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ABSTRACT
Motivation: Biopathways are often modeled as systems of ordinary
differential equations (ODEs). Such systems will usually have many
unknown parameters and hence will be difficult to calibrate. Since the
data available for calibration will have limited precision, an approxi-
mate representation of the ODEs dynamics should suffice. One must
however be able to efficiently construct such approximations for large
models and perform model calibration and subsequent analysis.
Results: We present a GPU-based scheme by which a system of
ODEs is approximated as a dynamic Bayesian network (DBN). We
then construct a model checking procedure for DBNs based on a
simple probabilistic linear time temporal logic. The GPU implementa-
tion considerably extends the reach of our previous PC-cluster based
implementation (Liu et al., 2011b). Further, the key components of
our algorithm can serve as the GPU kernel for other Monte Carlo
simulations based analysis of biopathway dynamics. Similarly, our
model checking framework is a generic one and can be applied in
other systems biology settings.

We have tested our methods on three ODE models of biopathways:
the EGF-NGF pathway, the segmentation clock network and the MLC-
phosphorylation pathway models. The GPU implementation shows
significant gains in performance and scalability while the model che-
cking framework turns out to be convenient and efficient for specifying
and verifying interesting pathways properties.
Availability: The source code is freely available at
http://www.comp.nus.edu.sg/∼rpsysbio/pada-gpu/
Contact: thiagu@comp.nus.edu.sg
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The modeling and analysis of biopathways dynamics is a core
activity in systems biology. A standard approach is to view a bio-
pathway as a network of biochemical reactions and to model the
network as a system of ordinary differential equations (ODEs)
(Aldridge et al., 2006). Since biopathways often involve a large
number of reactions, the corresponding ODE systems will not admit
closed form solutions and one will have to resort to numerical
simulations. However the ODE systems will often contain many
unknown parameters (rate constants and initial concentration levels)
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which will first have to be estimated using meager data of limited
precision. Consequently, for large pathways model construction and
analysis are difficult problems. With this as motivation, a proba-
bilistic approximation method was developed in Liu et al. (2009)
by which an ODE system is reduced to a dynamic Bayesian netw-
ork (DBN). Parameter estimation followed by sensitivity analysis
is then carried out on this simpler model using standard Bayesian
inference techniques. This method is promising in terms of efficie-
ncy, accuracy and applicability (Liu et al., 2011b,a). Our goal here
is to extend this scheme in two significant ways. The core featu-
res of these two extensions are of independent interest and can be
deployed in other settings involving biopathways models.

The first extension is a parallel implementation of the DBN appro-
ximation scheme using Graphical Processing Units (GPUs). It is
computationally intensive to construct the DBN from a system of
ODEs. In our experience, a single PC is hopelessly inadequate
while even a PC-cluster quickly runs into scalability issues. On the
other hand, a supercomputing facility may not be available or affor-
dable. In comparison, GPUs provide an excellent combination of
cost and performance. However, not all algorithms map well onto a
GPU platform due to its memory hierarchy. Specifically, one must
carefully balance parallelism with memory accesses to obtain good
performance.

In our DBN construction -explained in more detail in the next
section- a computationally intensive phase is the generation of a
large number of trajectories using numerical simulations. This can
be done in parallel and hence the GPU platform is a natural choice.
However, each variable can appear in multiple equations. Hence to
generate a trajectory one must, in principle, access all the equations
in each integration step. Further, the threads generating the traje-
ctories will have to record a good deal of intermediate information
to construct the conditional probability tables (CPTs) of the DBN.
For large ODE systems the intermediate data generated will be too
large to be stored in the fast local memory. One will instead have
to use the slow global memory for this purpose. This can lead to a
severe degradation in performance. To get around this we create a
heterogeneous pool of threads in which each trajectory is computed
in a distributed fashion while a second group of threads manage the
data movement. There are other settings in which a set of trajecto-
ries (Lüdtke et al., 2008; Li et al., 2010) is generated which is then
subjected to statistical analysis to derive system properties. In such
applications too, our compilation strategy will likely lead to high
performance GPU implementations.
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The second major contribution of the paper is a probabilistic
model checking procedure for DBNs. We use a simple probabi-
listic variant of linear time temporal logic (LTL) (Pnueli, 1977)
in which the atomic propositions are of the form (X, v) ≤ c or
(X, v) ≥ c where X is a finite valued random variable correspon-
ding to a node in the DBN and c is rational number in [0, 1]. The
assertion (X, v) ≤ c says that the probability of the random variable
X currently having the value v is less than or equal to c; similarly for
the assertion (X, v) ≥ c. The rest of the syntax is standard. Though
probability enters the logic only via atomic propositions it turns out
that one can still express many interesting dynamical properties. A
key component of our model checking procedure is a Bayesian infe-
rencing algorithm called the factored frontier algorithm (Murphy
and Weiss, 2001) that is used to approximately determine the tru-
thhood of the atomic propositions. We do this approximately since
exact inference is computationally infeasible for large DBNs. The
accuracy of this inferencing procedure can be improved -at addi-
tional computational cost- by using a parametrized variant of the
factored frontier algorithm that we have recently developed (Palani-
appan et al., 2011) (More details can be found in the Supplementary
Information.) Again, this simple and novel version of probabilistic
verification can be applied to other related settings (Langmead et al.,
2006).
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Fig. 1. The approximation, calibration and analysis framework

Figure 1 shows the overall framework in which we have carried
our work. As indicated, our approximation procedure -implemented
on a GPU platform- will often yield an uncalibrated DBN due to
the presence of unknown parameters. We then perform parameter
estimation using Bayesian inferencing to obtain a calibrated model.
One can then carry out -on a PC platform- tasks such as sensiti-
vity analysis and probabilistic verification. At present these tasks
are performed on a PC platform. In Liu et al. (2011b) we show how
parameter estimation followed by sensitivity analysis is performed
using the Bayesian inferencing. Hence we do not deal with this here
and instead focus on the new analysis method, namely, probabilistic
verification.

We have tested the GPU implementation on ODE models of
the EGF-NGF pathway (Brown et al., 2004), the segmentation
clock network (Goldbeter and Pourquie, 2008) and the thrombin-
dependent MLC phosphorylation pathway (Maeda et al., 2006). We
obtained these models from the BioModels database (Le Novere
et al., 2006). Although the parameter values for these models are
known, in each case we set a subset of the parameters as unknown
to mimic realistic biopathways models. This considerably increa-
ses the computational demands placed on the DBN construction.
For each model, we constructed a DBN by generating 3 million

trajectories. We then compared the performance of the GPU imple-
mentation with that of a 10-CPU cluster. The EGF-NGF model
consists of 32 differential equations and 48 kinetic parameters from
which 20 were set to be unknown. The GPU implementation ran
26 times faster. The segmentation clock network model consists of
22 differential equations and 75 kinetic parameters out of which 40
were set to be unknown. In this case the GPU implementation ran
32 times faster. The third model was that of the thrombin-dependent
MLC phosphorylation pathway consisting of 105 differential equ-
ations and 197 kinetic parameters out of which we set 164 to be
unknown. In this case, the GPU implementation took 38 hours
while the cluster implementation turned out to be infeasible. Even
for 30000 trajectories it took 37 hours and hence for a 3 million
trajectories, it would have taken around 5 months. Further, the
30000-trajectories based DBN that the PC-cluster produced was of
poor quality.

We also tested our model checking procedure on the DBN appro-
ximations of these three pathway models. For each model we
formulated a number of dynamical properties and verified them to
be true or false. It only took less than 1 second on a PC to verify
each property.

Turning to related work, an excellent overview of biopathways
dynamics and formalisms for studying their behaviors can be found
in Klipp et al. (2005). Modeling and analysis of biopathways using
ODEs is well-established domain (Aldridge et al., 2006; Sreenath
et al., 2008). As mentioned earlier, our approximation was presen-
ted in Liu et al. (2011b) and has been applied in a concrete biological
setting (Liu et al., 2011a). As for related GPU applications, a survey
of hardware accelerators for biocomputing including GPUs is pre-
sented in Dematte and Prandi (2010). Of particular relevance is
the Python language based package called cuda-sim reported in
Zhou et al. (2011). This package enables accelerated simulations
of biochemical network models on GPUs. Apart from ODEs based
models, the cuda-sim package also supports models based on sto-
chastic differential equations as well as Markov Jump processes. We
consider this work to be orthogonal to ours in the sense its main
focus is on the simulations of ODEs. In our setting, generating a
large number of trajectories through numerical integration is just
one component of the larger task of constructing the DBN appro-
ximation. At present we do not have a GPU based implementation
of the parameter estimation, sensitivity analysis and probabilistic
verification procedures. In this connection, the work on the GPU
implementation of the sum-of-product algorithm (Silberstein et al.,
2008) for DBNs is promises to be very relevant.

As for the second component of our work, model checking based
on temporal logics is a well-established domain. It was founded in
(Pnueli, 1977) through the seminal work of Amir Pnueli where he
proposed Linear Time Temporal Logic (LTL) as the basis for rea-
soning about the behavior of programs. An ideal starting point for
delving into this field is Clarke et al. (1999) which presents the
basic family of temporal logics as well the automated verification
procedure called model checking. This framework was extended to
probabilistic systems -based on discrete time Markov chains- using
the probabilistic temporal logic called PCTL in Hansson and Jons-
son (1994). It is worth noting that our specification logic PBL is
simple fragment of PCTL. Overviews of this active area of resea-
rch can be found for instance in Kwiatkowska et al. (2010); Legay
et al. (2010).
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A number of modeling formalisms (Danos et al., 2007; Kwi-
atkowska et al., 2008; Ciocchetta and Hillston, 2009; Henzinger
et al., 2010) for biochemical networks are based on Continuous
Time Markov Chains (CTMCs). Model checking the properties of
these stochastic models using probabilistic temporal logics such as
PCTL and its variants is being actively pursued by a number of
researchers (Clarke et al., 2008; Kwiatkowska et al., 2008; Gong
et al., 2010; Li et al., 2010). Of particular interest in our context is
Donaldson and Gilbert (2008) which defines the probabilistic LTL
with numerical constraints (PLTLc) and verifies properties of ODE
models through Monte Carlo integration. Here instead we carry out
Monte Carlo simulations once to construct a DBN approximation.
One can then repeatedly perform probabilistic verification of pro-
perties expressed in PBL using Bayesian inferencing. In Clarke
et al. (2008), a technique called statistical model checking is used
to verify properties of a CTMC model expressed in a logic cal-
led bounded LTL (BTL) which is basically LTL interpreted over
finite sequences. They stochastically simulate a CTMC model for
a finite number of runs and use BTL to check each simulation run.
They then perform statistical tests to verify that this property meets
a required probability bound. Our logic PBL is also interpreted
over finite sequences. However it is a probabilistic logic in that
the atomic propositions make probabilistic assertions. Further, the
logic is interpreted over the single sequence of marginal distributi-
ons generated by the DBN (as explained in section 4). Finally, the
work reported in Langmead et al. (2006) also carries out DBN based
model checking. However, the DBN is first converted to a data stru-
cture called a Multi-Terminal Binary Decision Diagram (MTBDD)
and then existing probabilistic model checking algorithms based on
PCTL are applied. Additional background information on these
topics can be found in the Supplementary Information.

In the next section, we explain how a DBN is constructed from
a system of ODEs. In section 3, we present the main features of
our GPU implementation. In the subsequent section we introduce
our probabilistic variant of LTL and the associated model checking
procedure. In section 5 we present our experimental results. The
final section summarizes and discusses possible extensions of the
work presented here.

2 THE DBN APPROXIMATION
The dynamics of a biopathway is often modeled as a system of
ODEs with one equation of the form dx

dt
= f(x, p) for each mole-

cular species x in the pathway. Here f describes the kinetics of the
reactions that produce and consume x and x are the molecular spe-
cies taking part in these reactions while p are the rate constants
governing these reactions. For large pathways, this ODE system
which will typically have many unknown parameters will be dif-
ficult to calibrate and analyze. To get around this an approximation
scheme was developed in Liu et al. (2009) through which a system
of ODEs can be reduced to a dynamic Bayesian network. Our goal
here is to briefly explain this method. The technical details can be
found in Liu et al. (2011b).

First we assume the states of the system are observed only at a
finite number of time points, {0, 1, . . . , T}. Next, the range of each
variable xi (rate constant rj) is partitioned into a set of intervals Ii
(Ij). Both these discretizations are motivated by the fact that experi-
mental data will be available only for a finite set of time points and
this data will be of limited precision.
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Fig. 2. (a) The enzyme catalytic reaction network. (b) The ODE model. (c)
The DBN approximation.

Next, the initial values of the variables as well as the rate con-
stants are assumed to be distributions (usually uniform) over certain
of these intervals. We then sample the initial states of the system
according to this distribution sufficiently many times, and generate
a trajectory by numerical integration for each sampled initial state.
The resulting set of trajectories is then treated as an approximation
of the dynamics of ODE system.

To handle unknown rate constants we assume that the minimum
and maximum values of these constants are known. We then parti-
tion these ranges of values also into a finite numbers of intervals,
and fix a uniform distribution over all the intervals. After building
the DBN, we use a Bayesian inference based technique to perform
parameter estimation to complete the construction of the model.
However, unlike the variables, once the initial value of an unknown
rate constant has been sampled, this value will not change during the
generation of a trajectory. Naturally different trajectories can have
different initial values for an unknown rate constant.

A key idea is to compactly store the generated set of sequences as
a dynamic Bayesian network. This is achieved by means of a sim-
ple counting procedure that exploits the network structure. In order
to keep the focus on the approximation procedure we give only an
informal description of DBNs here and defer a precise presentation
to section 4.

A DBN consists of a directed acyclic graph where the nodes are
grouped into layers with each layer representing a time point (Mur-
phy, 2002). The nodes in layer t− 1 will be connected to the nodes
in the layer t in the same way as t ranges from 1 to T . Each node
will have a random variable associated with it. In our setting, there
will be one random variable xti (rtj) corresponding to each variable
xi (unknown rate constant rj) to capture in which interval the value
of xi (rj) falls at time t. Further, for each unknown rate constant k,
we add the equation dk

dt
= 0 to capture the fact that once the value of

k has been sampled, this value will not change during the numerical
integration of a trajectory.

Pa(xti), the set of parent nodes of xti is determined as follows.
The node xt−1

k (rt−1
j ) will be in Pa(xti) iff xk(rj) appears in the

equation for xi or xk = xi. On the other hand, rt−1
j will be the

only parent of the node rtj in case rj is an unknown rate constant.
In Figure 2, we show a simple enzymatic reaction network, its ODE
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model and the structure of its DBN approximation. In this example,
we have assumed that k3 is the only unknown parameter.

As indicated in Figure 2(c), each node will also have a conditi-
onal probability table (CPT) associated with it to specify the local
probabilistic dynamics. A typical entry in the CPT of xti will be of
the form Pr(xti = I | zt−1

1 = I1, z
t−1
2 = I2, . . . , z

t−1
l = Il) = p

with Pa(xti) = {zt−1
1 , zt−1

2 , . . . , zt−1
l }. Such an entry means that p

is the probability that the value of xi falls in the interval I at time
t, given that the value of zu was in Iu at time t − 1 for each zt−1

u

in Pa(xti). The probability p is calculated through simple counting.
Suppose N is the number of generated trajectories. We record the
number of the trajectories from this collection for which their value
of zu fell in the interval Iu for each zu in {z1, z2, . . . , zl} at time
t − 1. Suppose this number is J . We then determine for how many
of these J trajectories, the value of xi fell in the interval I at time t.
If this number is J ′, then p is set to be J′

J
.

If k is unknown, in the CPT of kt we will have Pr(kt = I |
kt−1 = I ′) = 1 if I = I ′ and Pr(kt = I | kt−1 = I ′) = 0 otherw-
ise. This is because the sampled initial value of k does not change
during numerical integration. Suppose k appears on the right hand
side of the equation for x and Pa(xti) = {zt−1

1 , zt−1
2 , . . . , zt−1

` }
with zt−1

` = kt−1. Then for each choice of interval values for nodes
other than k in Pa(xti) and for each choice of interval value Î for k
there will be an entry in the CPT of xt of the form Pr(xti = I |
zt−1
1 = I1, z

t−1
2 = I2, . . . , k = Î) = p. This is so since we will

sample for all possible initial interval values for k and k0 = kt−1.
In this sense the CPTs record the approximated dynamics for all
possible combinations of interval values for the unknown rate con-
stants. These features are illustrated in Figure 2(c) for the unknown
rate constant k3.

By performing parameter estimation on the resulting uncalibrated
DBN one can obtain a calibrated DBN in which each parameter will
have a specific interval value assigned to it.

3 MAPPING TO A GPU ARCHITECTURE
We now describe how our approximation algorithm is mapped onto
the NVIDIA’s Fermi platform. In this platform each GPU unit con-
sists of 16 streaming multiprocessors (SMs for short). Each SM has
32 arithmetic cores divided into two groups of 16 each for schedu-
ling purposes (Glaskowsky, 2009). Threads are grouped into warps
of size 32 each. In the current generation of CUDA processors, half
of a warp, i.e., 16 threads, will execute in one of the two sets of
cores in a SM in a SIMD (Single Instruction Multiple Data) manner.
Thus in any cycle -subject to some mild constraints- two half-warps
can be executing in a SM. However, the threads belonging to a
half warp must execute the same instruction. If not, they must be
serialized. Pipelining offers an additional dimension of parallelism.
Loosely speaking, it takes about 22 cycles to execute each instru-
ction. Through pipelining, when the i + 1th processing cycle of
the instructions belonging to a warp starts executing, the system can
schedule the execution of the ith processing cycle of the instructions
belonging to a different wrap. As for the memory hierarchy, each
SM has 32K registers of 32 bits length and each thread in an SM
can be allocated upto 64 of these registers. Each SM has 48KB of
shared fast memory which the threads belonging to the SM can use
to store data and synchronize with each other. Additional data must
be stored in the slow off-chip global memory of size 2GB. This is
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Fig. 3. Concurrent execution of trajectories inside an SM.

also the only medium through which threads belonging to different
SMs can synchronize. In addition there is a small L1 cache of size
16KB belonging to each SM and an L2 cache of size 768KB that
is shared by all the SMs. Each SM computes a set of trajectories
and records the number of times these trajectories hit the intervals
of values of the variables at different time points. This binning infor-
mation is stored in a specific area of the global memory which will
be summed up to produce the CPTs of the DBN. We now describe
how the computation within a single SM is orchestrated according
to the scheme shown in Figure 3.

Starting from an initial state at t = 0, for each time interval ∆t,
the new value of a variable x is determined by applying numerical
integration using the current values of the variables and the values of
the rate constants appearing in the ODE for x as well as the current
value of x. Due to the coupling between the variables, the entire
front of the new values of all the variables must be computed at
each time step per trajectory. If we naively allocate as many threads
as possible to each SM with each thread computing a trajectory then
their memory requirements will exceed the size of the (fast) local
memory of the SM.

To get around this we partition the set of equations into blocks
and allocate each block to a thread. Thus a single trajectory will
be computed by a set of threads C. Each member of C will handle
a different block of equations and compute the new values of the
variables appearing on the left hand sides of these equations. Each
thread will read from the local memory of the SM the current values
of the variables (v) and the rate constants (p) appearing in the equa-
tions allotted to it. The ∆v changes during a time step are computed
in parallel and are stored back to the local memory. The vector of
variables v is then updated. This process is applied iteratively for
each time step.

We must also perform the binning steps to record the number of
times the threads hit the various intervals of values of the variables
(and unknown rate constants). This is required for constructing the
CPTs of the DBN. Accordingly, the vector v is replicated as v̄. The
binning process executes in parallel, during the subsequent ∆t ite-
ration, using the memory access threads (M), which will store the
results in a large table located in global memory. This will ensure
that the numerical integration continues during the binning process.

Many copies of the C andM groups of threads will be assigned
to an SM. How they are scheduled is guided by the hardware orga-
nization of the SM explained above. In particular, we allot the C
threads belonging to each trajectory to the warps so that threads exe-
cuted together in the same warp process the same block of equations
corresponding to different trajectories. This implies that threads
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computing different blocks corresponding to the same trajectory are
assigned to different warps.

We next turn to the issue of partitioning the set of equations into
blocks with each block handled by a thread in C. The compiler
converts each equation into a set of memory loads and stores and
a set of arithmetic operations. To achieve good balance, we have
created a simple timing model that assigns a weight to each opera-
tion that appears in each equation. We then distribute the equations
so that the corresponding weight of the operators appearing among
the C threads is balanced.

Our compilation strategy leads to a better utilization of the fast
local memory in comparison to the naïve implementation in which
each thread computes a trajectory and the CUDA compiler decides
how many parallel threads should be launched. Our experiments
using an initial implementation showed that for one of the case
studies reported in section 5 (the EGF-NGF model) it achieves
approximately a 40% improvement over the naïve solution. We have
not however carried out a systematic and detailed comparison so far.

It is also worth pointing out that there will be ODE systems on
which our implementation will not do much better than the naïve
implementation. This is so since structure of the DBN is determi-
ned by the couplings between the variables in the ODE system.
Hence our solution will not do much better for networks in which the
graph denoting the couplings between the variables is not sparse but
instead has many nodes that have a large number of parent nodes.
This situation will arise when the biochemical network under study
has many species each of which takes part in many reactions as a
reactant and/or product. However all the networks we have encoun-
tered so far have been relatively sparse. When there are a few “fat”
nodes that have many parent nodes, one can break them up into lea-
ner nodes -at an additional computational cost- as explained in Liu
et al. (2011b).

To generate the initial states, we used a Mersenne twister algori-
thm based on theMT19937 random number generator (Matsumoto
and Nishimura, 1998), running in each of the C threads. We used a
fourth order Runge-Kutta algorithm for the numerical integration
process (Hindmarsh, 1983). We have extended the implementation
described above to multiple GPUs running in parallel. Each GPU
computes independently its portion of the trajectories and records
the results in a table in its own global memory. Once the compu-
tation has finished, these tables are transferred over the network
to the master host that combines them to form the CPTs. More
details regarding our GPU implementation can be found in the
Supplementary Information.

4 PROBABILISTIC MODEL CHECKING
Once the DBN approximation has been constructed many analysis
tasks can be carried out efficiently, such as parameter estimation
and sensitivity analysis via Bayesian inferencing (Liu et al., 2011b).
Here we formulate a new analysis method based on probabilistic
model checking. As mentioned earlier, the factored frontier algo-
rithm (FF for short) will play a key role in our model checking
procedure. Hence we start with DBNs and then describe FF.

4.1 The Factored Frontier algorithm
We fix an ordered set of n random variables {X1, . . . , Xn} and
let i, j range over {1, 2, . . . , n}. We denote by X the tuple
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Fig. 4. The FF algorithm.

(X1, . . . , Xn). The random variables are assumed to take values
from the finite set V of cardinality K. We let xi, ui, vi to denote
a value taken by Xi. In our application the random variables will
correspond to the variables (and unknown rate constants) appea-
ring in the ODE model. Our dynamic Bayesian networks will be
time-variant but with a regular structure. They will be unrolled over
a finite number of time points. Further, there will be no hidden
variables (Murphy and Weiss, 2001).

Formally, a DBN is a structure D = (X , T,Pa , {Ct
i}) where,

• T is a positive integer with t ranging over the set of time points
{0, 1, . . . , T}.
• X = {Xt

i | 1 ≤ i ≤ n, 0 ≤ t ≤ T} is the set of random
variables. As usual, these variables will be identified with the
nodes of the DBN. Xt

i is the instance of Xi at time slice t.

• Pa assigns a set of parents to each node and satisfies: (i)
Pa(X0

i = ∅) (ii) If Xt′
j ∈ Pa(Xt

i ) then t′ = t − 1. (iii)
If Xt−1

j ∈ Pa(Xt
i ) for some t then Xt′−1

j ∈ Pa(Xt′
i ) for

every t′ ∈ {1, 2, . . . , T}. Thus the way nodes at the (t− 1)th

time slice are connected to nodes at the tth time slice remains
invariant as t ranges over {1, 2, . . . , T}.
• Ct

i is the Conditional Probability Table (CPT) associa-
ted with node Xt

i specifying the probabilities Pr(Xt
i |

Pa(Xt
i )). Suppose Pa(Xt

i ) = {Xt−1
j1

, Xt−1
j2

, . . . , Xt−1
jm
}

and (xj1 , xj2 , . . . , xjm) ∈ V m. Then as usual we require,∑
xi∈V C

t
i (xi | xj1 , xj2 , . . . , xjm) = 1. Since our DBNs are

time-variant, in general Ct
i will be different from Ct′

i if t 6= t′.

A (global) state of the DBN at t will be a member of V n, say
x = (x1, x2, . . . , xn) specifying that Xt

i = xi for 1 ≤ i ≤ n.
This in turn stands for Xi = xi for 1 ≤ i ≤ n at t. Suppose
Pa(Xt

i ) = {Xt−1
j1

, Xt−1
j2

, . . . , Xt−1
jm
}. Then a CPT entry of the

form Ct
i (xi | xj1 , xj2 , . . . , xjm) = p says that if the system is in

a state at t − 1 in which Xj` = xj` for 1 ≤ ` ≤ m, then the
probability of Xi = xi being the case at t is p. In this sense the
CPTs specify the probabilistic dynamics locally.

The regular structure of our DBNs induces the function PA given
by: Xj ∈ PA(Xi) iff Xt−1

j ∈ Pa(Xt
i ). We define î = {j | Xj ∈

PA(Xi)} to capture Pa in terms of the corresponding indices.
The probability distribution Pr(Xt

1, X
t
2, . . . , X

t
n) describes the

possible states of the system at time t. In other words, Pr(Xt = x)
is the probability that the system will reach the state x at t. Starting
from Pr(X0) at time 0, given by Pr(X0 = x) =

∏
i C

0
i (xi), one

would like to compute Pr(Xt
1, . . . , X

t
n) for a given t.
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We can use the CPTs to inductively compute this:

Pr(Xt = x) =
∑

u

(∏
i

Ct
i (xi | uî)

)
Pr(Xt−1 = u) (1)

with u ranging over V n.
Since |V | = K, the number of possible states at t is Kn and

hence explicitly computing and maintaining the probability distri-
butions is feasible only for special cases. One must instead use
approximate methods. Here we shall focus on a simple and efficient
approximate algorithm called the Factored Frontier (FF) algorithm
(Murphy and Weiss, 2001). The key idea of FF is to maintain
and propagate joint probability distributions Pr(Xt

1, X
t
2, . . . , X

t
n)

in terms of marginal distributions {M t
i }.

The marginal distribution M t
i is map M t

i : V → [0, 1] sati-
sfying

∑
v∈V M

t
i (v) = 1. Intuitively, M t

i (v) is the probability
of Xi assuming the value v at time t. It is given by: M t

i (v) =∑
x,x(i)=v Pr(Xt

j = x(j) | 1 ≤ j ≤ n).
To describe FF compactly we will assume the following nota-

tions. xJ will denote a vector of values over the index set J ⊆
{1, 2, . . . , n}. It will be viewed as a map xJ : J → V . We will
often denote xJ(i) as xi if J is clear from the context. Further, we
denote by Xt the vector of random variables (Xt

1, . . . , X
t
n).

We assume that we are given M0
i for each i. In our application

this will correspond to the initial distribution over the intervals of
values of the variables in our discretization procedure.

Consequently, if Xj corresponds to an unknown rate constant
then M0

j (I) = 1
m

in case the values this rate constant can assume
has been partitioned intom uniform sized intervals. To highlight the
approximate nature of FF we useBt

i to denote the marginal probabi-
lities computed by FF and reserveM t

i for the actual marginal. Using
the family {M0

i }, FF inductively and approximately computes the
marginal probabilities Bt

i using the CPTs as follows.

• B0
i = M0

i

• Bt
i (u) =

∑
v∈V

î

(
Ct

i (u | v)
∏
j∈î

Bt−1
j (vj)

)
.

Thus FF generates in one sweep the sequence of (approximate)
marginal distribution vectors (B0

1 , B
0
2 , . . . , B

0
n) (B1

1 , B
1
2 , . . . , B

1
n)

. . . (BT
1 , B

T
2 , . . . , B

T
n ) as illustrated in Figure 4 (for convenie-

nce we have assumed that all the rate constants are known). It is
an approximation of the sequence of (exact) marginal distribution
vectors (M0

1 ,M
0
2 , . . . ,M

0
n) (M1

1 ,M
1
2 , . . . ,M

1
n) . . . (MT

1 ,M
T
2 ,

. . . ,MT
n ) which in turn will be used to interpret our temporal logic

formulas later.
The time complexity of FF is O(T · n · Kd+1) where |V | = K

and d is the maximum over the number of parents that a node can
have. Usually d will be much smaller than n and in this sense FF is
efficient since its time complexity is linear in n.

4.2 Probabilistic bounded LTL
In our temporal logic, the atomic formulas (i.e. propositions) will
be of the form (i, v)#r with # ∈ {≤,≥} and r ∈ [0, 1]. The
proposition (i, v) ≥ r, if asserted at time point t, says thatM t

i (v) ≥
r; similarly for (i, v) ≤ r.

The formulas of our logic termed PBL (probabilistic bounded
LTL) is then given by: (i) Every proposition is a formula. (ii) If ϕ
and ϕ′ are formulas then so are∼ ϕ and ϕ∨ϕ′. (iii) If ϕ and ϕ′ are
formulas then so are O(ϕ) and ϕUϕ′.

  Yes No 

Model Checker 
…

Property 
!!

Fig. 5. (a) The model (sequence of states) defined by the DBN. (b) The
model checking procedure.

The derived propositional connectives such as ∧,⊃,≡ etc. are
defined in the standard fashion. The temporal connectives F (“some-
time from now”) and G (“always from now”) are defined in the usual
way via: F(ϕ) = trueUϕ and G(ϕ) =∼ F(∼ ϕ).

The formulas are interpreted over the sequence of marginal pro-
bability distribution vectors σ = s0s1 . . . sT generated by the DBN
D. In other words, for 0 ≤ t ≤ T , st = (M t

1,M
t
2, . . . ,M

t
n). Con-

sequently st(i) = M t
i for 1 ≤ i ≤ n. We also let σ(t) = st for

0 ≤ t ≤ T . We now define the notion of σ(t) |= ϕ (ϕ holds at t in
D) inductively:

• σ(t) |= (i, v) ≥ r iff M t
i (v) ≥ r. Similarly

σ(t) |= (i, v) ≤ r iff M t
i (v) ≤ r.

• The propositional connectives ∼ and ∨ are interpreted in the
usual way.

• σ(t) |= O(ϕ) iff σ(t+ 1) |= ϕ.

• σ(t) |= ϕUϕ′ iff there exists t ≤ t′ ≤ T such that σ(t′) |= ϕ′

and for every t′′ with t ≤ t′′ < t′, σ(t′′) |= ϕ.

We say that the DBNDmeets the specification ϕ and this is deno-
ted as D |= ϕ iff σ(0) |= ϕ. The model checking problem is, given
D and ϕ, to determine whether or not D |= ϕ.

We begin by letting SF (ϕ) denote the set of sub-formulas of ϕ
and define it as follows. Since ϕ will remain fixed we will write
below SF instead of SF (ϕ).
SF is the least set of formulas containing ϕ such that (i) ∼ ϕ′ ∈

SF implies ϕ′ ∈ SF (ii) ϕ′ ∨ ϕ′′ ∈ SF implies ϕ′, ϕ′′ ∈ SF (iii)
Oϕ′ ∈ SF implies ϕ′ ∈ SF (iv) ϕ′Uϕ′′ ∈ SF implies ϕ′, ϕ′′ ∈
SF .

The main step is to construct a labeling function st which assi-
gns to each formula ϕ′ ∈ SF a subset of {s0, s1, . . . , sT } denoted
st(ϕ′). After the labeling process is complete, we declare D |= ϕ
just in case s0 ∈ st(ϕ). Starting with the atomic propositions, the
labeling algorithm goes through members of SF in ascending order
in terms of their structural complexity. Thusϕ′ will be treated before
∼ ϕ′ is treated and both ϕ′ and ϕ′′ will be treated before ϕ′Uϕ′′ is
treated and so on.

Let ϕ′ ∈ SF (ϕ). Then:

• If ϕ′ = A then st ∈ st(A) iff σ(t) |= A. We run FF to deter-
mine this. In other words, st ∈ st(A) iff Bt

i (v) ≥ r where
A = (i, v) ≥ r and Bt

i is the marginal distribution of Xt
i

computed by FF. Similarly st ∈ st(A) iff Bt
i (v) ≤ r in case

A = (i, v) ≤ r.

• If ϕ′ = ∼ ϕ′′ then st ∈ st(ϕ′) iff st 6∈ st(ϕ′′).

• If ϕ′ = ϕ1∨ϕ2 then st ∈ st(ϕ′) iff st ∈ st(ϕ1) or st ∈ st(ϕ2).
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• Suppose ϕ′ = O(ϕ′′). Then sT 6∈ st(ϕ′). Further, for 0 ≤ t <
T , st ∈ st(ϕ′) iff st+1 ∈ st(ϕ′′).

• Suppose ϕ′ = ϕ1U ϕ2. Then we decide whether or not st ∈
st(ϕ′) by starting with t = T and then treating decreasing
values of t. Firstly sT ∈ st(ϕ′) iff sT ∈ st(ϕ2). Next suppose
t < T and we have already decided whether or not st′ ∈ st(ϕ′)
for t < t′ ≤ T . Then st ∈ st(ϕ′) iff st ∈ st(ϕ2) or st ∈
st(ϕ1) and st+1 ∈ st(ϕ′).

ϕ′ = F(ϕ′′) and ϕ′ = G(ϕ′′) can be handled directly. As in the
case of U, we start with t = T and consider decreasing values of t:

• Suppose ϕ′ = F(ϕ′′). Then sT ∈ st(ϕ′) iff sT ∈ st(ϕ′′). For
t < T , st ∈ st(ϕ′) iff st ∈ st(ϕ′′) or st+1 ∈ st(ϕ′).

• Suppose ϕ′ = G(ϕ′′). Then sT ∈ st(ϕ′) iff sT ∈ st(ϕ′′). For
t < T , st ∈ st(ϕ′) iff st ∈ st(ϕ′′) and st+1 ∈ st(ϕ′).

Due to the fact the model checking procedure just needs to
treat one finite sequence as a model, it is particularly simple. Its
time complexity is linear in the size of the formula ϕ whereas in
traditional settings it will be exponential in the size of ϕ.

Figure 5 summarizes our model checking procedure. Properties of
pathway dynamics are formulated as PBL formulas. They are then
verified using the above labeling algorithm which will call the FF
algorithm when dealing the atomic propositions.

5 RESULTS
Here we present our results concerning the GPU implementation
and the probabilistic model checking method.

5.1 Performance of the GPU implementation
We have implemented the DBN approximation algorithm on the
NVIDIA Tesla 2.0 (Fermi) platform consisting of 4 GPUs of 2 GB
global memory each. The 4 units are attached in pairs to two Xeon
E5405 @ 2GHz hosts with 16 GB of memory each and the hosts
can communicate with each other. We compared the performance
of our GPU algorithm with that of a MPI-based C implementa-
tion on a cluster of 10 Xeon E5430 @ 2.66 GHz CPUs each with
40 GB of memory. We did so by constructing the DBN approxi-
mations for three biopathways models described below. Although
the parameter values for these models are known, in each case we
set a subset of the parameters as ‘unknown’ to mimic realistic bio-
pathways models. This considerably increases the computational
demands placed on the approximation algorithm. In what follows
we briefly describe each of the pathways. The reaction schemes and
the corresponding ODE systems can be obtained via the links to
the Biomodels database (Le Novere et al., 2006) provided in the
Supplementary Information.

5.1.1 The EGF-NGF signaling pathway
PC12 cells proliferate in response to epidermal growth factor (EGF)
stimulation but differentiate into sympathetic neurons in response
to nerve growth factor (NGF). Brown et al. (2004) developed an
ODE model of this pathway. The corresponding reaction network
is shown in Figure 6. The model consists of 32 differential equati-
ons and 48 kinetic parameters. 20 of the 48 parameters were singled

Fig. 6. The reaction network diagram of the EGF-NGF pathway (Brown
et al., 2004)

out to be unknown. The ranges of each variable and unknown para-
meter were discretized into 5 intervals of equal size. The time step
∆t was fixed to be 6 seconds and 3× 106 trajectories were genera-
ted up to 600 seconds to fill up the CPTs associated with the DBN
approximation.

5.1.2 The segmentation clock network
During the development of vertebrate embryos, the somites are
rhythmically produced to establish the segmental pattern of the spi-
nes. The periodic formation of somites is driven by the oscillatory
expression of a large number of genes. The expression of these
genes is controlled by an underlying signaling network called the
segmentation clock network (Goldbeter and Pourquie, 2008). The
corresponding ODE model consists of 22 differential equations and
75 kinetic parameters. 40 of the 75 parameters were singled out to
be unknown. The ranges of each variable and unknown parameter
were discretized into 5 equal-size intervals. The time step ∆t was
fixed to be 5 minutes while 3 × 106 trajectories were generated up
to 500 mins to fill up the CPTs.

5.1.3 The thrombin-dependent MLC phosphorylation pathway
The endothelial cells form a dynamic barrier between blood and tis-
sues, which plays an important role in various physiological and
pathological processes. The barrier function is determined by the
contraction of endothelial cells, which is triggered by the MLC pho-
sphorylation and thrombin is an agonist that can induce the MLC
phosphorylation through two different signaling cascades (Maeda
et al., 2006). This rather large model consists of 105 differential
equations, 110 reactions, and 197 kinetic parameters. In constru-
cting the DBN approximation, we singled out 164 of the 197
parameters to be unknown. We discretized the ranges of each vari-
able and unknown parameter into 5 equal-size intervals and fixed
the time step ∆t to be 2 seconds. To fill up the CPTs, we generated
3× 106 trajectories up to 200 seconds.

More details concerning their DBN approximations can be found
in the Supplementary Information.

5.2 Performance
The overall runtime are summarized in Table 1. It shows our
implementation achieves significant speedup compared to a 10-
CPU cluster implementation for the first two case studies. The third
case study illustrates the scalability of the GPU implementation. It
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Table 1. Comparative performance of CPUs cluster and GPUs cluster

Pathway model Runtime (s) Speedup
10-CPU cluster 4-GPU cluster

EGF-NGF 4985 191.4 26×
Segmentation clock 17881 543.6 32.9×
Thrombin-MLC − 135660.9 −

took 38 hours to compute a high quality DBN approximation using
3× 106 trajectories while the cluster implementation took 37 hours
for just 30000 trajectories. Further, this DBN was of poor quality in
that for some biologically significant species it differed significantly
from the ODE model (the details can be found in the Supplementary
Information). For a 3 million trajectories based DBN approxima-
tion, the PC-cluster it would have taken approximately 5 months!
In this sense the GPU implementation can handle much larger
models than the PC-cluster. Further, the compilation strategy we
have developed can be applied to other Monte Carlo simulations
based analysis methods for biopathways models (Donaldson and
Gilbert, 2008; Li et al., 2010).

5.3 Verification results
For the three case studies we formulated some properties and veri-
fied whether they were true or not. For convenience we fixed the
values of rate constants and the initial concentrations according to
the models taken from the BioModels database. This in turn fixed
the truth values of the propositions at time 0.

5.3.1 The EGF-NGF signaling pathway

• It is known that the concentration of EGF and NGF remains
constantly high. We formulated this property as the formula:

G((EGF, I4) > 0.9)∧G((NGF, I4) > 0.9)

The property was verified to be true.

• The profile of activated ERK is expected to reach a peak after
which the concentration begins to fall. The corresponding for-
mula was:

(((ERK∗, I0) > 0.6)∧F(((ERK∗, I3) > 0.6)∧
F(G((ERK∗, I2) > 0.6)))

The above query was verified to be true.

• We next checked whether the concentration of activated C3G
reaches a steady state as experimentally observed. The correspon-
ding formula is:

((C3G∗, I0) > 0.8)∧F(G((C3G∗, I4) > 0.8))

It was verified to be true.

5.3.2 The segmentation clock network
We checked the oscillatory behavior of various species. Following
Donaldson and Gilbert (2008), we formulated the property for the
oscillatory behavior of Axin as:

F(((Axin, I0) > 0.6)∧F(((Axin, I2) > 0.6)∧F(((Axin, I0) >
0.6)∧F(((Axin, I2) > 0.6)∧F((Axin, I0) > 0.6)))))

The property specifies the number of peaks and troughs to be expe-
cted in an oscillation cycle within the given time bound of the
system. Specifically, it says that initially (with a high probability)
the system is at the discretized interval 0 followed by a state some
time in future where (with a high probability) the system moves to
a higher discretized interval and then falls back to initial levels and
so on. This query was verified to be true.

5.3.3 The thrombin-dependent MLC phosphorylation pathway
The following are some of the formulas considered for this model:

• The profile of activated Rho starts at a very low level, reaches a
high value after which the concentration drops back to the initial
level. The corresponding formula was:

((Rho∗, I0) > 0.8)∧F(((Rho∗, I4) > 0.8)∧
F((Rho∗, I0) > 0.8)))

It was verified to be true.

• Rho gets activated and reaches its peak earlier than MLC:

((MLC∗, I4) < 0.1)U(((Rho∗, I4) > 0.8)∧
O(F((MLC∗, I4) > 0.7)))

This was also verified to be true.

• Experimental observations suggest that the concentration of pho-
sphorylated MLC starts at a low level, reaches a high steady state
value. The PBL formula used to capture this property was:

((MLC∗, I0) > 0.7)∧F(G((MLC∗, I4) > 0.7))

It was verified to be false.

• We then formulated a PBL formula to describe the behavior where
the concentration starts with a low value, reaches a high value
(peak) after which it drops back to the initial level.

((MLC∗, I0) > 0.7)∧F(((MLC∗, I4) > 0.7)∧
F((MLC∗, I0) > 0.7))

This formula evaluated to be true. This means the current ODE
model is unable to explain the experimental data available for this
pathway. Further investigation to identify the missing links of the
pathway may be required.

6 CONCLUSION
Approximating the ODE based biopathway dynamics as a dynamic
Bayesian network allows model analysis tasks such as parameter
estimation, sensitivity analysis and probabilistic verification to be
efficiently carried out. In this paper we have presented a GPU based
implementation for constructing the DBN approximations.

The significant read-sharing in the algorithm will prevent a naïve
implementation from scaling upto large biopathways models. To
overcome this we have proposed a compilation strategy in which
heterogeneous threads consisting of trajectory-computing threads
and global memory access threads are suitably folded into warps.
Further, load balancing was achieved using a simple timing model.

In our experiments we were able to achieve significant speedup
compared to a 10-CPU cluster implementation. Furthermore, our
method scales well while the cluster based implementation begins
to consume infeasible amounts of resources for large models.
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We have also formulated a simple probabilistic temporal logic and
constructed an approximate but efficient model checking procedure.
Though probability enters the picture solely via atomic propositions,
one can still formulate many interesting dynamic properties of path-
way models. Further, due the fact that there is a single finite run, the
model checking procedure is particularly simple. Admittedly it is
an approximate procedure. However one can begin with our method
to get a preliminary feel for the dynamics and in case a biologi-
cally crucial and testable property shows up, one can compute its
truth value more precisely by using the HFF algorithm (Palaniappan
et al., 2011) (The Supplementary Information contains more details
on this).

Both contributions of this paper have wider applicability. In our
GPU implementation, we show how data sharing and many accesses
to global memory can be tackled. In Monte Carlo based analysis,
one must stochastically generate trajectories and check whether they
pass a statistical test. This will however entail storing a good deal
of information generated by the individual trajectories and multiple
passes through this information in cases where the statistical test is
based on a temporal property (Donaldson and Gilbert, 2008; Fages
and Rizk, 2007). In these settings our mapping techniques will lead
to powerful GPU implementations. We plan to demonstrate this in
our future work.

The model checking procedure we propose can be applied in
other setting where DBNs arise as dynamic models (Sun and Hong,
2007). Further the generic idea of restricting probabilities to just
propositions is promising. This will enable classical model checking
procedures to be combined with algorithms such as FF and HFF.

An interesting challenge will be to develop GPU based imple-
mentation for tasks such as parameter estimation and sensitivity
analysis that are computationally demanding but appear to offer
opportunities for a parallel implementation. In this context, the sum-
of-product algorithm implementation presented in Silberstein et al.
(2008) promises to offer helpful pointers.
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