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Abstract

In this paper we present a comparison among some nonhierarchical and hierarchical clustering algorithms including
SOM (Self-Organization Map) neural network and Fuzzy c-means methods. Data were simulated considering corre-
lated and uncorrelated variables, nonoverlapping and overlapping clusters with and without outliers. A total of 2530
data sets were simulated. The results showed that Fuzzy c-means had a very good performance in all cases being very
stable even in the presence of outliers and overlapping. All other clustering algorithms were very affected by the amount
of overlapping and outliers. SOM neural network did not perform well in almost all cases being very affected by the
number of variables and clusters. The traditional hierarchical clustering and K-means methods presented similar
performance.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Cluster analysis have been used in a variety of
fields. Some examples appear in data mining where
the organization of larger data sets makes the sta-
tistical analysis easier and more efficient; in the
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identification of different consumer�s profiles in
marketing surveys, in helping the researchers to
build up the strata in stratified sampling or even
in the identification of the variables that are more
important to describe a phenomenon. However, it
is well known that the accuracy of the final parti-
tion depends upon the method used to cluster the
objects. Because of that, studies have been con-
ducted to evaluate the performance of the cluster-
ing algorithms (Milligan and Cooper, 1980;
Gower, 1967). Most of them are related to the
ed.
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classical hierarchical techniques (Gordon, 1987)
and the nonhierarchical K-means method (Everitt,
2001). Very few papers examine the performance
of the Fuzzy c-means (Bezdek et al., 1999) and
the artificial neural networks methods for cluster-
ing (Kohonen, 1995; Kiang, 2001). Usually, the
comparison of the algorithms involves a simula-
tion of several multidimensional structures, with
nonoverlapping and overlapping clusters. The
clustering algorithms are then used to cluster
the data and the final partition is compared with
the true simulated structure. Criteria as the per-
centage of observations that are correctly classified
and internal dispersion of the groups in the parti-
tion are in general used to access the accuracy of
the clustering algorithm. In general the population
structure is simulated from a multivariate normal
distribution although the application of clustering
methodology does not require the assumption of
normality (Johnson and Wichern, 2002).

Milligan and Cooper (1980) presented an algo-
rithm to simulate multidimensional clusters parti-
tions and a comparison among some hierarchical
clustering procedures. The data were simulated
according to a three-factor design: the first factor
controls the number of clusters k = 2, 3, 4, 5; the
second the number of variables p = 4, 6, 8 and
the third the pattern for the distribution of points
to the clusters. Three patterns were considered:
uniform distribution of points among all clusters,
10% of the observations concentrated in only one
cluster of the partition and 60% of the observa-
tions in only one cluster of the partition. The algo-
rithm used to generate the data was also discussed
in Milligan (1985). Clusters were simulated in such
way that overlap of cluster boundaries was not
permitted in the first dimension of the variable
space but permitted in the other (p � 1) dimen-
sions. The degree of overlapping was related to
the clusters variances. All p variables were consid-
ered independent (spherical clusters) and simu-
lated according to a normal distribution. A total
of 108 error free data sets were generated, 3 for
each of the 36 cells of the three-factor design. Each
data set contained a total of 50 points. Clusters
were also simulated with the following error per-
turbation: (i) inclusion of outliers, (ii) inclusion
of random error in the distance matrix, (iii) addi-
tion of irrelevant variables, (iv) computation of
distances with a noneuclidean index, (v) standard-
ization of the variables. A total of 15 algorithms
were evaluated, 14 hierarchical and the K-means
method. In general the paper showed that the K-
means method had a good performance especially
when the initial seeds were generated from one of
the hierarchical methods. In the situation of error
free data all the clustering algorithms had good
performance (average recovery rate over 90%).
However, when the data were perturbed the algo-
rithms were influenced differently according to the
type of perturbation. The Ward and Complete
linkage methods were very affected by the inclu-
sion of outliers but the single and the average link-
ages, the centroid and K-means methods were very
robust against this type of error. The single linkage
was very affected by the inclusion of random error
in the distance matrix. All methods were affected
by the inclusion of irrelevant variables. Standardi-
zation and the use of a noneuclidean distance in-
dex had very few perturbation in all the methods
(average recovery rate over 90%). In Balakrishnan
et al. (1994) SOM neural network (Kohonen,
1989) was compared to the nonhierarchical K-
means method by using a design and a simulation
procedure similar to Milligan�s (1980, 1985). The
data were simulated according to a normal distri-
bution with no correlation among the variables
and considering 3 factors: numbers of clusters
k = 2, 3, 4, 5, number of variables p = 4, 6, 8 and
perturbance in the distance matrix (error struc-
ture) measured in 3 levels: free, low and high. A to-
tal of 108 data sets were generated in the
simulation process. It was shown that in general
SOM did not have a good performance. Consider-
ing the error factor the best and the worst perfor-
mance were observed for the error free structure
(89.34%) and for the high error structure
(86.44%) respectively. For the number of clusters
the best average recovery rate was observed for
k = 2 (97.04%) and the worst for k = 5 (74.82%).
For the number of variables the best result was
for p = 8 (88.78%) and the worst for p = 6
(86.22%). The overall average recovery rate was
98.77% for K-means and 87.79% for SOM. Con-
sidering the 3 factors (error, number of clusters
and number of variables) the average recovery rate
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ranged from 100% to 96.22% for K-means and
from 97.04% to 74.82% for SOM. Another similar
study was conducted by Balakrishnan et al. (1996)
comparing the K-means algorithm with the Fre-
quency-Sensitive Competitive Learning (FSCL)
neural net (Krishnamurthy et al., 1990). The K-
means performed better in all simulated situations
with overall recovery rate equals to 98.67% against
90.81% for FSCL. The FSCL was affected by the
increased in the number of clusters (recovery rate
drop from 95.04 for k = 2 to 84.74 to k = 5 clus-
ters), by the number of variables (recovery rate
of 87.17% for p = 2 variables and 93.72% for
p = 4) and by the error structure (recovery rate
of 92.72% for error free to 86.22% for high error
structure). In Mangiameli et al. (1996) agglomera-
tive hierarchical clustering procedures were also
compared with SOM artificial network. Seven
clustering algorithms were compared including
the single, complete, average, centroid and Ward
methods. Data were generated according to Millli-
gan�s algorithm (1980, 1985) considering k =
2, 3, 4, 5 clusters, p = 4, 6, 8 variables, and three
different intracluster dispersion degrees called
high, medium and low. The choice of the disper-
sion degree determines the rate of cluster overlap.
The addition of irrelevant variables and outliers
were also investigated. The normal distribution
with zero correlation was used to generate the
observations for each cluster in the population.
A total of 252 data sets were generated, each clus-
ter with 50 observations. For low intracluster de-
gree of dispersion the analysis presented in
Mangiameli et al. (1996) showed that all the algo-
rithms had a good average recovery rate (over
90%) except for the single linkage (76.9%). For
medium degree of dispersion SOM still had a good
average recovery rate (98%) but all the others
methods decreased in accuracy. The Ward was
the best among the classical with a recovery aver-
age rate of 86.2%. The majority of the other algo-
rithms had the average recovery rate dropped
down to less than 45%. For high intracluster dis-
persion degree the overall percentage average of
correct classification of SOM was 82.5% higher
than the Ward�s method (50.4%) which was the
best among the hierarchical procedures. Single
linkage as well the centroid and average linkages
performed very bad in high and medium intraclass
clusters dispersion. When outliers and irrelevant
variables were added to the data, SOM average
recovery rate decreased to about 80% and it was
similar to Ward�s method. The others hierarchical
methods were very affected most of them, present-
ing average recovery rates under 40% when outli-
ers were included in the data. In general the
results showed that the average recovery rate de-
creases as the number of clusters and the degree
of intracluster dispersion increase. No results were
shown in the paper about the effect of the number
of variables in the accuracy of clustering algo-
rithm. In Schreer et al. (1998) a comparison of
K-means with Fuzzy c-means, SOM and ART arti-
ficial neural networks was presented using artificial
and real data. The study involved three types of
situation. In the first, the data were generated
according to a three-factor design: the number of
clusters k = 2, 3, 4, 5, the number of variables
p = 4, 6, 8, 10, and three degrees of overlapping
called high, medium and low. For each cluster
the variables were independent and simulated
according to a normal distribution. Each data set
had 100 observations and equal number of points
per cluster. A total of 144 data sets were generated,
3 per level of the design. The second type of data
consisted of k = 5 shapes, described by p = 10
depths, commonly observed as dive profiles for
the species treated in Schreer et al. (1998). Accord-
ing to the authors the data were generated from a
multivariate normal distribution with autocorre-
lated depths similar to those observed from real
data. Three data sets with 1000 observations each,
were generated. The pattern of the distribution of
points per cluster was: 37%, 20%, 13%, 13% and
17%. The authors were not very specific about
the algorithm used to generate the artificial data.
The third type of data consisted of subsamples
from a real diving data from Adélie penguins,
southern elephant seals and Weddell seals. Three
data sets, each containing a subsample of 3000
dives, were taken from the diving data recorded
for each of the different species. For the artificial
data of the first type the results indicated that
SOM network had good performance equiva-
lent to K-means and Fuzzy c-means methods
(average recovery rate over 90%). The Fuzzy Art
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(Carpenter et al., 1991) did not performed well
(recovery rate between 80% and 90%). In general,
for all methods, the average recovery rate de-
creased as the number of clusters and the degree
of overlapping increased. However, the results
were still good for high degree of intracluster dis-
persion (average recovery rate over 90%) except
for Fuzzy Art. The average recovery rate increased
as the number of variables increased. For the sec-
ond type of artificial data the results were very sim-
ilar to those obtained for data of first type. For the
real data the methods had similar performance but
with more dispersion than the artificial data. The
K-means method created clusters more logical
when compared to the actual dive profiles and it
was considered by the authors as ‘‘the most
suited for grouping multivariate diving data’’.
The SOM and Fuzzy c-means performed similar
as K-means but had poorer boundaries separating
the clusters because the observations were classi-
fied in such way that some clusters were very close
together.

All papers presented very interesting results.
However, (i) none of them compared the hierarchi-
cal with the nonhierarchical algorithms simulta-
neously; (ii) the number of data sets for each cell
in the three-factor design was small: only three
replicates for each population structure (cell); (iii)
the number of objects in each simulated data set
was small: only 50 points in Milligan and Cooper
(1980) and Balakrishnan et al. (1994), 100 points
in Schreer et al. (1998) and from 100 to 250 in
Mangiameli et al. (1996); (iv) the simulated vari-
ables were independent (spherical clusters) and
the only paper that simulated correlated variables,
did it for a very specific situation (Schreer et al.,
1998).

In this article we will extend the results com-
paring the traditional hierarchical clustering pro-
cedures with the nonhierarchical K-means, Fuzzy
c-means and SOM artificial neural networks. The
simulation involved many different clusters struc-
tures (spherical and nonspherical clusters with
and without overlapping and outliers), data sets
with a larger number of points (500 each) and lar-
ger number of variables and clusters. It goes much
beyond the studies previously published. It will be
shown that in general Fuzzy c-means and K-means
methods have a good performance and SOM did
not performed very well. In some extent our study
agrees with the results obtained by Milligan and
Cooper�s (1980) and Balakrishnan et al. (1994) as
far as the neural network SOM is concerned.
2. Clustering methods: A brief explanation

2.1. The agglomerative hierarchical clustering

The agglomerative hierarchical algorithms are
largely used as an explanatory statistical technique
to determine the number of clusters of data sets
(Anderberg, 1972). They basically work in the fol-
lowing way: in the first stage each of the n objects
to be clustered is considered as a unique cluster.
The objects are then, compared among themselves
by using a measure of distance such as Euclidean,
for example. The two clusters with smaller distance
are joined. The same procedure is repeated over
and over again until the desirable number of clus-
ters is achieved. Only two clusters can be joined in
each stage and they cannot be separated after they
are joined. A linkage method is used to compare
the clusters in each stage and to decide which of
them should be combined. Some very common
procedures are: Single, Complete and Average
linkages, which can be used for quantitative or
qualitative variables, Centroid and Ward�s meth-
ods which are appropriate only for quantitative
variables (Johnson and Wichern, 2002). A graphi-
cal called dendogram is available showing the clus-
tering results of each stage.
2.2. The nonhierarchical clustering

Contrary to the hierarchical procedures, to per-
form the nonhierarchical clustering algorithm, the
desired number of clusters k has to be pre-defined.
The purpose then is to cluster the n objects into k

clusters in such way that the members of the same
cluster are similar in the p characteristics used to
cluster the data and the members of different clus-
ters are heterogeneous. Next we will present the
three nonhierarchical procedures which will be dis-
cussed in this paper.
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Fig. 1. Illustration of fuzzy clustering.
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2.2.1. K-means

The K-means clustering (Johnson and Wichern,
2002) method is probably the most well known.
The algorithm starts with k initial seeds of cluster-
ing, one for each cluster. All the n objects are then
compared with each seed by means of the Euclid-
ean distance and assigned to the closest cluster
seed. The procedure is then repeated over and over
again. In each stage the seed of each cluster is
recalculated by using the average vector of the ob-
jects assigned to the cluster. The algorithm stops
when the changes in the cluster seeds from one
stage to the next are close to zero or smaller than
a pre-specified value. Every object is assigned to
only one cluster.

The accuracy of the K-means procedure is very
dependent upon the choice of the initial seeds
(Milligan and Cooper, 1980). To obtain better per-
formance the initial seeds should be very different
among themselves. One efficient strategy to im-
prove the K-means performance is to use, for
example, the Ward�s procedure first to divide the
n objects into k groups and then use the average
vector of each of the k groups as the initial seeds
to start the K-means. As all the agglomerative clus-
tering procedures, this method is available in a
majority of statistical software.

2.2.2. Fuzzy c-means
As the K-means algorithm the desired number

of clusters c has to be pre-defined and c initial
seeds of clustering are required to perform the
Fuzzy c-means (Bezdek, 1981; Roubens, 1982).
The seeds are modified in each stage of the algo-
rithm and for each object a degree of membership
to each of the c clusters is estimated. A metric is
also used to compare every object to the cluster
seed but the comparison is made using a weighted
average that takes into account the degree of mem-
bership of the object to each cluster. In the end of
the algorithm, a list of the estimated degree of
membership of the object to each of the c clusters
is printed. The object can be assigned to the cluster
for which the degree of membership is higher.
Contrary to the K-means method the Fuzzy c-
means is more flexible because it shows those
objects that have some interface with more than
one cluster in the partition as can be seen in the
illustration of Fig. 1. These objects usually deserve
further investigation in order to find out the rea-
sons that contributed for them to be in the inter-
face. Mathematically speaking, Fuzzy c-means
minimizes the objective function defined as

J ¼
Xn

i¼1

Xc

l¼1

ðwilÞkd2
il

restricted to the condition
Pc

l¼1wil ¼ 1; i ¼ 1;
2; . . . ; n, where wil is the degree of membership of
object i to the cluster l, k > 1 is the fuzzy exponent
that determines the degree of fuzziness of the final
partition, or in other words the degree of overlap
between groups, d2

il is the squared distance be-
tween the vector of observations of object i to
the vector representing the centroid (prototype)
of cluster l and n is the number of sample observa-
tions. The solution with highest degree of fuzziness
is related to k approaching to infinity. Some addi-
tional references in Fuzzy c-means are Hathaway
and Bezdek (2002), Bezdek et al. (1999), Susanto
et al. (1999) and Zhang and Chen (2003) among
others.

2.2.3. Artificial neural network SOM (Kohonen)

The first model in artificial neural netwroks
(ANN) dated from the 1940s (McCulloch and
Pitts, 1943) which was explored by Hebb (1949)
who proposed a model based on the adjustment
of weights in inputs neurons. Rosenblatt (1958)
introduced the Perceptron model. But only in the
1980s the ANN started been more used. In cluster-
ing problems, the ANN clusters observations in
two main stages. In the first the learning rule is
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used to train the network for a specific data set.
This is called a training or learning stage. In the
second the observations are classified, which is
called a recall stage. Briefly speaking the ANN
work into layers. The input layer contains the
nodes through which data are input. The output
layer generated the output interpreted by the user.
Between these two layers there can be more layers
called hidden layers. The output of each layer is an
input of the next layer until the signal reaches the
output layers as shown in Fig. 2. One of the more
important ANN is the Self-Organization Map
(SOM) proposed by Kohonen. In this network
there is an input layer and the Kohonen layer
which is usually designed as two-dimensional
arrangement of neurons that maps n-dimensional
input to two dimensional. It is basically a compet-
itive network with the characteristic of self-organi-
zation providing a topology-preserving mapping
from the input space to the clusters (Kohonen,
1989, 1995; Gallant, 1993). Mathematically speak-
ing, let x = (x1x2 . . . xp) 0 be the input vector (train-
ing case), wl = (wl1wl2 . . . wlp) 0 the weight vector
associated with the node l where wlj indicates the
weight assigned to input xj to the node l, where k

is the number of nodes (cluster seeds) and p is
the number of variables. Each object of the train-
ing data set is presented to the network in some
random order. Kohonen�s learning law is an online
algorithm that finds the node closest to each train-
ing case and moves that ‘‘winning’’ node closer to
Input Layer

 HiddenLayer

Output Layer

# of nodes (variables)

# of nodes (clusters)

Fig. 2. Illustration of a neural network for clustering.
the training case. The node is moved some propor-
tion of the distance between it and the training
case. The proportion is specified by the learning
rate. For each object i in the training data set,
the distance di between the weight vector and the
input signal is computed. Then the competition
starts and the node with the smallest di is the win-
ner. The weights of the winner node are then up-
dated using some learning rule. The weights of
the nonwinner nodes are not changed. Usually,
the Euclidean distance is used to compare each
node with each object although any other metric
could be chosen. The Euclidean distance between
an object with observed vector x = (x1x2 . . . xp) 0

and the weight vector wl = (wl1wl2 . . . wlp) 0 is given
by

dðx;wlÞ ¼
Xp

j¼1

ðxj � wljÞ2
" #1

2

.

Let ws
l be the weight vector for the lth node on the

sth step of the algorithm, Xi be the input vector for
the ith training case, and as be the learning rate for
the sth step. On each step, a training case Xi is se-
lected, and the index q of the winning node (clus-
ter) is determined by

q ¼ arg min
l
kws

l � X ik.

The Kohonen update rule for the winner node
is given by

wsþ1
q ¼ ws

qð1� asÞ þ X ia
s ¼ ws

q þ asðX i � ws
qÞ. ð1Þ

For all nonwinning nodes, wsþ1
l ¼ ws

l. Several oth-
ers algorithms have been developed in the neural
net and machine learning literature. Neural net-
works which update the weights of the winner
node and the weights of nodes in a pre-specified
neighborhood of the winner are also possible.
See Hecht-Nielsen (1990) and Kosko (1992) for a
historical and technical overview of competitive
learning.
3. Monte Carlo simulation

In this study several populations were generated
with number of clusters k = 2, 3, 4, 5, 10, with
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equal sizes and number of random variables p =
2, 4, 6, 8, 10, 20. The total number of observations
for each population was set as n = 500 and the
number of observations generated for each cluster
was equals to n/k. Each cluster had its own
mean vector li and covariance matrix Ri

pxp, i =
1, 2, . . ., k. Different degrees of correlation among
the p variables were investigated. The normal mul-
tivariate distribution was used to generate the
observations for each cluster. First, the clusters
were simulated very far apart. Next, many degrees
of overlapping among clusters were introduced.
Contamination of the original data by the inclu-
sion of outliers was also conducted to analyse
the robustness of the clustering algorithms. Clus-
ters were generated according to the procedure
proposed by Milligan and Cooper (1980). A total
of 1000 samples were selected from each simulated
population.

The elements of each sample were clustered into
k groups by using all eight clustering procedures
presented Section 2. The resulted partition was
then compared with the true population. The per-
formance of the algorithm was evaluated by the
average percentage of correct classification (recov-
ery rate) and the internal cluster dispersion rate of
the final partition defined as

icdrate ¼ 1� SSB

SST
¼ 1� R2; ð2Þ

where R2 = (SSB/SST); SSB ¼
Pk

j¼1d2
j0; SST ¼Pn

l¼1d2
l , dj0 is the Euclidean distance between the

jth cluster center vector and the overall sample
mean vector, dl is the Euclidean distance between
the lth observation vector and the overall sample
mean vector, k is the number of clusters, n is the
number of observed vectors. The SSB and SST
are called respectively, the total sum of squares
between clusters and the total sum of squares of
the partition (Everitt, 2001). The smaller the value
the icdrate the smaller is the intraclass clusters
dispersion.

In all clustering algorithms discussed in this pa-
per the Euclidean distance was used to measure
similarity among clusters. In the next section the
simulation procedure as well the generated popula-
tions will be described with details.
3.1. The algorithm to simulate clusters

The population structure of clusters were simu-
lated to possess features of internal cohesion and
external isolation. The algorithm proposed by Mil-
ligan and Cooper (1980) was used to generate clus-
ters far apart and the same algorithm with
modifications was used to generate clusters with
overlapping. The basic steps involved in the simu-
lation are described next.

3.1.1. Simulating the boundaries for nonoverlapping

clusters
For each cluster, boundaries were determined

for each variable. To be part of a specific cluster,
the sampled observations had to fall into these
boundaries. For the first cluster the standard devi-
ation for the first variable was generated from a
uniform distribution in the interval (10; 40). The
range of the cluster in the specific variable is then
defined as three times the standard deviation and
the average is the midpoint of the range. There-
fore, the boundaries were 1.5 standard deviation
away from the cluster mean in each variable. The
boundaries for the other clusters in the specific
variable were chosen by a similar procedure with
a random degree of separation Qi = f(si + sj)
among them where f is a value of an uniform dis-
tribution in the interval (0.25, 0.75) and si, sj, i 5 j
are the standard deviations of the clusters i and j,
i, j = 1, 2 . . . , k � 1. For the remaining variables
the boundaries were determined by the same pro-
cedure with the maximum range being limited by
three times the range of the first variable. The
ordering of the clusters was chosen randomly.
See Fig. 3 for a general illustration.

3.1.2. Simulating the boundaries for overlapping

clusters

To generate the boundaries for overlapping
clusters, Milligan and Cooper�s (1980) procedure
was used with the following modification: for a
specific dimension let LIi and LIj be the lower lim-
its of clusters i and j, respectively, i 5 j, where

LIj ¼ ð1� mÞrangei þ LIi; ð3Þ
m being the quantity specifying the intersection be-
tween clusters i, j and rangei the range of cluster i,
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Fig. 3. Nonoverlapping clusters population.
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0 < m < 1. Let the length of the interval of the
intersection be defined as

Ri ¼ m rangei; i ¼ 1; 2; . . . ; ðk � 1Þ. ð4Þ

First 40% (i.e. m = 0.40) of the observations were
generated in the intersection region between any
two clusters. Next this amount was increased to
60% (i.e. m = 0.60). In Fig. 4 a general illustration
is presented for the case where there are k = 3
clusters with overlapping between clusters 3 and
2 (area denoted by R1) and clusters 2 and 1 (area
denoted by R2). To assure that all the clusters
had m% observations in the respective region of
overlapping the following procedure was used:
first the clusters were generated with boundaries
according to (3). Next random observations were
generated from a Uniform distribution with sup-
port defined in the overlapping region as defined
in (4) for the pre-specified value of m. Finally,
the clusters overlapping regions were identified
and the observations in the region were randomly
substituted by those generated from the Uniform
distribution, half of the observations for each clus-
Cluster 3 Cluster 2

R1

LI3 LS3LI2

Fig. 4. Overlapping clu
ter, in such way that in the end of the procedure
there was m% observations in the intersection area
between clusters.

3.1.3. Data generation

In both, nonoverlapping and overlapping cases,
the observations for each cluster were generated
from a multivariate normal distribution with the
mean vector equals to the vector containing the
midpoints of the boundaries length for each of
the p variables. Population compose by clusters
with the same and different shapes were simulated.
For each cluster the diagonal elements of the
covariance matrix are the square of the standard
deviation obtained in the simulation algorithm
described in Sections 3.1.1 and 3.1.2. The off
diagonal elements are selected according to the fol-
lowing structures: S0: all clusters have a correla-
tion matrix equals to the identity (uncorrelated
case); S1: all clusters have the same correlation
matrix and the correlation between any two vari-
ables are the same. The correlation coefficients
q = Corr(Xi, Xj), i 5 j, were generated from a
Cluster 1

R2

LS2 LS1LI1

sters population.
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uniform distribution in the intervals (0.25, 0.5),
(0.5, 0.75) and (0.75, 1) which characterize small,
medium and high correlation structures; S2: all
clusters have the same correlation matrix but the
correlation between any two variables is not neces-
sarily the same. The values of the correlation coef-
ficients qij were generated according to the uniform
distribution as described in case S1; S3: all clusters
have different correlation matrices and for any
cluster the correlation coefficients are generated
from a uniform distribution as in case S1; S4: clus-
ters have different correlation matrices in such way
that half of the clusters in the population have cor-
relation coefficients generated from an uniform
distribution in the interval (0.25; 0.5) and the other
half from an uniform in the interval (0.75, 1); S5:
clusters have different correlation matrices in such
way that one-third of the clusters in the population
have correlation coefficients generated from an
uniform distribution in the interval (0.25; 0.5),
one-third from an uniform in the interval
(0.5, 0.75) and one-third from an uniform distribu-
tion in the interval (0.75; 1); S6: all clusters have
different correlation matrices and the correlation
coefficients were generated from an uniform distri-
bution in the (0, 1) interval.

Data were generated with and without outliers.
Three percentage of contamination of the original
data were considered: 10%, 20% and 40%. For the
study of the effect of outliers only data sets with
nonoverlapping clusters were generated. A total
of 2530 data sets were simulated for the complete
study presented in this paper.

3.1.4. Fuzzy c-means and SOM implementation

Fuzzy c-means was implemented using a degree
of fuzziness k = 2. SOM network was imple-
mented by using SAS�s statistical software (1999).
Incremental training was used. The learning rate
was initialized as 0.5 and was linearly reduced to
0.02 during the first 1000 training steps. The max-
imum number of steps was set to 500 times the
number of clusters. A step is the processing that
is performed on a single case. The maximum num-
ber of iterations was set to 100. An iteration is the
processing that is performed on the entire data set.
The convergence criterion was set to 0.0001. Train-
ing stops when any one of the termination criteria
(maximum number of steps, maximum number of
iterations, or convergence criterion) is satisfied.
The updating Kohonen rule given in (1) was imple-
mented using as a learning rate 1

m�, where m* is the
number of cases that have been assigned to the
winning cluster. Let us suppose that when process-
ing a given training case, Nn cases have been previ-
ously assigned to the winning seed. In this case the
updating Kohonen rule is given by

wsþ1
q ¼ ws

q

Nn

Nn þ 1
þ X i

1

Nn þ 1
. ð5Þ

This reduction of the learning rate guarantees con-
vergence of the algorithm to an optimum value of
the error function, i.e., the sum of squared Euclid-
ean distances between cases and seeds, as the num-
ber of training cases goes to infinity. For each
generated population the network was trained by
using 40% randomly selected observations from
the original data set.
4. Results and discussion

To simplify the presentation of the results the
structures S0–S6 were grouped into four catego-
ries: data simulated with independent variables
(Case 0), data simulated with medium (Case 1)
and high (Case 2) correlation between variables,
and finally data simulated with correlated vari-
ables with the correlation coefficient chosen ran-
domly from the uniform in the (0, 1) interval
(Case 3). Table 1 presents the average results of
the correct classification rate considering all the
cluster correlation structures evaluated for clusters
with nonoverlapping. It can be seen that all the
clustering procedures performed very well for all
values of p and k, (the majority of average recov-
ery rates were higher or equal to 99%), except
for SOM network which had lower recovery rates
(some are lower than 80%) being affected by the
amount of variables and clusters. The best results
were for p = 4 (94.99% recovery rate) and for
k = 2 (99.9% recovery rate). The worst results
were 74.98% for p = 20 and 76.43 for k = 10. Basi-
cally the addition of correlation structures did not
affected the performance of the algorithms. Table
2 shows the overall average of recovery rate and



Table 1
Average rate of correct classification per number of variables and clusters (nonoverlapping clusters)

Clustering method Number of variables p Overall
mean

Number of clusters k

2 4 6 8 10 20 2 3 4 5 10

Case 0

Single 99.58 99.98 100.00 100.00 100.00 100.00 99.92 99.96 99.92 99.96 99.90 99.88
Complete 98.09 99.37 100.00 100.00 100.00 100.00 99.58 98.96 99.72 99.96 99.90 99.33
Centroid 99.29 99.98 100.00 100.00 100.00 100.00 99.88 99.88 99.86 99.97 99.83 99.85
Average 99.33 99.99 100.00 100.00 100.00 100.00 99.89 99.88 99.86 99.96 99.83 99.88
Ward 99.42 99.99 100.00 100.00 100.00 100.00 99.90 99.92 99.86 99.97 99.83 99.93
K-means 92.21 99.78 100.00 100.00 100.00 100.00 98.66 99.83 96.56 98.33 99.11 99.48
Fuzzy 99.47 99.98 100.00 100.00 100.00 100.00 99.91 99.87 99.86 99.93 99.93 99.95
SOM 88.55 94.99 86.76 77.12 79.03 74.98 83.57 99.90 86.03 78.78 76.71 76.43

Mean 96.99 99.26 98.34 97.14 97.38 96.87 97.66 99.78 97.71 97.11 96.88 96.84

Case 1

Single 98.99 99.96 99.96 99.97 99.96 99.96 99.80 99.81 99.81 99.80 99.79 99.79
Complete 98.04 99.90 99.97 99.95 99.93 99.93 99.62 99.38 99.70 99.85 99.74 99.45
Centroid 98.90 99.97 99.97 99.95 99.94 99.95 99.78 99.78 99.76 99.83 99.76 99.77
Average 99.08 99.94 99.96 99.96 99.93 99.94 99.80 99.79 99.78 99.86 99.78 99.80
Ward 98.89 99.97 99.97 99.95 99.93 99.94 99.78 99.78 99.75 99.86 99.73 99.76
K-means 91.91 99.67 99.97 99.96 99.94 99.94 98.57 99.79 96.45 98.20 99.02 99.38
Fuzzy 99.30 99.96 99.97 99.97 99.97 99.96 99.86 99.83 99.82 99.89 99.87 99.89
SOM 88.28 88.64 86.83 76.98 78.81 74.48 82.34 99.82 84.82 77.47 74.97 74.60

Mean 96.67 98.50 98.33 97.09 97.30 96.76 97.44 99.75 97.48 96.84 96.58 96.55

Case 2

Single 98.63 99.85 99.92 99.95 99.94 99.94 99.71 99.71 99.71 99.70 99.69 99.71
Complete 97.51 99.83 99.93 99.93 99.91 99.91 99.50 99.33 99.62 99.63 99.59 99.35
Centroid 98.63 99.90 99.94 99.93 99.92 99.93 99.71 99.71 99.70 99.75 99.69 99.68
Average 98.82 99.87 99.93 99.95 99.92 99.93 99.73 99.73 99.72 99.82 99.72 99.69
Ward 98.52 99.89 99.94 99.93 99.91 99.92 99.69 99.70 99.67 99.73 99.65 99.67
K-means 91.55 99.62 99.94 99.94 99.92 99.93 98.48 99.69 96.37 98.15 98.92 99.29
Fuzzy 98.75 99.91 99.95 99.96 99.96 99.95 99.75 99.73 99.74 99.77 99.72 99.78
SOM 87.64 85.45 86.26 76.87 78.64 74.10 81.49 99.64 83.77 76.60 74.15 73.32

Mean 96.26 98.04 98.23 97.06 97.27 96.70 97.26 99.65 97.29 96.64 96.39 96.31

Case 3

Single 98.62 99.87 99.85 99.89 99.88 99.88 99.67 99.75 99.75 99.71 99.57 99.56
Complete 97.43 99.74 99.86 99.86 99.85 99.84 99.43 99.20 99.54 99.61 99.62 99.18
Centroid 98.17 99.88 99.86 99.88 99.85 99.88 99.59 99.61 99.59 99.62 99.57 99.55
Average 98.23 99.86 99.86 99.89 99.88 99.87 99.60 99.61 99.58 99.65 99.59 99.56
Ward 98.19 99.88 99.88 99.87 99.86 99.87 99.59 99.62 99.57 99.62 99.57 99.57
K-means 90.75 99.51 99.87 99.89 99.86 99.88 98.29 99.57 96.08 97.87 98.76 99.18
Fuzzy 98.33 99.93 99.91 99.93 99.91 99.91 99.65 99.65 99.65 99.63 99.63 99.71
SOM 85.57 81.42 86.14 76.25 78.28 73.51 80.19 99.36 82.21 74.77 72.52 72.11

Mean 95.66 97.51 98.15 96.93 97.17 96.58 97.00 99.54 97.00 96.31 96.10 96.05
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the overall average of internal dispersion for all
clustering algorithms. SOM is the method with
the highest average dispersion rate (0.1334) and
the lowest overall average recovery rate (81.39%).
Fuzzy c-means presented the smallest average dis-
persion rate (0.0387) and the highest average



Table 2
Average results for correct classification and internal cluster dispersion rates (nonoverlapping clusters)

Clustering method Number of variables p Overall mean Number of clusters k

2 4 6 8 10 20 2 3 4 5 10

Correct classification (%)

Single 98.82 99.90 99.93 99.95 99.94 99.94 99.75 99.77 99.76 99.75 99.72 99.74
Complete 97.74 99.81 99.94 99.93 99.91 99.91 99.54 99.30 99.64 99.73 99.68 99.35
Centroid 98.73 99.93 99.94 99.93 99.92 99.93 99.73 99.74 99.72 99.79 99.71 99.70
Average 98.83 99.90 99.93 99.95 99.93 99.93 99.75 99.75 99.73 99.81 99.73 99.71
Ward 98.70 95.36 99.95 99.94 99.92 99.93 98.96 99.74 98.43 99.80 98.42 98.44
K-means 91.59 99.64 99.95 99.94 99.92 99.93 98.50 99.72 96.36 98.14 98.94 99.31
Fuzzy 98.95 99.94 99.96 99.96 99.96 99.95 99.79 99.77 99.77 99.80 99.77 99.83
SOM 87.66 84.50 86.45 76.83 78.67 74.21 81.39 98.32 83.97 76.64 74.26 73.75

Mean 96.38 97.37 98.26 97.05 97.27 96.72 97.17 99.52 97.17 96.68 96.28 96.23

Internal dispersion rate

Single 0.0310 0.0560 0.0544 0.0584 0.0483 0.0468 0.0492 0.0821 0.0650 0.0481 0.0316 0.0189
Complete 0.0281 0.0572 0.0593 0.0621 0.0594 0.0509 0.0529 0.0871 0.0729 0.0529 0.0340 0.0174
Centroid 0.0291 0.0573 0.0546 0.0591 0.0512 0.0468 0.0497 0.0830 0.0688 0.0475 0.0313 0.0179
Average 0.0281 0.0513 0.0558 0.0570 0.0493 0.0455 0.0478 0.0802 0.0632 0.0463 0.0323 0.0172
Ward 0.0271 0.0535 0.0545 0.0579 0.0478 0.0478 0.0481 0.0818 0.0630 0.0484 0.0313 0.0160
K-means 0.0362 0.0545 0.0577 0.0608 0.0485 0.0476 0.0509 0.0808 0.0661 0.0495 0.0382 0.0198
Fuzzy 0.0046 0.0458 0.0502 0.0499 0.0399 0.0387 0.0382 0.0677 0.0529 0.0367 0.0260 0.0077
SOM 0.0621 0.1363 0.1855 0.1261 0.1893 0.1014 0.1334 0.1238 0.1218 0.1270 0.1472 0.1475

Mean 0.0308 0.0640 0.0715 0.0664 0.0667 0.0532 0.0588 0.0858 0.0717 0.0570 0.0465 0.0328
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recovery rate (99.79%). The other methods had
similar results with average recovery rates over
99% and average dispersion rate around 0.05.
Tables 3 and 4 present the results for overlapping
Table 3
Average correct classification rate by number of variables and cluster

Clustering method Number of variables p

2 4 6 8 10

Case 0

Single 85.43 82.83 81.70 81.23 79.23
Complete 83.63 82.47 81.01 80.74 79.24
Centroid 84.49 83.47 81.36 80.79 79.27
Average 84.53 83.54 82.17 81.78 80.07
Ward 83.87 82.03 80.48 80.00 78.61
K-means 84.70 83.87 82.20 81.94 80.03
Fuzzy 91.38 91.03 90.92 90.78 90.67
SOM 78.80 76.93 74.40 74.03 72.79

Mean 84.60 83.27 81.78 81.41 79.99

Case 1

Single 81.99 82.52 81.52 81.11 79.02
Complete 81.05 82.05 80.85 80.59 79.07
Centroid 82.02 82.99 81.24 80.59 79.10
Average 81.66 83.17 82.02 81.54 79.87
Ward 80.96 81.48 80.33 79.76 78.44
K-means 80.45 83.47 82.03 81.79 79.90
Fuzzy 90.71 90.84 90.92 90.78 90.66
SOM 76.37 76.08 74.26 73.82 72.61

Mean 81.90 82.83 81.64 81.25 79.84

Case 2

Single 77.83 82.31 81.40 81.00 78.92
Complete 79.31 81.79 80.75 80.47 78.99
Centroid 78.95 82.78 81.15 80.48 79.01
Average 79.70 82.95 81.91 81.50 79.75
Ward 79.35 81.26 80.16 79.61 78.37
K-means 77.50 83.25 81.93 81.68 79.79
Fuzzy 89.65 90.71 90.91 90.77 90.66
SOM 74.08 75.38 74.16 73.70 72.52

Mean 79.55 82.55 81.55 81.15 79.75

Case 3

Single 75.51 81.95 81.41 80.82 78.75
Complete 75.96 81.52 80.57 80.28 78.83
Centroid 75.17 82.50 81.03 80.30 78.85
Average 75.60 82.61 81.74 81.27 79.61
Ward 75.98 81.12 79.88 79.42 78.18
K-means 74.48 82.93 81.78 81.54 79.65
Fuzzy 88.47 90.44 90.85 90.75 90.64
SOM 72.45 74.64 74.02 73.50 72.35

Mean 76.70 82.21 81.41 80.99 79.61
clusters. The performance decreased substantially
for all the algorithms except for Fuzzy c-means
which still presented an average recovery rate over
or close to 90% for 40% degree of overlapping, and
s (clusters with 40% overlapping)

Overall
mean

Number of clusters k

20 2 3 4 5 10

78.90 81.55 82.96 82.46 81.59 81.19 79.58
78.64 80.96 82.72 81.96 81.16 80.17 78.78
78.91 81.38 83.24 82.46 81.58 80.42 79.22
79.18 81.88 83.42 82.93 82.38 81.09 79.57
78.42 80.57 81.90 81.05 80.77 80.19 78.93
79.67 82.07 83.77 83.09 82.20 81.77 79.51
90.56 90.89 92.40 92.16 90.97 89.84 89.09
71.27 74.70 78.40 76.80 75.94 73.53 68.85

79.44 81.75 83.60 82.86 82.07 81.02 79.19

78.75 80.82 82.12 81.79 80.83 80.52 78.84
78.51 80.35 82.25 81.35 80.43 79.48 78.25
78.82 80.79 82.73 81.99 80.85 79.86 78.54
78.99 81.21 82.71 82.33 81.73 80.37 78.90
78.28 79.88 81.47 80.61 79.94 79.30 78.06
79.53 81.19 82.71 82.42 81.28 80.93 78.64
90.54 90.74 92.28 91.98 90.80 89.70 88.97
71.05 74.03 77.50 76.41 75.41 72.55 68.30

79.31 81.13 82.97 82.36 81.41 80.34 78.56

78.66 80.02 81.09 80.84 80.12 79.81 78.24
78.41 79.95 81.92 80.98 79.96 79.10 77.80
78.73 80.18 81.97 81.28 80.23 79.46 77.99
78.88 80.78 82.24 81.85 81.28 80.00 78.54
78.18 79.49 81.15 80.21 79.50 78.97 77.61
79.42 80.59 82.24 81.61 80.79 80.23 78.12
90.56 90.54 92.00 91.68 90.63 89.58 88.83
70.92 73.46 77.01 75.79 74.71 71.81 67.97

79.22 80.63 82.45 81.78 80.90 79.87 78.14

78.53 79.50 80.49 80.24 79.70 79.28 77.78
78.24 79.23 80.84 80.27 79.50 78.35 77.21
78.57 79.40 81.01 80.42 79.52 78.66 77.41
78.74 79.93 81.32 80.94 80.23 79.20 77.95
78.01 78.77 80.35 79.47 78.83 78.24 76.94
79.26 79.94 81.34 81.03 80.27 79.54 77.54
90.52 90.28 91.74 91.32 90.35 89.40 88.57
70.69 72.94 76.49 75.32 74.14 71.63 67.13

79.07 80.00 81.70 81.13 80.32 79.29 77.57



Table 4
Average correct classification rate by number of variables and clusters (clusters with 60% overlapping)

Clustering method Number of variables p Overall
mean

Number of clusters k

2 4 6 8 10 20 2 3 4 5 10

Case 0

Single 66.78 66.47 65.91 65.64 65.33 64.91 65.84 68.91 67.67 65.27 64.49 62.86
Complete 66.37 65.80 65.46 65.08 64.86 64.43 65.33 68.57 67.41 64.71 63.07 62.90
Centroid 67.55 67.04 66.56 65.99 65.60 65.26 66.33 69.73 68.25 65.44 65.21 63.05
Average 67.00 66.34 66.12 65.63 65.27 64.88 65.87 69.53 68.47 64.91 64.49 61.98
Ward 67.06 66.05 65.78 65.43 65.12 64.76 65.70 69.15 67.80 64.87 63.69 62.99
K-means 66.87 66.41 66.22 65.60 65.23 64.84 65.86 70.79 66.55 64.92 63.88 63.17
Fuzzy 88.97 88.88 88.84 88.70 88.56 88.32 88.71 89.62 89.29 88.85 88.32 87.49
SOM 52.23 50.55 50.12 49.20 48.76 47.86 49.78 55.30 52.11 49.42 47.27 44.83

Mean 67.86 67.19 66.88 66.41 66.09 65.66 66.68 70.20 68.44 66.05 65.05 63.66

Case 1

Single 66.64 66.32 65.74 65.49 65.18 64.80 65.69 68.78 67.50 65.14 64.33 62.74
Complete 66.21 65.67 65.31 64.97 64.75 64.31 65.20 68.48 67.27 64.59 62.95 62.73
Centroid 67.45 66.92 66.44 65.82 65.50 65.19 66.22 69.59 68.14 65.31 65.11 62.95
Average 66.84 66.03 65.81 65.53 65.16 64.81 65.70 69.15 68.33 64.79 64.37 61.85
Ward 66.92 65.85 65.58 65.30 65.04 64.63 65.55 69.00 67.64 64.71 63.55 62.88
K-means 66.73 66.27 66.02 65.46 65.12 64.71 65.72 70.64 66.38 64.77 63.76 63.04
Fuzzy 89.03 88.88 88.84 88.70 88.56 88.52 88.75 89.63 89.45 88.84 88.37 87.49
SOM 52.10 50.43 50.01 49.07 48.66 47.75 49.67 55.20 51.98 49.31 47.14 44.71

Mean 67.74 67.04 66.72 66.29 66.00 65.59 66.56 70.06 68.34 65.93 64.95 63.55

Case 2

Single 66.55 66.20 65.62 65.41 65.09 64.73 65.60 68.69 67.40 65.04 64.23 62.64
Complete 66.12 65.59 65.21 64.90 64.67 64.24 65.12 68.42 67.18 64.50 62.87 62.63
Centroid 67.35 66.84 66.35 65.71 65.45 65.14 66.14 69.49 68.07 65.23 65.04 62.88
Average 66.75 65.97 65.72 65.45 65.07 64.73 65.61 69.05 68.25 64.68 64.33 61.76
Ward 66.81 65.65 65.47 65.22 65.00 64.55 65.45 68.90 67.53 64.60 63.41 62.81
K-means 66.63 66.17 65.93 65.36 65.05 64.62 65.62 70.54 66.27 64.67 63.68 62.96
Fuzzy 88.96 88.88 88.83 88.69 88.56 88.52 88.74 89.63 89.45 88.83 88.31 87.49
SOM 52.00 50.33 49.91 48.99 48.60 47.68 49.59 55.12 51.91 49.23 47.06 44.63

Mean 67.65 66.95 66.63 66.22 65.94 65.52 66.48 69.98 68.26 65.85 64.87 63.47

Case 3

Single 66.39 66.01 65.48 65.24 64.96 64.60 65.45 68.54 67.24 64.90 64.09 62.47
Complete 65.95 65.47 65.02 64.74 64.50 64.08 64.96 68.33 67.02 64.35 62.65 62.46
Centroid 67.25 66.69 66.21 65.48 65.37 64.99 66.00 69.38 67.91 65.09 64.87 62.74
Average 66.63 65.81 65.47 65.34 64.92 64.56 65.46 68.82 68.09 64.49 64.30 61.60
Ward 66.65 65.56 65.24 65.04 64.88 64.39 65.29 68.73 67.38 64.43 63.30 62.65
K-means 66.47 65.95 65.73 65.21 64.93 64.44 65.45 70.41 66.09 64.48 63.48 62.83
Fuzzy 88.95 88.87 88.83 88.68 88.54 88.52 88.73 89.61 89.45 88.82 88.31 87.48
SOM 51.80 50.17 49.79 48.86 48.49 47.71 49.47 55.00 51.72 49.08 46.91 44.65

Mean 67.51 66.82 66.47 66.07 65.83 65.41 66.35 69.85 68.11 65.70 64.74 63.36

1754 S.A. Mingoti, J.O. Lima / European Journal of Operational Research 174 (2006) 1742–1759
around 88% for 60% of overlapping. As expected
the decreased in performance was higher for the
60% overlapping degree than for 40% for all meth-
ods. For the traditional hierarchical and the K-
means methods the overall average of recovery
rate dropped to about 80% for 40% degree of



Table 5
Average results of clusters internal dispersion rate (clusters with overlapping)

Clustering method Number of variables Overall
mean

Number of clusters

2 4 6 8 10 20 2 3 4 5 10

Internal dispersion rate (40% overlapping)

Single 0.1147 0.1030 0.1091 0.1103 0.1014 0.0967 0.1059 0.1937 0.1249 0.0880 0.0827 0.0402
Complete 0.0884 0.0889 0.0891 0.1014 0.0961 0.0941 0.0930 0.1960 0.0999 0.0723 0.0495 0.0473
Centroid 0.0927 0.0875 0.0910 0.0921 0.0938 0.0883 0.0909 0.1916 0.0950 0.0849 0.0481 0.0350
Average 0.0903 0.1023 0.0961 0.0981 0.0925 0.0865 0.0943 0.1918 0.0958 0.0784 0.0619 0.0437
Ward 0.0870 0.0857 0.0967 0.0984 0.0928 0.0898 0.0917 0.1971 0.0982 0.0804 0.0506 0.0324
K-means 0.1024 0.0864 0.0818 0.0977 0.0905 0.0866 0.0909 0.1649 0.0968 0.0935 0.0646 0.0347
Fuzzy 0.0776 0.0570 0.0454 0.0434 0.0347 0.0269 0.0475 0.1023 0.0704 0.0363 0.0221 0.0065
SOM 0.1990 0.2073 0.2119 0.2219 0.2410 0.2565 0.2229 0.3784 0.2540 0.1831 0.1589 0.1403

Mean 0.1065 0.1023 0.1026 0.1079 0.1054 0.1032 0.1046 0.2020 0.1169 0.0896 0.0673 0.0475

Internal dispersion rate (80% overlapping)

Single 0.1312 0.1334 0.1300 0.1272 0.1225 0.1120 0.1260 0.2253 0.1302 0.1005 0.1001 0.0741
Complete 0.1181 0.1158 0.1137 0.1149 0.1153 0.1121 0.1150 0.2179 0.1016 0.1089 0.0771 0.0694
Centroid 0.1149 0.1169 0.1150 0.1130 0.1107 0.1034 0.1123 0.2217 0.1079 0.0908 0.0746 0.0667
Average 0.1096 0.1079 0.1048 0.1041 0.1049 0.0999 0.1052 0.2062 0.1012 0.0986 0.0658 0.0542
Ward 0.1041 0.1056 0.1041 0.1020 0.1016 0.0984 0.1026 0.2120 0.1103 0.0792 0.0661 0.0454
K-means 0.1140 0.1124 0.1103 0.1093 0.1072 0.1028 0.1093 0.2120 0.1042 0.1031 0.0687 0.0588
Fuzzy 0.0786 0.0766 0.0601 0.0546 0.0529 0.0558 0.0631 0.1186 0.0837 0.0514 0.0385 0.0232
SOM 0.2135 0.2230 0.2268 0.2275 0.2339 0.2269 0.2253 0.3956 0.2488 0.1840 0.1636 0.1343

Mean 0.1230 0.1240 0.1206 0.1191 0.1186 0.1139 0.1199 0.2262 0.1235 0.1021 0.0818 0.0658
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overlapping and to 66% for 60% of overlapping.
SOM network performed regularly for 40% of
overlapping with average of recovery rate around
75% and very bad for 60% of overlapping reaching
an average recovery rate around 50%. Table 5
shows the average dispersion rate for the overlap-
ping cases. SOM had the highest overall averages
(0.2229 and 0.2253) and Fuzzy c-means the small-
est (0.0475; 0.0631). For the other methods the
overall average are around 0.10. Fuzzy c-means
had similar values of average internal dispersion
rates for the overlapping data, contrary to the
other methods which were very affected. The re-
sults for contaminated data with outliers are pre-
sented in Tables 6 and 7. When outliers were
introduced the performance of all the algorithms
decreased and SOM was more affected. For 10%
of outliers the average recovery rates were over
or similar to 95% for all methods except K-means
(89.82%) and SOM (50.51%). Similar results were
found for 20% of outliers. For 40% of outliers
the average recovery rate of Fuzzy c-means was
lower than single linkage (88.91% and 98.10%
respectively) and SOM had the average recovery
rate below 50%. All the other methods presented
average recovery rate over 80%. The average dis-
persion rate increased substantially except for Fuz-
zy c-means which averaged about 0.10. The K-
means and the hierarchical algorithms averaged
about 0.20 except for the single linkage which
had the highest averages ranging from 0.4303 for
10% to 0.6096 for 40% of outliers and the Ward�s
method which had the smallest averages among
the hierarchical procedures (0.1213, 0.1410 and
0.1687 for 10%, 20% and 40% of outliers respec-
tively). SOM averaged about 0.24 and it was high-
er than the majority of the other methods except to
the centroid method for 20% and 40% of
contamination.
5. Final remarks

The results presented in this paper show that in
general the performance of the clustering algo-
rithm is more affected by overlapping than by



Table 6
Average correct classification rate—clusters with outliers (nonoverlapping)

Clustering method Number of variables Overall
mean

Number of clusters

2 4 6 8 10 20 2 3 4 5 10

Outliers: 10%

Single 97.99 97.45 97.54 97.58 97.65 97.70 97.65 98.44 97.91 97.96 97.35 96.60
Complete 94.02 93.85 93.88 93.78 93.67 93.68 93.81 96.45 93.45 93.27 93.13 92.76
Centroid 96.72 96.31 96.31 96.25 95.85 95.71 96.19 98.56 97.51 96.68 94.75 93.47
Average 96.71 96.59 96.54 96.36 95.98 95.86 96.34 98.52 97.54 96.35 95.06 94.23
Ward 96.53 96.15 96.22 96.19 96.16 96.12 96.23 97.36 96.38 96.36 95.58 95.47
K-means 90.51 90.06 89.88 89.61 89.48 89.40 89.82 92.52 89.91 89.24 88.76 88.69
Fuzzy 97.11 97.11 96.87 96.89 96.85 96.79 96.94 98.36 97.21 96.78 96.43 95.90
SOM 50.78 50.72 50.58 50.43 50.32 50.24 50.51 61.25 56.37 49.59 45.57 39.80

Mean 90.05 89.78 89.73 89.64 89.49 89.44 89.69 92.68 90.78 89.53 88.33 87.12

Outliers: 20%

Single 97.78 93.03 92.04 90.61 90.25 89.85 92.26 98.67 91.46 90.97 90.82 89.38
Complete 89.42 89.51 89.47 89.32 89.17 89.07 89.33 93.41 88.69 88.52 88.18 87.84
Centroid 95.21 95.43 95.33 95.23 95.10 94.96 95.21 99.05 96.50 95.33 93.60 91.58
Average 94.93 94.66 94.46 94.38 94.32 94.23 94.50 98.68 95.77 94.51 92.71 90.82
Ward 95.37 95.39 95.27 95.16 95.09 94.92 95.20 96.51 95.73 95.37 94.75 93.64
K-means 84.77 84.10 83.99 83.85 83.67 83.17 83.92 89.31 84.48 84.41 79.42 82.00
Fuzzy 96.00 96.00 95.94 95.91 95.89 95.85 95.93 97.83 96.98 96.31 95.70 92.86
SOM 48.70 48.35 48.02 47.84 47.57 47.49 47.99 61.67 55.12 45.49 39.09 38.60

Mean 87.77 87.06 86.82 86.54 86.38 86.19 86.79 91.89 88.09 86.36 84.28 83.34

Outliers: 40%

Single 98.46 98.41 98.21 98.14 97.88 97.49 98.10 98.79 98.95 98.24 97.56 96.95
Complete 81.34 90.13 86.66 84.00 83.16 80.05 84.22 90.35 83.79 82.51 82.40 82.07
Centroid 92.40 95.68 94.05 93.91 93.03 91.97 93.51 98.72 96.27 92.88 90.82 88.83
Average 91.66 95.16 94.33 93.44 92.80 90.84 93.04 98.82 95.04 92.42 90.24 88.67
Ward 83.82 95.99 91.17 89.53 86.44 82.56 88.25 93.64 87.66 87.16 86.85 85.94
K-means 77.91 85.01 83.60 81.28 79.71 77.18 80.78 86.64 80.35 79.97 77.73 79.21
Fuzzy 84.16 95.88 91.61 90.23 87.60 83.98 88.91 93.74 89.10 88.49 87.43 85.77
SOM 48.52 48.97 48.68 48.48 48.22 46.81 48.28 61.87 54.90 45.80 39.61 39.22

Mean 82.28 88.15 86.04 84.88 83.60 81.36 84.39 90.32 85.76 83.43 81.58 80.83
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the amount of outliers. For nonoverlapping situa-
tions all the methods had good performance ex-
cept SOM network. The best results for average
recovery and internal dispersion rates were found
for Fuzzy c-means which was very stable in all sit-
uations achieving recovery averages over 90%. The
traditional hierarchical algorithms presented simi-
lar performance among themselves and Ward�s
method was the more stable. The K-means method
was very affected by the presence of a large
amount of outliers (data with 40% of contamina-
tion). The overlapping increased substantially the
average internal dispersion rate of the partition
and decreased the average recovery rate to about
60% except for Fuzzy c-means. The correlation
structures did not affect very much the perfor-
mance of the algorithms. This is an interest result
because only the Euclidean distance was used in
the clustering algorithms. Therefore, although the
Euclidean distance is suitable for uncorrelated
variables with the same variances (i.e. spherical
clusters) this study indicates that it was able to de-
scribe very well populations generated with non-
spherical clusters with same and different shapes
(cases S1–S6). The choice of the clustering algo-
rithm is more crucial. In general for overlapping



Table 7
Average results of clusters internal dispersion rate—clusters with outliers (nonoverlapping)

Clustering method Number of variables Overall
mean

Number of clusters

2 4 6 8 10 20 2 3 4 5 10

Outliers: 10%

Single 0.4012 0.4105 0.4223 0.4379 0.4496 0.4601 0.4303 0.4948 0.4568 0.4269 0.4008 0.3721
Complete 0.1379 0.1497 0.1680 0.1840 0.1941 0.1910 0.1708 0.2628 0.2048 0.1500 0.1283 0.1081
Centroid 0.1751 0.1878 0.1950 0.2062 0.2152 0.2256 0.2008 0.2824 0.2474 0.2039 0.1471 0.1234
Average 0.1550 0.1636 0.1750 0.1834 0.1930 0.2009 0.1785 0.2538 0.2112 0.1814 0.1316 0.1145
Ward 0.0966 0.1046 0.1173 0.1315 0.1385 0.1392 0.1213 0.1712 0.1530 0.1168 0.0948 0.0707
K-means 0.1464 0.1600 0.1679 0.1816 0.1860 0.1957 0.1730 0.2527 0.2081 0.1710 0.1239 0.1090
Fuzzy 0.0542 0.0663 0.0749 0.0853 0.0912 0.0984 0.0784 0.1184 0.0899 0.0769 0.0640 0.0427
SOM 0.1991 0.2278 0.2424 0.2513 0.2654 0.2702 0.2427 0.3233 0.2760 0.2324 0.2025 0.1792

Mean 0.1707 0.1838 0.1953 0.2076 0.2166 0.2226 0.1995 0.2699 0.2309 0.1949 0.1616 0.1400

Outliers: 20%

Single 0.5490 0.5633 0.5752 0.5895 0.5996 0.6117 0.5814 0.6432 0.6165 0.5726 0.5584 0.5162
Complete 0.1625 0.1729 0.1872 0.1964 0.2010 0.2066 0.1877 0.2669 0.2179 0.1760 0.1578 0.1201
Centroid 0.2237 0.2395 0.2505 0.2620 0.2692 0.2768 0.2536 0.3219 0.3061 0.2524 0.2103 0.1774
Average 0.1779 0.1958 0.2153 0.2262 0.2337 0.2388 0.2146 0.2665 0.2467 0.2094 0.1839 0.1667
Ward 0.1126 0.1258 0.1400 0.1501 0.1554 0.1622 0.1410 0.1875 0.1701 0.1429 0.1169 0.0876
K-means 0.1621 0.1801 0.1992 0.2094 0.2144 0.2194 0.1974 0.2612 0.2263 0.1952 0.1614 0.1431
Fuzzy 0.0877 0.0965 0.1008 0.1073 0.1121 0.1163 0.1034 0.1416 0.1204 0.1028 0.0849 0.0676
SOM 0.2134 0.2300 0.2505 0.2657 0.2697 0.2761 0.2509 0.3317 0.2848 0.2418 0.2169 0.1793

Mean 0.2111 0.2255 0.2398 0.2508 0.2569 0.2635 0.2413 0.3026 0.2736 0.2367 0.2113 0.1822

Outliers: 40%

Single 0.5803 0.5988 0.6077 0.6141 0.6209 0.6356 0.6096 0.6737 0.6446 0.6158 0.5750 0.5387
Complete 0.1904 0.2023 0.2168 0.2232 0.2289 0.2383 0.2166 0.2870 0.2384 0.2131 0.1847 0.1600
Centroid 0.2765 0.2850 0.2934 0.2988 0.3088 0.3214 0.2973 0.3570 0.3312 0.3024 0.2662 0.2298
Average 0.2307 0.2472 0.2591 0.2725 0.2780 0.2885 0.2627 0.3123 0.2909 0.2534 0.2369 0.2199
Ward 0.1406 0.1610 0.1674 0.1729 0.1811 0.1891 0.1687 0.2230 0.1960 0.1674 0.1415 0.1155
K-means 0.1944 0.2057 0.2232 0.2286 0.2327 0.2411 0.2209 0.2911 0.2511 0.2112 0.1863 0.1650
Fuzzy 0.0948 0.0972 0.0999 0.1023 0.1049 0.1080 0.1012 0.1046 0.1087 0.1058 0.0958 0.0908
SOM 0.2081 0.2250 0.2446 0.2583 0.2641 0.2741 0.2457 0.3317 0.2766 0.2415 0.2039 0.1749

Mean 0.2395 0.2528 0.2640 0.2713 0.2774 0.2870 0.2653 0.3226 0.2922 0.2638 0.2363 0.2118
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clusters the increase of the number of clusters and
variables (dimensions) decreased the performance
of the clustering algorithms. The same is true for
data with outliers. SOM did not performed well
in many cases being very affected by the amount
of variables and clusters even for the nonoverlap-
ping cases.

The results obtained in this paper agreed par-
tially with Milligan and Cooper�s (1980) for K-
means and the hierarchical algorithms and par-
tially with Schreer et al. (1998) for Fuzzy c-means
and K-means. As far as SOM neural network is
concerned the results are more concordant with
those presented by Balakrishnan et al. (1994) and
less with those shown in Mangiameli et al.
(1996). One reason could be that we explore many
different data structures and a number of data sets
much higher than any other study published so far.
Our study differs from others with respect to the
clusters sizes. Contrary to the other published arti-
cles mentioned in the introduction of this paper,
all the populations simulated in this study had
the same size (500). As the number of clusters de-
creased the number of observations in each cluster
increased. Therefore, we were able to test the clus-
tering algorithms for situations where each cluster
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had 250 observations (case where k = 2) up to sit-
uations where each cluster had 50 observations
(case where k = 10). Only 50 observations in each
data set were considered by Milligan (1985) and
Balakrishnan et al. (1994), 100 in Schreer et al.
(1998) and from 100 to 250 in Mangiameli et al.
(1996). The number of replicates for each popula-
tion structure was much higher in our study. We
generate 1000 replicates for each structure and
the other authors generate only three replicates.
Another difference with the above mentioned pa-
pers is that in the nonoverlapping case, population
were simulated with clusters far apart in all p
dimensions and not only in the first dimension as
Milligan�s proposition (1980, 1985). In the simula-
tion of the overlapping structures we had a good
control of the amount of clusters overlapping in
each variable. This was not done in the other pa-
pers. The simulation of the amount of outliers
was also very well controlled. Finally, another pos-
sible reason for different results is the method used
to implement SOM network. As described by
many authors the performance of a neural net-
work depends strongly upon the parameters set
for the training stage. For this presented work
the optimized routine of SOM implemented in
the SAS statistical software was used to gener-
ate the clusters. Therefore, the authors believe that
the bad performance of SOM was not a result of
any inadequate learning process of the network
but due to its own structure. Because of the exten-
sion of our study we had a better chance to test the
performance of SOM in many different scenarios
and the presented results indicate that some care
should be taken when using SOM neural network
to cluster data because its performance could be
very poor in some cases. Methods such as Fuzzy
c-means, K-means and Ward�s for example pre-
sented good performance and are simpler to
implement.

Many other studies still can be performed.
Comparison of the clustering algorithms by using
other metrics than the Euclidean distance, popula-
tions with clusters of different sizes and generated
by a distribution different than the multivariate
normal are some examples. The performance of
SOM neural network in general situations has also
to be better evaluated.
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