
CS5275 Lecture 2: Concentration Inequalities

Jonathan Scarlett

January 20, 2025

Useful references:

• Blog post by Jeremy Kun1

• First section of Boucheron et al.’s “Concentration Inequalities” notes2

• Chapter 2 of Vershynin’s book “High Dimensional Probability”

• CS-style course notes: Chapter 2 of USyd course https://ccanonne.github.io/teaching/COMPx270

• CS-style textbooks: “Concentration of Measure for the Analysis of Randomized Algorithms” (Pan-
conesi/Dubhashi) and “Randomized Algorithms” (Motwani/Raghavan)

Categorization of material:

• Core material: Sections 1–4 and Examples 1–4 of Section 6

• Extra material: Section 5, rest of Section 6, Section 7

(Exam will strongly focus on “Core”. Take-home assessments may occasionally require consulting “Extra”.)

1 Introduction

• Given a random variable Y , how “concentrated” is Y (e.g., around its mean)? We will particularly
be interested in the case where Y = f(X1, . . . , Xn) is a function of n independent random variables
X1, . . . , Xn, such as the empirical average Y = 1

n

∑n
i=1 Xi.

• Let Y = Yn to make explicit that Y depends on n. Roughly, a concentration inequality is an inequality
stating that there exists a deterministic value m such that

P[|Yn −m| > t] ≤ TailBound(n, t)

where TailBound(n, t) ideally decreases to 0 rapidly as n increases.

– Typically m = E[Yn] (other choices may include m = median(Yn) or m = 0), and often
TailBound(n, t) decreases exponentially, such as TailBound(n, t) ∼ e−cnt2 for some c > 0.

– Such results are useful because they tell us that the behavior of Yn becomes more and more
predictable as n increases; namely, we know that Yn will be very close to m with high probability.

1http://jeremykun.com/2013/04/15/probabilistic-bounds-a-primer/
2http://www.econ.upf.edu/~lugosi/mlss_conc.pdf
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– In statistics, Y may be a quantity being estimated from data. In computer science, Y can represent
the outcome of a randomized algorithm. There are many other applications in information theory,
statistical learning theory, statistical physics, random graph theory, random matrix theory, etc.

• Simple example: Suppose Yn = 1
n

∑n
i=1 Xi, where the Xi are i.i.d. with mean µ and variance σ2.

– Law of Large Numbers: P[|Yn − µ| > ϵ] → 0 as n → ∞.

– Central Limit Theorem: P
[
|Yn − µ| > α√

n

]
→ 2Φ

(
− α

σ

)
as n → ∞, where Φ is the standard

normal CDF.

– Large Deviations: Under some technical assumptions, P[|Yn − µ| > ϵ] ≤ e−n·ψ(ϵ) for some
ψ(ϵ) > 0. This type of result is the focus of this lecture.

– Moderate Deviations: Decay rate of P[|Yn − µ| > ϵn] when ϵn → 0 sufficiently slowly so that
ϵn

√
n → ∞.

• In many applications, we want the bounds to be non-asymptotic (i.e., holding for any n, as opposed to
only in the limit n → ∞).

2 Basic Inequalities

• Markov’s inequality. Let Z be a non-negative random variable. Then P[Z ≥ t] ≤ E[Z]
t .

– Proof: Suppose for simplicity that Z is continuous with density fZ (if Z is discrete, just replace
integrals by summations below). Then:

P[Z ≥ t] =
∫ ∞

0
fZ(z)1{z ≥ t}dz

≤
∫ ∞

0

z

t
fZ(z)1{z ≥ t}dz

≤
∫ ∞

0

z

t
fZ(z)dz

= E[Z]
t
.

– Note that this result definitely doesn’t hold in general for RVs that can take negative values (e.g.,
take Z ∼ N(0, 1) as a counter-example).

• Markov’s inequality applied to functions: Let ϕ denote any non-decreasing and non-negative function.
Let Z be any random variable. Then Markov’s inequality gives

P[Z ≥ t] ≤ P[ϕ(Z) ≥ ϕ(t)] ≤ E[ϕ(Z)]
ϕ(t) ,

where the first inequality uses the non-decreasing property, and the second uses Markov’s inequality
and the non-negative property.

• Chebyshev’s inequality: Choose ϕ(t) = t2, and replace Z by |Z − E[Z]|. Then

P
[
|Z − E[Z]| ≥ t

]
≤ Var[Z]

t2
.
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• Chernoff bound: Choose ϕ(t) = eλt where λ ≥ 0. Then we have

P[Z ≥ t] ≤ e−λtE[eλZ ].

Despite being a simple application of Markov’s inequality, this bound is extremely useful.

3 Simplifying the Chernoff Bound

Rewriting the bound.

• The log-moment-generating function ψZ(λ) of a random variable Z is defined as

ψZ(λ) = logE[eλZ ], λ ≥ 0.

Observe that the Chernoff bound above can be written as P[Z ≥ t] ≤ e−(λt−ψZ (λ)).

– Note: If E[eλZ ] = ∞ for some λ, then this value of λ does not give a meaningful bound (but a
smaller λ might be OK). If Z is sufficiently heavy-tailed, it could even be that E[eλZ ] = ∞ for all
λ > 0, in which case, the Chernoff bound cannot be used.

• The Cramér transform of Z is defined as

ψ∗
Z(t) = sup

λ≥0

(
λt− ψZ(λ)

)
. (1)

By a direct substitution, setting λ = 0 would make the right-hand term zero, so since we are maximizing
over all λ ≥ 0, we conclude that ψ∗

Z(t) ≥ 0 for all t.

• By simply optimizing over all λ in the Chernoff bound, we have for any random variable Z that

P[Z ≥ t] ≤ exp(−ψ∗
Z(t)).

This is known as the Cramér-Chernoff Inequality.

Sums of independent random variables.

• Let Z = X1 + · · · +Xn where {Xi}ni=1 are independent and identically distributed (i.i.d.). We expect
sharper concentration of Yn = Z

n as n increases:
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• Chebyshev’s inequality on the sum: We have Var[Z] = nVar[X] (by the i.i.d. assumption), and hence
Chebyshev’s inequality with t = nϵ gives

P

[
1
n

∣∣Z − E[Z]
∣∣ ≥ ϵ

]
≤ Var[X]

nϵ2
.

– This is an O
( 1
n

)
probability of a “large” deviation, which can be useful but is typically not the

best possible.

• Cramér-Chernoff inequality on the sum: We have

ψZ(λ) = logE[eλZ ] = logE
[
eλ

∑n

i=1
Xi

]
= logE

[ n∏
i=1

eλXi

]

= log
n∏
i=1
E

[
eλXi

]
= log

(
E

[
eλX

])n
= nψX(λ),

where in the second line we used independence and then the identical distribution property. Then the
Cramér-Chernoff inequality with t = nϵ gives

P[Z ≥ nϵ] ≤ exp
(

− nψ∗
X(ϵ)

)
. (2)

– This is looking better – exponential decay!

– But ψ∗
X(ϵ) is a bit complicated (it is not a closed-form formula, and it involves an optimization

over λ) – can we simplify further?

• A simple case: Gaussian random variables.

– Let X ∼ N (0, σ2).

– A direct computation yields ψX(λ) = λ2σ2

2 (this requires a bit of integration).

– Substituting into (1), we get the expression λt − λ2σ2

2 . Setting the derivative to zero gives the
optimal λ∗ = t

σ2 , and hence ψ∗
X(t) = t2

2σ2 .

– Therefore,

P[X ≥ t] ≤ exp
(

− t2

2σ2

)
.

Since X and −X have the same distribution, the union bound Pr[A ∪B] ≤ Pr[A] + Pr[B] gives

P[|X| ≥ t] ≤ 2 exp
(

− t2

2σ2

)
.

When we sum n independent copies Z = X1 + · · · +Xn, analogous reasoning applied to (2) gives

P[|Z| ≥ nϵ] ≤ 2 exp
(

−nϵ2

2σ2

)
.

Since this example appears so frequently, it is used as a baseline for a much larger class of
distributions with similar concentration.
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4 Sub-Gaussian Random Variables and Hoeffding’s Inequality

Sub-Gaussian Random Variables.

• From the definition in (1) along with the above Gaussian example, we find that if ψX(λ) ≤ λ2σ2

2 , then
ψ∗
X(t) ≥ t2

2σ2 . This motivates the following definition.

• Definition. A zero-mean random variable X is said to be sub-Gaussian with parameter σ2 if ψX(λ) ≤
λ2σ2

2 , ∀λ > 0. Denote the set of all such random variables by G(σ2).

– Note: Sub-Gaussian variables are very “light-tailed” (tails decaying like e−ct2). Similar concepts
also exists for distributions whose tails are less light, notably including sub-exponential (tails
decaying like e−ct e.g., see Vershynin’s book).

• Properties of sub-Gaussian random variables:

1. P[|X| ≥ t] ≤ 2 exp
(

− t2

2σ2

)
(as we already proved for Gaussians)

2. If Xi ∈ G(σ2
i ) are independent, then

∑n
i=1 aiXi ∈ G

( ∑n
i=1 a

2
iσ

2
i

)
(just like with Gaussians)

The straightforward proofs of these properties are omitted.

– Combining these properties (with t = nϵ), we find that if Z = X1 + . . . + Xn where the Xi are
independent and sub-Gaussian with parameter σ2, then

P[|Z| ≥ nϵ] ≤ 2 exp
(

−nϵ2

2σ2

)
,

just like the sum of n independent Gaussians.

• Equivalent definitions: Sometimes checking whether ψX(λ) ≤ λ2σ2

2 can be difficult, e.g., because the
MGF is complicated or has no closed-form expression. To verify the sub-Gaussian property, it is useful
to note that the following statements are all equivalent for zero-mean X:

1. (MGF) There exists K0 > 0 such that ψX(λ) ≤ K2
0λ

2 for all λ > 0 (i.e., the above definition of
sub-Gaussianity with K2

0 = σ2

2 ).

2. (Tail Behavior) There exists K1 > 0 such that P[|X| ≥ t] ≤ 2 exp
(

− t2

K2
1

)
for all t ≥ 0.

3. (Moments) There exists K2 > 0 such that E[|X|p]1/p ≤ K2
√
p for all p ≥ 1.

The proofs are omitted here (e.g., see Proposition 2.5.2 of Vershynin’s book). The quantities K0,K1,K2

may differ in general, but they all match to within a constant factor (and thus all play a similar role
as σ above).

Bounded Random Variables.

• An important class of sub-Gaussian random variables is the class of bounded random variables.

• Theorem. Let X be a random variable with E[X] = 0, taking values in a bounded interval [a, b].
Then we have X ∈ G

( (b−a)2

4
)
.

– A proof outline is below, with the details left as an optional appendix.
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• Using this result and the first sub-Gaussian property above, we find that for X ∈ [a, b],

P
[
|X − E[X]| > t

]
≤ 2 exp

(
− 2t2

(b− a)2

)
.

– Although the theorem assumed E[X] = 0, we can always replace X by X − µ and [a, b] by
[a− µ, b− µ], so the difference between the upper and lower limit is still b− a.

Using a similar argument along with the fact that sums of sub-Gaussian variables are sub-Gaussian,
we obtain the following.

• Corollary (Hoeffding’s inequality) Let Z = X1 + · · · + Xn, where the Xi are independent and
supported on [ai, bi]. Then

P

[
1
n

∣∣Z − E[Z]
∣∣ > ϵ

]
≤ 2 exp

(
− 2nϵ2

1
n

∑n
i=1(bi − ai)2

)
.

When we have all ai = a and all bi = b, this simplifies to

P

[
1
n

∣∣Z − E[Z]
∣∣ > ϵ

]
≤ 2 exp

(
− 2nϵ2

(b− a)2

)
,

or even more simply, in the commonly-encountered scenario where a = 0 and b = 1, we have

P

[
1
n

∣∣Z − E[Z]
∣∣ > ϵ

]
≤ 2e−2nϵ2

.

• To keep the expressions simple, we discuss the latter case in further detail. This bound can be viewed as
fixing (ϵ, n) and asking how small the deviation probability is. It is also to keep in mind two equivalent
statements:

– If we want the deviation probability to be upper bounded by some δ > 0, and ϵ is given, then we
get the following condition by setting 2e−2nϵ2 = δ and re-arranging:

n ≥ 1
2ϵ2 log 2

δ
.

This amounts to fixing (ϵ, δ) and asking how large n needs to be be.

– Similarly, we can fix (δ, n) and ask what the smallest possible ϵ could be, giving ϵ =
√

1
2n log 2

δ .

This is consistent with how the Central Limit Theorem shows that most of the probability is
within O

( 1√
n

)
of the true mean.

5 (**Optional**) Proof Outline: Bounded RVs are Sub-Gaussian

• Main steps of the proof.

1. Prove that Var[Z] ≤ (b−a)2

4 for any Z bounded on [a, b].

2. Show ψX(0) = 0, ψ′
X(0) = 0, and ψ′′

X(λ) = Var[Z], where Z is a random variable with PDF
fZ(z) = e−ψX (λ)eλzfX(z); hence ψ′′

X(λ) ≤ (b−a)2

4 by Step 1.
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3. Taylor expand ψX(λ) = ψX(0) + λψ′
X(0) + λ2

2 ψ
′′
X(θ) (for some θ ∈ [0, λ]) and substitute Step 2

to upper bound this by λ2

2 · (b−a)2

4 .

• The details are given in the appendix of this document.

6 Example Applications

Example 1: Estimating Population Statistics

• Suppose that we have a huge population of voters for an upcoming two-party election, and we want
to accurately predict the proportion that will vote for Party A. (Note: We can adapt this example to
estimating other things, like prevalence of a disease.)

• Strategy: Choose a voter uniformly at random3 and ask how they will vote (assuming they will respond
honestly). Repeat this n times, and let p̂ be the fraction of those n that responded Party A.

• Question: How large should n be to ensure (via Hoeffding’s inequality) that |p∗ − p̂| ≤ 0.02 with
probability at least 0.95, where p∗ is the true proportion and p̂ is the estimate?

• Analysis: The n binary observations X1, . . . , Xn (1 if Party A, 0 if Party B) are Bernoulli(p∗), and
letting Z = X1, . . . , Xn, it follows that p̂ = Z

n and p∗ = E[Z]
n . Hence, we can apply Hoeffding’s

inequality directly to get
P
[
|p̂− p∗| > 0.02

]
≤ 2e−2n(0.02)2

.

Equating this with 0.05 and re-arranging, we get that n = ⌈ 1
2(0.02)2 log 2

0.05 ⌉ = 4612 suffices.

• Exercise: Adapt this example to a scenario where every voter answers honestly with probability exactly
0.9 (independently of all other questions/answers).

Example 2: Typical Sequences.

• Let (U1, . . . , Un) be i.i.d. random variables drawn from a PMF PU . Assume that U is integer-valued
and finite, only taking values {1, . . . ,m} for some integer m.

• Question. How many occurrences of each value u ∈ {1, . . . ,m} occur?

• Let Zu =
∑n
i=1 1{Ui = u}. This is a sum of i.i.d. random variables bounded within [0, 1], and

E[Zu] = nPU (u). So by Hoeffding’s inequality,

P
[∣∣Zu − nPU (u)

∣∣ ≥ nϵ
]

≤ 2e−2nϵ2
.

• Since there are m values that U can take, the union bound gives

P

[ ⋃
u=1,...,m

{∣∣Zu − nPU (u)
∣∣ ≥ nϵ

}]
≤ 2m · e−2nϵ2

.

Re-arranging, we find that probability is upper bounded by δ > 0 under the choice ϵ =
√

log 2m
δ

2n .
Equivalently, if n ≥ 1

2ϵ2 log 2m
δ , then the above probability is at most δ.

3Probably the main reason that actual polls can be quite inaccurate is that the people they poll are not uniformly random.
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• The above findings can be viewed in at least two ways:

– With high probability, all of the counts are within O(
√
n logm) of their mean as n grows large.

– For the counts to deviate from their mean by at most nϵ with high probability, it suffices to have
n = constant × logm

ϵ2 samples.

Example 3: Graph Degree.

• As an exercise, see if you can use the analysis of Example 1 to bound the maximum degree in a random
graph with high probability.

– More precisely, consider a random graph with n nodes, in which each given edge is present with
probability p (independent from all other edges). The edges have no direction, so there are

(
n
2
)

potential edges, and the average number of edges is p
(
n
2
)
.

– The degree of a node is defined as the number of edges attached to that node. For a given node,
its mean is (n− 1)p. The maximum degree of the graph is the highest degree among the n nodes.

Example 4: Randomized Algorithms

• As an exercise, you can try the following: Suppose that a randomized algorithm produces the correct
output with probability at least 2/3. Show that by independently running the algorithm n times and
letting the final output be the one output the highest number of times, we can boost the success
probability to any target 1 − δ with a number of trials satisfying n = O

(
log 1

δ

)
.

Example 5: Estimation Under Heavy-Tailed Noise.

• A fundamental primitive in statistics and related areas is estimating the mean of a random variable
from independent samples (i.e., given X1, . . . , Xn each drawn from PX , estimate µ = E[X]).

• If X − µ is sub-Gaussian for X ∼ PX , then we know that the empirical mean µ̂ = 1
n

∑n
i=1 Xi works

well, with e−cnϵ2 decay of the probability of being ϵ-far from the correct value (for some constant c).

• What if we only know that µ = E[X] and σ2 = Var[X] are finite, but the higher moments may be
infinite? This occurs for heavy tailed distributions, which are often used to model outliers in the data.

• At first glance it looks hopeless to consider Hoeffding’s inequality (as X is not only unbounded but
heavy-tailed!), but in fact with a more clever choice of estimator, all we need is Hoeffding’s and
Chebyshev’s inequality, and we can get the sub-Gaussian level of accuracy mentioned above!

• The more clever estimator is called median of means:

– Split the n samples into K blocks of size B, so that n = KB (we will ignore rounding/divisibility
issues here and below, as they are insignificant for the interesting regimes of parameter choices)

– For k = 1, . . . ,K, let µ̂k be the empirical mean computed using only the samples in block k.

– The final estimate is µ̂ = median(µ̂1, . . . , µ̂K).

• By the definition of median, if |µ̂− µ| > ϵ, then at least half of the values in µ̂1, . . . , µ̂K must be ϵ-far
from µ. Hence,

P
[
|µ̂− µ| > ϵ

]
≤ P

[ K∑
k=1

Zk ≥ K

2

]
,

where Zk equals 1 if |µ̂k − µ| > ϵ, and Zk = 0 otherwise.
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• Defining pϵ = E[Zk] = P[|µ̂k − µ| > ϵ] and t = 1
2 − pϵ , the above right-hand side is equivalent to

P

[ K∑
k=1

(Zk − pϵ) ≥ Kt

]
,

and as long as t > 0 (which we will verify shortly), this is upper bounded by e−2Kt2 by Hoeffding’s
inequality. Substituting back t = 1

2 − pϵ, we have proved that

P
[
|µ̂− µ| > ϵ

]
≤ e−2K(1/2−pϵ)2

.

• Next, by the definition pϵ = P[|µ̂k−µ| > ϵ] and the fact that µ̂k is the empirical average of B samples, we
can simply apply Chebyshev’s inequality to obtain pϵ ≤ σ2

Bϵ2 , and substituting B = n
K gives pϵ ≤ Kσ2

nϵ2 .
In particular, if we choose K = nϵ2

4σ2 , we get pϵ ≤ 1
4 (which gives the desired property t > 0 mentioned

above), and the previous display equation becomes

P
[
|µ̂− µ| > ϵ

]
≤ e−K/8 = exp

(
− nϵ2

32σ2

)
.

This is the desired sub-Gaussian style concentration! (Note: The factor of 32 can be improved via a
more careful analysis)

• Caveats/discussion:

– Setting K = nϵ2

4σ2 requires knowing ϵ and σ in advance, which may be questionable. On the other
hand, setting the above upper bound e−K/8 to a target value δ gives K = 8 log 1

δ , so we can
actually set K given only knowledge of such a target δ, which may be more natural.

– Also note that since K should be an integer, more care is needed with rounding if (e.g.) nϵ2

4σ2 < 1;
the above result may not hold as stated in such scenarios.

Other uses:

• See “Randomized Algorithms” (Motwani/Raghavan) for an entire book on randomized algorithms
where these techniques are prominent.

• See https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/09-Theory_Notes.pdf for the use of
Hoeffding’s inequality in statistical learning theory, a theoretical branch of machine learning.

• (This list could be made much longer!)

Other useful concentration bounds:

• As a simple example of where Hoeffding’s inequality can be weaker than ideal, suppose that we are
interested in the probability that Binomial(n, p) takes value 0. This event has probability (1 − p)n ≤
e−pn, Hoeffding’s inequality would only give a bound of e−2p2n, which is much weaker when p is small.
The concentration bounds below serve as alternatives that circumvent this weakness.

• Bernstein’s inequality: If Z =
∑n
i=1(Xi−E[Xi]) with the Xi being i.i.d. and satisfying |Xi| ≤ M (with

probability one), then

P[Z ≥ t] ≤ exp
(

−
1
2 t

2∑n
i=1 E[X2

i ] + 1
3Mt

)
.
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For example, when Xi ∼ Bernoulli(p) we have M = 1 and E[X2
i ] = p, and setting t = ϵn gives a bound

of exp
(

− nϵ2

2(p+ϵ/3)
)
. This is “Hoeffding-like” when p is “large”, but has better e−Θ(nϵ) behavior when

p is “small” (e.g., p ≤ ϵ ≪ 0).

– Note: More general forms of Bernstein’s inequality consider all moments of the random variable,
and drop the requirement of the random variable being bounded. See for example Chapter 2 of
Vershynin’s textbook.

• Binomial tail bounds: Since the binomial distribution arises especially frequently, it’s useful to high-
light some of its most widely-used tail bounds. Letting Z ∼ Binomial(n, p) (i.e., Z is the sum of n
independent Bernoulli(p) variables), we have the following:

– The Chernoff bound can be simplified to give

P[Z ≤ γn] ≤ e−nD(γ∥p) if γ ≤ p

P[Z ≥ γn] ≤ e−nD(γ∥p) if γ ≥ p,

where D(a∥b) = a log a
b + (1 − a) log 1−a

1−b (see KL divergence or relative entropy in the upcoming
lecture on information theory). These bounds are usually tight to within a Θ

( 1√
n

)
factor (which

is usually insignificant compared to the exponential terms).

– The following weakened bounds are often more “user-friendly”:

P[Z ≥ (1 + δ)np] ≤ exp
(

− np
(
(1 + δ) log(1 + δ) − δ

))
for δ > 0

P[Z ≤ (1 − δ)np] ≤ exp
(

− np
(
(1 − δ) log(1 − δ) + δ

))
for δ ∈ (0, 1)

These can also be further weakened to the following particularly simple bounds:

P[Z ≥ (1 + δ)np] ≤ exp
(

− np · 1
3δ

2
)

for δ ∈ (0, 1)

P[Z ≤ (1 − δ)np] ≤ exp
(

− np · 1
3δ

2
)

for δ ∈ (0, 1).

All four of these are particularly useful when p is small (e.g., decreasing as n increases), in which
case Hoeffding’s inequality may not be powerful enough.

7 Beyond Sums of Independent Random Variables

In many scenarios throughout machine learning and statistics, we would like to establish concentration
random variables that are not sums of independent random variables. This is often much more difficult, but
there exist tools for this purpose – below are just two examples (without proofs).

Bounded differences and McDiarmid’s inequality.

• A function f : Xn → R has the bounded differences property if, for some positive c1, .., cn,

sup
x1,...,xn,x′

i
∈X

|f(x1, .., xi, ..., xn) − f(x1, ..., x
′
i, ..., xn)| ≤ ci
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for all i = 1, . . . , n. This means that changing any single input value does not change the output value
too much.

• Example 1: Let V = {1, · · · , n}, and let G be a random graph such that each pair i, j ∈ V is indepen-
dently connected with probability p. Let

Xij =

1 (i, j) are connected

0 otherwise.

The chromatic number of G is the minimum number of colors needed to color the vertices such that
no two connected vertices have the same color. Writing

chromatic number = f(X11, · · · , Xij , · · · , Xnn),

we find that f satisfies the bounded difference property with cij = 1. This is because adding (resp.,
removing) an edge at most amounts to needing to add (resp. being able to remove) one color.

• Example 2: Suppose that we throw m balls into n bins uniformly at random. Let X1, . . . , Xm be
random variables giving the bin indices of the balls. Then if we are interested in a function f(x1, . . . , xm)
such as the number of empty bins or the number of bins with at least 2 balls, we clearly have that f(·)
changes by at most one whenever a single index Xi changes. Thus, we again have the bounded
differences property with ci = 1.

• Theorem (McDiarmid’s Inequality). Let X1, ..., Xn be independent random variables, and let f
satisfy the bounded differences property with ci’s. Then

P
(
|f(X1, ..., Xn) − E[f(X1, ..., Xn)]| ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

• This is a very useful generalization of Hoeffding’s inequality (which is recovered from this result by
choosing f(x1, . . . , xn) =

∑n
i=1 xi when the random variables satisfy Xi ∈ [ai, bi] with ci = bi − ai).

• Example (kernel density estimation): Suppose that we have i.i.d. samples X1, . . . , Xn with each
Xi being drawn from some probability density function ψ(x), and we would like to know the function
ψ (as best we can). The Kernel Density Estimation (KDE) method does this by estimating

ψ̂(x) = 1
n

n∑
i=1

K(x−Xi)

for some “kernel” K such that
∫ ∞

−∞ K(z)dz = 1 (e.g., a Gaussian-like curve, so that we try to put more
density near each Xi but “smooth it out” away from that point). Suppose that we are interested in
the overall error Z =

∫ ∞
−∞ |ψ(x) − ψ̂(x)|dx.

Observe that Z = f(X1, . . . , Xn), where the function f is non-linear and quite complicated. Despite
this, we can easily deduce its concentration behavior – whenever a single data point is changed, only a
single term in 1

n

∑n
i=1 K(x−Xi) gets affected, and since K integrates to one we can easily check that

|f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x
′
i, . . . , xn)| ≤ 2

n
.
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Hence, McDiarmid’s inequality with ci = 2
n gives the concentration bound

P
(
|Z − E[Z]| ≥ t

)
≤ 2e−nt2 ,

which signifies very sharp concentration around the average when n is large.

– Note: Understanding E[Z] itself may still be difficult (and strongly dependent on K and ψ), but
whatever value it happens to be, we now know that there is sharp concentration around it.

(**Optional**) Martingales and Azuma’s inequality.

• A sequence Y1, . . . , Yn is said to be a martingale if it holds for each time step i that E[Yi+1 |Y1, . . . , Yi] =
Yi (no matter which Y1, . . . , Yi values we condition on).4

– In other words, conditioned on the sequence so far, the next element neither increases nor decreases
on average.

– Example: If Yi =
∑n
i=1 Xi where X1, . . . , Xn are independent zero-mean random variables, then

it’s easy to check that Y1, . . . , Yn is a martingale. (But there are many other examples of martin-
gales for which the increments Yi+1 − Yi are not independent.)

– Intuition: If a gambler is playing in a fair casino, then what happened so far may impact which
games they play or how large their bets are, creating some dependence structure. But no matter
which (fair) games or what bet sizes, on average there is no gain or loss. (In reality, there would
always be an average loss, leading to a related notion called a super-martingale.)

∗ Naturally, this concept arises for similar reasons in sequential decision-making problems in
theoretical computer science, machine learning, etc.

– Doob martingale: Although seemingly different, the martingale idea is closely related to McDi-
armid’s inequality (in fact, the theorem below can be used to prove McDiarmid’s inequality).
Briefly, this connection stems from the Doob martingale, where for a random variable of the form
A = f(Z1, . . . , Zn) (with independent Zi’s) we define Xi = E[A|Z1, . . . , Zi]. This can easily be
shown to produce a martingale. As a concrete example, if Z1, . . . , Zn were edges in a random
graph, then the sequence X1, . . . , Xn would have an interpretation of revealing the edges one-by-
one and seeing how some property f(·) develops (e.g., number of triangles formed in the graph).

• Theorem (Azuma’s Inequality). If Y0, Y1, . . . , Yn is a martingale and it holds with probability one
that |Yi+1 − Yi| ≤ ci for all i (i.e., bounded increments), then it holds that

P
[
|Yn − Y0| ≥ nϵ

]
≤ 2 exp

(
− 2nϵ2

1
n

∑n
i=1 c

2
i

)
.

– The extra term Y0 is included for convenience, and whether or not it’s included is just a matter
of renaming (e.g., shifting n to n+ 1). We could also just specialize to the case that Y0 = 0.

– In the case of independent sums Yi = Y0 +
∑n
i=1 Xi, if we assume that Xi ∈ [ai, bi], then we get

ci = bi − ai, and the result precisely reduces to Hoeffding’s inequality.
4Strictly speaking it is also required that E[|Yi|] is finite for each i, but this is a minor technical condition.
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(**Optional**) Appendix: Proving Bounded RVs are Sub-Gaussian

Claim: Any bounded random variable Z ∈ [a, b] has variance at most Var[Z] ≤ (b−a)2

4 .
Proof:

• It suffices to show Var[Z] ≤ 1
4 when Z ∈ [0, 1], since then the general case follows by shifting and

re-scaling.

• We have

E[(Z − c)2] = E[Z2] − 2cE[Z] + c2,

which is minimized at c = E[Z] (check by setting the derivative to zero). Therefore, Var[Z] ≤ E[(Z−c)2]
for any c.

• Setting c = 1
2 and using the fact that Z ∈ [0, 1], we conclude that Var[Z] ≤ 1

4 , as required.

Claim: (Recall that the log moment generating function is defined as ψX(λ) = logE[eλX ], λ ≥ 0.) Assuming
that E[X] = 0, we have ψX(0) = 0, ψ′

X(0) = 0, and ψ′′
X(λ) = Var[Z] for any λ > 0, where Z is a random

variable with PDF fZ(z) = e−ψX (λ)eλzfX(z). (Note: Z implicitly depends on λ)
Proof:

• (i) Since ψX(λ) = logE[eλX ], we have ψX(0) = log 1 = 0.

• (ii) By direct differentiation, we have ψ′
X(λ) = E[XeλX ]

E[eλX ] , which implies ψ′
X(0) = E[X] = 0 (recall that

we assumed E[X] = 0 above).

• (iii) Differentiating a second time, we have ψ′′
X(λ) = E[X2eλX ]·E[eλX ]−E[XeλX ]2

E[eλX ]2 . To simplify this, note
that for any function g(x), we have

E[g(X)eλX ] =
∫
fX(x)eλxg(x) dx

=
∫
fZ(x)e−ψX (λ)g(x) dx

= e−ψX (λ)
∫
fZ(x)g(x) dx

= E[eλX ]E[g(Z)],

where we applied the definition of Z, factored out the constant e−ψX (λ), and substituted the definition
of ψX . It follows that ψ′′

X(λ) = E[Z2] − E[Z]2, which is simply Var[Z].

Claim: ψX(λ) ≤ λ2

2 · (b−a)2

4 for any zero-mean random variable taking values in [a, b]. In other words, X is
sub-Gaussian with parameter (b−a)2

4 .
Proof:

• By a (particular form of the) second-order Taylor expansion, we have

ψX(λ) = ψX(0) + λψ′
X(0) + λ2

2 ψ′′
X(θ)

for some θ ∈ [0, λ].
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• The claim is then immediate from the previous two claims upon noticing that by the definition of
fZ(z) = e−ψX (λ)eλzfX(z), the random variable Z inherits X’s property of taking values on [a, b].
(Outside that range, fX is zero and hence so is fZ .)
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