
CS3236 Lecture Notes #2:

Symbol-Wise Source Coding

Jonathan Scarlett

December 16, 2022

Useful references:

• Cover/Thomas Chapter 5

• MacKay Chapter 5

1 Symbol-Wise Coding

Setup.

• Consider a discrete random variable X with probability mass function (PMF) PX .

– For example, for text (without spaces/punctuation) X might take one of 26 characters {a, . . . , z},
with PX(e) being highest, PX(q) being low, etc.

– More generally, the set of all symbols is denoted by X (called the “alphabet” even when not
referring to the English alphabet or even text).

• Symbol-wise source coding maps each x ∈ X to some binary sequence C(x). The length of this sequence
is denoted by `(x).

– e.g., Map ‘x’ to 0011010 and ‘q’ to 0010100 because they are uncommon symbols, map ‘e’ to 1

because it is a very common symbol.

Since having a small length is so fundamental, we provide the following formal definition.

• Definition. The average length of a code C(·) is given by

L(C) =
∑
x∈X

PX(x)`(x).

• We need to be able to map back from the binary sequences to the original alphabet, so we cannot make
every binary sequence short!

• Let’s look at the decoding conditions we would like to have.

1

Decodability conditions.

• To have any hope of mapping the binary sequences back to the original alphabet, we need that C(x) 6=
C(x′) whenever x 6= x′. This condition is so trivial that it doesn’t really need a name, but sometimes
it’s called the nonsingular property.

• We are actually interested in coding multiple alphabet symbols in succession, so being nonsingular is
not enough. Consider the following code for X = {1, 2, 3, 4}:

Clearly there is no way to distinguish the sequence ‘aabb’ from ‘cd’.

• Definition. A code C(·) is said to be uniquely decodable if no two sequences (of equal or differing
lengths) of symbols in X are coded to the same concatenated binary sequence. That is, x1, . . . , xn can
always uniquely be identified from the string C(x1) . . . C(xn).

• Example. The following code is uniquely decodable:

While unique decodability is easy to see in this example, it can be tricky to verify in larger codes. It
is more convenient to work with the following seemingly more restrictive condition.

• Definition. A code C(·) is said to be prefix-free if no codeword is a prefix of any other (i.e., it is not
possible to append more bits to some C(x) in order to produce some other C(x′)).

– Sometimes the terminology instantaneous code is used to mean the same thing.

– In the tutorial, we will see that restricting to prefix-free codes instead of general uniquely decodable
codes does not lose us anything in the average length we can achieve.

– However, while decoding uniquely decodable codes is challenging in general, decoding prefix-free
codes is trivial: As soon as the binary sequence matches some C(x), output x, and then iteratively
continue with the rest of the binary sequence.

– We will therefore focus primarily on prefix-free codes.

• Example. The following code is prefix-free:

2

Here is a simple example of decoding an encoded sequence for this code:

• Note: We will focus on binary codes (which are by far the most common), but the vast majority of
what we will cover can be easily extended to D-ary codes for D > 2 (e.g., for D = 3, we have ternary
codes with digits {0, 1, 2}, so we can have mappings like b→ 21, q → 0121, z → 2222).

2 Kraft’s Inequality and the Entropy Bound

Kraft’s Inequality.

• Clearly not all possible combinations of lengths are possible, e.g., we cannot map every letter a . . . z
to a sequence of length 3 or less – there are not enough such sequences. Even when there are enough
sequences, not all allocations of symbols to sequences will be prefix-free (or uniquely decodable). Kraft’s
inequality gives a useful condition that any prefix-free code must satisfy.

• Theorem (Kraft’s inequality). Any prefix-free code C(·) that maps each x ∈ X to a codeword of
length `(x) must satisfy ∑

x∈X
2−`(x) ≤ 1.

• Proof:

– Represent the codewords by a binary tree as follows:

– By the prefix-tree assumption, if there is a codeword at some point in the tree, there are no
codewords further down the tree.

– Now, consider starting at the root and then repeatedly branching either way with probability 1
2

each until a codeword is hit.

– Clearly, the probability of a given length-`(x) codeword being hit is exactly 2−`(x).

3

– But the total probability of hitting codewords cannot exceed one, so summing up all the proba-
bilities gives

∑
x∈X 2−`(x) ≤ 1.

• Theorem (Existence property). If a given set of integers {`(x)}x∈X satisfies
∑
x∈X 2−`(x) ≤ 1,

then it is possible to construct a prefix-free code that maps each x ∈ X to a codeword of length `(x).

– Proof outline: Essentially proved by choosing codewords of a suitable length on a tree like the one
shown above, starting with those having the highest length. When

∑
x∈X 2−`(x) ≤ 1, we never

“run out of space” on the tree; see the relevant tutorial question for details.

– Hence, the condition in Kraft’s inequality is both necessary and sufficient for the existence of a
prefix-free code having such lengths.

Entropy bound.

• Theorem. For X ∼ PX and any prefix-free code C(·), the expected length satisfies

L(C) ≥ H(X),

with equality if and only if PX(x) = 2−`(x) for all x ∈ X .

– Hence, entropy provides a fundamental limit – we can never get an average length smaller than
the entropy using a prefix-free code.

– Even though we are only stating/proving it for the prefix-free case, it can be shown that the same
holds for any uniquely decodable code.

• Proof.

– Recall the definition of KL divergence, D(P‖Q) =
∑
x P (x) log2

P (x)
QX(x) .

– Observe that

L(C)−H(X)
(a)
=
∑
x

PX(x)`(x)−
∑
x

PX(x) log2
1

PX(x)

(b)
=
∑
x

PX(x) log2 2
`(x) −

∑
x

PX(x) log2
1

PX(x)
,

where (a) is by definition, and (b) simply uses c = log2(2
c).

– To simplify notation, let Z =
∑
x∈X 2−`(x), and define QX(x) = 2−`(x)

Z which is a valid PMF (i.e.,
has non-negative values summing to one).

– Re-arranging terms in the definition of QX(x) gives 2`(x) = 1
Z·QX(x) , and substitution into the

above equation gives

L(C)−H(X) =
∑
x

PX(x) log2
1

ZQX(x)
−
∑
x

P (x) log2
1

PX(x)

(a)
= log2

1

Z
+
∑
x

PX(x) log2
PX(x)

QX(x)

(b)
= log2

1

Z
+D(PX‖Q)

(c)

≥ 0,

4

where (a) uses simple re-arranging (and log2
1
α = − log2 α), (b) uses the definition of KL diver-

gence, and (c) uses Z ≤ 1 (by Kraft’s inequality) and D(PX‖Q) ≥ 0 (KL divergence between two
PMFs is always non-negative).

– To get L(C) = H(X), we need both Z ≤ 1 and D(PX‖Q) ≥ 0 to hold with equality. The former
condition gives QX(x) = 2−`(x) (see the definition of Q), and the latter gives PX = Q (see the
previous lecture), so overall we require PX(x) = 2−`(x) for all x.

• Implication. If our probabilities all contain powers of two (12 ,
1
4 ,

1
8 ,

1
16 , etc.), we can bring the average

code length all the way down to the entropy.

– A simple example:

– Notice that the lengths satisfy `(x) = log2
1

PX(x) for all x ∈ {a, b, c, d, e}

3 Shannon-Fano Code

• Based on the “...equality if and only if...” statement in the entropy bound theorem, we can think of
`∗(x) = log2

1
PX(x) as being the “ideal” code length. However, it can only be attained when all values

of 1
PX(x) are powers of two.

• The Shannon-Fano code simply rounds the ideal lengths up to the nearest integer:

`(x) =

⌈
log2

1

PX(x)

⌉
,

where d·e is the ceiling operation (i.e., rounding up).

• These lengths satisfy the conditions of the “Existence property” theorem above, since∑
x∈X

2−`(x) =
∑
x∈X

2
−dlog2

1
PX (x)

e ≤
∑
x∈X

2
− log2

1
PX (x) =

∑
x∈X

PX(x) = 1,

where we used dαe ≥ α and − log2
1
α = log2 α. Hence, that theorem implies that we can indeed

construct a prefix-free code with the above lengths.

• Theorem. The average length L(C) of the Shannon-Fano code satisfies

H(X) ≤ L(C) < H(X) + 1,

5

so is within one bit of the best average length possible.

– Proof: The lower bound is just a repetition of the entropy bound. To prove the upper bound, we
use the fact that dαe < α+ 1 to deduce the following:

L(C) =
∑
x∈X

PX(x)`(x)

=
∑
x∈X

PX(x)

⌈
log2

1

PX(x)

⌉
<
∑
x∈X

PX(x)

(
log2

1

PX(x)
+ 1

)
= H(X) + 1,

where the last step uses the definition of entropy and
∑
x∈X PX(x) = 1. (Note: By following

similar steps but instead applying dαe ≥ α, we get an alternative proof of the lower bound.)

• While the addition of at most 1 bit may seem innocuous, it can be very significant (e.g., for a “low-
information” source, maybe H(X) itself is only 0.5 bits!)

• Theorem (Mismatched case). If the true distribution is PX but the lengths are chosen according
to QX (i.e., `(x) =

⌈
log2

1
QX(x)

⌉
), then the Shannon-Fano code satisfies

H(X) +D(PX‖QX) ≤ L(C) ≤ H(X) +D(PX‖QX) + 1.

– Proof: Similar to above, also using EP
[
log2

1
QX(X)

]
= EP

[
log2

PX(X)
QX(X)PX(X)

]
= EP

[
log2

1
PX(X) +

log2
PX(X)
QX(X)

]
= H(X) +D(PX‖QX).

– Hence, if an inaccurate distribution is used (not-so-small D(PX‖QX)) then the penalty due to
mismatch may also be significant.

4 Huffman Code

• At this stage it is natural to ask whether it is possible to find the optimal symbol code, in the sense of
minimizing L(C) while being uniquely decodable. This remained a seemingly challenging open problem
until an extremely simple solution was given by Huffman (as part of a homework question!).

• Huffman code. Construct a tree as follows:

– List the symbols of X from highest probability from highest to lowest.

– Draw a branch connecting the two symbols with the lowest probability, and label the merged
point with the sum of the two associated probabilities.

– Repeat the first two steps (with the two original probabilities replaced by the merged probability)
until everything has merged to a single point with total probability 1.

Once this tree is constructed, we label the two edges in each branch as 0 and 1, and then let the
codewords be the labels encountered when traversing from the end back to the start.

6

• An illustration:

• Theorem. No uniquely decodable symbol code can achieve a smaller average length L(C) than the
Huffman code.

– The proof is based on a recursive argument, and can be found in Section 5.8 of Cover/Thomas.

• Since Huffman coding is at least as good as Shannon-Fano coding, it also satisfies the average length
bound H(X) ≤ L(C) < H(X) + 1.

5 Discussion

• Perhaps the most significant limitation of symbol codes is that they do not exploit memory (i.e.,
dependence between subsequent symbols). For instance, given a ‘q’ in English the next character is
very likely to be ‘u’, or to go even further, we can be very confident about the next character in the
sequence “Fill in the blan_”.

• However, we can extend symbol codes to exploit such dependencies as follows:

– Instead of coding one character at a time, group them into chunks of a given length (say, 5
symbols) and do Huffman coding with X 5 in place of X , and PX1X2X3X4X5 in place of PX .

– Advantage 1: We can exploit the fact that, for example, “apple” is a much more probable sequence
than “ealpp” despite containing the same characters.

– Advantage 2: Even with independent symbols (e.g., PX1X2X3X4X5 =
∏5
i=1 PX(xi)) we can im-

prove the “one bit extra” guarantee. More generally letting N = 5 denote the length we are coding
over, the standard one bit guarantee gives the following under independent symbols:

NH(X) ≤ L(C) ≤ NH(X) + 1,

since H(X1, . . . , XN) =
∑N
i=1H(Xi) for independent symbols. But by dividing by N , this gives

H(X) ≤ Average length per symbol ≤ H(X) +
1

N
,

so that the loss of 1 bit in the upper bound is improved to 1
N .

– Disadvantage 1: Determining the distribution PX1,...,XN
accurately is very difficult.

7

– Disadvantage 2: Even if the joint distribution is known, sorting |X |N probabilities in the Huff-
man coding algorithm becomes computationally challenging even for moderate values of N . The
complexity increases exponentially with N .

6 (Optional) Beyond Symbol-Wise Codes

Arithmetic codes

• Arithmetic codes are a very elegant technique for sequentially coding sources with memory when the
conditional distribution PXi|X1,...,Xi−1

is known. The idea is illustrated in the following:

– For concreteness, suppose the alphabet is ‘a’, ‘b’, ‘c’.

– Start with an interval ranging from 0 to 1.

– Split the interval into three regions of width PX1
(a), PX1

(b), and PX1
(c).

– After observing X1 = b, move into the region of width PX1
(b).

– Split the width-PX1
(b) region into three regions proportional to PX2|X1

(a), PX2|X1
(b), and

PX2|X1
(c).

– After observing X2 = c, move into the corresponding sub-region.

– Continue recursively until the entire input sequence has been read.

• At the end of this process, we are left with a very small sub-interval I of [0, 1]. How do we map this
to a binary sequence?

• Key idea.

– Every point in the interval [0, 1] corresponds to an infinite binary sequence (e.g., 1
3 maps to

0.010101 . . . , 1
2 maps to 0.10000 . . . , etc.).

– A finite-length binary sequence (e.g., 0.010101) then corresponds to an interval (e.g. starting
from the number represented by 0.010101 followed by infinitely many zeros, ending at the number
0.010101 followed by infinitely many ones).

8

– Output a finite-length binary sequence that is just long enough for its corresponding interval to
be a sub-interval of I.

• The notion of entropy as a fundamental compression limit can be extended to broad types of sources
with memory (see Cover/Thomas Chapter 4), and it can be shown that arithmetic coding can encode
a sequence (x1, . . . , xn) down to at most

`(x1, . . . , xn) ≤ log2
1

PX1,...,Xn
(x1, . . . , xn)

+ 2

bits, which is within 2 bits of the “ideal length”. In particular, we get

Average Total Length ≤ H(X1, . . . , Xn) + 2,

and for a memoryless source, the number of bits per symbol is at most H(X) + 2
n .

• See Cover/Thomas Section 13.3 or MacKay Section 6.2 for further details.

Lempel-Ziv code

• A disadvantage of arithmetic codes is the need to know PX1,...,Xn
. A class of codes known as Lempel-Ziv

(LZ) codes are universal, in that they do not use any knowledge of the source distribution.

• For memoryless sources, and also broad classes of sources with memory, LZ codes are efficient enough
to code almost down to the entropy (albeit with the “second-order” term being O(log n), which is a
fair bit higher than the 2 bits attained by arithmetic coding).

• The encoding can roughly be described as follows:

– Step 1: Parse the string into substrings that haven’t been observed earlier:

– Step 2: Encode each parsed sub-string into a sequence of bits of the form (pointer, new bit),
where “pointer” identifies the index of the sub-string that matches the current one with the final
bit removed, and “new bit” describes that final bit.

– Encoding: Store the sequence of pointers (represented in binary) and new bits.

• See Cover/Thomas Section 13.4 or MacKay Section 6.4 for further details.

9

	Symbol-Wise Coding
	Kraft's Inequality and the Entropy Bound
	Shannon-Fano Code
	Huffman Code
	Discussion
	(Optional) Beyond Symbol-Wise Codes

