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Useful references:
e Cover/Thomas Chapters 8 and 9

e MacKay Chapter 11

1 Differential Entropy

Introduction.

e So far, we have considered channels with finite input and output alphabets, and accordingly used
probability mass functions (PMFs) Py and conditional PMFs Py x.

e In this lecture, we will consider continuous (real-valued) inputs and outputs, and accordingly consider
probability density functions (PDFs) fx and conditional PDFs fy|x.

e First, we need to revise the main definitions of information measures (entropy, mutual information,

KL divergence)
Differential entropy.

e The differential entropy of a continuous random variable X with PDF fx is seemingly natural given

the regular version:

h(X)=Es, {mg2 fsz)]

1
= /fo(x) log, @ dx.

However, compared to the discrete case, much more care is needed in interpreting this quantity as a

measure of information/uncertainty (in particular, see the properties that no longer hold below)

— As usual, we can also consider the joint version

1
h(X,Y) = I['E(XA’)foy [logz ny(XY)]’



and the conditional version

1
h(Y]X) = IEZ(X,Y)foy [bgz m

:/fX(;l:)H(Y|X:x)dJ:
R

when (X,Y’) have a joint density function fxy(x,y) = fx(z)fy|x (y|z).
e Properties of entropy that still hold for differential entropy:

— Chain rule: h(Xy,...,X,) =Y M(X;|X1,..., X;-1)
— Conditioning reduces entropy: h(X|Y) < h(X)

— Sub-additivity: h(X1,...,X,) <> h(X;)

— h(X) = h(X + ¢) for constant ¢

e Properties that no longer hold:

— Non-negativity

— Invariance under one-to-one transformations

Counter-examples to both of these can be deduced as follows: If Y = ¢X for some constant ¢, then
a standard formula for the density of a function gives fy(y) = ﬁ fx (%), and substitution into the
formula for differential entropy gives h(Y) = h(X) 4 logy |¢|. As ¢ — 0, we have log, |c|] = —o0,

meaning hA(Y) may be arbitrarily negative.
Examples.

e Claim. For a uniform random variable X ~ Uniform(a, b) with a < b, we have
h(X) = logy (b — a).

— Proof: By definition fx(z) = ;1 for a < 2 < b, and fx(z) = 0 elsewhere. Substitute this into

the expression for h(X).
e Claim. For a univariate Gaussian X ~ N(u,0?), we have
1 2
h(X) = B log, (2mea?).

— Proof: We give the proof for the case p = 0; the general case is very similar. The PDF of X is
given by fx(x) = —= e=2/(20

2mwo?

*) , and hence

X) = log, 55

= E[logQ (\/27r02 : eX2/<2<’2))]

log, e

202 E[X7],

1
=3 log, (2m0?) +



where we have used log,(ab) = logy(a) + log,(b) and logy(a®) = clogya. But by definition
E[X?] = 02, and so we get

log,y e

1
h(X)= 3 log, (2m0?) + 5

= % log, (2mec?).

Mutual information and KL divergence.

e The definitions of KL divergence and mutual information also extend naturally:

D(fllg) = / F() log, {qudx

and

I(X;Y) = D(fxvllfx x fvr)

e In contrast with differential entropy, it is uncontroversial to consider I(X;Y") as a measure of how much
information Y reveals about X (or vice versa). Indeed, both mutual information and KL divergence

retain all of their key properties, including non-negativity.

— It can also be shown that I(X;Y) = I(¢(X);¢(Y)) for invertible functions ¢(-) and ¥ (-).

2 Gaussian Random Variables

Univariate case.
e As mentioned above, for X ~ N(u,0?), we have h(X) = 3 log, (2mes?).

e Maximum entropy property (univariate case). For any random variable X having a density fx

and variance Var[X], we have
1
h(X) < 3 log, (2me Var[X])

with equality if and only if X is Gaussian.

— Proof: Let f be the density function of X, and let g be the Gaussian density with the same

mean and variance as X. For brevity, denote this mean and variance by p and o2, so that



g(z) = ﬁe—@_“)w(%z). Then observe that

D(flo) = B |08, 10 |
@ Ef -logz g(lX)] +Ef[log2 f(X)]

ey | tog, | - o)

© Ey | log, (V 2no? - e(X“)2/(2“2))] — h(X)

(@ 1 log, e

D 2 loga(2m0%) + 2 Ef[(X — )] ~ (X)
g

e) 1

© 5 loga(2mea?) — h(X),

where (a) and (d) simply expand the logarithms, (b) uses the definition of A(X), (c) substitutes
the definition of g, and (e) uses Ef[(X — u)?] = 0%. The maximum entropy property now follows
from the fact that D(f]|g) > 0 with equality if and only if f = g.

(Optional) Multivariate case.

e The following are written without proof, mainly for the sake of completeness (we will only make use

of the univariate result).

e Claim. For a multivariate Gaussian X ~ N(u,X), we have
1
h(X) = 3 log, det (2meX).

e Maximum entropy property (multivariate case). For any random vector X having a joint density

fx and covariance matrix Cov[X], we have
1
h(X) < 3 log, det (2me Cov[X])

with equality if and only if X is a multivariate Gaussian.

3 Gaussian Channel
Model.

e In general, a continuous channel can be described by a conditional PDF fy|x. However, we will focus

on a more specific class of additive noise channels:
Y=X+7

where Z is a noise term independent of the input X. This means that fy x(y|z) = fz(y — ).

— In particular, when Z ~ N(0,0?) for some noise variance o > 0, this is called the additive white
Gaussian noise (AWGN) channel.



Nol3E

[N PuT OUTPUT

{H—

— Well-motivated in many applications where a large number of tiny disturbances impact the output;

these combine to give approximately Gaussian noise (by the central limit theorem).

— Also very convenient to analyze mathematically!

e If X is unconstrained, then we can transmit arbitrarily many bits arbitrarily reliably in a single channel
use: Just send different messages using the inputs 0, A, £2A, ... for a huge value of A (e.g., a million

times larger than the noise variance).

e However, in practice, the energy consumed by transmitting X is proportional to X2, and we need to
satisfy a power constraint of the form
E[X?] < P.

Sometimes, peak power constraints of the form X2 < Ppay also arise, but we will not consider those.

e The symbol E[-] above is somewhat ambiguous. If we have a codebook C = {x(1), ... x(M)} of length-n

codewords x(™) = (;Ugm) x%m)) then we could require that every codeword has power at most P

averaged over the block length,
1 m
SN (@™ <P Ymefl,...,M)},

or we could require a less stringent constraint that averages over both the message and block length:
M n
1 1 (m)
TR
m=1 i=1
In fact, either requirement leads to the same channel capacity.

Channel capacity.

e In the following, the channel capacity C(P) is defined in the same way as discrete memoryless channels,

but with codebooks constrained to satisfy the average power constraint.

e Theorem. For general noise models, the channel capacity with power constraint P is given by

C(P) = max I(X;Y).
fx Epy [X2]<P

The proof is outlined below.

e Corollary. For the AWGN channel with power constraint P and noise variance o2, the channel

capacity is

1 P
C(P) = 3 log, (1 + 02),



and the capacity-achieving fx is Gaussian, namely N (0, P).

— Proof: For fixed fx such that E[X?] < P, we expand the mutual information as follows:

1Y) Y ny) — h(y|x)

where (a) is by definition of mutual information, (b) is by ¥ = X + Z, (c) is since shifting by a
constant doesn’t change entropy (and X is a constant conditioned on X), and (d) holds since X

and Z are independent.
1

Now, since Z is Gaussian, we have h(Z) = 3 log,(2mec?). Moreover, since Y = X + Z with X

and Z being independent, we have
Var[Y| = Var[X] + Var[Z]
< P+o?

where the first term uses Var[X] = E[X?]-E[X]? < E[X?] < P, and the second term uses Var[Z] =
o?. By the maximum entropy property of Gaussians, we deduce that h(Y) < % log, (27re(P+02)).
Substituting this and the expression for h(Z) into I(X;Y) = h(Y) — h(Z), we obtain

1 1
I(X;Y) < 3 log, (2me(P + o?)) — 3 log, (2mea?)

1 ) 27e(P + o?)
= — 10 —_—
9 %82 2meo?

1 P

Finally, both the inequalities used (Var[Y] < P + 02 and h(Y) < $log (2me(P + 02))) hold with
equality when X ~ N(0, P), and so we deduce that the upper bound I(X;Y) < %logQ (1 + %)

is achieved with equality by such Gaussian fx.
e Properties of the Gaussian channel capacity:

— Depends on P and o2 only through the signal-to-noise ratio U—Pg.

Equals zero when P = 0.
P
202

— When £ is very large, we have C(P) ~ %log2 FP% so doubling P only (roughly) adds a constant

When U—F; is very small, we have C(P) = so doubling P may (nearly) double the capacity.

o2

to the capacity (diminishing returns).

— An illustration:
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(Optional) Outline of proofs.
e Achievability:

— Again random coding is used — generate each symbol of each codeword independently according
to some fx such that E[X?] < PE| Under this condition, most (but not all) of the codewords
satisfy the power constraint, with high probability.

— To prove vanishing error probability, we follow similar arguments to the previous lecture with

suitable modifications:
* Extend the joint typicality definition and properties to the continuous setting (a tutorial
question makes a start on this);
x Follow the “joint typicality decoding” analysis from the discrete case to deduce that vanishing

average error probability still holds for rates below the mutual information.

— The desired result is then obtained by a fairly simple expurgation argument in which any code-
words violating the power constraint are discarded (there are so few such codewords that this has

a negligible effect on the rate and average error probability).
o Converse:

— An argument based on Fano’s inequality can still be used, but a bit of extra effort is required to
handle the power constraint E[X?] < P. See Chapter 9 of Cover/Thomas for details.

4 (Optional) Geometric Intuition: Sphere Packing

e At least for the converse part, we can get some intuition on the AWGN capacity formula C' = % log, (1—|—

J—F;) by considering geometric arguments in the space of all output sequences y.

e To satisfy the power constraint, assume that every codeword x(™ lies in the sphere of radius vnP
centered at zero:
|x™ |2 <nP, ¥Ym=1,...,M.

1The need for strict inequality here is a minor technical issue.



e Since the noise vector Z is independent of x, a “Pythagoras-type” argument gives

Y| ~ [Ix[” + (1]
<P+ |z
~n(P +0%),

where the last line uses the fact that || Z||* ~ no? with high probability by the law of large numbers.

— Hence, Y typically lies within the sphere of radius y/n(P + o2).

e Now, for a specific transmitted codeword x(™) using a similar argument to the one just shown, trans-
mitting it will produce an output sequence Y such that |[Y — x("™)||?2 < no? with high probability.
That is, the output will roughly be in a sphere of radius vno? centered at the transmitted codeword.

e Intuition: For successful decoding, these “high-probability spheres” of radius v'no? should be non-

overlapping. An illustration:

e But there are only so many non-overlapping spheres of radius vno2 we can fit inside the overall sphere
of radius y/n(P + ¢2)! Specifically, since the volume of a sphere of radius r in n dimensions is a, - "
for some constant «,,, we have

#spheres <

(1)

( n(P+02))n _ (P+o0? n/2
( n0-2) n - 0_2 .
e But the number of spheres is simply the number of codewords M ; hence, and taking logs in the previous

equation, we obtain %log2 M < Llog, (1 + g%)
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