
CS3236 Lecture Notes #4:

Channel Coding

Jonathan Scarlett

March 22, 2023

Useful references:

• Cover/Thomas Chapter 7

• MacKay Chapters 8–10

• Shannon’s 1948 paper “A Mathematical Introduction to Communication”

1 Setup

Overview.

• Full communication setup (source and channel coding):

• Channel coding setup:

1



Channel model.

• The channel is the medium over which we transmit information

• We denote the input by x and the output by y (or X and Y when we want to highlight that they are
random)

• We assume (for now) that the channel input and output only take finitely many possible values (e.g.,
binary, x ∈ {0, 1} and y ∈ {0, 1}). These sets of possible inputs/outputs are denoted by X and Y. We
call these the input alphabet and output alphabet.

• We adopt a probabilistic modeling approach: When the input is x ∈ X , a given output y ∈ Y is
produced with probability PY |X(y|x).

• The channel transition probabilities are typically depicted graphically. A simple example:

Problem description.

• We generically view the communication problem as seeking to transmit a message m ∈ {1, . . . ,M}. In
particular, if a fixed-length source code outputs a length-k sequence of bits, then we can set M = 2k

and map each such sequence to a unique index m.

• The encoder takes as input the message m, and outputs a sequence of channel inputs x1, . . . , xn. To
make the dependence on the message explicit, we define the codeword x(m) = (x

(m)
1 , . . . , x

(m)
n ), which

is the sequence produced when the message is m.

– The collection of codewords C = {x(1), . . . ,x(M)} is referred to as the codebook. It is known at
both the encoder and decoder, but only the encoder knows m.

The codeword x(m) is transmitted over the channel in n uses, and the resulting output sequence is
denoted by y = (y1, . . . , yn).

• We focus (for now) on discrete memoryless channels:

– Discrete: The input/output alphabets X and Y are finite, as stated above;

– Memoryless: When we transmit several symbols (say, n of them) over the channel in successive
uses, the outputs are (conditionally) independent:

PY|X(y|x) =
n∏

i=1

PY |X(yi|xi).
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• Given the output sequence y (and knowledge of the codebook C), the decoder forms an estimate m̂ of
the message m.

A fundamental trade-off.

• Clearly we would like m̂ = m; if not then an error has occurred. Accordingly, we define the error
probability

Pe = P[m̂ ̸= m]. (1)

We will henceforth consider this probability as being averaged over m uniform on {1, . . . ,M} (along
with the randomness in the channel), though without much extra effort we can actually get similar
results for the maximal error probability maxm=1,...,M P[m̂ ̸= m |m chosen].

• We would like to transmit as much data as possible (i.e., high M); instead of considering M directly,
we usually measure this via the rate (measured in bits per channel use):

R =
1

n
log2 M.

That is, the number of messages is M = 2nR.

– For instance, if M = 2n then R = 1, which makes sense because n bits (each a 0 or 1) corresponds
to 2n possible combinations (of 0s and 1s).

• The quantity n also plays a fundamental role; it is referred to as the block length.

• Key question: What is the fundamental trade-off between error probability Pe, rate R, and block length
n? In particular, how high can the rate be while keeping the error probability small?

2 Channel Capacity

Definition.

• Definition. The channel capacity C is defined to be the maximum1 of all rates R such that, for any
target error probability ϵ > 0, there exists a block length n and codebook C = {x(1), . . . ,x(M)} with
M = 2nR codewords such that Pe ≤ ϵ.

– In simpler terms: This is the highest rate such that the error probability can be made arbitrarily
small at some (possibly large) block length.

• Channel Coding Theorem. The capacity of a discrete memoryless channel PY |X is

C = max
PX

I(X;Y ).

The proof is split into two parts (given in later sections):

– Achievability part: For any R < C, there exists a code of rate at least R with arbitrarily small
error probability.

1More mathematically precisely, the supremum.
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– Converse part: For any R > C, any code of rate at least R cannot have arbitrarily small error
probability.

• Definition. For a given channel PY |X , any input distribution PX maximizing the mutual information
above is called a capacity-achieving input distribution.

Examples.

• Noiseless channel:

– Consider a noiseless channel with X = Y = {0, 1} in which the output deterministically equals
the input (i.e., Y = X):

– An illustration:

– Since Y = X, we have H(X|Y ) = 0 (there is no uncertainty in X once we know Y ), and hence

I(X;Y ) = H(X)−H(X|Y ) = H(X).

Therefore, the capacity is
C = max

PX

I(X;Y ) = max
PX

H(X) = 1

since the entropy of a binary random variable is at most one (achieved when PX(0) = PX(1) = 1
2 ).

– This result should not be surprising – if there is no noise, we can reliably transmit one bit per
channel use without even doing any coding!

• Binary symmetric channel:

– Again consider X = Y = {0, 1}, but now each input is flipped with some probability δ ∈ (0, 1):

PY |X(y|x) =

1− δ y = x

δ y = 1− x.

– An illustration:

– In this case, it is more convenient to use the expansion I(X;Y ) = H(Y )−H(Y |X).

4



– In general we have H(Y |X) =
∑

x PX(x)H(Y |X = x), but due to the symmetry things simplify.
Specifically, regardless of whether we condition on X = 0 or X = 1, the conditional probabilities
of Y are still δ and 1− δ, and so H(Y |X = x) = H2(δ), where H2(δ) = δ log2

1
δ + (1− δ) log2

1
1−δ

is the binary entropy function.

– This gives H(Y |X) = H2(δ) and hence

C = max
PX

I(X;Y ) = max
PX

(
H(Y )−H2(δ)

)
.

If we were maximizing over PY directly, we could get maxH(Y ) = 1 by the same argument as
the noiseless case by letting PY be uniform. But in this case, even though we can only control
PX , we can still produce uniform PY – just let PX be uniform!

∗ Indeed, if PX(0) = PX(1) = 1
2 , then we have

PY (0) =
1

2
(1− δ) +

1

2
δ =

1

2
,

and similarly PY (1) =
1
2 .

– Therefore, the capacity is
C = 1−H2(δ)

and the capacity-achieving input distribution is PX(0) = PX(1) = 1
2 .

– An illustration:

– As expected, setting δ = 0 recovers the noiseless capacity C = 1. Notice also that δ = 1
2 gives

capacity zero, because in this case we have PY |X(y|x) = 1
2 regardless of the input x, so the output

carries no information about the input.

• Binary erasure channel:

– Consider X = {0, 1}, Y = {0, 1, e}, and transition probabilities

PY |X(y|x) =


1− ϵ y = x

ϵ y = e

0 y = 1− x
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for some erasure probability ϵ. In words, the output equals the input with probability 1 − ϵ, but
is “erased” (corresponding to output e) with probability ϵ.

– An illustration:

– This time it turns out easier to use the expansion I(X;Y ) = H(X) − H(X|Y ), though the
I(X;Y ) = H(Y )−H(Y |X) approach is also possible (see the tutorial).

– H(X|Y ) is fairly easy to characterize, because H(X|Y = 0) = H(X|Y = 1) = 0 (there is no
uncertainty in X when Y ̸= e). Hence,

H(X|Y ) =
∑
y

PY (y)H(X|Y = y) = PY (e)H(X|Y = e).

Then, given Y = e, we have

PX|Y (0|e) =
PXY (0, e)

PY (e)
=

PX(0)ϵ

ϵ
= PX(0),

and similarly PX|Y (1|e) = PX(1). Hence, H(X|Y = e) = H(X).

– Combining the above findings gives

I(X;Y ) = H(X)−H(X|Y )

= (1− ϵ)H(X).

– Upon maximizing over PX , we can get the maximal value H(X) = 1 with PX(0) = PX(1) = 1
2 .

Therefore, the capacity is
C = 1− ϵ.

An illustration:
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• In all of these examples, the capacity-achieving input distribution is uniform.

– In fact, much more general classes of symmetric channels (not necessarily binary) have a uniform
capacity-achieving input distribution. See Cover/Thomas Section 7.2 for details.

– For non-symmetric channels, the capacity-achieving PX may be non-uniform. Moreover, we often
can’t find the optimal choice analytically, so instead need to do so numerically (efficient algorithms
for doing this are known; see Cover/Thomas Section 10.8).

3 Jointly Typical Sequences

The following definition and properties will be crucial in proving the achievability part mentioned above.

• Definition: A pair (x,y) of length-n input and output sequences is said to be jointly typical with
respect to a joint distribution PXY if the following conditions hold:

2−n(H(X)+ϵ) ≤ PX(x) ≤ 2−n(H(X)−ϵ)

2−n(H(Y )+ϵ) ≤ PY(y) ≤ 2−n(H(Y )−ϵ)

2−n(H(X,Y )+ϵ) ≤ PXY(x,y) ≤ 2−n(H(X,Y )−ϵ).

The set of all such sequences is denoted by Tn(ϵ), and is called the jointly typical set.

– In simpler terms: The X sequence, Y sequence, and joint (X,Y ) sequence are all typical according
to the previous lecture’s definition.

• Key properties:2

1. (Equivalent definition) We have (x,y) ∈ Tn(ϵ) if and only if the following conditions hold:

H(X)− ϵ ≤ 1

n

n∑
i=1

log2
1

PX(xi)
≤ H(X) + ϵ

H(Y )− ϵ ≤ 1

n

n∑
i=1

log2
1

PY (yi)
≤ H(Y ) + ϵ

H(X,Y )− ϵ ≤ 1

n

n∑
i=1

log2
1

PXY (xi, yi)
≤ H(X,Y ) + ϵ.

2. (High probability) P[(X,Y) ∈ Tn(ϵ)] → 1 as n → ∞.

3. (Cardinality upper bound) |Tn(ϵ)| ≤ 2n(H(X,Y )+ϵ).

4. (Probability for independent sequences) If (X′,Y′) ∼ PX(x′)PY(y′) are independent copies of
(X,Y), then the probability of joint typicality is

P[(X′,Y′) ∈ Tn(ϵ)] ≤ 2−n(I(X;Y )−3ϵ).

– The first three properties have similar intuition to the “X-only” setting of the previous lecture.
2Near-matching lower bounds can also be shown for the final two properties, but these are omitted here.
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– The final one is distinct from that setting. Intuitively, if X′ and Y′ are generated independently,
then the “further” PXY is from being independent, the less likely it is for those independent
sequences to be jointly typical with respect to PXY . Mutual information naturally arises because
it measures “how far” (X,Y ) are from being independent: I(X;Y ) = D(PXY ∥PX × PY ).

– In fact, the fourth property is a special case of a more general result: If a sequence Z = (Z1, . . . , Zn)

is drawn i.i.d. from some distribution QZ , then the probability that it is typical with respect to
some other distribution PZ is roughly 2−nD(PZ∥QZ).

• Proofs:

1. Simple re-arranging like in the previous lecture.

2. Law of large numbers applied (separately) to the 3 conditions in the first property.

3. Same as the previous lecture via PXY(x,y) ≥ 2−n(H(X,Y )+ϵ) and
∑

(x,y)∈Tn(ϵ)
PX,Y(x,y) ≤ 1.

4. We have

P[(X′,Y′) ∈ Tn(ϵ)] =
∑

(x′,y′)∈Tn(ϵ)

PX(x′)PY(y′)

(a)

≤
∑

(x′,y′)∈Tn(ϵ)

2−n(H(X)−ϵ)2−n(H(Y )−ϵ)

(b)

≤ 2n(H(X,Y )+ϵ)2−n(H(X)−ϵ)2−n(H(Y )−ϵ)

(c)
= 2−n(I(X;Y )−3ϵ),

where (a) uses the fact that PX(x′) ≤ 2−n(H(X)−ϵ) and PY(y′) ≤ 2−n(H(Y )−ϵ) within Tn(ϵ), (b)
uses the upper bound in property 3, and (c) uses I(X;Y ) = H(X) +H(Y )−H(X,Y ).

4 Achievability via Random Coding

Overview.

• Challenge: Devising explicit/specific codes and studying their performance is very difficult.

• Key idea (the probabilistic method): Show that randomly chosen codes perform well on average.
Obviously, the best possible code must perform at least as well as the average.

• Note: The good code whose existence we prove may have very high computation/storage requirements.
This approach merely shows that reliable communication is mathematically possible for rates below
capacity, but not how to get there with a practical design.

Codebook generation.

• Recall that the encoding is done via a codebook C = {x(1), . . . ,x(M)}, where message m is encoded
into the length-n sequence x(m) = (x

(m)
1 , . . . , x

(m)
n ).

• We consider the following random coding approach:

Generate each symbol X(m)
i of each codeword randomly and
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independently according to some distribution PX (to be specified)

Note that we use capital letters for X, X(m)
i , etc. when we want to highlight that they are random.

• For example, if X = {0, 1} and PX(1) = PX(0) = 1
2 , then we are just setting every bit of every

codeword according to a fair “coin flip”.

Encoding and decoding.

• As mentioned above, the encoder simply maps m to X(m) = (X
(m)
1 , . . . , X

(m)
n ) ∈ Xn, which is trans-

mitted via n uses of the channel.

• The decoder receives the output sequence Y = (Y1, . . . , Yn), and also knows the codebook. For each
m̃ = 1, . . . ,M , it checks whether the pair (X(m̃),Y) is jointly typical, and does the following:

– If there exists a unique m̃ that joint typicality holds, then the decoder estimates m̂ = m̃.

– If there exists no such m̃, or multiple such m̃, an error is declared (or alternatively, m̂ is simply
chosen at random).

Note that “joint typicality” is defined with respect to PXY = PX ×PY |X . The channel PY |X was fixed
as part of the problem, whereas PX is something we chose ourselves (during the codebook generation).

• Note that the joint distributions between the codewords and the output are exactly those we need to
apply properties 2 and 4 of joint typicality:

– For the correct m (i.e., X(m) is transmitted), PY|X is i.i.d. according to PY |X , and X(m) itself is
i.i.d. according to PX by construction, so overall (X(m),Y) is i.i.d. on PXY = PX × PY |X .

– For any incorrect m̃ (i.e., X(m̃) is a non-transmitted codeword), we have that X(m̃) and Y are
independent, since Y only depends on the transmitted codeword, not the other ones. Therefore,
the joint distribution of (X(m̃),Y) takes the form PX(x)PY(y).

Analysis of the error probability.

• In order to have m̂ = m, it is clearly sufficient that the following two events occur:

1. (X(m),Y) is jointly typical;

2. None of the other (X(m̃),Y) are jointly typical (with m̃ ̸= m).

• Let P (m)
e denote the error probability given that the message is m, averaged over both the randomness

in the channel and the random codebook (previously we only averaged over the former). This is called
the random-coding error probability.

• We have just argued that the success probability 1− P
(m)
e satisfies

1− P (m)
e ≥ P

[
(X(m),Y) ∈ Tn(ϵ) ∩

⋂
m̸̃=m

{
(X(m̃),Y) /∈ Tn(ϵ)

}]
,

which, by de Morgan’s laws, is equivalent to

P (m)
e ≤ P

[
(X(m),Y) /∈ Tn(ϵ) ∪

⋃
m̸̃=m

{
(X(m̃),Y) ∈ Tn(ϵ)

}]
.

9



• Using the union bound P[Ai ∪ . . . ∪AN ] ≤
∑N

i=1 P[Ai], we obtain

P (m)
e ≤ P

[
(X(m),Y) /∈ Tn(ϵ)

]
+

∑
m̃ ̸=m

P
[
(X(m̃),Y) ∈ Tn(ϵ)

]
.

• By the i.i.d. random coding method and the memoryless property of the channel, (X(m),Y) is i.i.d. on
PXY . Moreover, since X(m) is the only codeword that Y depends on, we also have that (X(m̃),Y) is
an independent pair with the same PX and PY marginals as (X(m),Y).

• Therefore, the joint typicality properties in the previous section give (X(m),Y) ∈ Tn(ϵ) with prob-
ability approaching one (as n increases), and that the probability of (X(m̃),Y) ∈ Tn(ϵ) is at most
2−n(I(X;Y )−3ϵ), which gives

P (m)
e ≤ P

[
(X(m),Y) /∈ Tn(ϵ)

]
+

∑
m̸̃=m

P
[
(X(m̃),Y) ∈ Tn(ϵ)

]
(a)

≤ δn +
∑
m̸̃=m

2−n(I(X;Y )−3ϵ)

(b)

≤ δn +M × 2−n(I(X;Y )−3ϵ),

where in (a) δn denotes a sequences that tends to 0 as n → ∞, and in (b) we used the fact that the
number of terms in the summation is M − 1 ≤ M .

• Since M = 2nR, we find that for R < I(X;Y )− 3ϵ the overall upper bound on P
(m)
e tends to zero as

n → ∞. Since ϵ may be arbitrarily small, this means P
(m)
e can be made arbitrarily small for any rate

R arbitrarily close to I(X;Y ).

• Since this holds for any m, it also holds for the random-coding error probability 1
M

∑M
m=1 P

(m)
e averaged

over the message m. (In fact, due to the symmetry of random coding, P (m)
e is the same for all m.)

• Finally, by choosing PX to achieve the maximum in the definition C = maxPX
I(X;Y ), we deduce

that we can get vanishing error probability for rates arbitrarily close to the capacity C.

(Optional) Alternative proof.

• In an interesting alternative proof, instead of the notion of joint typicality we considered in the discrete
setting, the decoder looks for a codeword x such that

n∑
i=1

log2
PY |X(yi|xi)

PY (yi)
≥ γ

for some threshold γ. This can be viewed as a form of one-sided typicality.

• Using a simple change of measure argument, one can show that a given incorrect codeword passes this
threshold test with probability at most 2−γ . By the union bound, the probability of this occurring for
any incorrect codeword is at most M2−γ , which tends to zero if we set γ to be slightly above log2 M .

• By the law of large numbers, for the correct codeword,
∑n

i=1 log2
PY |X(yi|xi)

PY (yi)
is close to nI(X;Y ) with

high probability. Therefore, to exceed the threshold γ ≈ log2 M = nR, we just need R < I(X;Y ).
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• This proof is rooted in two early works: “Certain results in coding theory for noisy channels” (Shannon,
1957) and “A new basic theorem of information theory” (Feinstein, 1954).

5 Converse via Fano’s Inequality

• Let m denote a transmitted message uniform on {1, . . . ,M}, and let m̂ be its estimate (in a slight shift
from our usual convention, these are random variables even though they are written in lower-case).

• The error probability is Pe = P[m̂ ̸= m]. Fano’s inequality from the previous lecture3 states that

H(m|m̂) ≤ H2(Pe) + Pe log2(M − 1)

≤ 1 + Pe log2 M.

• Since m is uniform on {1, . . . ,M}, we have H(m) = log2 M , which gives

I(m; m̂) = H(m)−H(m|m̂)

≥ log2 M − Pe log2 M − 1

= (1− Pe) log2 M − 1,

where the inequality uses the previous display equation. Simple re-arranging gives

Pe ≥ 1− I(m; m̂) + 1

log2 M
.

Intuitively, this says that to achieve a small error probability, we need the amount of information that
m̂ reveals about m to be close to the prior uncertainty in m (which is log2 M).

• The key step is to bound the mutual information. We have:

I(m; m̂)
(a)

≤ I(X;Y)

(b)
= H(Y)−H(Y|X)

(c)

≤
n∑

i=1

H(Yi)−H(Y|X)

(d)
=

n∑
i=1

H(Yi)−
n∑

i=1

H(Yi|X)

(e)
=

n∑
i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

(f)
=

n∑
i=1

I(Xi;Yi)

(g)

≤ nC,

where:
3Now with (m, m̂) in place of the generic symbols (X, X̂) used in that lecture.
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– (a) uses the data processing inequality (note that m → X → Y → m̂ forms a Markov chain);

– (b) and (f) use the definition of mutual information;

– (c) uses the sub-additivity of entropy;

– (d) uses the fact that the Yi are conditionally independent given X (and entropy is additive for
independent random variables), i.e., the “memoryless” assumption;

– (e) uses the fact that Yi depends on X only through Xi;

– (g) uses the definition of capacity (C is the maximum mutual information between X and Y ).

• Combining the previous two dot points with log2 M = log2 2
nR = nR gives

Pe ≥ 1− C + 1/n

R
,

which means that Pe is bounded away from 0 as n → ∞ whenever R > C.

– A minor technical detail: We originally stated the channel coding theorem for arbitrary n,
not only n → ∞. However, the result for n → ∞ implies the result for arbitrary n. Indeed, the
only way to get arbitrarily small error probability at finite n is to have Pe = 0. But if we can
achieve Pe = 0 at some rate with finite block length, we can also achieve it as n → ∞ by simply
using that codebook many times in succession.

6 (Optional) Joint Source-Channel Coding

• If we can successfully perform both source coding and channel coding, then we can form the overall
communication system as shown in the first figure of this document (Page 1).

• Denoting the source block length by k and the channel block length by n, and taking both to be
sufficiently large, we obtain the following condition for overall reliable communication:

n× C︸ ︷︷ ︸
Total Capacity

> k ×H︸ ︷︷ ︸
Total Entropy

or equivalently
k

n
<

C

H
.

Indeed, this result follows from a simple combination of the source coding and channel coding theorems.
We first compress the source and represent it using roughly M ≈ 2kH bits, and then we send the
corresponding index m ∈ {1, . . . ,M} across the channel in n uses.

• It may seem strange that we are removing first redundancy (source coding) only to then add redundancy
(channel coding) – could a joint approach be better? This is known as joint source-channel coding.

• Separation theorem. Even with joint source-channel coding, reliable communication is impossible
if k

n > C
H . Therefore, separate source-channel coding is asymptotically optimal at large block lengths.

– Proof: Mostly similar to that above based on Fano’s inequality. See Section 7.13 of Cover/Thomas.

– Note: The gains can be significant at finite block lengths (beyond the scope of this course).
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