
CS5275 Lecture 1: Basic Tools

Jonathan Scarlett

December 6, 2024

Useful references:

• “Methods of Proof” blog posts: https://www.jeremykun.com/primers/

• CMU lecture on Big-O: https://www.youtube.com/watch?v=_gKb855_3bk

• CMU lecture on online resources: https://www.youtube.com/watch?v=qP4XEZ54eSc

• Inequality sheet: https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

Note on examination: Nothing in this lecture will be examined directly, but many of the tools/concepts
will be used when studying other topics.

1 General Background

This lecture gives some very broad background, much of which might already be familiar. After this one,
the subsequent lectures will be more focused and specific.

The main assumed CS background for this course is:

• Algorithms and data structures

• Some exposure to tools like optimization, graphs, etc.

• Some exposure to computational complexity

The main assumed mathematical background for this course is:

• Probability (see background document)

• Linear algebra (see background document)

• Basic calculus

• Some exposure to tools like Taylor expansion, limits, binomial coefficients, etc.

1

https://www.jeremykun.com/primers/
https://www.youtube.com/watch?v=_gKb855_3bk
https://www.youtube.com/watch?v=qP4XEZ54eSc
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

2 Proof Techniques

Some of the most common proof techniques are outlined as follows with one example each.

Proof technique 1: Direct proof

• Idea: Just find a sequence of steps that leads directly from the assumptions to the desired statement

• Often this is done via a (possibly long) sequence of steps, e.g.:

– To show A =⇒ B, show A =⇒ S1, then S1 =⇒ S2, etc., up to Sk−1 =⇒ Sk and Sk =⇒ B

– To show a ≤ b, just show a ≤ . . . ≤ b (or similarly for a = b or a ≥ b)

• Example: Consider the claim “The product of 3 consecutive positive integers is always a multiple of
6.” We can simply combine the following direct observations:

– Fix n ≥ 1. Since one (or two) of n, n+ 1, n+ 2 must be even, we find that n(n+ 1)(n+ 2) is an
even number (i.e., a multiple of 2).

– Similarly, exactly one of n, n+ 1, n+ 2 is a multiple of 3, so n(n+ 1)(n+ 2) is a multiple of 3.

– Since n(n+ 1)(n+ 2) is a multiple of both 2 and 3, it is a multiple of 6.

Proof technique 2: Contrapositive

• Idea: To show something of the form A =⇒ B, show the equivalent statement Bc =⇒ Ac, where
(·)c means the complement (“not”).

• Example:

– Consider the claim “For any positive integer n, if n is not a square number, then
√
n is irrational.”

– The contrapositive statement is “For any positive integer n, if
√
n is rational, then n is a square

number”. This turns out to be more convenient to prove.

– The details:

∗ If
√
n is rational, then there must exist integers a, b such that

√
n = a

b , or equivalently
nb2 = a2.

∗ Now factor a, b, n into a product of primes (uniquely). Since both a2 and b2 have every prime
appearing an even number of times, the same must be true of n. Thus, n is a square number.

Proof technique 3: Contradiction

• Idea: To show that a claim is true, start by assuming that it is false, and show that this leads to a
mathematical contradiction.

• Example:

– Consider proving the claim “There are infinitely many prime numbers” (many proofs are known!)

– Proceed with a proof by contradiction, assuming that there are only finitely many prime numbers.
That is, there exists a finite N such that the prime numbers are p1, . . . , pN .

2

– Define M = p1×p2× . . .×pM , and consider the integer M +1. Since every integer can be written
as a product of primes, there must exist some pi that is a factor of M + 1.

– But pi is also trivially a factor of M .

– Being a factor of both M and M + 1 is impossible, since pi ≥ 2 – a contradiction.

Proof technique 4: Induction

• Idea: To prove that a claim Cn holds for all integers n ≥ n0 (where n0 is typically 0 or 1), first prove
Cn0

(base case) and then prove that Cn =⇒ Cn+1 (induction step).

• Example: In the Towers of Hanoi problem, there are n disks stacked from largest (bottom) to smallest
(top):

The goal is to move all the disks to the right-hand side pole, but only one ring can be moved at a time,
and a larger disk can never be above a smaller disk.

• Claim: This problem can be solved in 2n − 1 moves (in fact this is optimal, but we won’t prove that)

• Proof:

– The base case is n = 1, in which case 2n − 1 = 1 and the result is trivial.

– For the induction step, we need to show that if 2n − 1 moves suffices with n disks, then 2n+1 − 1

moves suffices with n+ 1 disks.

– To see this, we perform 3 steps:

∗ Use the n-disk method to move the n smallest disks to the middle pole (2n − 1 moves)

∗ Move the largest disk to the right pole (1 move)

∗ Use the n-disk method to move the n smallest disks to the right pole (2n − 1 moves)

The total number of moves is 2(2n − 1) + 1 = 2n+1 − 1, as desired.

Other proof techniques:

• Proof by cases (a special case being proof by exhaustion)

• Proof by example for “there exists...” statements (or by counter-example for “not all...” statements)

• The probabilistic method (which we will cover later)

• Visual proofs

• Proof of equality by showing ≥ and ≤ separately

• Other logic-based proofs (e.g., to show A =⇒ (B1 or B2), show that when A is true, Bc
1 =⇒ B2)

3

Errors in proofs

• There are endless ways that proofs can contain errors (even when the final result is correct), and they
sometimes enter in very subtle or unexpected ways.

• Example 1: It is easy to accidentally take (ab)c and abc to be the same. This is not always true!

– Particular care should be taken with complex numbers, e.g.:, for any θ ∈ R we know that eiθ =

sin θ + i cos θ, whereas
(e2πi)

θ
2π = 1

θ
2π = 1

which is clearly different from sin θ + i cos θ except for some very specific θ values.

– Even without complex numbers, a < 0 can cause similar issues (e.g., a = −1, b = 2, c = 1
2)

– On the other hand, if a, b, c are all real-valued and a > 0, then indeed (ab)c = abc.

– (Note: This problem could be alleviated by treating both ±1 as square roots of 1, or more generally
taking e2πi/n to be an n-th root of 1 for every i = 1, . . . , n.)

• Example 2: Consider a setup where we repeatedly roll a 6-sided die until we observe a 6. What’s the
average number of rolls (including the roll that gave 6) conditioned on only seeing even numbers?

– Incorrect intuition: 3, because without even numbers we have {2, 4, 6} being equally likely. (This
intuition would be correct if we were to condition on an infinite sequence of rolls containing no
even numbers.)

– Correct intuition: 1.5, because we can think of this as repeatedly rolling until we see any-
thing except {2, 4} (and if it’s odd, we reset the experiment). Hence, the stopping time has
a Geometric(2/3) distribution, whose mean is 1.5.

– (This isn’t a rigorous argument, but a formal proof via the definition of conditional probability is
also possible, and gives 1.5.)

3 Asymptotic Notation

Big-O notation:

• For two real-valued sequences fn and gn indexed by n ∈ {1, 2, 3, . . . }, we say that fn = O(gn) if there
exist constants C > 0 and n0 > 0 such that |fn| ≤ Cgn for all n ≥ n0.

– More concisely: fn is upper bounded by a constant times gn when n is large enough

– An illustration (from UWash CSE373 slides):

• Notes on notation:

– Technically O(·) is a set of sequences, so notation like fn ∈ O(gn) would be more precise. But
more often we just write fn = O(gn).

– We also tend to combine other operations with O(·), e.g., writing things like fn = n2 + eO(
√
logn).

It can get even more confusing when there are multiple variables involved (more on this below).

4

• Other limits: We have introduced O(·) with respect to asymptotics in the limit of a parameter n → ∞,
and we will mostly focus on this below. But the notation is also used with respect to other limits, such
as some ϵ → 0 (e.g., f(ϵ) = 1 + ϵ + O(ϵ2)). The context should always make the precise limit clear,
otherwise it should be stated explicitly.

Standard variations:

• (Ω) The statement fn = Ω(gn) is equivalent to gn = O(fn). That is, fn is lower bounded by a constant
times gn (when n is large enough).

• (Θ) The statement fn = Θ(gn) is equivalent to having both fn = O(gn) and gn = O(fn). That is, fn
and gn coincide to within a constant factor.

• (o) The statement fn = o(gn) is equivalent to limn→∞
fn
gn

= 0. That is, fn is strictly smaller than gn

asymptotically.

• (ω) The statement fn = ω(gn) is equivalent to gn = o(fn). That is, fn is strictly larger than gn

asymptotically.

Variations omitting log factors:

• The statement fn = Õ(gn) is equivalent to there existing some constant c such that fn = O(gn(log gn)
c).

This notion is useful when the goal is to get the “leading terms” while treating log factors as less
significant.

– For example, n2 log3 n = Õ(n2), and 2nn2 log n = Õ(2n).

– Statements like “fn = O(gn(log gn)
c) for some c” are also often written as fn = O(gnpoly(log gn))

• Note: While you can think of Õ(gn) as “like O(gn) but ignoring log factors”, it should always be
remembered that this means factors that are logarithmic in gn, not necessarily in n. For example:

– Õ(n) and Õ(n2) hide (log n)c factors;

– Õ(2n) or Õ(en) hides nc factors, because log2(2
n) = loge(e

n) = n.

– Õ(log n) is only allowed to hide (log log n)c factors.

– Õ(1) makes no sense!

• We can similarly consider Ω̃ and Θ̃ (whereas õ and ω̃ are not standard notions.)

Examples:

5

• We tend to state algorithm runtimes in O(·) notation, especially when the precise constants depend
on implementation details (e.g., O(n log n) time for sorting).

• Big-O notation is often closely tied to Taylor expansions. For example, we can write
√
1 + x = 1+O(x)

as x → 0, or include higher-order terms like
√
1 + x = 1 + x

2 +O(x2) as x → 0.

– To highlight the importance of different limits, note that the limit x → ∞ gives the completely
different behavior of

√
1 + x = O(

√
x).

– To get a more precise expression as x → ∞ we could also write
√
1 + x =

√
x ·

√
1 + 1/x and then

use the above findings, e.g.,

√
1 + x =

√
x ·

(
1 +

1

2x
+O

(1

x2

))
=

√
x+

1

2
√
x
+O(x−3/2).

– Note: Wolfram Alpha is a useful tool for getting Taylor expansions without doing them by hand

• Stirling’s approximation is often written using asymptotic notation, e.g.,

log(n!) = n log n− n+O(log n).

This leads to similar sorts of statements for the binomial coefficients
(
n
k

)
= n!

k!(n−k)! , e.g.:

– (Coarse behavior) log
(
n
k

)
= O

(
k log n

k

)
– (Precise behavior when k = αn with α ∈ (0, 1)) log

(
n
k

)
= nH2(α)(1 + o(1)) where H2(α) =

α log 1
α + (1− α) log 1

1−α is the binary entropy function.

– (Precise behavior when k = o(n)) log
(
n
k

)
=

(
k log n

k

)
(1 + o(1)).

• We often use o(·) notation to hide “lower-order terms”. For example, suppose that we want to show
that some probability is exponentially decaying in n, and we get a bound of the form

P[event] ≤ e−nC

(
1 +O

(1

n

))
+ e−n logn.

The second term is e−ω(n) (i.e., it decays faster than exponential). So we might summarize the above
by the simpler statement

P[event] ≤ e−nC(1 + o(1)).

In contrast, note that if we started with the expression e−nC(1+o(1)), we could not simplify it to
e−nC(1+ o(1)). This is because e−nC(1+o(1)) = e−nC × eo(n), but eo(n) could still by very large or very
small (e.g., n100 or n−100, or something even more significant like e

√
n or e−

√
n).

Cautionary notes:

• As evidenced by the last example above, we should be careful with non-linear functions, e.g., if y = O(x)

then we can say that y2 = O(x2) but we cannot say that ey = O(ex) (i.e., eO(x) and O(ex) are not
equivalent).

– Along similar lines, another common mistake is incorrect cancellations, e.g., if fn = en+o(n) and
gn = en+o(n) then we have fn

gn
= eo(n), but we cannot say something similar about fn − gn (e.g.,

consider fn = 2en = en+ln 2 and gn = en).

6

• If limits are being taken with respect to multiple variables, then O(·) notation could become unclear,
because limits taken in different orders can give different results. I tend to think of it as follows:
To make a statement like f(m, δ, ϵ) = O

(
m
ϵ2 log

1
δ

)
with m → ∞, δ → 0, and ϵ → 0, it should be

the case that any sequence {(mn, δn, ϵn)}∞n=1 with mn → ∞, δn → 0 and ϵn → 0 should satisfy
f(mn, δn, ϵn) = O

(
mn

ϵ2n
log 1

δn

)
as n → ∞.

4 Inequalities

Inequalities are ubiquitous in theoretical computer science; some common ones are outlined as follows (see
the sheet linked on p1 for many more):

• Basic inequalities, e.g., 1 + x ≤ ex or equivalently log(1 + x) ≤ x

– Even when there is no hope of analogous reverse inequalities that hold for all x (e.g., 1 + cx can
never be a universal upper bound on ex, no matter how large c is), we can often get those for a
restricted range of x:

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

– The bold curve is ex, the solid straight lines are 1 + x and 1 + (e− 1)x, and the dashed curve is
1 + x+ x2. Restricted to x ∈ [0, 1], the latter two are upper bounds on ex.

• Cauchy-Schwarz inequality: |⟨u,v⟩| ≤ ∥u∥ · ∥v∥

– Generalizes to Hölder’s inequality: |⟨u,v⟩| ≤ ∥u∥p∥v∥q when p, q ≥ 1 satisfy 1
p + 1

q = 1 (e.g.,

|⟨u,v⟩| ≤ ∥u∥1∥v∥∞). Here ∥u∥p =
(∑

i |ui|p
)1/p is the “p-norm”, and ∥u∥∞ = maxi |ui|.

– Both generalize beyond real-valued vectors, e.g., E[|XY |] ≤
(
E[|X|p]

)1/p(E[|Y |q]
)1/q.

• Triangle inequality: |a+ b| ≤ |a|+ |b|, or for vectors ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

• Bounds on binomial coefficient, e.g.,

(n
k

)k

≤
(
n

k

)
≤

(ne
k

)k

(This is less precise than Stirling’s approximation, but convenient due to being non-asymptotic.)

• Union bound (AKA Boole’s inequality):

P
[N⋃
i=1

Ai

]
≤

n∑
i=1

P[Ai].

7

• Arithmetic mean vs. geometric mean:
(∏n

i=1 xi

)1/n ≤ 1
n

∑n
i=1 xi.

• Inequalities between norms, e.g., for u ∈ Rn:

∥u∥2 ≤ ∥u∥1 ≤
√
n∥u∥2

∥u∥∞ ≤ ∥u∥2 ≤
√
n∥u∥∞.

Note that ∥u∥1 =
∑

i |ui| and ∥u∥∞ = maxi |ui|, and ∥u∥2 =
√∑

i u
2
i is the regular Euclidean norm.

• We will not need many (if any) matrix inequalities in this course, but for an extensive list, search
“Matrix Cookbook” in Google.

• Jensen’s inequality: f(E[X]) ≤ E[f(X)] for convex f (see the later lecture on convex optimization)

• Probabilistic bounds and concentration inequalities (next lecture): Markov, Chebyshev, Bernstein,
Chernoff, Hoeffding, McDiarmid, etc.

5 Note on Computational Complexity

• This course will be fairly light on computational complexity (consider taking CS5230!), but here we
pause to mention a model that is widely used implicitly and is worth seeing more explicitly at least
once (though we will avoid giving a very formal description).

• Motivating example:

– Suppose that we have a sorted list of n numbers, and let’s say each of them as a positive
integer in the range {1, 2, . . . , n10} (the number 10 here is arbitrary). What’s the computa-
tional complexity of finding the first number to exceed a specified threshold γ? (e.g., in the list
{1, 5, 9, 10, 53, 94, 1024, 1999}, find the first number greater than 100)

– This can be solved using binary search – check the middle element, then move to the left half or
right half depending on whether it exceeds γ, and continue recursively.

– We recurse O(log n) times before narrowing down to a single element, so it’s natural to say that
the computational complexity is O(log n).

– However, this raises the following concern: Representing an integer in {1, 2, . . . , n10} requires
O(log n) bits. If we read those bits one-by-one to compare two numbers, and each bit takes a
constant amount of time to read, then each comparison takes O(log n) time and thus the total
time is O((log n)2).

• The word RAM model overcomes this ambiguity by assuming that reading an entire number (and
performing “basic” operations on them) in fact takes constant time, in which case the complexity is
indeed O(log n) in the above example.

– Examples of basic operations: Comparison, addition, bit-wise AND/OR/NOT, etc. (there is a
formal class called AC0 containing these)

– Less basic operations like multiplication and division are also often considered to take constant
time, though not always (as it is a bit more questionable than addition).

8

• It could be argued that it’s strange to assume “words” can be stored and read in a manner that grows
with the input size n, but this model is quite well-aligned with how modern computers work and the
fact that 64-bit words suffice for most practical purposes. However, there are some subtle issues:

– The word length w should be thought of being at least log n (so that we can at least index integers
from 1 to n) but at most O(log n) (meaning each number can take one of at most poly(n) values,
like n10 in the example above).

– If w = ω(log n) then things can get a bit strange – it would mean being able to index super-
polynomially many locations in constant time, which could lead to an algorithm with “polynomial
runtime” but only due to the questionable computation model.

– Strictly speaking a real-valued number requires infinitely many bits to store exactly, so extra care
may be needed for algorithms that (conceptually) operate on real numbers. This can usually be
ignored when the real numbers are being used in “reasonable” ways (e.g., we don’t cheat by hiding
information in the very insignificant bits of the real number).

– Roughly speaking, if the algorithm works on “real” numbers, then they should be ”sufficiently
accurately” represented using O(log n) bits. This is usually a reasonable assumption in practice.

6 Useful Resources

For basic mathematical checks, calculations, etc., some useful resources are as follows:

• Wikipedia is a perfectly fine starting point for a concept you’ve never heard of (e.g., “Stirling numbers
of the second kind” or “BPP complexity class”), though it might sometimes be lacking in detail and/or
require more scrutiny compared to other sources.

• Wolfram Alpha (online) for basic integrals, Taylor expansions, limits, etc.

• Wolfram Mathematica (software) for more sophisticated calculations along similar lines

– Maple is along similar lines.

– MATLAB is common but usually used more for numerical computations.

• Inverse Symbolic Calculator (online) for looking up constants (e.g., try 0.57721566490), or similarly
OEIS for integer sequences (e.g., try 1,1,2,5,14,42)

• Optimization libraries / packages (e.g., Gurobi, CPLEX, Yalmip, CVX)

• MathOverflow/StackOverflow for endless Q&A posts (e.g., try typing into Google “StackOverflow dif-
ference between NP and co-NP”)

• If you find yourself having to search through research papers, clever exploration could save you time:

– If the paper’s result seems too complicated or “over-the-top” for your purposes, check the Related
Work section (or reference list) for possible simplified versions done in earlier works

– Conversely, if the paper’s result isn’t strong enough for your purposes, try searching the paper on
Google Scholar, then clicking “Cited By”, possibly followed by a search with “Search within citing
articles” ticked.

9

See https://www.youtube.com/watch?v=qP4XEZ54eSc for a “Street Fighting Mathematics” lecture along
these lines.

7 CS5275 Topics

The main topics we will cover are as follows:

• Concentration inequalities

• The probabilistic method

• Convexity and convex optimization

• Submodularity and discrete optimization

• Multiplicative weights algorithms

• Fourier transform

• Information theory

• Error-correcting codes

• Expander graphs

• Communication complexity

We will also have a lecture touching very briefly on “topics we didn’t get to cover fully”:

• Distance measures (particularly between probability distributions)

• Matrix decompositions

• Further probabilistic limit theorems

• Computational complexity

• Constraint satisfaction

• Sketching and streaming

• Hashing

• Derandomization and psuedorandomness

• Random graph theory

• Spectral graph theory

• Other graph algorithms/tools (e.g., sparsifiers, bouded treewidth)

• Cryptography

10

https://www.youtube.com/watch?v=qP4XEZ54eSc

	General Background
	Proof Techniques
	Asymptotic Notation
	Inequalities
	Note on Computational Complexity
	Useful Resources
	CS5275 Topics

