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Abstract

In this note, we consider the problem of counting and verifying abelian border

arrays of binary words. We show that the number of valid abelian border arrays

of length n is 2n−1. We also show that verifying whether a given array is the

abelian border array of some binary word reduces to computing the abelian

border array of a specific binary word. Thus, assuming the word-RAM model,

we present an O
(

n
2

log2
n

)

time algorithm for the abelian border array verification

problem.
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1. Introduction

In recent years, there has been much interest in the field of abelian stringol-

ogy. The central concept of abelian stringology is that of abelian equivalence:

two strings are abelian equivalent if they have the same letters with the same

multiplicities. For example, the words LISTEN and SILENT are abelian equiva-

lent. We refer the reader to Section 2 for more precise definitions, especially in

the case of binary words.

By substituting string equality with abelian equivalence, we can get abelian

analogs of many natural string problems and regularities, e.g., abelian pattern

matching [1–3], abelian borders [4], abelian squares [5], common abelian factors

[6] - just to name a few of the topics touched on in recent literature.

There has also been a long practice of studying string inference or string

reverse engineering problems where, given an instance of a string data structure,

one attempts to find a string that generates that given data structure (or report
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if none exists). The first string reverse engineering problem was introduced by

Franĕk et al. [7] who proposed a method to check if any integer array was the

border array of some string. Since then a plethora of string inference problems

have been studied in the literature (e.g., [4, 8–16]).

In this note, we study the abelian analog of the problem introduced in [7] for

binary words. In particular, given an integer array, we propose a method that

decides whether the array is the abelian border array of some binary words. We

show that this “abelian border array verification” problem reduces to computing

the abelian border array of a specific binary word (Section 3.2). In addition,

we count the number of “valid” abelian border arrays (Section 3.1) and present

some properties thereof (Section 3.2). We also briefly discuss the problems for

larger alphabets (Section 5).

2. Preliminaries

Let Σ be a finite set of letters called an alphabet. Then Σ∗ is the set of

all finite words over Σ. For a binary alphabet, we assume Σ = {0, 1} and

w is called a binary word if w ∈ Σ∗. The length of a word w is denoted

by |w|. We will denote by Σn the set of all words of length n over Σ. The

word w will often be represented as w[1]w[2] · · ·w[|w|] where w[i] refers to the

i-th letter of w. For 1 ≤ i ≤ j ≤ |w|, we let w[i · · · j] denote the j − i + 1

length word w[i]w[i + 1] · · ·w[j], also referred to as a factor of w. Furthermore,

w[i · · · j] is called a prefix (suffix) if i = 1 (j = |w|). A prefix or a suffix of w

is called proper if it is not equal to w. Given a binary word w, let ones(w) be

equal to the number of 1’s in w. Although not very common, we sometimes

conveniently use the following notation: if w = w[1]w[2] · · ·w[|w| − 1]w[|w|],

w′ = w[1]w[2] · · ·w[|w| − 1]] and w[|w|] = α, then w = w′α.

Two binary words x and y of equal length are said to be abelian equivalent

if ones(x) = ones(y). An abelian border of a binary word w is a proper prefix of

w that is abelian equivalent to a proper suffix of w. Our results center around

a data structure called the abelian border array which we define below.

Definition 2.1. Let x be a binary word. The abelian border array of x, denoted
by πx, is an array of length |x| such that for 1 ≤ i ≤ |x|, πx[i] contains the
length of the longest abelian border of x[1 · · · i]. An array π is called a valid
abelian border array if π = πx for some binary word x; in that case, x is called
a generating word of π.

For example, π0001001 = (0, 1, 2, 0, 4, 5, 0). Also, (0, 1, 2, 0, 4, 4) is not a valid
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abelian border array since there does not exist any binary word x such that

πx = (0, 1, 2, 0, 4, 4).

Next, we introduce the notion of abelian border equivalence. Two binary

words x and y are called abelian border equivalent if πx = πy, i.e., they have

the same abelian border array. For example, π0100 = π1011 and hence the two

strings, 0100 and 1011 are abelian border equivalent.

Finally, it comes in handy to define the complement of a binary word.

Definition 2.2. Given a binary word x, the complement of x, denoted by x, is
a binary word of length |x| such that for 1 ≤ i ≤ |x|

x[i] =

{

1 if x[i] = 0

0 otherwise.

3. Results

3.1. Counting the Number of Valid Abelian Border Arrays

The first problem we tackle is counting the number of valid abelian border

arrays of a particular length. More formally, suppose that Πn is the set of n-

length arrays such that for each π ∈ Πn there exists a binary word x with |x| = n

and π = πx. Let Tn be the number of arrays in the set Πn, i.e., Tn = |Πn|. We

prove the following proposition.

Proposition 3.1. Tn = 2n−1.

To prove Proposition 3.1, we first prove the following lemma.

Lemma 3.1. If x and y are two different binary words that are abelian border
equivalent, then y = x.

Proof. We prove this by induction on the length of x and y. Clearly, the claim
is true when |x| = |y| = 1. Assume the claim is true whenever |x| = |y| = n− 1.

Now let x and y be two different abelian border equivalent binary words of
length n > 1. If we have x[1 · · ·n−1] = y[1 · · ·n−1], then the fact that x and y

are different will force πx 6= πy making x and y abelian border non-equivalent,
contradicting our hypothesis.

So, x[1 · · ·n − 1] 6= y[1 · · ·n − 1]. Since πx[1···n−1] = πy[1···n−1], by the

inductive hypothesis, we have y[1 · · ·n−1] = x[1 · · ·n− 1]. Therefore, it suffices
to show that x[n] 6= y[n].

For the sake of contradiction, let x[n] = y[n] = α. Since y[1 · · ·n − 1] =
x[1 · · ·n− 1], it follows that x[1] 6= y[1]. Without loss of generality, we can
assume x[1] = α. However, this forces πx[n] = n − 1 and πy [n] < n − 1
contradicting the assumption that x and y are abelian border equivalent.
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From the lemma above, it is clear that every valid abelian border array

has exactly two generating words and they are complements of each other. In

other words, the generating word of a valid abelian border array is unique up to

complementation. As a result, as far as abelian border arrays of binary words

are concerned, it suffices to only consider words that start with a 0. We make

this notion formal by defining the generating word of a valid abelian border

array to be the generating word that starts with a 0.

The key to finding Tn lies in the observation that given a valid abelian border

array of length n−1, there are exactly two ways to extend it into a valid abelian

border array of length n. The following lemmas explore this idea.

Lemma 3.2. Let π be a valid abelian border array of length n− 1 and x be the
generating word thereof. Then πx0[n] = n− 1.

Proof. Consider the word y = x0. By definition, we have |y| = n and y[1] =
x[1] = 0 = y[n]. So, ones(y[1 · · ·n− 1]) = ones(x[2 · · ·n− 1]) = ones(y[2 · · ·n]).
Therefore y = x0 has an abelian border of length n−1 and the result follows.

Lemma 3.3. Let π be a valid abelian border array of length n− 1. If S is the
set of all possible non-negative integers k such that appending k to the end of π
gives a valid abelian border array of length n, then |S| = 2.

Proof. Let x be the generating word of π. Now consider the string x0. By
Lemma 3.2, we must have πx0[n] = n − 1. Therefore, n − 1 ∈ S. The other
element in S is also completely determined by x. In fact it is equal to πx1[n].
The fact that there are no other elements in S follows from the uniqueness of
x.

For example, (0, 0, 0, 3, 3) is a valid abelian border array for which the gen-

erating word is 01101 and in this case, S = {3, 5}. Note that (0, 0, 0, 3, 3, 3) =

π011011 and (0, 0, 0, 3, 3, 5) = π011010.

We are now ready to prove the main result of this section.

Proof of Proposition 3.1. Since prefixes of valid abelian border arrays are them-
selves valid abelian border arrays, the only way to get a valid abelian border
array of length n is to extend a valid abelian border array of length n−1. From
Lemma 3.3, it follows that Tn = 2Tn−1. Since T1 = 1, we have Tn = 2n−1.

3.2. Verifying Valid Abelian Border Arrays

Now we turn to the problem of verifying abelian border arrays. More for-

mally, given an array π, we want to find whether or not it is a valid abelian

border array. In addition, if the answer is positive, we want to find the gener-

ating word thereof. We first look at some general properties of abelian border

arrays.
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Proposition 3.2. Let x be a binary word of length n. For 1 ≤ i ≤ n, the length
of the shortest non-empty abelian border of x[1 · · · i] is equal to i−πx[i] provided
that πx[i] 6= 0.

Proof. This follows from the fact that if a word w has an abelian border of length
i, then it also has an abelian border of length |w| − i. It is then immediately
clear why the lengths of the longest and shortest non-empty abelian borders
should be related in this way.

Proposition 3.3. Let π be a valid abelian border array of length n and let x be
the generating word of π. For 1 ≤ i ≤ n, π[i] = i− 1 if and only if x[i] = 0.

Proof. The claim is obviously true if i = 1. So, let i > 1. Since x is the
generating word of π, x[1] = 0. By proposition 3.2, π[i] = i − 1 if and only if
the length of the shortest non-empty abelian border of x[1 · · · i] is 1. But since
x[1] = 0, this can happen if and only if x[i] = 0.

Proposition 3.4. Let x be a binary word of length n such that x[1] = 0. For
1 < i ≤ n, if x[i] = 1, then πx[i] ≤ πx[i− 1].

Proof. Let k = i − 1 − πx[i − 1] and k′ = i − πx[i]. By proposition 3.2, k and
k′ are the lengths of the shortest non-empty abelian borders of x[1 · · · i− 1] and
x[1 · · · i] respectively. Therefore, it suffices to show that k′ ≥ k.

Since k is the length of the shortest non-empty abelian border of x[1 · · · i−1],
for 1 ≤ j < k, ones(x[1 · · · j]) < ones(x[i− j · · · i− 1]). However, since x[i] = 1,
ones(x[i− j + 1 · · · i]) ≥ ones(x[i− j · · · i− 1]). So, ones(x[1 · · · j]) < ones(x[i−
j + 1 · · · i]) for 1 ≤ j < k. So, we can conclude that for 1 ≤ j < k, we must have
ones(x[1 · · · j]) 6= ones(x[i − j + 1 · · · i]). Therefore, k′ can not be smaller than
k.

Propositions 3.3 and 3.4 provide us with an insight into the structure of valid

abelian border arrays. They tell us that consecutive elements of a valid abelian

array can not increase “slowly”. Given a binary word x with x[1] = 0, πx[i]

either jumps up to i − 1 (happens when x[i] = 0) or stays at most as high as

πx[i− 1] (happens when x[i] = 1). A long run of 1s in x eventually brings πx[i]

down to 0; after which a 0 in x brings it again up to i− 1.

Proposition 3.3 actually suggests a direct algorithm for our verification prob-

lem as we show below.

Proposition 3.5. Let π be an array of length n. We define xπ to be a binary
word of length n such that

xπ [i] =

{

0 if π[i] = i− 1

1 otherwise.

If π is a valid abelian border array, then π = πxπ
.
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So, the problem of checking whether an array π is a valid abelian border

array reduces to computing the abelian border array of a specific binary word

xπ. If the computed abelian border array matches π, we output yes along with

the word xπ . Otherwise, we output no.

The abelian border array of a binary word can be computed naively in O(n2)

where n is the length of the word. But a recent result by Kociumaka et al. [17]

shows that it can be done in O
(

n
2

log2 n

)

time assuming the word-RAM model.

Proposition 3.6. Assuming the word-RAM model, the valid abelian border

array verification problem can be solved in O
(

n
2

log2
n

)

time.

4. Extending to Larger Alphabets

A natural thing to do is to try extending these results for words over larger

alphabets. However, the problem becomes quickly difficult even for ternary

words. The main reason is that it is hard to find a good characterization of

abelian border equivalent words on larger alphabets. Two words can be very

different but can still give the same abelian border array. For example, the

words 011021 and 012022 are abelian border equivalent but at a first glance,

they do not look anything alike.

Despite this, it is possible to come up with upper bounds for the answer

to the counting problem for larger alphabets. The key idea is the following

definition.

Definition 4.1. Two words w1 and w2 with |w1| = |w2| = n are said to be
letter-equivalent if for all 1 ≤ i, j ≤ n, w1[i] = w1[j] if and only if w2[i] = w2[j].

Note that letter-equivalent words are a generalization of complement words

(Definition 2.2) for larger alphabets. Clearly, if two words are letter-equivalent,

then they are abelian border equivalent. However, the converse is not necessarily

true for words on larger alphabets. We have already provided an example of

this: the two words 011021 and 012022, despite not being letter-equivalent, are

abelian border equivalent.

Letter-equivalence, as the name suggests, is an equivalence relation on the

set Σn of all words of length n over Σ. Therefore, the set of distinct equivalence

classes of letter-equivalence forms a partition of Σn. Clearly, the number of

parts in this partition is an upper bound for Tn. Thus we have the following

two results.
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Proposition 4.1. Let Tn be the number of n-length arrays π such that there

exists a word x over Σ = {0, 1, 2} with π = πx. Then Tn ≤ 3n−1+1
2 .

Proof. We count the number of distinct equivalence classes of letter-equivalence
in Σn. Out of the 3n words that form Σn, the 3 words that contain only one
letter are in an equivalence class of their own. Each of the remaining 3n − 3
words are in an equivalence class with 5 other words that can be found by
simply relabeling the letters (as an example, the word 0110 is in an equivalence
class with the five words 0220, 1001, 1221, 2002, and 2112). Therefore, Tn ≤

1 + 3n−3
6 = 3n−1+1

2 .

Proposition 4.2. Let n ≥ 2 be an integer and Σ = {0, 1, 2, · · · , n − 1}. If Tn

is the number of n-length arrays π such that there exists a word x over Σ with
π = πx, then Tn ≤ Bn where Bn is the nth Bell number.

Proof. Each word w ∈ Σn induces a partition of the indices 1, 2, 3, · · · , n in
the following way: for all 1 ≤ i < j ≤ n, the indices i and j are in the same
part of the partition if and only if w[i] = w[j]. Two words w1, w2 ∈ Σn are
letter-equivalent if and only if they induce the same partition of the indices.
Therefore, an upper bound on Tn is the number of ways you can partition the
set {1, 2, 3, · · · , n}. This number is precisely Bn [18].

Therefore, for an unbounded alphabet Tn is upper-bounded by the nth Bell

number. However, this bound is very loose and does not offer much insight into

the structure of valid abelian border arrays.

5. Conclusion

In this note, we have taken on the problem of inferring a binary word from its

abelian border array. Although regular string inference problems are abundant

in the literature, inference problems of the abelian variety are surprisingly rare.

We hope our work will be one of the first of many ventures into the word of

abelian string inference problems.

Possible future work might include extending our results for words over larger

alphabets. However, as the last section shows, doing this is non-trivial. Another

line of work would be to ask if it is actually necessary to compute abelian border

arrays at all to solve the verification problem. We have shown that it is sufficient

(Proposition 3.5). But it might be possible for some other verification algorithm

to exist that does not do any border array computation at all.
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Zdárek, editors, Proceedings of the Prague Stringology Conference 2013,

Prague, Czech Republic, September 2-4, 2013, pages 191–205. Department

of Theoretical Computer Science, Faculty of Information Technology, Czech

Technical University in Prague, 2013.

[15] Tanaeem M. Moosa, Sumaiya Nazeen, M. Sohel Rahman, and Rezwana

Reaz. Inferring strings from cover arrays. Discret. Math. Algorithms Appl.,

5(2), 2013.

[16] Ali Alatabbi, M. Sohel Rahman, and William F. Smyth. Inferring an in-

determinate string from a prefix graph. J. Discrete Algorithms, 32:6–13,

2015.

[17] Tomasz Kociumaka, Jakub Radoszewski, and Bart lomiej Wísniewski.
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