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METHOD 
• State extension: joint state and parameter space 

• Samples obtained  from                        at each time step 

• Propagate and update samples until all data is used 

Kernel enhanced particle filter: 

Sample prior 

Loop over all measurement time points 

1) Propose next state and update likelihood weights 

 

2) Resample if weights degrade 

 

3) Diversify resampled particles 

   3.1) Choose directions             based on particle spread 

   3.2) Propose new parameter along chosen directions 

 

   3.3) Accept according to the Metropolis-Hasting kernel 

 

  

   3.4) Adapt T based on acceptance rates. 

MCMC kernel ensures that particles are diversified while still being 

distributed according to the the posterior                      at current time step.  

legend('boxoff'); 

RESULTS 
JAK-STAT signaling pathway 

• Dimerization, nuclear transport of STAT protein upon EPO stimulation (1A) 

• ODE model: 7 unknown parameters (1B) 

• Experimental data: semi-quantitative, sum of individual species (1C) 

 

 

 

 

 

 

 

Particle filter 

• Uniform priors on logarithmic scale: 10-5-102 

• Number of particles: 104 

We compare our particle filter enhanced by an MCMC kernel to previously 

proposed solutions (2). Resampling only [1] results in collapsed particles, 

while adding noise [2] diversifies particles but gives an inaccurate 

approximation to the posterior. Our particle filter produces a non-degenerate, 

yet accurate fit to measurement data. 

 

 

 

 

 

 

 

Large areas of parameter space contain acceptable models with respect to the 

measurement data (3). A single best parameter estimate would not provide an 

appropriate description. 

 

 

 

 

 

 

 

While fit to measurement data is tight, unobserved species can have highly 

varying behavior (4). Using out method, these uncertainties can be quantified. 

DISCUSSION 
Our method allows the efficient approximation of a Bayesian posterior over 

pathway model parameters.  

Main advantages: 

•  Sequential sampling approximates a series of simpler distributions. 

•  Sample diversification with MCMC kernel results in accurate, complete  

posterior. 

•   Kernel design ensures that acceptance rates are high at each step. 

By obtaining an accurate parameter posterior, applications such as Bayesian 

model selection and experimental design become more effective.  
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INTRODUCTION 
Motivation 

Pathway model parameters are commonly under-constrained and 

unidentifiable. 

 

 

Large number of parameters fit measurement data so a Bayesian 

posterior estimate is more adequate than a single best estimate 

(ML/MAP) for making predictions. 

Bayesian framework 

Recover posterior over parameters with respect to measurement data 

 

 

Make predictions based on full posterior (model averaging) 

 

 

Non-linear system model and high-dimensional parameter space makes 

approximating the posterior computationally challenging. 

Particle filtering 

Produces a sample based, sequential approximation of the posterior 

using weighted samples, which can be directly used to make 

predictions (2). However, degenerate estimates can result from limited 

sample size. 

Previously proposed solutions 

• Use very high number of particles (~108)  

• Add random noise to the particles at each step 

 Our approach 

• Use an MCMC kernel to diversify the sample set at each step of the 
particle filter while preserving the posterior 
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