
CS5275 Lecture 3: The Probabilistic Method

Jonathan Scarlett

January 20, 2025

Acknowledgment. The first version of these notes was prepared by Eugene Lim and Ivona Martinović for

a CS6235 assignment.

Useful References

• Chapter 6 of Mitzenmacher’s and Upfal’s book Probability and Computing

• Class 11 and 12 of Wooter’s lecture Randomized Algorithms1

• Postle’s lecture series Probabilistic Methods2

• Alon’s and Spencer’s book The Probabilistic Method

• Matoušek’s and Vondrák’s lecture notes The Probabilistic Method3

• Luke Postle’s video lectures4

1 Introduction

The probabilistic method is a technique for proving the existence of certain objects (e.g., graphs, codes,

algorithms) having certain properties, using probabilistic arguments (even when the object itself may have

nothing to do with probability). The idea is to define a probability space and subsequently demonstrate

that the probability that a randomly selected object has the desired properties is greater than zero. This, in

turn, implies that the probability space must encompass such an object, thereby confirming the existence of

such an object. More broadly, similar ideas of probabilistic reasoning can also be used to prove other kinds

of results such as non-existence properties and bounds.

We will see several examples throughout the lecture, but mention a couple as motivation:

• A fundamental problem in Coding Theory (to be covered later) is to find a “large” collection of strings

(say, binary of length n) that are “well-separated” (say, differing pairwise in at least δn positions for

some δ ∈ (0, 1)). A concrete example would be: Find a set S ⊆ {0, 1}n of size |S| = 20.1n such that

any two of them differ in at least 0.1n positions.

– Note: If you are unfamiliar with coding theory, think of this as a company wanting to produce

many serial numbers (20.1n of them) under the requirement that no two of them can be too similar.

1https://www.youtube.com/playlist?list=PLkvhuSoxwjI_JL7GYcJHK7-EK55t0KYGO
2https://www.youtube.com/playlist?list=PL2BdWtDKMS6nRF72s3TOGyBqXwMVHYiLU
3https://www.cs.cmu.edu/~15850/handouts/matousek-vondrak-prob-ln.pdf
4https://www.youtube.com/playlist?list=PL2BdWtDKMS6nRF72s3TOGyBqXwMVHYiLU

1

https://www.youtube.com/playlist?list=PLkvhuSoxwjI_JL7GYcJHK7-EK55t0KYGO
https://www.youtube.com/playlist?list=PL2BdWtDKMS6nRF72s3TOGyBqXwMVHYiLU
https://www.cs.cmu.edu/~15850/handouts/matousek-vondrak-prob-ln.pdf
https://www.youtube.com/playlist?list=PL2BdWtDKMS6nRF72s3TOGyBqXwMVHYiLU

A simple argument based on Hoeffding’s inequality and the union bound shows that by generating

20.1n completely random strings, this “well-separated” property will hold with high probability when

n is large enough. Thus, at least one such set S must exist.

• In areas such as Machine Learning, it is of interest to map “high-dimensional data” (say x1, . . . , xN

with xi ∈ Rd for large d) to some lower-dimensional space (say Rm with m≪ d) while preserving some

key structural properties of the original data. One important structural property is pairwise distances,

and the resulting problem is: Find a matrix A ∈ Rm×d such that

(1− ϵ)∥xi − xj∥ ≤ ∥Axi −Axj∥ ≤ (1 + ϵ)∥xi − xj∥, ∀i, j.

Finding such an A by hand is very tricky, but it turns out that by letting A have i.i.d. Gaussian entries,

this property will hold with high probability under scaling of the form m = O
(

1
ϵ2 logN

)
. You can look

up the Johnson–Lindenstrauss Lemma if you are interested to know more.

2 Basic Counting Arguments

The basic counting argument is an integral part of the probabilistic method. The idea of the counting

method is as follows:

1. Set up a sampling scheme to sample an element (e.g., a random draw of S or A in the above examples)

that has the potential to satisfy the desired property.

2. Design a set of “bad events” such that if none of the events hold, the sampled object x definitely has

the desired property.

3. Count the number of such bad events. Let this number be m.

4. Compute the probability that each of these bad events occurs (or an upper bound on this probability).

Let this probability be p.

5. Conclude that the object of interest must exist if 1 −mp > 0. This is because, by union bound, we

know the probability that none of the bad events holds is at least 1−mp.

2.1 Ramsey Number
Section 1.1 of The Probabilistic Method

The Ramsey number R(k, l) is the smallest positive integer n such that, in every two-coloring (say blue and

red) of the edges of a complete graph Kn of n vertices, we can always find either a red clique Kk of size k

or a blue clique Kl of size l.

• Note: Another interpretation is to replace “red edge” by “edge is present” and “blue edge” by “’edge

is absent”, and to seek either a clique (i.e., fully connected subset) of size k or an independent set (i.e.,

subset with no connections) of size l. We’ll stick with the red/blue terminology.

• It’s fair to say that this is a fairly abstract concept without an immediately obvious application, but

Ramsey numbers have had implications throughout theoretical computer science and beyond (e.g., see

https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html)

2

https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html

(a) K5 with no monochromatic K3. (b) K6 with at least one monochromatic K3.

Figure 1: Example showing R(3, 3) = 6.

Let us consider a small example where k = l = 3. Figure 1a provides a coloring of K5 with no monochromatic

clique of size 3, implying that R(3, 3) > 5. It turns out that R(3, 3) = 6. To see this, note that each vertex

v in K6 is adjacent to five edges. By the pigeonhole principle, at least three such edges have the same color.

Without loss of generality, we assume these edges are colored blue and are connected to vertices x, y, z. If

any of the edges (x, y), (y, z), (z, x) are colored blue, then we have a blue clique of size 3; otherwise, these

edges are all colored red, thus forming a red clique of size 3. Figure 1b demonstrates an edge-coloring of K6

with a red clique of size 3.

The Ramsey theorem shows that R(k, l) is always finite, but calculating exact Ramsey numbers for larger

values of k and l can be challenging and not many precise values of R(k, l) are known. Instead, we can settle

on knowing upper and lower bounds on R(k, l) can be helpful. Here, we will focus on deriving lower bounds

for the “diagonal” (l = k) Ramsey numbers R(k, k).

Theorem 2.1 (Erdős, 1947). If
(
n
k

)
· 21−(

k
2) < 1 then R(k, k) > n. Thus for any k ≥ 3, R(k, k) > ⌊2k/2⌋.

(Note: A similar upper bound dependent on 4k = 22k is known, so while the bounds don’t exactly match, they

are both exponential and they mainly only differ in the exponent being k/2 vs. 2k.)

Proof. Let us consider a random two-coloring of the edges of a complete graphKn where every edge is colored

independently either red or blue with probability 1/2. Consider an arbitrary ordering of all
(
n
k

)
cliques

{C1, . . . , C(nk)
} of size k. For each i ∈ {1, . . . ,

(
n
k

)
}, let Ai be the event that the clique Ci is monochromatic.

For Ai to hold, the
(
k
2

)
edges should be all blue or all red (holding with probability 2−(

k
2) each), and hence

Pr[Ai] = 21−(
k
2).

As there are
(
n
k

)
cliques, we can apply the union bound to calculate the probability that at least 1 such event

occurs:

Pr

(
n
k)⋃

i=1

Ai

 ≤
(nk)∑
i

Pr[Ai] =

(
n

k

)
· 21−(

k
2) < 1,

where the last inequality holds by assumption in the theorem. Therefore, the probability that no such event

Ai occurs is 1−
(
n
k

)
21−(

k
2) > 0; or in other words, there is a positive probability of sampling a two-coloring

of Kn without a monochromatic Kk. Thus, R(k, k) > n.

3

If k ≥ 3 and we take n = ⌊2k/2⌋ then:(
n

k

)
· 21−(

k
2)

(i)
<
nk

k!
· 2

1+k/2

2k2/2

(ii)

≤ 2k
2/2

k!
· 2

1+k/2

2k2/2
=

21+k/2

k!

(iii)
<

21+k/2

2k
= 21−k/2 < 1, (1)

where step (i) applies
(n

k<nk

k!

)
and

(
k
2

)
= k(k−1)

2 = k2−k
2 , step (ii) applies n = ⌊2k/2⌋ ≤ 2k/2, and step (iii)

applies k! ≥ 2k. From (1), we deduce that R(k, k) > ⌊2k/2⌋ as desired.

Converting into a randomized algorithm. The proof of existence hints at a strategy to sample a

two-coloring of a complete graph with n vertices such that there is no monochromatic clique of size k. More

generally, many proofs by the probabilistic method can be converted to an algorithm that uses random

sampling to try to find an element with the desired property. Such algorithms can be categorized into Monte

Carlo algorithms or Las Vegas algorithms, as we describe below.

Monte Carlo algorithm. A Monte Carlo algorithm is a randomized algorithm that may have some

probability of failure, while often having a fixed (pre-specified) number of “rounds” of random sampling. In

the simplest case, we simply run a single round of sampling and show that it succeeds with high probability.

More generally, we might run the same random procedure multiple times and either (i) figure out which

one is the “best” one, or (ii) aggregate all of the results. (For instance, if the randomized algorithm only

“succeeds” with probability 0.01, we could run it ≫ 100 times to be confident of at least one success.)

In the proof, we’ve already established the sampling algorithm as a means of coloring the graph by

independently assigning each edge as either red or blue, selected at random. If the probability of obtaining

a sample with the desired property is represented as p. If p is already very small (say p = o(1)), then simply

running the random procedure once will succeed wit high probability.

For example, if we want to color K1000 in a way that there are no monochromatic K20, we can first check

if this is possible using Theorem 2.1. As n = 1000 ≤ 210 = 2k/2, this means that there exists a coloring with

no monochromatic K20. If we simplify the first expression from the theorem, we can get:(
n

k

)
21−(

k
2) ≤ nk

k!
21−(k(k−1)/2) ≤ 2k/2+1

k!
< 1,

where the three inequalities follow from (i)
(
n
k

)
≤ nk

k! and
(
k
2

)
= k(k−1)

2 ; (ii) the inequality n ≤ 2k/2 established

above; and (iii) k! > 2k > 2k/2+1 for any k > 2. Using this simplification, we know that the probability that

a random coloring has a monochromatic K20 is maximally 220/2+1

20! < 8.5 · 10−16. Thus, the suggested Monte

Carlo algorithm has only a very small probability of giving an incorrect solution.

Some important caveats to this sort of argument are as follows:

• In situations where the probability of bad events is high, Monte Carlo methods may have a higher

probability of providing incorrect solutions and performing poorly.

• Perhaps more importantly, checking the desired property cannot always be done efficiently. In fact, the

Ramsey number example fits in this category, as checking with a clique of a certain size exists in a

graph is a famously (NP-)hard problem. Another example would be the first motivating example in

Section 1 – with |S| = 20.1n strings, the number of pairwise checks would be O
((
20.1n

)2)
= O

(
20.2n

)
,

which is exponentially large. In fact, even just storing the list of strings would be a problem (unless n

is small), as there are 20.1n of them.

4

Las Vegas algorithm. Unlike a Monte Carlo algorithm, a Las Vegas is guaranteed to output the correct

the solution; the idea is to repeatedly perform the random sampling and continue until it is verified to

succeed. Thus, the guaranteed correctness may come at the expense of (having some small probability of)

taking a long time.

To derive an upper limit on the expected running time of this Las Vegas algorithm, we simply multiply

the time needed to generate and verify each sample by the expected number of samples, which is 1/p. In the

Ramsey number example, when the value k is constant, there exists a polynomial time verification algorithm:

Just search over all
(
n
k

)
cliques to ensure that they are not monochromatic. However, it is important to note

that if k grows with n, this verification algorithm ceases to execute within polynomial time.

Weaknesses. While the basic counting method tend to be relatively straightforward, its efficacy depends

on the design of sampling schemes and the accurate identification of bad events. The use of the union bound

may also result in overly loose inequalities, especially in cases with a large number of bad events m, where

condition 1 − mp > 0 becomes unlikely to hold. We shall see some ways to get around this problem in

Section 6.

3 Expectation Arguments

The expectation argument relies on the fact that a discrete random variable must, with positive probability,

take on values both lower and higher than its expected value. For instance, if the average score of the class

is 42 points, then at least one student scored is 42 or higher, and at least one student scored 42 or lower.

This observation forms the basis of the expectation argument in probabilistic reasoning. Formally, we have

the following lemma.

Lemma 3.1. For any real-valued random variable X, we have Pr[X ≥ E[X]] > 0 and Pr[X ≤ E[X]] > 0.

Proof. We present the proof for the case thatX is a discrete random variable, but the argument for continuous

variables is similar with sums replaced by integrals.

We apply a proof by contradiction: If we were to have Pr[X ≥ E[X]] = 0, it would follow that

E[X] =
∑
x

xPr[X = x] =
∑

x<E[X]

xPr[X = x] <
∑

x<E[X]

E[X] Pr[X = x] = E[X],

which is a contradiction. The other claim is proven similarly.

3.1 Finding a Large Cut
Section 6.2.1 of Probability and Computing

A cut (S1, S2) for an undirected graph G = (V,E) is a partition of V into two disjoint sets S1 and S2. The

value of the cut C(S1, S2) is the number of edges that cross from S1 to S2. The following figure5 shows an

example of a large cut where S1 is the set of black vertices and S2 is the set of white vertices. The value of

the cut C(S1, S2) = 5, which is also the maximum cut for the graph. More generally, finding the cut with

the largest number of edges is known as the Maximum Cut (MAXCUT) problem.

• Note: Applications of MAXCUT include network design, statistical physics, and clustering problems.

5Source: Wikipedia page on maximum cut.

5

• It is an NP-hard problem, but a 0.878-approximation algorithm is known. We’ll be less ambitious here

and show that a very simple probabilistic argument gives a 0.5-approximation.

Theorem 3.2. Given an undirected graph G = (V,E) with |E| = m, there exist a cut (S1, S2) such that the

value of the cut C(S1, S2) ≥ m/2.

Proof. For each vertex v ∈ V , assign v uniformly to either S1 or S2. Let e1, . . . , em be an arbitrary ar-

rangement of E and define Xi = 1[ei connects S1 to S2] for each i ∈ [m] where [m] = {1, . . . ,m}. Since the

probability that ei crosses S1 to S2 is 0.5, we have E[Xi] = 0.5. Then

E[C(S1, S2)] = E

[
m∑
i=1

Xi

]
=

m∑
i=1

E[Xi] =
m

2
.

Since E[C(S1, S2)] = m/2, by Lemma 3.1, there exist a cut (S1, S2) such that C(S1, S2) ≥ m/2.

Tightness of the lower bound. It turns out thatm/2 is an essentially tight lower bound for the size of the

maximum cut. To see this, consider the complete graphK2n with 2n vertices where n ∈ N, and let (S1, S2) be

a cut with |S1| = k and |S2| = 2n−k. Note that the value of this cut is k(2n−k), which is maximized when

k = n. As such, the value of any maximum cut in K2n is n2. Since m =
(
2n
2

)
= n(2n− 1) = 2n2 − n, some

simple algebraic manipulation reveals that the value of the maximum cut is m/(2− 1/n), which approaches

m/2 as n→ ∞.

Converting to a randomized algorithm. As before, we can convert this argument into a Las Vegas

algorithm that finds a cut (S1, S2) with C(S1, S2) ≥ m/2 in expected polynomial time: we just have to sample

many random cuts (S
(1)
1 , S

(1)
2), (S

(2)
1 , S

(2)
2), . . . until we obtain an (S

(T)
1 , S

(T)
2) with C(S

(T)
1 , S

(T)
2) ≥ m/2.

Since checking if a given S
(j)
1 , S

(j)
2 satisfy C(S

(j)
1 , S

(j)
2) ≥ m/2 takes polynomial time, we are left to show

that E[T] is also polynomial in m. Let p = Pr[C(S1, S2) ≥ m/2]. Observe that

m

2
= E[C(S1, S2)] =

∑
i<m/2

iPr[C(S1, S2) = i] +
∑

i≥m/2

iPr[C(S1, S2) = i] ≤ (1− p)
(m
2

− 1
)
+ pm,

where the inequality follows since i ≤ m
2 − 1 in the first sum and i ≤ m in the second sum. By re-arranging

the above inequality m
2 ≤ (1− p)

(
m
2 − 1

)
+ pm and solving for p, we obtain p ≥ 1

m/2+1 . If we imagine each

sampling of the cut as a (biased) coin flip, then we are interested in the following question: “Given a coin

that flips a head with probability p, how many flips T do we need in expectation before we get a head?”

6

Since T follows the geometric distribution with parameter p, we have E[T] = 1/p ≤ m/2+ 1, which is linear

in m. Note also that this is only an upper bound, and the actual value of E[T] may be much smaller.

Converting to a deterministic algorithms. This turns out to be a well-known example where the

randomized algorithm can be derandomized, i.e., a deterministic strategy gives the same guarantee. See

Appendix A for the details. Deterministic algorithms are often considered preferable, e.g., so that the

practical performance can be more predictable or reliable. However, in general performing derandomization

while maintaining computational efficiency can be difficult or impossible.

3.2 Maximum Satisfiability
Section 6.2.2 of Probability and Computing

Here we generalize the example given in the introduction section of this lecture.

In a logical formula, a literal is either a variable x or its complement x̄, and a clause is a disjunction

(∨) of literals. A logical formula is in conjunctive normal form (CNF) if it is the conjunction (∧) of a set

of clauses. For brevity, we shall call a formula that is in CNF form a CNF formula. For example, the CNF

formula

ψ0(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4)

has four variables and three clauses.

Let ψ be a CNF formula with n variables. A truth assignment to ψ is an assignment of its variables

x1, . . . , xn to values {TRUE, FALSE} such that ψ(x1, . . . , xn) = TRUE. For example, a truth assignment to ψ0

as defined above is x1 = x3 = FALSE and x2 = x4 = TRUE. The problem of finding a truth assignment to ψ

is known as the Constraint Satisfaction (SAT) problem. Furthermore, if all clauses have exactly k literals,

then the problem is known as k-SAT. We will discuss more about k-SAT in a later section.

For now, let us consider a variation of the problem where we want to find an assignment to the variables

that satisfy as many clauses as possible. This is known as the Maximum Satisfiability (MAXSAT) problem.

(Both SAT and MAXSAT are famously NP-hard problems, and SAT is the basis for countless reductions

showing other problems to be NP-hard.)

Theorem 3.3. Let ψ be a CNF formula with m clauses, and let ki be the number of literals in the i-th

clause. Let k = mini∈[m] ki. Then there is an assignment whose number of satisfied clauses is at least

m∑
i=1

(1− 2−ki) ≥ m(1− 2−k).

Proof. Assign each variable independently and uniformly to either TRUE or FALSE. Let Yi be the indicator

random variable for which the i-th clause is satisfied. We have E[Yi] = 1− 2−ki , and thus

E

[
m∑
i=1

Yi

]
=

m∑
i=1

E[Yi] =
m∑
i=1

(1− 2−ki) ≥ m(1− 2−k).

By Lemma 3.1, there must exist an assignment with at least that many clauses satisfied.

Converting to a randomized algorithm. Similarly to the MAXCUT example, we can convert such an

argument into a Las Vegas algorithm that finds an assignment with at least m(1 − 2−k) satisfied clauses.

7

The conversion scheme and proof are similar to before. The reader is encouraged to verify that we need to

sample, on average, at most m · 2−k + 1 assignments to obtain the desired assignment.

Weaknesses. The expectation method relies on the expectation of the quantity of interest to be sufficiently

large (or sufficiently small, depending on the specifics of the problem). However, in some cases, extreme

outliers in the constructed probability space might skew this expectation to be way smaller (or larger) than

what is required. In such cases, one can sometimes condition on suitably-chosen events that hold with high

probability but ‘remove” the outlier cases. The use of second moments in addition to the mean is also often

useful; see Section 4.

4 Second Moment Methods

Just like expectation, the variance (a.k.a., second centered moment) is another useful statistic for a random

variable X. In the context of the probabilistic method, second moment methods refer to methods that use

both mean and variance information to prove existence properties. Perhaps the most common tool for this

purpose of Chebyshev’s inequality, which is stated as follows.

Lemma 4.1. (Chebyshev’s inequality). Let X be a random variable with a finite variance. Then for t > 0

Pr[|X − E[X]| ≥ t] ≤ Var[X]

t2
.

Proof. Observe that

Pr[|X − E[X]| ≥ t] = Pr[(X − E[X])2 ≥ t2] ≤ E[(X − E[X])2]

t2
=

Var[X]

t2
,

where the inequality holds due to Markov’s inequality.

Notes: Computing or upper bounding Var[X] is not always straightforward; it is worth noting the following:

• If X =
∑n

i=1 Ui and the Ui are independent, we simply have Var[X] =
∑n

i=1 Var[Ui] (an easy case).

• If X =
∑n

i=1 Ui but the Ui are not necessarily independent, then this generalizes to: (try as an exercise)

Var[X] =

n∑
i=1

Var[Ui] +
∑

(i,j) : i ̸=j

Cov[Ui, Uj],

and bounding the second tern may be more difficult (but often possible).

• Alternatively, if X =
∑n

i=1 Ui then we can decompose Var[X] = E[X2] − E[X]2 and use E[X2] =∑n
i=1

∑n
j=1 E[UiUj] (try as an exercise); see the tutorial for an example (‘Counting Triangles’).

• There are also more advanced tools for bounding variance (e.g., Efron-Stein inequality), but they are

beyond our scope.

4.1 Bounding the Middle Binomial Coefficient
Section 5.2 of Matoušek’s and Vondrák’s Lecture Notes

The binomial coefficient
(
2m
m

)
is the largest among the binomial coefficients

(
2m
k

)
for k = 0, 1, . . . , 2m. It

frequently appears in various mathematical formulas, so having access to simple bounds can be very useful.

8

A very simple upper bound is
(
2m
m

)
≤ 22m, which follows by interpreting

(
2m
m

)
as the number of length-2m

sequences containing exactly m ones and m zeros (and the upper bound 22m is the total number of binary

sequences). Using the second moment method, we can show that this simple upper bound is tight to within

a Θ(
√
m) factor.

Theorem 4.2. For all m ≥ 1, we have
(
2m
m

)
≥ 22m/(4

√
m+ 2).

Proof. Let us define a random variable X = X1 +X2 + · · ·+X2m, where we independently sample each Xi

as 0 or 1 with probability 1/2. That is, X ∼ Binomial(2m, 1/2)We know that the expected value of each Xi

is 1/2. Using the linearity of expectation, we can calculate the expected value of X as E[X] = m. Similarly,

we can calculate variance for each variable Var[Xi] = E[X2
i] − E[Xi]

2 = 1
2 − (12)

2 = 1
4 . Since X1, . . . , X2m

are independent, the variance of X is Var[X] = (1/4) · 2m = m/2. Now, if we apply Chebyshev’s inequality

with t =
√
m, we get

Pr[|X −m| <
√
m] ≥ 1

2
.

We rewrite the probability as

Pr[|X −m| <
√
m] =

∑
x:|x−m|<

√
m

Pr[X = x] =
∑

k:|k|<
√
m

Pr[X = m+ k]

where in the last step, we replace x−m by k. Since X ∼ Binomial(2m, 1/2), we know that the probability of

X being equal to a specific value m+ k is
(

2m
m+k

)
· 2−2m ≤

(
2m
m

)
· 2−2m (because

(
2m
m

)
is the largest binomial

coefficient). Therefore,

1

2
≤

∑
k:|k|<

√
m

Pr[X = m+ k] ≤ (2
√
m+ 1)

(
2m

m

)
2−2m,

where the 2
√
m + 1 term comes from upper bounding how many integers k satisfy |k| <

√
m. Simple

re-arranging gives the desired bound,
(
2m
m

)
≥ 22m/(4

√
m+ 2).

4.2 Distinct Sum Problem
Section 2.1 of https://cse.buffalo.edu/~hungngo/classes/2011/Spring-694/lectures/sm.pdf

Consider the following problem: Given an integer n, what’s the largest-cardinality subset S ⊆ {1, . . . , n}
we can find such that every S′ ⊆ S has a different value of

∑
i∈S′ i? Let f(n) denote this largest possible

cardinality, and we say that the set S satisfies the distinct sum property.

It is easy to see that

f(n) ≥ ⌊log2 n⌋+ 1

because we can choose powers of two S = {1, 2, 4, 8, . . . }. Any distinct combination of powers two will give a

distinct value; this follows readily from the fact that the integers can be converted to binary in a one-to-one

manner, and we can interpret S′ ⊆ S as indicating which bits are set to 1.

Using the probabilistic method, a useful upper bound on f(n) can be proved. Note that unlike previous

sections where we gave existence statements, this result is a non-existence statement, stating that no suitable

sets S above a certain size can exist.

Theorem 4.3. It holds that f(n) ≤ log2 n+ 1
2 log2 log2 n+O(1).

9

https://cse.buffalo.edu/~hungngo/classes/2011/Spring-694/lectures/sm.pdf

Proof. For intuition, we first prove a weaker result that has log2 log2 n in place of 1
2 log2 log2 n. Let S be

a set satisfying the distinct sum property, and let k be its cardinality. Since S ⊆ {1, . . . , n}, the sums can

only take values below nk. But by definition there must be 2k distinct sums, so it must hold that 2k ≤ nk.

Performing some simple asymptotic manipulations on this inequality gives k ≤ log2 n+ log log n+O(1) (see

the above link if you want details on this step).

We refine this argument using Chebyshev’s inequality. This time we explicitly write S = {a1, . . . , ak}.
We let S′ be a random subset in which each element of S is included with probability 1

2 , and define the sum

X =
∑

i∈S′ i. Observe that for any integer i, there are only two possibilities:

• If i cannot be produced by summing any subset in S, then Pr[X = i] = 0.

• If i can be produced by summing some subset in S, then Pr[X = i] = 1
2k
. This is because the 2k

subsets are equally likely and each give a distinct sum.

Letting µ = E[X] and σ2 = Var[X], Chebyshev’s inequality gives

Pr
[
|X − µ| ≤ 2σ

]
≥ 1− 1

4
=

3

4
.

On the other hand, using the above property Pr[X = i] ∈
{
0, 1

2k

}
and the fact that there are at most 4σ+1

integers satisfying |X − µ| ≤ 2σ, we have

Pr
[
|X − µ| ≤ 2σ

]
≤ 4σ + 1

2k
.

Combining the above inequalities gives 4σ+1
2k

≥ 3
4 .

Furthermore, since X is an independent sum of variables of the form ai×Bernoulli(1/2) (for i = 1, . . . , k),

and since the variance of Bernoulli(1/2) is 1/4, we get

σ2 =

∑k
i=1 a

2
i

4
≤ n2k

4
,

which implies σ ≤ n
√
k/2. (Note that the last step above follows since ai ≤ n.)

Combining the conclusions of the above two paragraphs gives 2n
√
k+1

2k
≥ 3

4 , or equivalently

n ≥ (3/4)2k − 1

2
√
k

.

From here, some asymptotic manipulations similar to those of the simpler argument (first paragraph of this

proof) give k ≤ log2 n+ 1
2 log log n+O(1), as desired.

4.3 (**Optional**) Other Applications and Inequalities

To highlight how diverse applications of the probabilistic method can be, we briefly mention an application

to number theory. Informally, the result proved is that except for a vanishingly small number of positive

integers n, it holds that the number of unique prime factors is close to log log n. See https://www.youtube.

com/watch?v=5pV_35vjVmU for a precise statement and proof.

The second moment is also often used to derive threshold properties of random graphs; specifically, if

each edge is independently included in the graph with probability p, then the graph satisfies a property of

10

https://www.youtube.com/watch?v=5pV_35vjVmU
https://www.youtube.com/watch?v=5pV_35vjVmU

interest with probability approaching 1 for p above a suitable threshold, but with probability approach 0 for

p below a similar threshold. See the tutorial for an example on the existence or non-existence of triangles

depending on whether p≫ 1
n or p≪ 1

n .

We also briefly mention that Chebyshev’s inequality is not the only second moment based tool. To name

one other example, the Paley-Zygmund Inequality (Notes 6 of Measure-Theoretic Probability) states that for

any random variable X ≥ 0 and constant 0 ≤ θ ≤ 1, it holds that

Pr[X > θE[X]] ≥ (1− θ)2
E[X]2

E[X2]
.

This is related to variance since Var[X] = E[X2] − E[X]2, so E[X]2

E[X2] being high (e.g., close to 1) indicates

lower variance. Specializing to θ = 0 gives Pr[X > 0] ≥ E[X]2

E[X2] , which is particularly useful when we only

need to show that a certain object exists (i.e., X > 0, where X counts occurrences of that object).

5 Sample and Modify Approaches

Sometimes building a random structure with the desired properties directly can be complicated. In such

cases, a simpler solution may be to construct a random structure that lacks the desired properties and

subsequently modifying it so that it has those properties. An illustration of this approach, known as the

sample-and-modify technique, is given below.

5.1 Independent Sets
Section 6.4.1 of Probability and Computing

As a reminder, a subset S of vertices in a graph G is called an independent set if, for any pair of vertices

in S, there does not exist an edge between them. Finding independent sets in graphs is of both theoretical

interest, with applications including network design, data clustering, and resource allocation (e.g., an edge

may indicate that two objects are “conflicting”, and we want to find non-conflicting subsets).

Identifying the largest independent set within a graph is a computationally challenging problem. However,

the following theorem illustrates how the probabilistic method can offer valuable bounds and insights into

the size of the largest independent set in a graph.

Theorem 5.1. Let G = (V,E) be a connected graph on n vertices with m ≥ n/2 edges. Then G has an

independent set with at least n2/4m vertices.

Proof. Let us define the average degree of the vertices as d = 2m/n ≥ 1. We can define the following

sample-and-modify algorithm:

1. Sample. Select a subset S of vertices from G that we “tentatively” intend to keep; specifically, each

of the n vertices is independently placed in S with probability 1/d. Keep only the edges that connect

these selected vertices.

2. Modify. For each remaining edge (between two nodes in S), delete it, and also delete one of its

neighboring vertices. The final independent set is the set of non-deleted vertices in S.

As we have deleted all of the edges, the remaining vertices form an independent set, which we constructed

by first sampling the vertices and then modifying the remaining graph.

The analysis is as follows:

11

• Let X be the number of selected vertices in the first step. Given that the graph comprises n vertices,

and considering that each vertex is selected with a probability 1/d, it follows that E[X] = n
d .

• Let Y be the number of edges that remain after the first step. Since there are m = nd/2 edges in

the graph, and an edge remains if and only if its two adjacent vertices are selected, it follows that

E[Y] = nd
2 (1d)

2 = n
2d .

• In the second step, we delete all of the edges and in the worst case, for each remaining edge we delete

a different vertex, for a maximum total of Y vertices. At the end of the algorithm, the size of an

independent set that we construct is at least X − Y , and thus E[X − Y] = n
d − n

2d = n
2d . By the

expectation argument, there exists a scenario in which X − Y ≥ n
2d .

We have thus constructed a random independent set with at least n/2d vertices on average, so by the

expectation argument, there must exist an independent set of size at least n/2d = n2/4m.

6 Lovász Local Lemma

This section builds on the counting argument described in Section 2, which was based on the following

general strategy to argue that entities with some property P exist:

1. Design a sampling scheme S and let s ∼ S be an arbitrary sample.

2. Design a set of bad events B1, . . . ,Bm for which if none of these bad events holds, then s satisfy P.

Below we will let B̄i denote the complement of Bi.

3. Show that there is a positive probability that none of the bad events occur.

In the third step, we need to find a lower bound for the probability that none of the bad events occur, which

is equivalent to upper bounding the probability that least one of them occurs. In particular, if there is some

p ∈ [0, 1] such that Pr[Bi] ≤ p for all i ∈ {1, . . . ,m}, then by the union bound, we have Pr[∩m
i=1B̄i] ≥ 1−mp.

If mp ≤ 1, then we are done – this is essentially the approach used to prove Theorem 2.1.

The Lovász local lemma is a useful result to facilitate the final step of the argument if it is not possible

to achieve mp ≤ 1. To motivate the lemma, suppose (unrealistically but only momentarily) that the bad

events are mutually independent. Then, it is easy to show that there is a positive probability that none of

the bad events occur: We simply have Pr[∩m
i=1B̄i] ≥ (1− p)m, which is positive if p ̸= 1. Unfortunately, this

argument is almost never suitable, as the bad events are almost always dependent.

Intuitively, the Lovász local lemma states that if B1, . . . ,Bm are “not too dependent”, then we can treat

them as “roughly independent”. The vague notions of “not too dependent” and “roughly independent” are

made formal in the following definition and theorem.

Definition 6.1. Let S = {B1, . . . ,Bm}. For each i ∈ [m], we say that an event Bi is mutually independent

to all but at most d events if there exist a set Sdep ⊂ S\{Bi} (possibly different for each i) of size at most d

such that for any subset Sind ⊂ S\(Sdep ∪{Bi}), the probability of event Bi is unchanged upon conditioning

on the (complements of the) events indexed by Sind:

Pr
[
Bi

∣∣∣⋂
B∈Sind

B̄i

]
= Pr[Bi].

(Recall that B̄i denotes the complement event of Bi.)

12

Theorem 6.2 (Lovász local lemma). Let B1, . . . ,Bm be a set of bad events such that for each i ∈ [m], we

have Pr[Bi] ≤ p and Bi is mutually independent to all but at most d events. If 4pd ≤ 1, then

Pr
[m⋂
i=1

B̄i

]
≥ (1− 2p)m > 0.

Intuitively, the condition 4pd ≤ 1 states that the more dependence is permitted (higher d), the rarer

the events have to be (smaller p) in order to maintain the “independence-like” property. To see the need

for this kind of a condition, suppose that we were to have pd = 1. Then, a possible scenario would be

that in which there are d events with probability 1
d each that are disjoint from each other (an extreme

form of dependence), meaning exactly one of them always holds. Then we would have Pr
[⋃m

i=1 Bi

]
= 1 or

equivalently Pr
[⋂m

i=1 B̄i

]
= 0, which contradicts our goal of showing that this probability is positive.

The (optional) proof of Theorem 6.2 is given in Appendix B. We proceed to look at an example application.

6.1 k-Satisfiability
Section 6.7.2 of Probability and Computing

We now return to constraint satisfaction problem introduced at the start of the lecture (as well as Section

3.2), in which there are n variables x1, . . . , xn, and m clauses c1, . . . , cm, with each clause being the OR of

a subset of variables and/or negations of variables. Previously we discussed the problem of satisfying as

many clauses as possible (the MAXSAT problem), whereas here we ask the question of whether or not it is

possible to satisfy all clauses (the SAT problem).

Accordingly, let ψ = c1 ∧ . . . ∧ cn, which is called a conjunctive normal form (CNF) formula. We call ψ

a k-CNF formula if all of its clauses have exactly k literals (i.e., variables or their negations). The problem

of determining whether or not a satisfying assignment to a k-CNF formula exists is known as k-SAT. The

following theorem uses the probabilistic method to give a general sufficient condition under which such an

assignment is guaranteed to exist.

Theorem 6.3. If none of the variables in a k-CNF formula ψ appear in more than 2k/4k clauses, then

there exists a satisfying assignment for ψ.

• Note: Remarkably, the number of variables n and clauses m play no direct role! (Though the condition

in the theorem does prevent m from growing arbitrarily large.)

• This result is vacuous for k ≤ 4 (since any such k gives 2k

4k ≤ 1), but becomes stronger as k increases.

Proof. Assign each variable independently and uniformly to either TRUE or FALSE. Let Bi be the bad event

that the i-th clause is not satisfied. Thus, p = Pr[Bi] = 2−k. Observe that Bi is mutually independent to

all other events related to clauses that do not share variables with the i-th clause. Since each variable can

appear in at most 2k/4k clauses, Bi is mutually independent to all but d ≤ k2k/4k = 2k−2 events. Since

4dp ≤ 4× 2k−2 × 2−k = 1,

by Theorem 6.2, the probability of sampling an assignment with none of the bad events occurring is nonzero.

13

Appendix

A Deterministic Algorithm for Finding a Large Cut
Section 6.3 of Probability and Computing

We have previously proved the existence of a cut (S1, S2) with value C(S1, S2) ≥ m/2 by showing that

a randomized strategy gives E[C(S1, S2)] ≥ m/2. We shall now see how derandomization can help us

deterministically obtain a cut that always achieves C(S1, S1) ≥ m/2.

Let v1, v2, . . . , vn be an arbitrary order for the vertices. We will also designate ϵi as the set in which

we place vi, where ϵi can be either S1 or S2. We have already shown that if ϵi are independent with

Pr(ϵ1 = S1) = Pr(ϵ1 = S2) =
1
2 , then E[C(S1, S2)] ≥ m/2. To “derandomize” this result, we will consider

incrementally choosing each ϵi in a deterministic manner based on ϵ1, . . . , ϵi−1.

Let E[C(S1, S2)|ϵ1, . . . , ϵk] denote the average cut value given specific choices of ϵ1, . . . , ϵk but with the

remaining values ϵk+1, . . . , ϵn still being random. We seek to sequentially choose the ϵi values in manner

that ensures the following:

E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1] ≤ E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1, ϵk]. (2)

Before describing how to achieve this goal, we discuss its implications.

Recursively applying the inequality, we find that E[C(S1, S2)] ≤ E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵn], where E[C(S1, S2)]

represents the “purely random” scenario in which no vertices have been assigned to any set, and

E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵn]

represents the “final cut value” after having placed every vertex into either S1 or S2. (Hence, the E[·|·] oper-
ation is not actually “averaging” anything – by this point, C(S1, S2) is fully specified.) Since E[C(S1, S2)] ≥
m/2, this implies that our deterministic algorithm will yield a cut with a value of at least m/2.

We establish the property (2) through induction. In the base case, when ϵ1 is introduced, we have

E[C(S1, S2)|ϵ1] = E[C(S1, S2)]. This base case holds by symmetry – it makes no difference whether we place

the first node in S1 or S2, since the remaining ϵi all follow a 50/50 choice anyway. For the inductive step,

fix the iteration index k and suppose that ϵ1, . . . , ϵk−1 have already been specified. At this stage, there are

two options for placing vk: either in S1 or in S2, each with a probability of 1/2. Consequently, we have

E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1] =
1

2
E
[
C(S1, S2)

∣∣∣ (ϵ1, ϵ2, . . . , ϵk−1), ϵk = S1

]
+
1

2
E
[
C(S1, S2)

∣∣∣ (ϵ1, ϵ2, . . . , ϵk−1), ϵk = S2

]
.

Since the maximum of two terms is at least as high as the average, it follows that

max(E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1, ϵk = S1],E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1, ϵk = S2])

≥ E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1].

Therefore, we know that we just need to determine the expectation with which set S1 or S2 is greater and

put vk in that set, and (2) will hold.

At this stage, it may not be obvious how to compute the two expectations in the max(·, ·); this is detailed
as follows. When calculating E[C(S1, S2)|ϵ1, ϵ2, . . . , ϵk−1, ϵk = S1], we already know from the k assignments

of ϵi that certain edges contribute to the cut, and for the remaining ones, we know that the probability that

14

its two endpoints will end up in different sets (thus incrementing the cut value by 1) is 1/2 Therefore, to

calculate the expectation, using the linearity property, we can just sum the edges that already contribute

and half of the remaining ones. This can be computed in linear time, and we can do the same for the other

expectation.

Simplifying further, it is straightforward to show that choosing ϵk = S1 or ϵk = S2 is equivalent to placing

the vertex vk in the set where vk has fewer neighbors. The edges that don’t involve vk contribute equally to

both expectations. Therefore, by allocating vk to the set with fewer neighbors, a greater number of its edges

will contribute to the overall cut. With this, we can conclude the formulation of our deterministic algorithm:

• Begin by initially assigning the first vertex arbitrarily to either set S1 or S2.

• Subsequently, allocate each successive vertex to the set containing fewer neighbors. (If there is a tie,

then either one can be chosen arbitrarily.)

We have demonstrated that this algorithm always gives a cut with minimally m/2 edges.

B (**Optional**) Proof and Extensions of the Lovász Local Lemma
Class 11.3 of Randomized Algorithms

Proof of Theorem 6.2:

We begin with the following useful lemma.

Lemma B.1. Let B1, . . . ,Bm be a set of bad events such that for all i ∈ [m], we have Pr[Bi] ≤ p and Bi is

mutually independent to all but at most d other events where 4dp ≤ 1. For any set S ⊂ {B1, . . . ,Bm} and

any Bi /∈ S,

Pr
[
Bi

∣∣∣⋂
B∈S

B̄
]
≤ 2p.

Proof. We prove this by induction. Let S ⊂ {B1, . . . ,Bm} and Bi /∈ S. When |S| = 0, we have

Pr
[
Bi

∣∣∣⋂
B∈S

B̄
]
= Pr[Bi] ≤ p ≤ 2p

where the first inequality holds by assumption in the lemma.

Now suppose the statement holds for all S′ with |S′| ≤ k and choose S with |S| = k+1. Partition S into

two sets Sind and Sdep such that Bi is mutually independent to Sind and dependent to Sdep. Note that the

choice of Sind and Sdep might differ for different Bi. If |Sind| = k + 1, then S = Sind, which implies that

Pr
[
Bi

∣∣∣⋂
B∈S

B̄
]
= Pr

[
Bi

∣∣∣⋂
B∈Sind

B̄
]
= Pr[Bi] ≤ p ≤ 2p.

Now suppose |Sind| ≤ k. Then using the definition of conditional probability, we have

Pr
[
Bi

∣∣∣⋂
B∈S

B̄
]
= Pr

[
Bi

∣∣∣(⋂
B∈Sdep

B̄
)
∩
(⋂

B∈Sind

B̄
)]

=
Pr

[
Bi ∩

(⋂
B∈Sdep

B̄
)∣∣∣(⋂

B∈Sind
B̄
)]

Pr
[(⋂

B∈Sdep
B̄
)∣∣∣(⋂

B∈Sind
B̄
)] .

The numerator term can be loosely bounded by

Pr
[
Bi ∩

(⋂
B∈Sdep

B̄
)∣∣∣(⋂

B∈Sind

B̄
)]

≤ Pr
[
Bi

∣∣∣(⋂
B∈Sind

B̄
)]

= Pr[Bi] ≤ p.

15

The denominator term can be bounded by first observing that the probability of its negation is

Pr
[(⋃

B∈Sdep

B
)∣∣∣(⋂

B∈Sind

B̄
)] (a)

≤
∑

B∈Sdep

Pr
[
B
∣∣∣(⋂

B∈Sind

B̄
)]

(b)

≤ 2p · |Sdep|
(c)

≤ 2pd

(d)

≤ 1

2
,

where (a) holds due to the union bound, (b) holds due to the inductive hypothesis, (c) holds due to the

assumption that Bi is mutually independent to all but at most d other events, and (d) holds due to the

assumption that 4dp ≤ 1. Thus, the denominator can be bounded by

Pr
[(⋂

B∈Sdep

B̄
)∣∣∣(⋂

B∈Sind

B̄
)]

= 1− Pr
[(⋃

B∈Sdep

B
)∣∣∣(⋂

B∈Sind

B̄
)]

≥ 1

2
.

Putting them together, we have

Pr
[
Bi

∣∣∣⋂
B∈S

B̄
]
=

Pr
[
Bi ∩

(⋂
B∈Sdep

B̄
)∣∣∣(⋂

B∈Sind
B̄
)]

Pr
[(⋂

B∈Sdep
B̄
)∣∣∣(⋂

B∈Sind
B̄
)] ≤ p

1/2
= 2p.

We now prove Theorem 6.2 using Lemma B.1.

Proof of Theorem 6.2. By Lemma B.1, we have Pr[B̄i|B̄i+1 ∩ · · · ∩ B̄m] ≥ 1− 2p for all i ∈ [m]. Thus,

Pr
[m⋂
i=1

B̄i

]
= Pr

[
B̄1

∣∣∣ m⋂
i=2

B̄i

]
× Pr

[
B̄2

∣∣∣ m⋂
i=3

B̄i

]
× · · · × Pr[B̄m−1|B̄m]× Pr[B̄m]

≥ (1− 2p)m

> 0,

where the last step holds by assumption in the theorem.

Variations and Extensions:

Other variants of the Lovász local lemma also exist, one of which replaces 4pd ≤ 1 by ep(d + 1) ≤ 1, and

more importantly, an asymmetric version in which the dependencies are encoded via a general graph in

which different nodes (random variables) may have significantly different degrees (number of dependencies).

We will not cover such variants.

Another natural follow-up question is whether it is possible to transform an existence argument relying on

the Lovász local lemma into an efficient algorithm. In other words, we want a general algorithmic approach

that allows us to avoid all the bad events B1, . . . ,Bm. While we won’t delve into this topic here, we direct

interested readers to explore the relevant resources on algorithmic Lovász Local Lemma for more information

(e.g., Class 12.1 of Randomized Algorithms linked on the first page).

16

	Introduction
	Basic Counting Arguments
	Ramsey Number

	Expectation Arguments
	Finding a Large Cut
	Maximum Satisfiability

	Second Moment Methods
	Bounding the Middle Binomial Coefficient
	Distinct Sum Problem
	(**Optional**) Other Applications and Inequalities

	Sample and Modify Approaches
	Independent Sets

	Lovász Local Lemma
	k-Satisfiability

	Deterministic Algorithm for Finding a Large Cut
	(**Optional**) Proof and Extensions of the Lovász Local Lemma

