
Statistical model checking based calibration and
analysis of bio-pathway models

Sucheendra K. Palaniappan1, Benjamin M. Gyori2, Bing Liu3, David Hsu1,2,
P.S. Thiagarajan1,2, and Edmund M. Clarke3

1 School of Computing, National University of Singapore, 117417, Singapore
2 NUS Graduate School for Integrative Sciences and Engineering, National University of

Singapore, 117417, Singapore
3 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract. We present a statistical model checking (SMC) based framework for
studying ordinary differential equation (ODE) models of bio-pathways. We ad-
dress cell-to-cell variability explicitly by using probability distributions to model
initial concentrations and kinetic rate values. The core component of our frame-
work is an SMC procedure for verifying the dynamical properties of an ODE
system accompanied by such prior distributions. As an important feature, our
specification logic used to formalize properties can encode both qualitative prop-
erties and experimental data. This enables us to develop SMC based parameter
estimation and sensitivity analysis procedures. We have evaluated our method
on two large pathway models, namely, the segmentation clock network and the
MLC phosphorylation pathway. The results show that our method scales well and
yields good parameter estimates that are robust. Our sensitivity analysis frame-
work leads to interesting insights about the underlying dynamics of these systems.

1 Introduction
Biochemical networks – often called bio-pathways – govern a variety of cellular func-
tions. Their malfunctioning can lead to major diseases [1]. Thus it is important to under-
stand their dynamics using mathematical models [2]. However, building and analyzing
such models poses considerable challenges. In this paper, we address the particular chal-
lenge of accounting for variable behavior across individual cells. A natural way to cater
for this is to use a probabilistic system model such as continuous time Markov chains
(CTMCs) [3]. However, such models typically track the occurrences of individual reac-
tions. Hence for pathways of realistic size, calibrating these models using experimental
data and analyzing them using stochastic simulations is very difficult. The alternative is
to use ordinary differential equations (ODEs) to capture the dynamics. This approach is
often computationally more tractable, although it requires that the number of molecules
of each type involved in the pathway be abundantly present [4]. In this paper our focus
is on accounting for cell-to-cell variability in the setting of ODEs based models.

Variability in a population of cells has at least two major causes. First, as shown
in [5], differences in the initial concentrations of proteins are the primary source of vari-
ability in the response to external stimuli. Second, due to differing internal and external
conditions among cells, the values of kinetic rate constants also vary across cells [6].
In our ODEs setting the variables will represent the concentrations of the biochemical
species (typically proteins) in the pathway, and hence the initial concentrations of these
species will constitute the initial values of the variables. Further, the parameters appear-
ing in the equations will consist of the kinetic rate constants governing the reactions.
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Thus we can capture cell-to-cell variability in the behavior of the bio-pathway by study-
ing the ODE dynamics across a range of values for the initial concentrations and kinetic
rate constant values. We do this in a probabilistic setting by assuming initial probability
distributions (usually uniform) over an interval of values for the initial concentrations
and rate constants. We then show that the resulting space of trajectories can be used
to construct a natural probability measure space if the vector field defined by the ODE
system is continuously differentiable. In our setting this requirement is easily met. Con-
sequently we can devise a statistical model checking (SMC) procedure to check if the
set of trajectories that satisfy a given property specified in our specification logic passes
a statistical test whose strength is chosen by the user. In this sense we construct a prin-
cipled method for analyzing the dynamics of a bio-pathway in the presence of dynamic
variability across a population of cells.

To demonstrate the applicability of our approach, we develop an SMC based pa-
rameter estimation method. The unknown model parameters usually consist of initial
concentrations and kinetic rate constants. Here, for convenience, we shall assume all
the initial concentrations are known but that their nominal values can vary over a cell
population. The parameter estimation procedure searches through the value space of the
unknown parameters to determine the “best” combination of values that can explain the
given data and predict new behaviors [7]. The key step in this procedure is to determine
the fitness-to-data of the current set of parameter values. We use our specification logic
to encode both experimental time series data and known qualitative trends concerning
the dynamics of the pathway. We then use our SMC procedure to determine the good-
ness of the given set of parameter values, while taking into account that these values
can fluctuate across the population of cells that the data is based on. Subsequently, we
use a global optimization strategy known as SRES [8] to choose a new set of candidate
parameter values according to the SMC based score assigned to the current set.

An important analysis task to be performed on the model is quantifying the influence
of different parameters on the model dynamics. The information gained from such a
sensitivity analysis procedure can help in robustness analysis, optimal experimental
design and drug target selection [9]. We show how SMC can be used to generate the
statistics needed by the global sensitivity analysis method MPSA [10]. Consequently,
one can incorporate a rich class of dynamic behaviors – encoded as formulas in our
specification logic – to drive our sensitivity analysis method.

We evaluated our method on two pathway models taken from the BioModels database
[11]. For both case studies, we assumed that noisy experimental data and qualitative dy-
namic traits of a few species were known. This data was separated into training and test
components. A subset of the rate constants were assumed to be unknown and estimated
using our parameter estimation procedure. The first model, the segmentation clock path-
way, consists of 16 differential equations and 75 rate constants, out of which 39 were
fixed to be unknown. The second model, the thrombin dependent MLC pathway con-
sists of 105 differential equations and 197 rate constants, out of which 100 were fixed
to be unknown. Our results (Section 5) show that our SMC based technique is efficient
and scales well. We also applied our sensitivity analysis method to obtain interesting
insights into the dynamics of these two bio-pathways.
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1.1 Related work
Probabilistic model checking of stochastic models is an active field of research [12–
15]. Of particular interest in our context are sampling based methods such as [16, 17],
which verify probabilistic properties using a fixed number of sampled trajectories. In
contrast, SMC based methods such as [12, 18] adaptively generate a sufficient number
of trajectories to determine if the property is satisfied while meeting the strengths of the
statistical test specified by the user.

Turning to parameter estimation, a brute force search of the parameter space is em-
ployed in [14] for Petri nets. In the ODE context, parameter estimation combined with
model checking appears in [19] using again a brute force sampling based parameter
search approach, and in [20], using an evolutionary strategy to guide the search. How-
ever, both these techniques only generate a single simulation trace of the ODE to evalu-
ate a proposed set of parameters. A symbolic model checking approach is explored for
the restricted class of multi-affine ODEs in [21,22]. The work reported in [17] deploys a
genetic algorithm to search for the best set of parameters. A fixed number of samples –
this number is fixed in an ad hoc manner – is generated, and the probability of satisfying
a property is calculated to be the fraction of the samples which satisfy the property. In
all these studies, the quality of the estimated parameters is not validated using test data
(i.e. data that was not used as training data). While [17] does mention identifying criti-
cal parameters, we believe that our approach is the first systematic attempt to develop a
property-based sensitivity analysis framework using statistical model checking.

In the next section, we introduce ODE models and their dynamics. In Section 3,
we discuss our specification logic and the statistical model checking procedure. Subse-
quently, we present our parameter estimation and sensitivity analysis framework. Exper-
imental results are reported in Section 5. Detailed proofs are available in the Appendix,
and additional experimental results are reported in the supplementary material [23].

2 ODE based models and their behaviors
A popular formalism for describing the dynamics of a biochemical network is a system
of ODEs. For each molecular species xi in the pathway, there will be an equation of the
form dxi/dt = fi(x, Θi). Here fi describes the kinetics of the reactions that produce
and consume xi, x denotes the concentrations of the molecular species taking part in
these reactions, while the vector Θi gives the rate constants governing these reactions.

Each xi is a real-valued function of t ∈ R+, where R+ denotes the set of non-
negative reals. We shall realistically assume that xi(t) takes values in the interval [Li, Ui],
where Li and Ui are non-negative rationals with Li < Ui. Hence the state space of the
system is V = [L1, U1] × . . . × [Ln, Un], a bounded subset of Rn+. Let Θ =

⋃
iΘi =

{θ1, θ2, . . . , θm} be the set of all rate constants. We again assume that the range of val-
ues for each θj is [Lj , U j ] for 1 ≤ j ≤ m. We shall present the SMC procedure while
assuming that all the rate constants are known. In Section 4, it will become clear how
unknown rate constants are handled.

An implicit assumption in what follows is that the value of a rate constant, when
fixed initially, does not change during the time evolution of the dynamics, although this
value can be different for different cells. To capture the cell-to-cell variability regarding
the initial states, we define for each variable xi an interval [Liniti , U initi ] with Li ≤
Liniti < U initi ≤ Ui. The actual value of the initial concentration of xi is assumed
to fall in this interval. Similarly, we shall assume that the nominal value of the rate
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constant θj falls in the interval [Ljinit, U
j
init] with Lj ≤ Ljinit < U jinit ≤ U j . We set

INIT = (
∏
i[L

init
i , U initi ])× (

∏
j [L

j
init, U

j
init]). Thus INIT captures the cell-to-cell

variability in the initial concentration and the rate constant values. In what follows we
let v to range over

∏
i[L

init
i , U initi ] and w to range over

∏
j [L

j
init, U

j
init]

We will represent our system of ODEs in vector form as dx/dt = F (x, Θ), with
Fi(x, Θ) := fi. Recall that a function f : V → V is a C1 function if f ′, the derivative
of f , exists at all v ∈ V and is a continuous function. In the setting of biochemical
networks, the expressions in fi will model kinetic laws such as mass law and Michaelis-
Menten [4]. Thus it is reasonable to assume that each fi is composed out of rational
functions, which would imply that fi ∈ C1 for each i, and hence F : V → V is also
a C1 function. As a result, for each (v,w) ∈ INIT , the system of ODEs will have a
unique solution Xv,w(t) [24], viewed as a function X : R → V. Further, it will satisfy:
Xv,w(0) = v and X′v,w(t) = F (Xv,w(t)). We are also guaranteed that Xv,w(t) is a C0-
function (i.e. continuous function) [24], and hence measurable. This fact will be crucial
for our SMC procedure.

In our application, the dynamics will be of interest only up to a maximal time point
T . Fixing such a T , a trajectory starting from v ∈ V at time 0 and with w as the param-
eter values is denoted σv,w. It is the (continuous) function σv,w : [0, T ]→ V satisfying:
σv,w(t) = Xv,w(t). The behavior of our dynamical system is the set of trajectories given
by BEH = {σv,w | (v,w) ∈ INIT}. Our goal is to develop an SMC procedure to
verify the dynamical properties of BEH .

3 Statistical model checking of ODE dynamics
3.1 Bounded linear time temporal logic
To formally express dynamical properties of BEH , we use formulas in a specification
logic. We will use bounded linear time temporal logic (BLTL) since our trajectories will
be of finite duration. An atomic proposition in our logic will be of the form (i, `, u) with
Li ≤ ` < u ≤ Ui. Such a proposition will be interpreted as “the current concentration
level of xi falls in the interval [`, u]”, and we fix a finite set of such atomic propositions.

We first introduce the syntax and then the semantics of BLTL formulas. The formu-
las of BLTL are defined as: (i) Every atomic proposition as well as the constants true,
false are BLTL formulas. (ii) If ψ, ψ′ are BLTL formulas then ¬ψ and ψ∨ψ′ are BLTL
formulas. (iii) If ψ, ψ′ are BLTL formulas and t ≤ T is a positive integer then ψU≤tψ′

and ψUtψ′ are BLTL formulas. We have mildly strengthened BLTL to be able to ex-
press that a certain property will hold exactly at t time units from now. This will enable
us to encode experimental data in the specification. The derived propositional operators
such as ∧, ⊃, ≡, and the temporal operators G≤t, F≤t are defined in the usual way.

We will interpret the formulas of our logic at the finite set of time points T =
{0, 1, . . . , T}. Such a discretization is reasonable since experimental data will be avail-
able only at a finite number of discrete time points. Further, qualitative properties of
interest are expressible in discrete time. We assume that T has been chosen appropri-
ately and it includes all the relevant time points with respect to the specified properties.

The semantics of the logic is defined in terms of the relation σ, t |= ϕ, where σ is a
trajectory in BEH and t ∈ T .

– σ, t |= (i, `, u) iff ` ≤ σ(t)(i) ≤ u where σ(t)(i) is the ith component of the
n-dimensional vector σ(t) ∈ V.
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– ¬ and ∨ are interpreted in the usual way.
– σ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k, t+k′ ≤ T and σ, t+k′ |= ψ′.

Further, σ, t+ k′′ |= ψ for every 0 ≤ k′′ < k′.
– σ, t |= ψUkψ′ iff t + k ≤ T and σ, t + k |= ψ′. Further, σ, t + k′ |= ψ for every
0 ≤ k′ < k.

We now define models(ψ) = {σ | σ, 0 |= ψ, σ ∈ BEH}.
Next, we wish to make statements of the form P≥r(ψ), where the intended meaning

is that the probability that a trajectory in BEH belongs to models(ψ) is at least r. To
assign meaning to such statements, we need to define a probability measure over sets of
trajectories. Note, however, that the trajectory σ ∈ BEH is completely determined by
σ(0), the (vector) value it assumes at t = 0. Hence we will identify BEH with INIT ,
the set of initial states. To make this explicit, we define the setModels(ψ) ⊆ INIT as:
(v,w) ∈Models(ψ) iff σv,w ∈ models(ψ). We define the formulas of PBLTL as P≥rψ
and P≤r′ψ provided r ∈ [0, 1) , r′ ∈ (0, 1] and ψ is a BLTL formula. We shall say that
S, the system of ODEs, meets the specification P≥rψ – and this is denoted S |= P≥rψ –
iff P (Models(ψ)) ≥ r, while S |= P≤r′ψ iff P (Models(ψ)) ≤ r′. Here, and in what
follows, P is the standard probability measure assigned to members of the σ-algebra
generated by the open intervals contained in INIT . It is easy to show that Models(ψ)
is a member of this σ-algebra for every ψ. The only case that requires an argument is
the one for atomic propositions, and here the measurability of the solution functions
Xv,w(t) is crucial. The details can be found in the Appendix.

3.2 Statistical model checking of PBLTL formulas
According to [25], whether S |= P≥rψ, can be formulated as a sequential hypoth-
esis test between the null hypothesis H0 : p ≥ r + δ and the alternative hypothesis
H1 : p ≤ r − δ, where p = P (Models(ψ)). Here, δ signifies the indifference region
supplied by the user. The strength of the test is decided by parameters α and β which
bound the Type-I (false positive) and Type-II (false negative) errors respectively. Thus
the verification is carried out approximately but with guaranteed confidence levels and
error bounds. The test proceeds by generating a sequence of sample trajectories σ1, σ2, . . .
by randomly sampling an initial state from INIT . One assumes a corresponding se-
quence of Bernoulli random variables y1, y2 . . ., where each yk is assigned the value 1
if σk, 0 |= ψ. Otherwise yk is assigned the value 0. For each m ≥ 1, after drawing m
samples, we compute a quantity qm as:

qm =
[r − δ](

∑m
i=1 yi)[1− [r − δ]](m−

∑m
i=1 yi)

[r + δ]
(
∑m

i=1 yi)[1− [r + δ]]
(m−

∑m
i=1 yi)

(1)

Hypothesis H0 is accepted if qm ≥ Â, and hypothesis H1 is accepted if qm ≤ B̂. If
neither is the case then another sample is drawn. The constants Â and B̂ are chosen such
that it results in a test of strength (α, β). In practice, a good approximation is Â = 1−β

α

and B̂ = β
1−α . A detailed account of our on-line model checking algorithm (used to

verify each trajectory) can be found in the Appendix.

4 Analysis methods
Here we present our parameter estimation and sensitivity analysis methods. In doing
so, we assume the terminology and notations developed in the previous sections. As
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a first step, we describe how experimental data can be encoded as a BLTL formula.
Assume, without loss of generality, that O ⊆ {x1, x2, . . . , xk} is the set of variables
for which experimental data is available, and which has been allotted as training data to
be used for parameter estimation. Assume Ti = {τ i1, τ i2, . . . , τ iTi

} are the time points at
which the concentration level of xi has been measured and reported as [`it, u

i
t] for each

t ∈ Ti. The interval [`it, u
i
t] is chosen to reflect the noisiness, the limited precision and

the cell-population based nature of the experimental data. For each t ∈ Ti, we define the
formula ψti = Ft(i, `it, u

i
t). Then ψiexp =

∧
t∈Ti ψ

t
i . We then set ψexp =

∧
i∈O ψ

i
exp.

In case the species xi has been measured under multiple experimental conditions, the
above encoding scheme is extended in the obvious way.

Often qualitative dynamic trends will be available – typically from the literature –
for some of the molecular species in the pathway. For instance, we may know that a
species shows transient activation, in which its level rises in the early time points, and
later falls back to initial levels. Similarly, a species may be known to show oscillatory
behavior with certain characteristics. Such information can be described as BLTL for-
mulas that we term to be trend formulas. Examples of such formulas can be found in
the Appendix. We let ψqlty to be the conjunction of all the trend formulas.

Finally, we fix the PBLTL formula P≥r(ψexp ∧ ψqlty), where r will capture the
confidence level with which we wish to assess the goodness of the fit of the current set
of parameters to experimental data and qualitative trends. We also fix an indifference
region δ and the strength of the test (α, β). The constants r, δ, α and β are to be fixed
by the user. In our application, it will be useful to exploit the fact that both ψexp and
ψqlty are conjunctions, and hence can be evaluated separately. As shown in [25], one
can choose the strength of each of these tests to be (αJ , β), where J is the total number
of conjuncts in the specification. This will ensure that the overall strength of the test is
(α, β). Further, the results for the individual statistical tests can be used to compute the
objective function associated with the global search strategy to be described below.

4.1 Parameter estimation based on PBLTL specification

We assume Θu = {θ1, θ2, . . . , θK} is the set of unknown parameters. For convenience
we will assume that the other parameter values are known and that their nominal values
do not fluctuate across the cell population. We will also assume nominal values for the
initial concentrations and the range of their fluctuations of the form [Liniti , U initi ] for
each variable xi. Again, for convenience, we fix a constant δ′′ so that if the current
estimate of the values of the unknown parameters is w ∈ ∏

1≤j≤K [Lj , U j ] then this
value will fluctuate in the range [w(j)−δ′′,w(j)+δ′′]. Setting Ljinit,w = w(j)−δ′′ and
U jinit,w = w(j) + δ′′ we define INITw = (

∏
i[L

init
i , U initi ]) × (

∏
j [L

j
init,wU

j
init,w]).

The set of trajectories BEHw is defined accordingly.
To estimate the quality of w, we run our SMC procedure – using INITw instead

of INIT – to verify P≥r(ψexp ∧ ψqlty). Depending on the outcome of this test for the
various conjuncts in the specification, we assign a score to w using an objective function
detailed below. We then iterate this scheme for various values of w generated using a
suitable search strategy.

The objective function is formed as follows. Let J iexp (= Ti) be the number of
conjuncts in ψiexp, and Jqlty the number of conjuncts in ψqlty. Let J i,+exp(w) be the
number of formulas of the form ψti (a conjunct in ψiexp) such that the statistical test for
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P≥r(ψ
t
i) accepts the null hypothesis (that is, P≥r(ψti) holds) with the strength (αJ , β),

where J =
∑
i∈O J

i
exp + Jqlty. Similarly, let J+

qlty(w) be the number of conjuncts
in ψqlty of the form ψ`,qlty that pass the statistical test P≥r(ψ`,qlty) with the strength
(αJ , β). Then G(w) is computed via:

G(w) = J+
qlty(w) +

∑
i∈O

J i,+exp
J iexp

(2)

Thus the goodness to fit of w is measured by how well it agrees with the qualitative
properties as well as the number of experimental data points with which there is accept-
able agreement. To avoid over-training the model, we do not insist that every qualitative
property and every data point must fit well with the dynamics predicted by w.

The search strategy to evolve candidate parameters will use the values G(w) to tra-
verse the parameter value space. Global search methods such as Genetic Algorithms
(GA) [26], and Stochastic Ranking Evolutionary Strategy (SRES) [8] are computation-
ally more intensive than local methods, but are much better at avoiding local minima.
The overall structure of our parameter estimation procedure is presented in Algorithm
1. In practice, one usually maintains a population of parameter value vectors in each
round, and a round is usually called a generation. For convenience, we have assumed
that each population is a singleton in the description of Algorithm 1. We use the SRES
strategy in our work since it is known to perform well in the context of pathway mod-
els [7]. The particular choice of search algorithm, however, is orthogonal to our pro-
posed method.

4.2 Sensitivity analysis based on PBLTL specification
As another application of our SMC procedure, we have constructed a property based
sensitivity analysis method by coupling our SMC routine with the global sensitivity
analysis technique called multi-parametric sensitivity analysis (MPSA) [10]. We as-
sume we have specified a set of properties (encoded as PBLTL formulas), and are inter-
ested in knowing which parameters, when changed, affect these properties significantly.
The MPSA procedure involves sampling a large number of parameter combinations
from their valid ranges. For each sampled combination, one calculates the objective
value with respect to the PBLTL properties according to Equation 2. The objective val-
ues allow us to assess the extent to which each parameter affects the model’s behavior
to the given formulas. Intuitively, if the objective value shows strong dependence on
the value of a parameter (over its range) then the output is sensitive to that parameter.
The MPSA method employs statistical tests to quantify this dependence, which can be
directly interpreted as a measure of sensitivity. The sensitivity is based on computing
the Kolmogorov-Smirnov (KS) test to compare the two profiles consisting of (a) the
cumulative appearance of good intervals along the value space of the parameter and
(b) the same for the bad intervals. If these profiles differ significantly then the system
is more sensitive to this parameter, and the KS test will assign a higher score to this
parameter. Our procedure is outlined in Algorithm 2.

5 Results
We applied our SMC based analysis framework to pathway models taken from the
BioModels database [11]. These models have nominal point values for all the rate con-
stants and initial concentrations. We first verified a few properties of the two pathways
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input : ODE model; PBLTL formulas; SMC
parameters; Number of generations k;
Initial parameter guess w0;

output: The best parameter found wmax

initialization: ` = 0; Gmax = 0;

while ` < k do
Run SMC on the trajectories defined by
BEHw`

with respect to the PBLTL formulas;
Compute G(w`);
if G(w`) ≥ Gmax then

wmax = w`;
Gmax = G(w`)

end
w`+1 = Picked by SRES / GA search
procedure based on w`;
` = `+ 1;

end

Algorithm 1. Parameter estimation

input : ODE model; PBLTL formulas; SMC parameters; Number of
discretization intervals Nd; Objective function G; threshold

output: Sensitivity[1 . . .K]

Discretize each parameter into Nd intervals to get (Nd)K hypercubes;

for i← 0 to Nd do
wi = Sample one hypercube out the (Nd)K using LHS;
Run SMC on BEHwi

; Calculate G(wi);
if G(wi) > threshold then

Add wi to good set;
else

Add wi to bad set;
end

end
for j ← 0 to K do

Construct cumulative distribution of good and bad intervals in the
range of parameter j;
Sensitivity[j] = KS statistic of difference of the two distributions;

end

Algorithm 2. Sensitivity analysis

using SMC. Then, for parameter estimation, we formulated qualitative trends for some
species, and generated synthetic experimental data for some other species as follows.
We set a ±5% range around the nominal value for the initial concentration of each
species and assumed a uniform distribution over the resulting set of initial states. To
mimic western blot data, which is cell population based, we averaged 104 random tra-
jectories generated by sampling these initial concentration intervals. We then added
noise to the data and used a major portion of it for training, and reserved the rest as test
data. Finally, we fixed a subset of rate constants to be unknown, and ran our param-
eter estimation procedure. We let the variability in parameters (δ′′) to be 0.5% of the
proposed value.

We implemented our method using MATLAB and C++ on a PC with a 3.4Ghz Intel
Core i7 processor with 8GB RAM. ODE systems were numerically solved using the
SUNDIALS CVODE package [27–29]. The source code is available at [23]. The code
has been optimized to take advantage of the multi-core architecture; all experimental
results were run on 8 threads. The parameters used for the statistical model checking
algorithm were r = 0.9, α = β = δ = 0.05 for all our experiments. To show the
goodness of our estimated parameters (taking into account the variability concerning
the initial states and reaction rates), we generated 1000 trajectories and plotted these
to show that the estimated parameters result in a good fit to the data. In each case,
experimental data is plotted along with the tolerance interval used in constructing the
specification.

For the experiments reported in this section, we used an SRES based global strategy
to guide the search. Here we present only the highlights of our experimental results.
Many further details including the results obtained using a Genetic Algorithm based
search can be found in the supplementary material [23].

5.1 The case studies

The segmentation clock network An oscillating segmentation clock governs the seg-
mentation pattern of the spine in developing vertebrate embryos. It couples signaling
pathways of FGF, Notch and Wnt, whose periodic behaviors are produced by negative
feedback loops. The ODE model consists of 16 differential equations and 75 kinetic
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rate parameters. Simulation time (T ) was fixed at 200 minutes divided into 40 equally
spaced time points.

The thrombin-dependent MLC phosphorylation pathway Endothelial cells form a dy-
namic barrier between blood/lymph and the underlying connective tissue, and their con-
traction plays a crucial role in physiological and pathological processes. Agonists such
as thrombin play an important role in the contraction function through phosphoryla-
tion of MLC, while Rho-kinase is crucial for the sustained contraction of endothelial
cells. The pathway model with 105 differential equations and 197 kinetic parameters is
considerably large. Simulation time was fixed at 1000 seconds divided into 20 equally
spaced time points.

5.2 Statistical model checking based verification

First, we used our SMC framework to verify pathway properties expressed in PBLTL.
We used the nominal models (all rate parameter values known, taken from the BioMod-
els database) to verify if they conformed to properties expressed in our logic. For in-
stance, for the MLC phosphorylation pathway, it is known experimentally that the con-
centration of phosphorylated MLC starts at a low level, and then reaches a high steady
state value. Our SMC method shows that the nominal model does not satisfy the prop-
erty, instead, phosphorylated MLC exhibits a transient profile. This discrepancy has
been studied in [30], and attributed to missing components and links in the proposed
model. Details of these properties and their verification is presented in the Appendix.

5.3 Parameter estimation

For the segmentation clock pathway, we assumed 39 of the rate parameters as unknown.
We used a combination of dynamic trends and quantitative experimental data. Specifi-
cally, we synthesized population based experimental time series data for Axin2 mRNA
measured at 14 time points up to 165 minutes. For 5 other species {Notch protein, nu-
clear NicD, Lunatic fringe mRNA, active ERK and Dusp6 mRNA}, we encoded the dy-
namic trends as properties in our logic. The dynamic trend of 2 species (cytosolic NicD
and Dusp6 protein) were used as test data. Parameter estimation was done with a pop-
ulation of 200 per generation and for 300 generations. The time taken by SRES based
search was 2.3 hours. Figure 1 shows simulation profiles with the estimated parameters.
Figure 1(a) shows that the model fits training data consisting of the experimental data
of Axin2 mRNA and qualitative trends for 3 other species. Figure 1(b) shows dynamic
trends of cytosolic NicD used for testing. The simulated time profiles fit the specified
test properties (see [23]).
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0 100 200
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0 100 200
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0 100 200
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(a)
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(b)
Fig. 1. Parameter estimation results of the segmentation clock pathway. (a) Training data includ-
ing the experimental data for Axin2 mRNA and the dynamic trends for 3 species), and (b) the
test data for one of the species.



10 Palaniappan et al.

To illustrate the scalability of our approach, for the thrombin pathway, we assumed
100 of the kinetic parameters to be unknown. We synthesized population based exper-
imental time series data for 10 species including RGS2, Rho.GTP, PKC.DAG, MLC2,
CPI-17, Ca-super-2-plus, p115RhoGEF-GTP-alpha, MYPT1-PPase, Rho-kinase.MLC,
MYPT1.Rho-kinase2. For thrombinR-active and 3IP3.IP3R we assumed that only the
dynamic trend is known. The data of Rho-kinase.MLC and MYPT1.Rho-kinase2 were
reserved as test data to evaluate the quality of our parameter estimates, while the data of
all other species was used to calibrate the model. Parameter estimation was done with
a population of 100 per generation and for 1000 generations. The time taken by SRES
based search was 48.8 hours. Figure 2 shows the fit to data of the simulation profiles
with the best predicted parameter values for both the training data (Figure 2(a)) and the
test data (Figure 2(b)).
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Fig. 2. Parameter estimation results of Thrombin-dependent MLC phosphorylation pathway. (a)
Training data, including experimental data of 3 species and dynamic trends of one species, and
(b) the test data for one of the species.

5.4 Property based sensitivity analysis
Here we report results just for the segmentation clock pathway. We evaluated the sen-
sitivity of parameters against all properties used for parameter estimation. The results
are shown in Figure 3(a). It can be seen that the most sensitive parameters are ksDusp,
kcDusp, VMsMDusp, VMdMDusp, VMaX, VMdX. This also indicates that the reactions
involving Dusp6 degradation and transcription affect the overall dynamics most. Since
all these parameters belong to the FGF pathway, we hypothesize that FGF pathway is
the most crucial component that drives the behavior of the system.

0 10 20 30 40
0

0.05

0.1

0.15

Parameters

S
en

si
tiv

ity

(a)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Parameters

S
en

si
tiv

ity

(b)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

Parameters

S
en

si
tiv

ity

(c)
Fig. 3. Sensitivity analysis results. (a-c) Parameter sensitivities of the segmentation clock pathway
with respect to (a) all properties, (b) Dusp6mRNA profile, and (c) nuclear nicD profile.

We next searched for parameters affecting the oscillatory property of Dusp6 mRNA
alone. We found that the same set of parameters as above are the most crucial (see
Figure 3(b)). However, when evaluating the oscillatory property of nuclear NicD (Fig-
ure 3(c)), we find that the parameters vsN, kt1, VdNan are the most significant. This
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suggests that although the Notch synthesis (vsN), and nuclear NicD transportation (kt1)
and degradation (VdNan) do not significantly affect the overall dynamics, they play a
dominant role in segmentation patterning.

6 Conclusion
We have proposed an SMC based approach for studying ODEs based bio-pathway mod-
els. We have used the temporal logic BLTL to encode both quantitative experimental
data and qualitative properties of pathway dynamics. To cater for variability among
cells, we assume a uniform distribution over a set of initial states and kinetic rate con-
stants – and impose a reasonable continuity restriction – and show how the probability
of the property being met by the behavior of the model can be assessed using an SMC
procedure. By combining this method with a global search strategy, we arrive at a pa-
rameter estimation procedure as well as a sensitivity analysis technique.

We have demonstrated the applicability of our method with the help of two ODEs
based bio-pathway models: the segmentation clock network and the thrombin-dependent
MLC phosphorylation pathway. Our method successfully obtained good parameter es-
timates using noisy cell-population data and qualitative knowledge. The results show
that our method scales well and can cope with large biological networks. We also show
results for performing property based sensitivity analysis, and thereby gain interesting
insights about the pathway dynamics that would be difficult to obtain using conventional
approaches.

Our parameter estimation method is a generic one and has the potential to be applied
to model classes such as continuous time Markov chain (CTMC) models and stochas-
tic differential equation (SDE) models [3]. We plan to explore this in our future work.
Another interesting direction will be to develop a GPU-based implementation of our
method to exploit the inherent massive parallelism in generating trajectories through
numerical integration. In this connection, the platform-aware implementation of a re-
lated systems biology application presented in [15] promises to offer helpful pointers.
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Appendix

ODE dynamics

As described in the main text, we represent our system of ODEs in vector form as
dx/dt = F (x, Θ) with Fi(x, Θ) := fi. A function f : V → V is a C1 function if
f ′, the derivative of f , exists at all v ∈ V, and is a continuous function. In the setting
of biochemical networks, the expressions in fi will model kinetic laws such as mass
law and Michaelis-Menten [4]. Thus it is reasonable to assume each fi is composed
out of rational functions which would imply that fi ∈ C1 for each i and hence F :
V → V is also a C1 function. As a result, for each (v,w) ∈ INIT the system of
ODEs will have a unique solution Xv,w(t) [24]. Further, it will satisfy: Xv,w(0) = v
and X′v,w(t) = F (Xv,w(t)). We are also guaranteed that Xv,w(t) is a C0-function (i.e.
continuous function) [24].

It will be convenient to define the flow Φθ : R+×V→ V for arbitrary initial vectors
v. Intuitively, Φw(t, v) is the state reached under the ODE dynamics if the system starts
at v at time 0. The flow will be the C0-function given by: Φw(t, v) = Xv,w(t). Thus
Φw(0, v) = Xv,w(0)=v and ∂(Φw(t, v))/∂t = F (Φw(t, v)) for all t. We will, in fact,
work with Φw,t : V→ V where Φw,t(v) = Φw(t, v) for every t and every v ∈ V. again,
Φw,t is guaranteed to be a C0 function.

In our application the dynamics will be of interest only up to a maximal time point
T . Fixing such a T , we define a trajectory starting from v ∈ V denoted σv,w to be the
(continuous) function σv,w : [0, T ] → V satisfying: σv,w(t) = Φw,t(v). The behavior
of our dynamical system is the set of trajectories given by BEH = {σv,w | (v,w) ∈
INIT}.

Probability measure on a family of trajectories with respect to BLTL formulas

To be able to assign a probability to Models(ψ), we construct a probability measure
over the standard σ-algebra generated by the open intervals contained in INIT . More
precisely, recall that INIT = (

∏
i[L

init
i , U initi ])×(∏j [L

j
init, U

j
init])]. ThenB(INIT )

– written for convenience as just B below – is the smallest subset of 2INIT satisfying
(i) if Liniti ≤ `i < ui ≤ U initi for each i, and if Ljinit ≤ `j < uj ≤ U jinit for each
j then

∏
i(`i, ui) ×

∏
j(`

j , uj) ∈ B; (ii) if B ∈ B then B = INIT − B ∈ B; (iii) if
{Bk} is a countable family of sets in B then

⋃
k Bk ∈ B.

The probability measure we define over B will be based on the assumption that each
initial state in INIT is equally likely. This so called uniform distribution assumption is
made when there is no prior knowledge. Sometimes, however, valuable prior knowledge
may be available. For instance, in [5] the initial distribution of a protein’s concentration
follows a certain log-normal distribution. Such information can be easily incorporated
in the prior distribution of initial states. Here we shall work with a uniform distribution
mainly for technical convenience.

Now suppose
∏
i(`i, ui)×

∏
j(`

j , uj) ∈ B. We define P (
∏
i(`i, ui)×

∏
j(`

j , uj))=∏
i

(ui−`i)
(Uinit

i −Linit
i )
×∏j

(uj−`j)
(Uj

init−L
j
init)

. It is a standard fact that P extends in a unique way

to the probability measure P : B → [0, 1] such that P (INIT ) = 1 and P (∅) = 0. Our
goal now is to show that Models(ψ) ∈ B for every formula ψ. This will then ensure
that P (Models(ψ)) is well-defined.
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Let ψ be a formula and t ∈ T . Then ‖ψ‖t ⊆ INIT is defined inductively as
follows.

– ‖(i, `, u)‖t = {(v,w) | σ(v,w), t |= (i, `, u)}, where σ(v,w) is the trajectory inBEH
with σ(v,w)(0) = (v,w).

– ‖¬ψ‖t = INIT − ‖ψ‖t and ‖ψ ∨ ψ′‖t = ‖ψ‖t ∪ ‖ψ′‖t
– ‖ψU≤kψ′‖t =

⋃
k′≤k,t+k′≤T (‖ψ′‖t+k′ ∩ (

⋂
0≤k′′<k′ ‖ψ‖t+k′′))

– ‖ψUkψ′‖t = ‖ψ′‖t+k∩(
⋂

0≤k′<k ‖ψ‖t+k′) if t+k ≤ T . Otherwise ‖ψUkψ′‖t =
∅.

We now recall that due to the fact that each fi is a C1 function, Φt,θ : V→ V is also a
continuous function for every t ∈ [0, T ]. This in turn implies Φt is in fact a measurable
function [31] in the sense that if B ∈ B then Φ−1t,θ (B) = {v | Φθ(v, t) ∈ B} is a
member of B. This fact will play a crucial role in establishing the following result.

Theorem 1. Let ψ be a BLTL formula and t ∈ T . Then the following statements hold.

1. ‖ψ‖t ∈ B.
2. Models(ψ) = ‖ψ‖0.
3. Models(ψ) ∈ B.

Proof. To prove the first part of the theorem by structural induction, assume that ψ =
(i, l, u) is an atomic proposition. We note that {v | ` ≤ v(i) ≤ u} =

∏n
j=1(`j , uj)

where `j = Lj and uj = Uj if j 6= i and `j = ` and uj = u if j = i and hence B ∈ B
where for convenience we set B = {v | ` ≤ v(i) ≤ u}. From the definitions it follows
that v′ ∈ ‖(i, `, u)‖t iff σ(v′,θ), t |= (i, `, u) iff ` ≤ Φθ(v′, t) ≤ u iff Φθ(v′, t) ∈ B.
This shows that ‖(i, `, u)‖t = Φ−1t,θ (B), and since Φθ(t) is measurable, we are assured
that Φ−1t,θ (B) ∈ B.

Next we note that if ‖ψ‖t, ‖ψ′‖t ∈ B then ‖¬ψ‖t ∈ B and ‖ψ∨ψ′‖t ∈ B since B is
closed under complementation and (countable) union. Similarly, from ‖ψ‖t, ‖ψ′‖t ∈ B
we can conclude that ‖ψU≤kψ′‖t, ‖ψUkψ′‖t ∈ B since B is closed under countable
intersections as well. The remaining two parts of the result follow from the definitions.

ut

On-line model checking
Here, we present our on-line model checking procedure to check if an ODE trajectory
conforms to a property specified using a BLTL formula. On-line model checking com-
bines the process of simulation with model checking i.e we simulate the system only
until a decision about the satisfiability of the property can me made. This contrasts with
off-line approaches, where the system is simulated for the whole time scale of inter-
est, after which the model checking procedure is applied. At the end of the verification
procedure, the model checker returns either a Yes or No for every ODE trajectory. On-
line approaches have the advantage of conserving CPU, memory resources and have a
lower amortized time complexity. Specifically, we use a tableau based model checking
procedure, which we introduce as follows. The method relies on constructing and prop-
agating a finite family of sets F . Each set Fi ∈ F contains a finite number of formulas.
Let ϕ,ψ and γ be BLTL formulas. A literal is defined as an atomic proposition A or
its negation ¬A. For the purpose of illustration, let us assume that we convert the given
BLTL formulas into a form in which only the atomic propositions can appear in negated
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form. In other words, we assume our formulas will have the following syntax: (i) Every
literal is a formula. (ii) If ϕ and ϕ′ are formulas so are ϕ∨ϕ′ and ϕ∧ϕ′, Oϕ, Fϕ, Gϕ,
ϕUϕ′. It is easy to show that every formula in the original syntax can be expressed as
a formula in the above syntax where only the atomic propositions are negated.

For a formula ϕ, we define the family of closure sets cl(ϕ) by structural induction
on ϕ:

– If ϕ is a truth constant or a literal then cl(ϕ) ={{ϕ}}.
– If ϕ = ψ ∨ γ then cl(ϕ) = cl(ψ) ∪ cl(γ).
– If ϕ = ψ ∧ γ then cl(ϕ) = cl(ψ)× cl(γ).
– If ϕ = Oψ then cl(ϕ) = {{Oψ}}.
– If ϕ = Fψ then cl(ϕ) = cl(ψ) ∪ cl(OFψ).
– If ϕ = Gψ then cl(ϕ) = cl(ψ)× cl(OGψ).
– If ϕ = ψUγ then cl(ϕ) = cl(γ) ∪ (cl(ψ)× cl(O(ψUγ)).

If we have a set of formulas Y = {ϕ1, ϕ2, . . . , ϕn}, then the closure cl(Y ) can be
written as cl(Y ) = cl(ϕ1) × cl(ϕ2) . . . × cl(ϕn). We can also extend the notion of
closure to families of sets of formulas such as F = {Y1, Y2, . . . , Yk}, and say that the
closure set of F is cl(F) = cl(Y1) ∪ cl(Y2) . . . cl(Yk)

We call the set of formulas Y a leaf set iff cl(Y ) = Y . Further, a set Y is inconsistent
iff (i) for an atomic proposition p, p ∈ Y and ¬p ∈ Y or (ii) for some formula ϕ, both
Oϕ ∈ Y and O¬ϕ ∈ Y .

Proposition: The following assertions hold.

– Y is a leaf set iff each formula in Y is a literal or a O formula.
– cl(ϕ) is a leaf family for each ϕ.
– cl(Y ) is a leaf family for every finite set of formulas Y .
– cl(F) is a leaf family for every family of formula sets F .

Suppose the current system state is st. If Y is a leaf set then Y is dead at time t iff
Y is inconsistent or st 6|= ` for some literal ` ∈ Y . Consequently, a family of leaf sets
F is dead iff ∀Y ∈ F : Y is dead. Furthermore, F is terminal iff ∃Y ∈ F : Y is not
dead and next(Y ) = ∅, where next(Y ) = {ψ|Oψ ∈ Y }.

Now assume we are given a formula ϕ and want to check in an on-line manner if the
system trajectory satisfies ϕ. We propagate a family of sets and start with F0 = cl(ϕ).
Inductively, assume that we are given the family of setsF t for t < T . IfF t is dead, then
we set F t+1 = false, and if F t is terminal then we set F t+1 = true. Otherwise, F t is
neither dead nor terminal. In this case we know that ∃Y1, Y2, ..., Yk ∈ F t, k ≥ 1 which
are not dead. Since these sets are not dead, we know that ∀i, 1 ≤ i ≤ k : next(Yi) 6=
∅. We can then build the family of sets for time t + 1 as F t+1 = cl(next(Y1)) ∪
cl(next(Y2)) . . . ∪ cl(next(Yk)).

The process terminates at time t < T if ∀Y ∈ F t is false and returns s(0) 6|= ϕ
or if ∃Y ∈ F t which is true, and returns s(0) |= ϕ. Furthermore, if t = T , if F t
is a terminal leaf family at s(T ), the process terminates and returns that s(0) |= ϕ.
Otherwise it returns s(0) 6|= ϕ.
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Statistical model checking properties
The core of our method is verifying properties of model dynamics using statistical
model checking. We describe a few such properties along with their BLTL formulas
and the result of verification in Table1.

Pathway Property Formula Result

Thrombin-MLC sustained activation (([Phospho MLC≤ 1]) ∧ (F≤20(G≤20([Phospho MLC≥ 3]))) false
Thrombin-MLC transient activation (([Phospho MLC ≤ 1]) ∧ F≤20(([Phospho MLC ≥ 3]) ∧

F≤20(G≤20((Phospho MLC≤ 1)))))

true

Segmentation clock oscillations (([Lunatic fringe mRNA ≤ 0.4]) ∧ (F≤40([Lunatic fringe mRNA
≥ 2.2] ∧ F≤40([Lunatic fringe mRNA ≤ 0.4] ∧ F≤40([Lunatic
fringe mRNA≥ 2.2] ∧ F≤40([Lunatic fringe mRNA≤ 0.4]))))))

true

Table 1. Statistical model checking based verification

For the MLC phosphorylation pathway, it is known experimentally that the concen-
tration of phosphorylated MLC starts at a low level, and then reaches a high steady state
value. Our SMC method shows that the nominal model does not satisfy the property.
However, when specifying a transient profile for phosphorylated MLC, the property
is verified a true. This discrepancy has been studied in [30], and attributed to missing
components and links in the proposed model. Table 1 also shows how an oscillation
property for Lunatic fringe mRNA in the segmentation clock pathway can be encoded
in our specification logic. The SMC verification shows that the specified oscillation is
met.
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