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Useful references:

• Blog post on Hamming codes1

• Cover/Thomas Section 7.11

• MacKay Sections 11.4–11.5, Chapters 13–14

• (Beyond the scope of this course) Survey article on coding,2 and/or the advanced textbook “Modern
Coding Theory” (Richardson and Urbanke)

1 Recap of Parity Checks and the Hamming Code

Parity check.

• A parity check of a sequence of bits b1, . . . , bm is an additional bit equaling 1 if the number of 1’s in
b1 . . . , bm is odd, and 0 if the number of 1’s is even.

– Hence, in either case, there is an even number of 1’s in the sequence b1, . . . , bmc, where c is the
parity check bit

• We can express this via modulo-2 arithmetic: For a, b ∈ {0, 1}, let the ⊕ operator be defined as

0⊕ 0 = 1⊕ 1 = 0

0⊕ 1 = 1⊕ 0 = 1.

Then the parity check of b1, . . . , bm is c = b1 ⊕ . . .⊕ bm.

• If we transmit the length-(m + 1) sequence b1 . . . bmc across a channel, and one of the bits is flipped,
we will notice that the total number of 1’s is no longer even. Hence, we can detect a single bit flip.
However, a little thought reveals that we cannot correct it.

• The idea that permits error correction: Send multiple parity checks applied to different groups of bits

1https://jeremykun.com/2015/03/02/hammings-code/
2https://arxiv.org/pdf/1908.09903.pdf
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Simple examples.

• In this first lecture, we introduced the repetition code, which (for example) encodes 1010 into
111000111000. By a majority vote rule, this permits the correction of one bit flip in each of the
groups of 3 bits.

• We also introduced the Hamming code, which maps 4 bits to 7 bits and can correct a single bit flip:

We described the check bits c1c2c3 as being chosen to make the number of 1’s per circle even. In the
above terminology, each ci is a parity check of the bi’s in the corresponding circle.

– Note: When we talk about being able to correct a certain number of bit flips, this may include
flips in both the uncoded bits bi and the check bits ci.

– How to correct one bit flip: Observe that each possible single bit flip changes a unique combina-
tion of circles from “even number of 1s” to “odd number of 1s” (e.g., the middle bit changes all 3
circles; the top-left bit only changes the top-left circle). Therefore, the decoder can check which
circles have an odd number of 1s, and un-flip the corresponding bit. If the decoder sees all 3
circles already having an even number of 1s, then no changes are made.

2 Linear Codes

Notation.

• We will now switch notation a little, and consider the general procedure of mapping k bits u =

(u1, . . . , uk) to n bits x = (x1, . . . , xn), where n ≥ k.

• We will mostly consider the transmission of x = (x1, . . . , xn) across a binary symmetric channel (BSC)
to produce y = (y1, . . . , yn); these output bits are used to construct an estimate û = (û1, . . . , ûk) of
the original k bits.

The channel can be described as y = x⊕ z, where z ∈ {0, 1}n indicates which bits are flipped, and the
operator ⊕ is applied bit-by-bit.
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• Notice that this is the channel coding setup of the previous lectures specialized to the BSC. The generic
“message” m ∈ {1, . . . ,M} is now replaced by “message bits” (u1, . . . , uk) ∈ {0, 1}k, so that M = 2k.
Previously we defined the rate as R = 1

n log2 M , and substituting M = 2k gives

R =
k

n
.

This is intuitive: If we map k bits to 3k bits (say), then the rate is 1
3 .

Definition and generator matrix.

• For reasons to be made clear shortly, we say that any code comprised of parity checks is a linear code.

• We distinguish between the following two cases:

– A systematic parity-check code is one in which the first k (out of n) bits of x are always
precisely the original k bits, and the remaining n− k bits are parity checks:

xi = ui, i = 1, . . . , k,

xi =

k⊕
j=1

ujgj,i, i = k + 1, . . . , n

where gj,i = 1 if the parity check in location i includes uj , and gj,i = 0 otherwise. For instance,
the Hamming code described above is a systematic parity-check code.

– A general parity-check code is one in which all n codeword bits may be arbitrary parity checks:

xi =

k⊕
j=1

ujgj,i, i = 1, . . . , n.

Clearly a systematic code is a special case of this, since it corresponds to setting gj,i = 1{j = i}
for i = 1, . . . , k.

• The above (general) formula for generating each xi from u1, . . . , uk can be succinctly summarized as a
(modulo-2) vector-matrix multiplication:

x = uG, (in modulo-2 arithmetic)

where x = (x1, . . . , xn) and u = (u1, . . . , uk) are the suitable row vectors, and

G =


g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n
...

...
. . .

...
gk,1 gk,2 . . . gk,n


is known as the generator matrix.

– Interpretation: The 1’s in each column indicate which bits are included in the parity check
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• In the special case of a systematic code, this simplifies to

G =


1 0 . . . 0 g1,k+1 . . . g1,n

0 1 . . . 0 g2,k+1 . . . g2,n
...

...
. . .

...
...

. . .
...

0 0 . . . 1 gk,k+1 . . . gk,n


with the left-most k × k sub-matrix being the identity matrix.

• With the mapping from u to x being described by the matrix multiplication x = uG (in modulo-2
arithmetic), we can now justify the terminology linear code: If u and u′ are two different message
sequences, and their corresponding codewords are x = uG and x′ = uG′, then

x⊕ x′ = uG⊕ u′G

= (u⊕ u′)G,

which means that x ⊕ x′ is also a codeword (corresponding to message u ⊕ u′). In other words, the
(modulo-2) sum of any two valid codewords is another valid codeword.

– Note: We have extended the ⊕ notation to vectors/sequences, which is done via a bit-by-bit
application of the definition above, e.g., 0001⊕ 1101 = 1100 and 101⊕ 010 = 111.

• Examples. With k = 4, the generator matrices for the single-parity-check code and Hamming code
(described at the start of the lecture) are given by

Gparity =


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

 , GHamming =


1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

 . (1)

Sometimes you might see the latter with the last 3 columns in a different order, but re-ordering columns
just amounts to re-labeling the indices of parity check bits.

– Pre-multiplying GHamming by all 16 possible u sequences, we can list all the codewords of the
Hamming code:

0000000 0001111 0010011 0011100

0100101 0101010 0110110 0111001

1000110 1001001 1010101 1011010

1100011 1101100 1110000 1111111.

– For instance, the codeword 1100011 is obtained from u = 1100 by taking the modulo-2 sum of
the first two rows of GHamming. For u = 1111, we take the modulo-2 sum of all 4 rows.

• As we will see in the tutorial, any general code can be reduced to an “equivalent” systematic code by
applying a technique similar to Gaussian elimination on G.
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Parity-check matrix.

• A matrix closely related to G, but which will be more directly useful when it comes to decoding, is
called the parity-check matrix H. It is an n× (n− k) matrix that satisfies

xH = 0 ⇐⇒ x is a valid codeword.

Notice the distinction:

– G is used to generate x from u;

– H is used to check if x can be generated from any u (doing this naively using G by testing all 2k

possible u would be grossly inefficient).

• While such check matrices exist for all generator matrices, we will focus our attention on the systematic
case, as it is much simpler. Recall the two formulas we gave for xi (in terms of the {uj} and {gj,i}) in
the systematic case; substituting the first into the second gives

xi =

k⊕
j=1

xjgj,i, i = k + 1, . . . , n.

Adding xi (modulo 2) to both sides, the left-hand side gives xi ⊕ xi = 0, and we are left with

( k⊕
j=1

xjgj,i

)
⊕ xi = 0, i = k + 1, . . . , n.

Converting to matrix form reveals that the following choice of H indeed gives xH = 0:

H =



g1,k+1 g1,k+2 . . . g1,n

g2,k+1 g2,k+2 . . . g2,n
...

...
. . .

...
gk,k+1 gk,k+2 . . . gk,n

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


.

It is also not hard to establish the opposite, i.e., if xH = 0 then x is indeed a valid codeword.

• Stated more succinctly, we have

G = [Ik P] =⇒ H =

[
P

In−k

]
,

where Im is the m×m identity matrix, and P is the remaining k × (n− k) submatrix of G.
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• Examples. The check matrices corresponding to (1) are

Hparity =


1

1

1

1

1

 , HHamming =



1 1 0

1 0 1

0 1 1

1 1 1

1 0 0

0 1 0

0 0 1


.

• To give a flavor of why the check matrix is useful for decoding, notice that if y = x⊕z with z indicating
which bits got flipped, then

yH = (x⊕ z)H

=
(
xH

)
⊕
(
zH

)
= zH, (2)

where we first used linearity, and then the fact that xH = 0 for any valid codeword x.

– In particular, if z only contains a single 1 (i.e., only one bit got flipped), then yH is simply the
i-th row of H, where i is the index of the flipped bit.

– But notice that in HHamming, all the rows are distinct! This means that by looking at HHamming,
we can immediately identify which bit got flipped and therefore correct it.

Notes on storage and computation.

• Notice that the code is fully specified by G (or H), which only requires nk bits of storage – much
smaller than the exponential storage requirement for the random coding technique used to prove the
channel coding theorem!

• However, efficient decoding (getting from the noisy channel output y back to u) is still challenging,
designing a good choice of G is also difficult (but do-able!).

• In fact, at this stage it is unclear whether any good choices of G exist! This is addressed in Chapter 14
of MacKay’s book (optional reading), where it is shown that a random generator matrix G (i.e., each
entry is 1 or 0 with equal probability) achieves arbitrarily small error probability on the BSC at all
rates below capacity, when used in conjunction with joint typicality decoding. The proof is very similar
to the standard (non-linear) random coding proof. In summary, very good linear codes exist, at
least if we ignore computational constraints on the decoder.

3 Distance Properties

We will only touch on the basics of distance properties here; if you are interested in knowing more, see
Chapter 13 of MacKay’s book.

Definition and properties.
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• Definition 1. The Hamming distance between two vectors x = (x1, . . . , xn) an x′ = (x′
1, . . . , x

′
n)

(having the same length n) is the number of positions in which they differ:

dH(x,x
′) =

n∑
i=1

1{xi ̸= x′
i}.

For instance, the Hamming distance between 00110011 and 00010111 is 2.

• Definition 2. The minimum distance of a codebook C of length-n codewords is

dmin = min
x∈C,x′∈C : x̸=x′

dH(x,x
′).

Intuitively, we should expect higher dmin to mean better robustness to noise in the channel.

• The following illustration shows that if the minimum distance is dmin, then (at least given enough
computation time) it is possible to correct up to dmin − 1 erasures and correct up to dmin−1

2 bit flips:

– For correcting erasures: Simply note that if dmin − 1 code symbols are replaced by an erasure
symbol ’?’, then there is only one way to fill them in to get a valid codeword (otherwise, the
minimum distance would be dmin − 1 or less!)

– For correcting flips: Note that the balls of radius dmin−1
2 around each codeword cannot overlap.

This means that if we decode each y to the codeword in its closest ball, we will always be correct
if at most dmin−1

2 flips occurred.

• Claim. If C is the set of codewords formed by a given linear code with dmin > 0,3 then

dmin = min
x∈C : x̸=0

w(x),

where w(x) =
∑n

i=1 1{xi = 1} is the weight of the codeword x. Hence, for linear codes, the minimum
distance equals the minimum weight.

3A code with dmin = 0 is a terrible idea – it means two different vectors of information bits u,u′ lead to the same codeword!
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– Proof: Let x′,x′′ be the two codewords at a minimum distance from each other. Then by linearity,
x′ ⊕ x′′ is also a valid codeword, and its weight is precisely dH(x

′,x′′) = dmin. In addition, the
assumption dmin > 0 implies that it is not the all-zero codeword.

Conversely, since x = 0 is always a valid codeword (corresponding to u = 0), any codeword weight
also corresponds to a distance (to the all-zero codeword).

• Example. Recall the 16 codewords we listed earlier for the Hamming code. The minimum non-zero
weight (and hence minimum distance) is 3, which is consistent with the fact that the Hamming code
can correct 3−1

2 = 1 bit flip.

(Optional) Distance vs. capacity.

• While a high minimum distance seems like a nice property to have, it corresponds to a fundamentally
different modeling assumption compared to the channel capacity:

– The minimum distance goal is aligned with worst-case errors, where (for instance) we need to be
able to correct arbitrary patterns of up to δn bit flips introduced by the channel.

– The channel capacity goal is aligned with random errors, where (for instance) we need to be able
to correct bit flips that occur independently with probability δ each.

Neither of these goals should be viewed as “better” than the other in general; either may be preferable
depending on the application.

• Of course, it is worth asking whether achieving capacity and attaining good distance properties are
actually equivalent goals. However, as argued in Chapter 13 of MacKay’s book, this is not the case:

– The best possible rate with minimum distance δn is at most the channel capacity with double the
noise level, 2δ;

– The channel capacity is positive for any δ ∈
(
0, 1

2

)
, but no positive rate can be achieved for δ > 1

4

if one insists on a minimum distance δn;

– Examples are known where the channel capacity is achieved despite a “bad” minimum distance.

• Although distinct from achieving capacity, the design of codes with good distance properties is a very
important problem in its own right. Examples of such codes include BCH codes (a generalization of
Hamming codes), and Reed-Solomon codes (commonly used for CDs and DVDs). These are based on
more advanced mathematical algebraic methods, namely, polynomials on finite fields.

4 Minimum Distance Decoding

Maximum-likelihood decoding over general channels.

• Recall that in the general channel coding setup, the message m is uniform on {1, . . . ,M}, the encoder
maps each m to a codeword x(m), the channel produces y, and the error probability is given by

Pe = P[m̂ ̸= m]. (3)

where the probability is with respect to both the randomly-chosen message and the channel.
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– Note: Below, we will sometimes use the message notation m ∈ {1, . . . ,M} for linear codes even
though it is perhaps more natural to think of the information bits u ∈ {0, 1}k. A one-to-one
correspondence between the two can be formed by considering M = 2k.

• Theorem. For any channel PY|X and any codebook {x(1), . . . ,x(M)}, the decoding rule that minimizes
the error probability Pe is the maximum-likelihood (ML) decoder:

m̂ = argmax
j=1,...,M

PY|X(y|x(j)).

– Proof outline: It is a standard result in Bayesian probability that the optimal estimate is the
maximum a posteriori (MAP) estimate argmaxj=1,...,M PX|Y(x(j)|y). But by Bayes’ rule, we

have PX|Y(x(j)|y) =
PY|X(y|x(j))PX(x(j))

PY(y) . Since neither PX(x(j)) nor PY(y) depend on j (the
former being because we assumed a uniformly chosen message, so all of the prior probabilities are
1
M ), the MAP rule is equivalent to the ML rule maximizing PY|X(y|x(j)).

– (Note: Strictly speaking, the above outline implicitly assumes that all the codewords are distinct,
but the result holds more generally, and such an assumption is very mild anyway)

Application to the BSC – Minimum distance decoding.

• For a memoryless channel, we have PY|X(y|x) =
∏n

i=1 PY |X(yi|xi), or equivalently logPY|X(y|x) =∑n
i=1 logPY |X(yi|xi). For the binary symmetric channel (BSC), PY |X(y|xi) is equal to 1− δ if y = xi,

and δ otherwise. Hence,

logPY|X(y|x) =
n∑

i=1

logPY |X(yi|xi)

=
∑

i : yi=xi

log(1− δ) +
∑

i : yi ̸=xi

log δ

= (n− dH(x,y)) log(1− δ) + dH(x,y) log δ

= n log(1− δ)− dH(x,y) log
1− δ

δ
.

Assuming that δ < 1
2 , we have log 1−δ

δ > 0, and we conclude that

argmax
j=1,...,M

PY|X(y|x(j)) = argmin
j=1,...,M

dH(x
(j),y).

That is, maximum-likelihood decoding is equivalent to minimum (Hamming) distance decoding.

Application to linear codes for the BSC – Syndrome decoding.

• We repeat the evaluation of yH given above:

yH = (x⊕ z)H

=
(
xH

)
⊕
(
zH

)
= zH, (4)

with the middle step using the fact that xH = 0 for any valid codeword x.
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• The quantity
S = zH = yH

is called the syndrome, and we have just shown that it can immediately be computed from the check
matrix H given the channel output y.

• Claim. For a linear code, if the syndrome is S, then the minimum-distance codeword to y can be
obtained by finding

ẑ = argmin
z̃ : z̃H=S

w(z̃)

(where w(z̃) is the number of 1’s in z̃) and then computing

x̂ = y ⊕ ẑ.

Provided that the code is systematic, the estimate û of the original information bits is then formed by
taking the first k entries of x̂.

– Proof: Minimum-distance decoding searches for the codeword x(j) (j = 1, . . . ,M) having the
fewest disagreements with y. For each codeword x(j), we can define

z(j) = x(j) ⊕ y

and this clearly yields w(z(j)) = dH(x
(j),y). Hence, the minimum-distance codeword is the one

indexed by
m̂ = argmin

j=1,...,M
w(z(j)).

The claim now follows since

{
z̃ : z̃H = S

} (a)
=

{
z̃ : z̃H = yH

}
(b)
=

{
z̃ : (z̃⊕ y)H = 0

}
(c)
=

{
z̃ : z̃⊕ y is a valid codeword

}
(d)
=

{
x(j) ⊕ y : j = 1, . . . ,M

}
(e)
=

{
z(j) : j = 1, . . . ,M

}
where (a) uses S = yH, (b) uses the definition of ⊕ and linearity, (c) uses the fact that x is a
valid codeword if and only if xH = 0, (d) uses the fact that the valid codewords are {x(j)}Mj=1

and the fact that x(j) = z̃⊕ y is equivalent to z̃ = x(j) ⊕ y, and (e) uses z(j) = x(j) ⊕ y.

• The equivalent optimization formulation in the claim can help us reduce the computational complexity
of minimum-distance decoding:

– If S = 0, then simply output x̂ = y;

– Otherwise, look for a z̃ of weight 1 such that z̃H = S, and if one is found, output x̂ = y ⊕ ẑ;

– Otherwise, look for a z̃ of weight 2 such that z̃H = S, and if one is found, output x̂ = y ⊕ ẑ;

– etc.
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If very few bit flips occurred during transmission, then we may avoid searching over an exponentially
large number of codewords – there are only n vectors z̃ ∈ {0, 1}n of weight 1,

(
n
2

)
of weight 2, and so

on. However, if a significant number of bit flips occur during transmission, this decoding method still
typically requires far too much computation to be practical.

• Example. For the Hamming code (see the check matrix HHamming above), we could traverse the
following list (starting from the top) until we find a z̃ such that z̃H = S:

◦ z̃ = 0000000 =⇒ z̃H = 000

◦ z̃ = 1000000 =⇒ z̃H = 110

◦ z̃ = 0100000 =⇒ z̃H = 101

◦ z̃ = 0010000 =⇒ z̃H = 011

◦ z̃ = 0001000 =⇒ z̃H = 111

◦ z̃ = 0000100 =⇒ z̃H = 100

◦ z̃ = 0000010 =⇒ z̃H = 010

◦ z̃ = 0000001 =⇒ z̃H = 001

◦ z̃ = 1100000 =⇒ . . . (actually, in this example this case would never be reached, since the
previous cases already cover all 8 possible syndromes)

If only one bit flip occurred, the resulting y ⊕ z̃ will correctly recover the transmitted codeword.

• We will not cover more advanced decoding techniques in this course; some relevant concepts are very
briefly introduced in the next (optional) section, and a comprehensive reference is the book “Modern
Coding Theory”. MacKay’s book is also a very good reference, whereas Cover/Thomas focuses almost
entirely on fundamental limits rather than practical codes.

5 (Optional) Advanced Coding Methods

History.

• The channel coding theorem was published in 1948. This spawned decades of research on practical
coding techniques, but none were seen to come close to achieving capacity for a long time.

• In the early 1990s, turbo codes were (empirically) seen to be very close to achieving capacity.

• Low density parity check (LDPC) codes were invented in the 1960s, but perhaps due to limited com-
puting power, they remained unused for a long time. After the invention of turbo codes, they were
rediscovered and also shown to be nearly capacity-achieving.

• Polar codes are a more recent development (2008). Although they usually don’t perform as well as
turbo/LDPC codes in practice, they are much nicer to analyze theoretically, in particular to rigorously
establish that they are capacity-achieving.

(Very) Brief overview of LDPC codes.

• As a rough definition, an LDPC code is a (typically non-systematic) linear code such that the check
matrix H contains mostly 0’s and relatively few 1’s.
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• We can picture this via a factor graph representation:

Here circles correspond to the n codeword bits (“variable nodes”), and squares correspond to the n− k

parity equations (“check nodes”), i.e., if there are no errors, there should be an even number of 1’s
connected to each square. The low density assumption amounts to saying that the above graph is
sparse (has few edges).

• The reason sparsity / low density is useful is that it permits effective belief propagation decoding, in
which information is shared between variable nodes and check nodes until accurate beliefs (posterior
probability estimates) on the transmitted bits are obtained.

• Strictly speaking, this is only guaranteed to end up with accurate posterior estimates when the under-
lying graph has no cycles (i.e., one can never follow any path of edges and end up back at the starting
node). Although sparse graphs like the ones above do have cycles, they have very few short cycles, and
for practical purposes this is often nearly as good as having no cycles.

• For a much better introduction to LDPC codes, see Chapter 47 of MacKay’s book (see also https:

//www.youtube.com/watch?v=RWUxtGh-guY for a brief introduction in Layman’s terms).

(Very) Brief overview of polar codes.

• The rough idea of polar codes is as follows:

– First consider 2 uses of the channel, (X1, X2) → (Y1, Y2).

– The idea: Apply some pre-processing to (X1, X2) to create a related channel (X̃1, X̃2) → (Y1, Y2)

such that (i) I(X1, X2;Y1, Y2) = I(X̃1, X̃2;Y1, Y2) (no information is lost); (ii) Comparing the
new channel to the original channel, one “channel use” is less noisy, and the other is more noisy.

– Repeat this procedure several times, moving from 2 to 4 uses of the channel, then 8 uses of the
channel, then 16, etc., with many “channel uses” getting less and less noisy, and the rest getting
more and more noisy.

– For a symmetric binary channel with capacity C ∈ (0, 1), repeating this procedure eventually leads
to a fraction C of “near-perfect” channel uses, and a fraction 1−C of “near-useless” channel uses.

– Perfect and useless channels are very easy to handle! If it were truly perfect, we could just send
a bit and receive it without noise. If it were truly useless, we would simply avoid using it at all.
Polar codes do something similar, sending information only over the “near-perfect” uses.

• Extensions to non-binary and non-symmetric channels were established later.

• For a much better introduction to polar codes, see the following lecture by Emre Telatar: https:

//www.youtube.com/watch?v=VhyoZSB9g0w
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