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Useful references:

• Cover/Thomas Chapters 8 and 9

• MacKay Chapter 11

1 Differential Entropy

Introduction.

• So far, we have considered channels with finite input and output alphabets, and accordingly used
probability mass functions (PMFs) PX and conditional PMFs PY |X .

• In this lecture, we will consider continuous (real-valued) inputs and outputs, and accordingly consider
probability density functions (PDFs) fX and conditional PDFs fY |X .

• First, we need to revise the main definitions of information measures (entropy, mutual information,
KL divergence)

Differential entropy.

• The differential entropy of a continuous random variable X with PDF fX is seemingly natural given
the regular version:

h(X) = EfX

[
log2

1

fX(X)

]
=

∫
R
fX(x) log2

1

fX(x)
dx.

However, compared to the discrete case, much more care is needed in interpreting this quantity as a
measure of information/uncertainty (in particular, see the properties that no longer hold below)

– As usual, we can also consider the joint version

h(X,Y ) = E(X,Y )∼fXY

[
log2

1

fXY (X,Y )

]
,
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and the conditional version

h(Y |X) = E(X,Y )∼fXY

[
log2

1

fY |X(Y |X)

]
=

∫
R
fX(x)H(Y |X = x)dx

when (X,Y ) have a joint density function fXY (x, y) = fX(x)fY |X(y|x).

• Properties of entropy that still hold for differential entropy:

– Chain rule: h(X1, . . . , Xn) =
∑n

i=1 h(Xi|X1, . . . , Xi−1)

– Conditioning reduces entropy: h(X|Y ) ≤ h(X)

– Sub-additivity: h(X1, . . . , Xn) ≤
∑n

i=1 h(Xi)

– h(X) = h(X + c) for constant c

• Properties that no longer hold:

– Non-negativity

– Invariance under one-to-one transformations

Counter-examples to both of these can be deduced as follows: If Y = cX for some constant c, then
a standard formula for the density of a function gives fY (y) = 1

|c|fX
(
y
c

)
, and substitution into the

formula for differential entropy gives h(Y ) = h(X) + log2 |c|. As c → 0, we have log2 |c| → −∞,
meaning h(Y ) may be arbitrarily negative.

Examples.

• Claim. For a uniform random variable X ∼ Uniform(a, b) with a < b, we have

h(X) = log2(b− a).

– Proof: By definition fX(x) = 1
b−a for a < x < b, and fX(x) = 0 elsewhere. Substitute this into

the expression for h(X).

• Claim. For a univariate Gaussian X ∼ N(µ, σ2), we have

h(X) =
1

2
log2

(
2πeσ2

)
.

– Proof: We give the proof for the case µ = 0; the general case is very similar. The PDF of X is
given by fX(x) = 1√

2πσ2
e−x2/(2σ2), and hence

h(X) = E
[
log2

1

fX(x)

]
= E

[
log2

(√
2πσ2 · eX

2/(2σ2)

)]
=

1

2
log2(2πσ

2) +
log2 e

2σ2
E[X2],
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where we have used log2(ab) = log2(a) + log2(b) and log2(a
c) = c log2 a. But by definition

E[X2] = σ2, and so we get

h(X) =
1

2
log2(2πσ

2) +
log2 e

2
=

1

2
log2

(
2πeσ2

)
.

Mutual information and KL divergence.

• The definitions of KL divergence and mutual information also extend naturally:

D(f∥g) =
∫
R
f(x) log2

f(x)

g(x)
dx

and

I(X;Y ) = D(fXY ∥fX × fY )

= EfXY

[
log2

fXY (x, y)

fX(x)fY (y)

]
= h(Y )− h(Y |X)

= h(X)− h(X|Y ).

• In contrast with differential entropy, it is uncontroversial to consider I(X;Y ) as a measure of how much
information Y reveals about X (or vice versa). Indeed, both mutual information and KL divergence
retain all of their key properties, including non-negativity.

– It can also be shown that I(X;Y ) = I(ϕ(X);ψ(Y )) for invertible functions ϕ(·) and ψ(·).

2 Gaussian Random Variables

Univariate case.

• As mentioned above, for X ∼ N(µ, σ2), we have h(X) = 1
2 log2

(
2πeσ2

)
.

• Maximum entropy property (univariate case). For any random variable X having a density fX
and variance Var[X], we have

h(X) ≤ 1

2
log2

(
2πeVar[X]

)
with equality if and only if X is Gaussian.

– Proof: Let f be the density function of X, and let g be the Gaussian density with the same
mean and variance as X. For brevity, denote this mean and variance by µ and σ2, so that
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g(x) = 1√
2πσ2

e−(x−µ)2/(2σ2). Then observe that

D(f∥g) = Ef

[
log2

f(X)

g(X)

]
(a)
= Ef

[
log2

1

g(X)

]
+ Ef

[
log2 f(X)

]
(b)
= Ef

[
log2

1

g(X)

]
− h(X)

(c)
= Ef

[
log2

(√
2πσ2 · e(X−µ)2/(2σ2)

)]
− h(X)

(d)
=

1

2
log2(2πσ

2) +
log2 e

2σ2
Ef [(X − µ)2]− h(X)

(e)
=

1

2
log2(2πeσ

2)− h(X),

where (a) and (d) simply expand the logarithms, (b) uses the definition of h(X), (c) substitutes
the definition of g, and (e) uses Ef [(X − µ)2] = σ2. The maximum entropy property now follows
from the fact that D(f∥g) ≥ 0 with equality if and only if f = g.

(Optional) Multivariate case.

• The following are written without proof, mainly for the sake of completeness (we will only make use
of the univariate result).

• Claim. For a multivariate Gaussian X ∼ N(µ,Σ), we have

h(X) =
1

2
log2 det

(
2πeΣ

)
.

• Maximum entropy property (multivariate case). For any random vector X having a joint density
fX and covariance matrix Cov[X], we have

h(X) ≤ 1

2
log2 det

(
2πeCov[X]

)
with equality if and only if X is a multivariate Gaussian.

3 Gaussian Channel

Model.

• In general, a continuous channel can be described by a conditional PDF fY |X . However, we will focus
on a more specific class of additive noise channels:

Y = X + Z,

where Z is a noise term independent of the input X. This means that fY |X(y|x) = fZ(y − x).

– In particular, when Z ∼ N(0, σ2) for some noise variance σ2 > 0, this is called the additive white
Gaussian noise (AWGN) channel.
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– Well-motivated in many applications where a large number of tiny disturbances impact the output;
these combine to give approximately Gaussian noise (by the central limit theorem).

– Also very convenient to analyze mathematically!

• If X is unconstrained, then we can transmit arbitrarily many bits arbitrarily reliably in a single channel
use: Just send different messages using the inputs 0,±∆,±2∆, . . . for a huge value of ∆ (e.g., a million
times larger than the noise variance).

• However, in practice, the energy consumed by transmitting X is proportional to X2, and we need to
satisfy a power constraint of the form

E[X2] ≤ P.

Sometimes, peak power constraints of the form X2 ≤ Pmax also arise, but we will not consider those.

• The symbol E[·] above is somewhat ambiguous. If we have a codebook C = {x(1), . . . ,x(M)} of length-n
codewords x(m) = (x

(m)
1 , . . . , x

(m)
n ), then we could require that every codeword has power at most P

averaged over the block length,

1

n

n∑
i=1

(
x
(m)
i

)2 ≤ P, ∀m ∈ {1, . . . ,M},

or we could require a less stringent constraint that averages over both the message and block length:

1

M

M∑
m=1

1

n

n∑
i=1

(
x
(m)
i

)2 ≤ P.

In fact, either requirement leads to the same channel capacity.

Channel capacity.

• In the following, the channel capacity C(P ) is defined in the same way as discrete memoryless channels,
but with codebooks constrained to satisfy the average power constraint.

• Theorem. For general noise models, the channel capacity with power constraint P is given by

C(P ) = max
fX :EfX

[X2]≤P
I(X;Y ).

The proof is outlined below.

• Corollary. For the AWGN channel with power constraint P and noise variance σ2, the channel
capacity is

C(P ) =
1

2
log2

(
1 +

P

σ2

)
,
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and the capacity-achieving fX is Gaussian, namely N(0, P ).

– Proof: For fixed fX such that E[X2] ≤ P , we expand the mutual information as follows:

I(X;Y )
(a)
= h(Y )− h(Y |X)

(b)
= h(Y )− h(X + Z|X)

(c)
= h(Y )− h(Z|X)

(d)
= h(Y )− h(Z)

where (a) is by definition of mutual information, (b) is by Y = X + Z, (c) is since shifting by a
constant doesn’t change entropy (and X is a constant conditioned on X), and (d) holds since X
and Z are independent.

Now, since Z is Gaussian, we have h(Z) = 1
2 log2(2πeσ

2). Moreover, since Y = X + Z with X

and Z being independent, we have

Var[Y ] = Var[X] + Var[Z]

≤ P + σ2,

where the first term uses Var[X] = E[X2]−E[X]2 ≤ E[X2] ≤ P , and the second term uses Var[Z] =
σ2. By the maximum entropy property of Gaussians, we deduce that h(Y ) ≤ 1

2 log2
(
2πe(P+σ2)

)
.

Substituting this and the expression for h(Z) into I(X;Y ) = h(Y )− h(Z), we obtain

I(X;Y ) ≤ 1

2
log2

(
2πe(P + σ2)

)
− 1

2
log2(2πeσ

2)

=
1

2
log2

2πe(P + σ2)

2πeσ2

=
1

2
log2

(
1 +

P

σ2

)
.

Finally, both the inequalities used (Var[Y ] ≤ P + σ2 and h(Y ) ≤ 1
2 log

(
2πe(P + σ2)

)
) hold with

equality when X ∼ N(0, P ), and so we deduce that the upper bound I(X;Y ) ≤ 1
2 log2

(
1 + P

σ2

)
is achieved with equality by such Gaussian fX .

• Properties of the Gaussian channel capacity:

– Depends on P and σ2 only through the signal-to-noise ratio P
σ2 .

– Equals zero when P = 0.

– When P
σ2 is very small, we have C(P ) ≈ P

2σ2 , so doubling P may (nearly) double the capacity.

– When P
σ2 is very large, we have C(P ) ≈ 1

2 log2
P
σ2 , so doubling P only (roughly) adds a constant

to the capacity (diminishing returns).

– An illustration:
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(Optional) Outline of proofs.

• Achievability:

– Again random coding is used – generate each symbol of each codeword independently according
to some fX such that E[X2] < P .1 Under this condition, most (but not all) of the codewords
satisfy the power constraint, with high probability.

– To prove vanishing error probability, we follow similar arguments to the previous lecture with
suitable modifications:

∗ Extend the joint typicality definition and properties to the continuous setting (a tutorial
question makes a start on this);

∗ Follow the “joint typicality decoding” analysis from the discrete case to deduce that vanishing
average error probability still holds for rates below the mutual information.

– The desired result is then obtained by a fairly simple expurgation argument in which any code-
words violating the power constraint are discarded (there are so few such codewords that this has
a negligible effect on the rate and average error probability).

• Converse:

– An argument based on Fano’s inequality can still be used, but a bit of extra effort is required to
handle the power constraint E[X2] ≤ P . See Chapter 9 of Cover/Thomas for details.

4 (Optional) Geometric Intuition: Sphere Packing

• At least for the converse part, we can get some intuition on the AWGN capacity formula C = 1
2 log2

(
1+

P
σ2

)
by considering geometric arguments in the space of all output sequences y.

• To satisfy the power constraint, assume that every codeword x(m) lies in the sphere of radius
√
nP

centered at zero:
∥x(m)∥2 ≤ nP, ∀m = 1, . . . ,M.

1The need for strict inequality here is a minor technical issue.
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• Since the noise vector Z is independent of x, a “Pythagoras-type” argument gives

∥Y∥2 ≈ ∥x∥2 + ∥Z∥2

≤ nP + ∥Z∥2

≈ n(P + σ2),

where the last line uses the fact that ∥Z∥2 ≈ nσ2 with high probability by the law of large numbers.

– Hence, Y typically lies within the sphere of radius
√
n(P + σ2).

• Now, for a specific transmitted codeword x(m), using a similar argument to the one just shown, trans-
mitting it will produce an output sequence Y such that ∥Y − x(m)∥2 ≲ nσ2 with high probability.
That is, the output will roughly be in a sphere of radius

√
nσ2 centered at the transmitted codeword.

• Intuition: For successful decoding, these “high-probability spheres” of radius
√
nσ2 should be non-

overlapping. An illustration:

• But there are only so many non-overlapping spheres of radius
√
nσ2 we can fit inside the overall sphere

of radius
√
n(P + σ2)! Specifically, since the volume of a sphere of radius r in n dimensions is αn · rn

for some constant αn, we have

#spheres ≲
(√

n(P + σ2)
)n(√

nσ2
)n =

(
P + σ2

σ2

)n/2

. (1)

• But the number of spheres is simply the number of codewords M ; hence, and taking logs in the previous
equation, we obtain 1

n log2M ≲ 1
2 log2

(
1 + P

σ2

)
.

8


	Differential Entropy
	Gaussian Random Variables
	Gaussian Channel
	(Optional) Geometric Intuition: Sphere Packing

