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Useful references:
e Cover/Thomas Chapter 3
e MacKay Chapter 4

e Shannon’s 1948 paper “A Mathematical Introduction to Communication”

1 Setup

Introduction.

e In the previous lecture, we mapped individual source symbols x € X to variable-length binary sequences

one at a time (symbol coding), and briefly discussed mapping multiple at a time (block coding).
e In this lecture, we consider the following distinct setting:

— We do not work symbol-by-symbol, but instead apply some encoding function to a length-n block
Xy, X,

— The output of the encoder is not a variable-length sequence, but instead an integer m € {1,..., M}
for some M. For instance, we might store M on a computer as a fized-length binary sequence of
length log, M.

Because each input sequence of length n is mapped to a binary output sequence with length log, M,

this is sometimes called fized-to-fized length source coding.

e An illustration:
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e At the end of the last lecture, we briefly mentioned variable-length block coding methods, which are
in fact more pertinent to practical compression methods. The fixed-length setting, on the other hand,

provides a better warm-up for next lecture’s topic of channel coding.

e Key difference: Consider the case that the X; are binary (for simplicity of discussion). If log, M < n
(i.e., M < 2™), we clearly can’t assign every sequence (X1,...,X,) a unique value of m. This means

that some of the sequences must be decoded incorrectly (“errors”).

— In contrast, in the variable-length setting, we never have an error; some output sequences just

come out longer than others.

Formal problem statement.
e The source is a sequence (X1, ..., X,). We focus on discrete memoryless sources:
— Discrete: The alphabet X is finite;

— Memoryless: Px(x) = []i~; Px(;), i.e., the source symbols are i.i.d. on some distribution Px.

(This is a restrictive assumption, but still an interesting problem to study)

An encoder receives as input a sequence of source symbols X = (X,...,X,,) € X", and maps it to an
encoded message m = f(X) in {1,...,M}.

A decoder receives the encoded message m and maps it to an estimate X = g(m) (in X™) of the source.

e An error is said to have occurred if X # X, and the error probability is given by

The rate is defined to be

1
R = —log, M,
n
and represents the number of bits per source symbol used to represent the encoded value m. The lower
the rate, the more we have compressed the source sequence.
A fundamental trade-off.

e (learly we would like P, to be small.

e We also want M (or equivalently, R) to be small, so that we require less bits to store m.

The length n also plays a fundamental role, and is referred to as the block length.

Key question: What is the fundamental trade-off between error probability P, rate R, and block length

n? In particular, how low can the rate be while keeping the error probability small?

Fixed-Length Source Coding Theorem. For any discrete memoryless source with per-symbol

distribution Py, we have the following:

— (Achievability) If R > H(X), then for any € > 0, there exists a (sufficiently large) block length n
and a source code (i.e., encoder and decoder) of rate R such that P < ¢;

— (Converse) If R < H(X), then there exists ¢ > 0 such every source code of rate R has P. > ¢,
regardless of the block length (i.e., P, cannot be arbitrarily small).

The proofs are respectively given in the next two sections.



2 Typical Sequences and the Asymptotic Equipartition Property
Definition.

e Recall that X = (X7,...,X,) is an i.i.d. sequence with each symbol distributed according to Px. In
the following, let Px (x) = [[;—, Px(z;) be the PMF of X.

e The typical set is defined as
Tn(e) = {x c xm . g HX)te) < Px(x) < 2—n(H(X)_€)})

where € > 0 is a fixed (small) constant. (Note: This € is not directly related to the € in the theorem

statement above, we just use the same symbol because both are arbitrarily small constants)

e As we will see shortly, it is called the typical set because for X ~ Px the probability that X € T, (¢)

is very close to one.

e After analyzing its properties, we will give some intuition as to how one might have come up with this

definition “from scratch”.
Properties.
e For any fixed € > 0, four key properties of the typical set are as follows (proofs below):

1. (Equivalent definition) We have x € T,(¢) if and only if

1 — 1
HX)—e< — logy, ——— < H(X) +¢

where z; is the i-th entry of x.
2. (High probability) P[X € T,(e)] = 1 as n — oc.
3. (Cardinality upper bound) |7, ()| < 2nHX)+e),

4. (Cardinality lower bound) |T,(e)] > (1 — 0(1))2"H(X)=€) " where o(1) represents a term that

vanishes as n — oo.

e Interpretation: With high probability (second property), a randomly drawn i.i.d. sequence X will be
one of roughly 2"7(X) sequences (third and fourth properties), each of which has probability roughly

2~ H(X) (definition of typical set).

— We call this the Asymptotic Equipartition Property, because it states that asymptotically (as

n — 00) the distribution is roughly uniform over 7y, (¢).
e Proofs:

1. Apply %logQ(o) to the left, middle, and right of the condition 2~ (H(X)+e) < Py (x) < 2-n(H(X)—¢)
defining 7, (e). The left and right clearly become H(X) — e and H(X) + € (since log,(2%) = ),

and the middle becomes 1 log, Px (x) = £ log, [T, Px(z;) = 2 31", log, %



2. Since X is an i.i.d. sequence, % i log, % is an i.i.d. sum of random variables. The mean
1

of each such random variable is E[log2 T(X)] = H(X). Therefore, due to property 1, we see
that property 2 simply follows from the law of large numbersﬂ
3. By the definition of the typical set, if x € T, () then Px(x) > 27 "(H(X)+€)  Since any probability

is at most one, we have

1> P[X € Ta(e)]

= ) Px(x)

xET, (€)

> Z 27n(H(X)+e)
xET, (€)

= Ta(e)| - 2%,

Re-arranging gives the third property.

4. By the definition of the typical set, if x € T, (¢) then Px(x) < 27 "H(X)=9)  Writing property 2
as P[X € T,(¢)] =1 —o(1), we obtain

1—0(1) =PX € T,(e)]

= Y Px(x)

xET, (€)

Z 27n(H(X)7e)

xETr (€)
T(e)] - 200,

IN

Re-arranging gives the fourth property.
Implication.
e The above suggests a very simple source coding scheme:
— Map each typical sequence to a unique integer in {1,...,M — 1};
— Map each non-typical sequence to a “dummy value” M.

The decoder lets X be arbitrary for m = M, whereas for m < M it simply outputs the corresponding

typical sequence.

e Clearly this scheme is possible if M = |T,(¢)| + 1, and yields error probability P, < P[X ¢ Tx], which
is arbitrarily small for sufficiently large n by property 2 above.

e Substituting property 3 above gives M = 2*(H(X)+¢) 4 1. Since e may be arbitrarily small and the rate
is %logz M, we deduce that we can get arbitrarily small error probability with a rate arbitrarily close
to H(X).

— Note that this only holds as n — co. The closer we take the rate to H(X) (smaller €¢) and the
smaller we take the error probability, the higher we might need to take the block length n.

1The law of large numbers states that the average of n i.i.d. random variables is arbitrarily close to its mean with probability
approaching one. See the prerequisite material document for a more formal statement.



A possible thought process behind deriving 7, ().

e Since we only have a finite number of messages {1, ..., M} to work with, it makes sense to assign them

only to the most probable sequences, i.e., those such that
Px(x) >~

for some v > 0. How high can we make ~ while still ensuring the set has high probability?

o After staring at this for a while, one becomes tempted to take the log (to simplify the product in
Px(x) =TI, Px(z;)) to get the equivalent condition

Z logy Px (x;) > logy 7.
i=1

e Recognizing >, log, Px(X;) as a sum of independent random variables with mean H(X), one realizes
that log, v should be chosen as roughly —nH (X) by the law of large numbers. With some re-arranging,
the original condition Px(x) > v reduces to Px(x) = 27X,

e Since the law of large numbers works for deviations on both sides of the mean, one then realizes that

things also work out if we use the two-sided version Ty, (€).
(Optional) Alternative “one-sided typicality” proof.

e It is, in fact, not hard to see that we could get to the same “R arbitrarily close to H(X)” result using a

one-sided typicality notion like that in the above thought process. Specifically, consider the definition
T (e) = {x € X" Px(x) > 2—"<H<X>+6)}.

We still have X € T!(e) with probability approaching one, and the same upper bound on the total

number of sequences satisfying it (by the same proofs as above).

e This variation arguably makes more sense, as it encodes all sequences whose value of Px(x) is suffi-

ciently high — it seems strange to ignore those that are the most probable!

e Nevertheless, two-sided typicality is more common in information theory proofs, and in certain other

settings it is actually useful for the mathematical analysis.

3 Fano’s Inequality and a Converse Bound

Motivation.

e The idea behind proving the converse part of the source coding theorem is to consider the mutual

information I(X;X) as follows.

e Remember that mutual information is how much one random variable reveals about another. If our
estimate X is accurate, then the amount of information that it reveals about X should be roughly equal
to H(X) = nH(X), the prior uncertainty in X. Since I(X;X) = H(X) — H(X|X), t his is equivalent
to saying that we should have H(X|X) ~ 0.



e However, we also have I(X;X) < H(X) < nR, since there are only 2"% possible X sequences (and the

uniform distribution maximizes entropy and gives entropy equaling the log of the number of values).
e Putting these together, we get that having an accurate estimate requires R > H(X).

e Before making this argument rigorous, we need to introduce a tool for formalizing the fact that accurate
estimation implies H(X|X) ~ 0.

Fano’s inequality.

e In the following, X denotes a generic random variable (or vector), and X can be thought of as any

estimate of X. At this stage, these do not need to be thought of as necessarily directly related to the

definitions in the previous sections.
e Fano’s inequality relates two fundamental quantities:

— The conditional entropy H(X|X);

— The “error probability” P, = P[X # X].
Intuitively, if H(X |X ) is “large”, then X does not reveal much information about X, so P, must not
be too small either (it it were very small, then knowing X would tell us a lot about X!).
Similarly, if P, is small then H(X|X) should be small too. As an extreme example, if P, = 0 then
X = X and therefore H(X|X) = 0.

e Claim (Fano’s Inequality). For any discrete random variables X and X on a common finite alphabet
X, we have
H(X|X) < Hy(P.) + P.log, (|X| - 1),

where Ha(a) = alogy = + (1 — @) log, 7= is the binary entropy function.

e Intuition. To resolve the uncertainty in X given X , we can first ask whether the two are equal, which
bears uncertainty Ho(F,). In the case that they differ, which only occurs a fraction P, of the time, the

remaining uncertainty is at most log, (|X | — 1), since the uniform distribution maximizes entropy.

e Formal proof. Defining the error indicator random variable E = 1{X # X }, we have

HX|X) Y H(X, B|X)

Y H(E1R) + HX|X,E)

©) .

< H(E)+ H(X|X,E)

@ Hy(P.) + P.H(X|X,E = 1) + (1 - P)H(X|X,E = 0)

(e)
< Hy(P.) + Pelog, (|X| - 1),

where:

— (a) holds since E is a deterministic function of (X, X). More formally, the chain rule gives
H(X,E|X)=H(X|X)+ H(E|X, X), and then we have H(E|X,X) = 0.

— (b) follows from the chain rule.



— (c) holds since conditioning reduces entropy.

— (d) uses H(E) = Hy(P,) for the first term (recall that Ha(p) is defined to be the entropy of a

Bernoulli(p) random variable) and the definition of conditional entropy for the second term.

— (e) follows since X has no uncertainty given X when E = 0, and takes one of |X| — 1 values given

X when E = 1.
Implication for source coding.

e Theorem. In the block source coding problem with a discrete memoryless source Px, if R < H(X),

then P, = P[X # X] cannot be made arbitrarily small as n — co.

— Holds for any code design! Results of this type are called converse bounds or impossibility results.

(The entropy bound of the previous lecture was also of this type).

— This is a statement of mathematical impossibility regardless of computation, storage, etc.
e Proof: Start with Fano’s inequality with (X, X) playing the role of the generic variables (X, X):
H(X|X) < Hy(Pe) + P log, (‘Xn| - 1)

where X" = X x ... x X (n times) is the set of all length-n sequences with symbols in X. For
convenience, we upper bound log, (|X"| — 1) < log, |X"| = nlog, |X|, and also Hz(P.) < 1 (binary

entropy is at most one bit), to obtain
H(X|X) < P, -nlog, |X| +1

This is a weakened form of Fano’s inequality.

Recall the definition of mutual information, I(X;X) = H(X) — H(X|X). Upper bounding H(X|X)

according to the previous display equation gives
I(X;X) > H(X) — P.-nlogy | X| — 1.

On the other hand, the definition of mutual information (in the “other” form) gives

where (a) uses the non-negativity of (conditional) entropy, and (b) uses the fact that X takes on one
of M = 2" values (and entropy is always upper bounded by log of the number of values). Combining
the previous two equations with H(X) = nH(X) (easily verified by the i.i.d. assumption on X, i.e.,

the memoryless property), we get

nR>nH(X)— P, -nlog, |X| — 1,



or equivalently,

P> Wﬂ/ﬂ(H(X)—R—%).

Therefore, if R < H(X) then P, cannot tend to zero as n — oo.

— A minor technical detail: On Page[2] we stated the source coding theorem for arbitrary n, not
only n — oco. However, the result for n — oo implies the result for arbitrary n. Indeed, the only
way to get arbitrarily small error probability at finite n is to have P, = 0. But if we can achieve
P. = 0 at some rate with finite block length, we can also achieve it as n — oo by simply using

that code many times in succession.

— Note: There exist alternative proofs that show that in fact P, — 1 as n — oo for any source
coding scheme when R < H(X). That is, not only are we unable to attain a small error probability

like 0.01, we can’t even attain a target error probability like 0.99.



	Setup
	Typical Sequences and the Asymptotic Equipartition Property
	Fano's Inequality and a Converse Bound

