

or processor configurations on the precision of the WCET

estimations, the analyses were performed for a varied num-

ber of cores (with manually adapted task mapping) and

varied TDMA slot lengths. The average WCET results of

these experiments are shown in Figure 5(b) where each

F- OC+ OT+ OT- U-

MRTC 0.4s 15.5s 927.3s 52.4s 1770.6s

Debie 0.6s 5.8s 400.6s 198.5s 1458.7s

PapaBench 0.05s 1.7s 1.7s 0.4s 0.05s

Sum 1.05s 23.0s 1329.6s 251.3s 3229.4s

Table II
ANALYSIS TIME COMPARISON

configuration is described as a tuple 〈nc, sl〉. The experiment

shows that OT- is able to compute results which are almost

equal to those of U-, whereas the other analyses suffer from

the increased maximum bus delay, F- even more so than

OC+ and OT+.

B. Analysis time

Table II summarizes the analysis duration in seconds for

the WCET analyses that generated Figure 5(a). Here it

becomes visible that all analyses are much faster in total than

U-, which takes 53.8 minutes. OT- only requires 7.7% of that

time and delivers WCET results which deviate by less than

1% from those of U-. Therefore OT- is the best choice when

high analysis precision with moderate runtimes is required.

For applications where an extremely short analysis time is

required, F- can be better suited. It delivers results with 79%
overestimation compared to U- in only 0.4% of the analysis

time of OT-.

The unrolling is quick for benchmarks with few loops and

low loop bounds like e.g. PapaBench. Since its analysis

time is directly dependent on the loop structures and the

loop bound values, it performs much worse for Debie and

MRTC where nested loops and higher loop bounds are found

(see Table I). This indicates that the unrolling is unsuitable

for bigger realworld applications.

VIII. CONCLUSIONS

We have presented a new approach to the WCET analysis

of TDMA-arbitrated shared resources, and applied it to

a multicore system with shared bus. Our new analysis

type is based on a static analysis of the TDMA offsets

with which basic blocks may be entered and uses the key

concept of cyclic contexts to improve the analysis preci-

sion. Concerning precision and analysis time, our solutions

provides a good compromise between the fastest and the

most precise approaches. The best variant (OT-) reduces the

WCET overestimation by 79% compared to the quickest

preexisting approach (F-) and achieves a speedup of 12.9
compared to the most precise preexisting approach (U-).

Possible improvements to our methods are

• The integration of further microarchitectural analyses

• Specialized algorithms for the graph-based approach,

possibly based on the Maximum Dynamic Flow prob-

lem which is similar to ours and can be solved in

polynomial time [13]

• A tailored graph clustering or graph expansion to fine-

tune the precision of the graph-tracking analysis

• Heuristics which combine the presented analysis tech-

niques to optimize runtime and precision

ACKNOWLEDGMENTS

This work was partially funded by the European Com-

munity’s ArtistDesign Network of Excellence and by the

European Community’s 7th Framework Program FP7/2007-

2013 under grant agreement no 216008.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl and others, “The worst-
case execution-time problem - overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems,
vol. 7, no. 3, 2008.

[2] V. Suhendra and T. Mitra, “Exploring locking & partitioning
for predictable shared caches on multi-cores,” in Proc. of DAC,
2008.

[3] W. Zhang and J. Yan, “Accurately Estimating Worst-Case
Execution Time for Multi-core Processors with Shared Direct-
Mapped Instruction Caches,” in Proc. of RTCSA, 2009.

[4] D. Hardy, T. Piquet, and I. Puaut, “Using Bypass to Tighten
WCET Estimates for Multi-Core Processors with Shared In-
struction Caches,” in Proc. of RTSS, 2009.

[5] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson,
“Towards WCET Analysis of Multicore Architectures using
UPPAAL,” in Proc. of WCET, 2010.

[6] C. Pitter and M. Schoeberl, “A real-time Java chip-
multiprocessor,” ACM Transactions on Embedded Computing
Systems, 2009.

[7] A. Andrei, P. Eles, Z. Peng, and J. Rosen, “Predictable
Implementation of Real-Time Applications on Multiprocessor
Systems-on-Chip,” in Proc. of VLSID, 2008.

[8] R. Pellizzoni, A. Schranzhofer, J. Chen and others, “Worst case
delay analysis for memory interference in multicore systems,”
in Proc. of DATE, 2010

[9] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling
Shared Cache and Bus in Multi-cores for Timing Analysis,” in
Proc. of SCOPES, 2010.

[10] M. Paolieri, E. Quinones, F. J. Cazorla and others, “Hardware
support for WCET analysis of hard real-time multicore sys-
tems,” SIGARCH Computer Architecture News, vol. 37, no. 3,
2009.

[11] J. Mische, I. Guliashvili, S. Uhrig, and T. Ungerer, “How to
Enhance a Superscalar Processor to Provide Hard Real-Time
Capable In-Order SMT,” Architecture of Computing Systems,
vol. 5974/2010, 2010.

[12] D. Hardy and I. Puaut, “WCET Analysis of Multi-level
Non-inclusive Set-Associative Instruction Caches,” in Proc. of
RTSS, 2008.

[13] M. Skutella, “An Introduction to Network Flows Over Time,”
Research Trends in Combinatorial Optimization, 2009.

[14] J. Reineke, B. Wachter, S. Thesing and others, “A definition
and classification of timing anomalies,” in Proc. of WCET
Workshop, 2006.

[15] J. Reineke and Rathijit Sen, “Sound and Efficient WCET
Analysis in the Presence of Timing Anomalies,” in Proc. of
WCET Workshop, 2009.

[16] Mälardalen WCET Research Group, “Mälardalen WCET
Benchmark Suite,” http://www.mrtc.mdh.se/projects/wcet.

[17] F. Nemer, H. Cassé, P. Sainrat and others, “PapaBench: A
Free Real-Time Benchmark,” in Proc. of WCET Workshop,
2006.

[18] ESA, “DEBIE - First Standard Space Debris Monitoring In-
strument,” http://gate.etamax.de/edid/publicaccess/debie1.php,
2008.

