
CS5275 Lecture 8: Information Theory

Jonathan Scarlett

December 6, 2024

Useful references:

• Cover/Thomas book “Elements of Information Theory”

• MacKay book: “Information Theory, Inference, and Learning Algorithms”

Note: In the initial sections of these notes, we introduce various information measures and some axiomatic
motivation, intuition, and properties. In Sections 5 and 6, we overview compression and communication
problems where these information measures naturally arise in their fundamental performance limits.

1 Information of an Event

Getting started.

• If we are told that random event A occurred (e.g., coin came up tails, two dice added up to 7, it rained
today), how much “information” have we learned?

• Approach: Quantify information without any regard to significance or importance. It is only Pr[A]

that matters.

– Things like “importance” are usually too subjective to quantify.

• Generically speaking, if A occurs with probability p, then

Information(A) = ψ(p)

for some function ψ(·). Perhaps a more intuitive interpretation of ψ(p) is that it quantifies how surprised
we are that event A occurred. What properties should this function satisfy?

Axiomatic view.

• Here are some very natural properties that we should expect ψ(p) to satisfy:

1. (Non-negativity) ψ(p) ≥ 0, i.e., we cannot learn a “negative amount” of information.

2. (Zero for definite events) ψ(1) = 0, i.e., if something was certain to happen, nothing is learned by
the fact that it occurred.

3. (Monotonicity) If p ≤ p′, then ψ(p) ≥ ψ(p′), i.e., the less likely the event was, the more information
is learned by the fact that it occurred.

1

4. (Continuity) ψ(p) is continuous in p, i.e., small changes in probability don’t cause drastic changes
in information.

5. (Additivity under independence) ψ(p1p2) = ψ(p1) + ψ(p2). If A and B are independent events
with probabilities p1 and p2, then A ∩ B has probability p1p2, and the information learned from
both A and B occurring is the sum of the two individual amounts of information (because they
are independent!)

• It can be shown that only ψ(p) = logb
1
p (for some base b > 0) satisfies all three

– We focus on b = 2, which means information is measured in “bits”. Another common choice is
b = e, which means information is measured in “nats”.

– All choices of b are equivalent up to scaling by a universal constant (e.g., number of nats =
(loge 2) × number of bits). This is much the same as how we can measure distance in meters,
kilometers, inches, or miles, but converting from one to another just amounts to scaling.

– So being told that a probability-p event occurred gives us log2
1
p “bits” of information.

– An illustration:

2 Information of a Random Variable – Entropy

Definition.

• Let X be a discrete random variable with probability mass function (PMF) PX

• According to the previous section, if we observe X = x then we have learned log2
1

PX(x) bits of
information. The (Shannon) entropy is simply the average of this value with respect to PX :

H(X) = EX∼PX

[
log2

1

PX(X)

]
=

∑
x

PX(x) log2
1

PX(x)
.

– Note the convention 0 log 1
0 = 0, which is reasonable since limp→0 p log2

1
p = 0.

• Can be viewed as a measure of information in X or uncertainty in X (these are not contradictory)

2

• Note. Here and throughout the vast majority of the course, we only consider discrete-valued random
variables that can only take on a finite number of values. We will cover continuous-valued random
variables much later.

Examples.

• Binary source:

– Suppose X ∼ Bernoulli(p) for some p ∈ (0, 1) (i.e., PX(1) = 1− PX(0) = p)

– Then we get

H(X) = p log2
1

p
+ (1− p) log2

1

1− p
. (1)

The right hand side, as a function of p, is known as the binary entropy function. Since this
quantity will be used frequently throughout the course, we give it a formal definition: H2(p) =

p log2
1
p + (1− p) log2

1
1−p for p ∈ [0, 1]. An illustration:

• Uniform source:

– Suppose X is uniform on a finite set X (i.e., PX(x) = 1
|X | for each x ∈ X , where |X | is the

cardinality of X)

– Then we get

H(X) = E
[
log2

1

1/|X |

]
= log2 |X |.

This is intuitive, e.g., with 10 bits we can produce |X | = 210 combinations of bits.

(**Optional**) Axiomatic view [Shannon].

• Suppose that X is a discrete random variable taking N values, with probabilities p = (p1, . . . , pN). If
we consider a general information measure of the form

Ψ(p) = Ψ(p1, . . . , pN),

then what properties should it satisfy?

• Three natural properties:

1. (Continuity) Ψ(p) is continuous as a function of p. Again, small changes in the distribution don’t
give large changes in information/uncertainty.

3

2. (Uniform case) If pi = 1
N for i = 1, . . . , N , then Ψ(p) is increasing in N . That is, being uniform

over a larger set of outcomes always means more information/uncertainty.

3. (Successive decisions) The following always holds:

Ψ(p1, . . . , pN) = Ψ(p1 + p2, p3, . . . , pN) + (p1 + p2)Ψ

(
p1

p1 + p2
,

p2
p1 + p2

)
.

This can be viewed as drawing from the distribution on X by first drawing from the correspond-
ing distribution that doesn’t distinguish two symbols (the ones with probabilities p1 and p2),
and then drawing another random variable to resolve those two symbols if needed (which only
happens a fraction p1 + p2 of the time). The total information/uncertainty is the sum of the
information/uncertainty from each of the two stages.

• It can be shown that only Ψ(X) = constant×H(X) satisfies all three.

Variations.

• Joint entropy of two random variables (X,Y):

H(X,Y) = E(X,Y)∼PXY

[
log2

1

PXY (X,Y)

]
=

∑
x,y

PXY (x, y) log2
1

PXY (x, y)
.

We can similarly define H(X,Y, Z) or larger collections such as H(X1, . . . , Xn).

• Conditional entropy of Y given X:

H(Y |X) = E(X,Y)∼PXY

[
log2

1

PY |X(Y |X)

]
=

∑
x,y

PXY (x, y) log2
1

PY |X(y|x)

=
∑
x

PX(x)H(Y |X = x), (2)

where in the last line, H(Y |X = x) =
∑

y PY |X(y|x) log2 1
PY |X(y|x) is simply the entropy of the distri-

bution PY |X(·|x) on Y . We can similarly define quantities like H(Y1, Y2|X1, X2).

– Intuition: H(Y |X = x) is the uncertainty in Y after having observed that X = x. The conditional
entropy H(Y |X) simply averages such a quantity over X, so it represents the average remaining
uncertainty in Y after observing X.

Example:

• Consider the joint distribution described as follows:

PX(0) = 1− p, PX(1) = p,

PY |X(y|x) =

1− δ y = x

δ y ̸= x,

4

where X and Y are both {0, 1}-valued.

• That is, X ∼ Bernoulli(p) and then Y is generated by flipping X with probability δ.

• We have the following:

– H(X) = H2(p) as already done above.

– Similarly, H(Y) = H2(q) where q = PY (1) = p(1− δ) + (1− p)δ.

– H(Y |X) =
∑

xH(Y |X = x), but H(Y |X = x) is H2(δ) for both x values, so H(Y |X) = H2(δ).

– H(X;Y) could be computed directly based on the 4 joint probabilities (pδ, p(1− δ), (1− p)δ, (1−
p)(1− δ)), but an easier way it to use the property H(X,Y) = H(X) +H(Y |X) (see chain rule
below), giving H(X,Y) = H2(p) +H2(δ).

– Computing H(X|Y) directly would require using Bayes’ rule to get an expression for PX|Y and
substituting into H(X|Y) =

∑
y PY (y)H(X|Y = y). This gets a bit messy, so is skipped here.

(Again, the chain rule gives an easier approach via H(X,Y) = H(Y) +H(X|Y).)

2.1 Properties of Entropy

• Non-negativity:
H(X) ≥ 0

with equality if and only if X is deterministic.

– Intuition: Information/uncertainty cannot be negative

– Proof: The “information of an event” log2
1
p is always non-negative for p ∈ [0, 1], so entropy is the

average of a quantity that is always non-negative, and so is itself non-negative. Moreover, only
p = 1 gives log2

1
p = 0, so H(X) = 0 if and only if X is deterministic.

• Upper bound: If X takes values on a finite alphabet X , then

H(X) ≤ log2 |X |

with equality if and only if X is uniform on X . This similarly implies H(X|Y) ≤ log2 |X |.

– Intuition: The uniform distribution has the most uncertainty.

– Proof: Let P be the distribution of X, and let Q be the uniform distribution on X , so that
Q(x) = 1

|X | for all x. Then note that

∑
x

P (x) log2
P (x)

Q(x)
=

∑
x

P (x) log2
(
|X | · P (x)

)
= log2 |X |+

∑
x

P (x) logP (x)

= log2 |X | −H(X).

In Section 3 we will show that the left-hand side is non-negative for any distributions P and
Q, with equality if and only if P = Q. Specialized to the above choices of P and Q, we get
log2 |X | −H(X) ≥ 0 with equality if and only if P is uniform, as desired.

5

• Chain rule (two variables):
H(X,Y) = H(X) +H(Y |X)

– Intuition: The overall information in (X,Y) is the information inX plus the remaining information
in Y after observing X.

– Proof: For (X,Y) ∼ PXY , we have

H(X,Y) = E
[
log

1

PXY (X,Y)

]
= E

[
log

1

PX(X)PY |X(Y |X)

]
= E

[
log

1

PX(X)
+ log

1

PY |X(Y |X)

]
= H(X) +H(Y |X).

– Note: We can swap the roles of X and Y , giving H(X,Y) = H(Y) +H(X|Y).

• Chain rule (general):

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|X1, . . . , Xi−1).

– Intuition: Similar to the two-variable case.

– Proof: Similar to the two-variable case, but instead use the expansion PX1...Xn = PX1 ×PX2|X1
×

PX3|X1X2
× . . .× PXn|X1,...,Xn−1

.

• Conditioning reduces1 entropy:
H(X|Y) ≤ H(X)

with equality if and only if X and Y are independent.

– Intuition: Having additional information cannot increase uncertainty on average.2

– Proof: Equivalent to the property I(X;Y) ≥ 0 to be proved in Section 4.1.

• Sub-additivity:

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi)

with equality if and only if X1, . . . , Xn are independent.

– Intuition: The uncertainty in several random variables is no more than the sum of individual
uncertainty in each one.

– Proof: Apply “conditioning reduces entropy” to each summand in the general chain rule formula
above.

1More precisely, does not increase
2In contrast, H(X|Y = y) for a particular y could exceed H(X), as we saw in the example following the conditional entropy

definition (note that the roles of X and Y were reversed there).

6

3 A Useful Measure Between Distributions – KL Divergence

• For two PMFs P and Q on a finite alphabet X , the Kullback-Leibler (KL) divergence (also known as
relative entropy) is given by

D(P∥Q) =
∑
x

P (x) log2
P (x)

Q(x)

= EX∼P

[
log2

P (X)

Q(X)

]
.

• Can be viewed as a kind of “distance” between P and Q, but it is not a distance function in the
mathematical sense (in general it is not symmetric and doesn’t satisfy the triangle inequality).

• Claim. For any distributions P and Q, we have

D(P∥Q) ≥ 0

with equality if and only if P = Q.

– Proof:

−D(P∥Q) =
∑
x

P (x) log
Q(x)

P (x)

(a)

≤
∑
x

P (x)

(
Q(x)

P (x)
− 1

)
=

∑
x

Q(x)−
∑
x

P (x)

= 0,

where (a) uses the inequality logα ≤ α− 1, which is easily verified graphically. Equality holds in
logα ≤ α− 1 if and only if α = 1, which means that equality holds in (a) if and only if Q(x)

P (x) = 1

for all x (i.e., P = Q).

• The KL divergence (and in fact, also entropy and mutual information) is used extensively in other
fields like statistics and machine learning. Some example uses (stated only very roughly here) are:

– In data compression, if the true source is distribution is P but we use an algorithm that wrongly
assumes it is Q, then we pay a penalty of D(P∥Q) in the average number of bits per symbol;

– In statistics, if X = (X1, . . . , Xn) is i.i.d. with Xi ∼ Q, then the probability that X “looks like”
it was generated i.i.d. on P (yes, this is quite vague) is roughly 2−nD(P∥Q) when n is large. Look
up Sanov’s theorem for a more precise statement.

4 Information Between Random Variables – Mutual Information

Definition.

7

• Mutual information:

I(X;Y) = H(Y)−H(Y |X).

• Intuition:

– H(Y) is the a priori uncertainty in Y

– H(Y |X) is the remaining uncertainty in Y after observing X (on average)

– Hence, I(X;Y) is the amount of information about Y we learn by observing X (on average).

Variations.

• Joint version:
I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2).

• Conditional version:
I(X;Y |Z) = H(Y |Z)−H(Y |X,Z).

Examples.

1. IfX and Y are independent, then it is straightforward to computeH(Y |X) = H(Y), giving I(X;Y) = 0

(i.e., independent random variables do not reveal any information about each other).

2. If Y = X, then it is straightforward to compute H(Y |X) = H(X|X) = 0, and hence I(X;X) = H(X)

(i.e., the amount of information a random variable reveals about itself is the entropy).

3. In the example given shortly after Eq. (2), we computed H(Y |X) ≈ 0.8755 and H(Y) ≈ 0.8813, which
gives I(X;Y) = H(Y)−H(Y |X) ≈ 0.006.

4. We will see more “insightful” examples when we come to the channel coding (communication) part of
the course.

4.1 Properties of Mutual Information

• Alternative forms:

I(X;Y) = D(PXY ∥PX × PY)

= E
[
log2

PXY (X,Y)

PX(X)PY (Y)

]
=

∑
x,y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)

= E
[
log2

PY |X(Y |X)

PY (Y)

]
=

∑
x,y

PXY (x, y) log2
PY |X(y|x)
PY (y)

.

– Proof: Substituting H(Y) = E
[
log2

1
PY (Y)

]
and H(Y |X) = E

[
log2

1
PY |X(Y |X)

]
into the definition

of mutual information gives I(X;Y) = E
[
log2

PY |X(Y |X)

PY (Y)

]
. Multiplying the numerator & denom-

inator by PX(X) gives E
[
log2

PXY (X,Y)
PX(X)PY (Y)

]
, from which the remaining equalities follow easily.

8

• Symmetry: We have
I(X;Y) = H(X) +H(Y)−H(X,Y)

and in particular
I(X;Y) = I(Y ;X)

which also implies
I(X;Y) = H(X)−H(X|Y).

– Intuition: X and Y reveal an equal amount of information about each other (or maybe this is not
that intuitive!)

– Proof: We have from the above alternative form that

I(X;Y) = E
[
log2

PXY (X,Y)

PX(X)PY (Y)

]
= E

[
log2

1

PX(X)
+ log2

1

PY (Y)
+ log2 PXY (X,Y)

]
= H(X) +H(Y)−H(X,Y),

where we first expanded the logarithm, and then applied the definition of (joint) entropy.

• Non-negativity: I(X;Y) ≥ 0 with equality if and only if X and Y are independent.

– Intuition: One random variable cannot tell us a “negative amount” of information about the other.

– Proof: Using the above-established identity I(X;Y) = D(PXY ∥PX × PY), this is just a special
case of D(P∥Q) ≥ 0 with equality if and only if P = Q.

• Upper bounds: We have

I(X;Y) ≤ H(X) ≤ log2 |X |

I(X;Y) ≤ H(Y) ≤ log2 |Y|.

– Intuition: The information X reveals about Y (mutual information) is at most the prior informa-
tion in X (entropy).

– Proof: To show that I(X;Y) ≤ H(X), combine I(X;Y) = H(X) − H(X|Y) (see above) and
H(X|Y) ≥ 0 (conditional or unconditional entropy is never negative). We already showedH(X) ≤
log2 |X | earlier, and the remaining claims follow by symmetry, reversing the roles of X and Y .

• Chain rule:

I(X1, . . . , Xn;Y) =

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1).

– Intuition: Similar to the chain rule for entropy.

– Proof: Write I(X1, . . . , Xn;Y) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y) and apply the chain rule for
entropy to both terms.

• Data processing inequality: If Z depends on (X,Y) only through Y (often stated via the terminol-
ogy “X → Y → Z forms a Markov chain”, and equivalent to the statement “X and Z are conditionally

9

independent given Y ”), then
I(X;Z) ≤ I(X;Y).

– Intuition: Processing Y (to produce Z) cannot increase the information available regarding X.

– Proof: As stated above, the statement “Z depends on (X,Y) only through Y ” is equivalent to “Z
and X are conditionally independent given Y ”. This means that the property PZ|XY = PZ|Y (as
assumed in the result) is equivalent to PX|Y Z = PX|Y . To deduce the result, we write

I(X;Z)
(a)
= H(X)−H(X|Z) (3)
(b)

≤ H(X)−H(X|Y, Z) (4)
(c)
= H(X)−H(X|Y) (5)
(d)
= I(X;Y), (6)

where (a) and (d) use the definition of mutual information, (b) follows since conditioning reduces
entropy, and (c) holds because H(X|Y, Z) = E

[
log 1

PX|Y Z(X|Y,Z)

]
= E

[
log 1

PX|Y (X|Y)

]
= H(X|Y)

by the above-established fact PX|Y Z = PX|Y .

– Variations:

∗ If X → Y → Z then I(X;Z) ≤ I(Y ;Z).

∗ If W → X → Y → Z then I(W ;Z) ≤ I(X;Y).

• Partial sub-additivity: If (Y1, . . . , Yn) are conditionally independent given (X1, . . . , Xn), and in
addition Yi depends on (X1, . . . , Xn) only through Xi, then

I(X1, . . . , Xn;Y1, . . . , Yn) ≤
n∑

i=1

I(Xi;Yi).

However, without the conditional independence assumptions, this property may fail to hold.

5 (**Optional**) A Brief Overview of Data Compression

Familiar examples of compression.

• When we compress a file to .zip or .rar it gets smaller, and yet we can still recover the contents.
How/why is this possible? This is the problem of lossless compression.

• When we convert a file from .bmp to .jpeg, we lose some quality, but hopefully not too much. However,
we cannot convert back to the higher-quality image. This is the problem of lossy compression.

• Concepts in compression go further back than computers – recall Morse code:

10

Example 1: Sparse binary string.

• Suppose that we want to efficiently store

000000010000000000000000000010000000000000000000000001000000000,

i.e., a string of length 64 with only three 1s and the rest 0s.

• Storing this “as is” requires 64 bits (a bit being a 1 or 0).

• Alternative scheme:

– Index the string positions from 0 to 63, and consider their binary format (e.g., 0 → 000000,
7 → 000111, 63 → 111111)

– Store the 3 positions where the long string has value 1, using 6 bits per position.

• This permits only 18 bits of storage instead of 64.

Example 2: Equal number of 1s and 0s.

• Suppose that we need a system that can compress sequences of the form

101101010110011101001100110010010110101110101010001001001010011,

i.e., still length 64, but now half ones and half zeros.

• Again, storing “as is” requires 64 bits.

• The number of strings with half zeros and half ones is
(
64
32

)
. Let’s aim to compress them down to some

number L < 64 of bits. How small can L be?

• With L bits (each 0 or 1), we can make 2L combinations. Since each of the
(
64
32

)
strings have to be

stored as a different combination, we clearly need 2L ≥
(
64
32

)
, or equivalently

L ≥ log2

(
64

32

)
≈ 60.7.

(More generally, compressing N different strings down to L bits without loss requires L ≥ log2N .)

• So we can’t hope to do much better than direct storage!

Example 3: English text.

• English text clearly has a fair bit of redundancy, since we can “throw away” several letters but still
(usually) recover the original text:

C_N Y__ F_LL _N TH_ V_W_LS _N TH_S S_NT_NC_?

• If we (somewhat naively) store English text in some binary format in a letter-by-letter fashion, we
can exploit the fact that some letters are more common than others, e.g., map ‘e’ to a short binary
sequence, and ‘x’ to a long binary sequence.

– Morse code is an early example of this idea (but not quite “binary”!)

11

– Can we construct an “optimal” mapping?

• The savings are much greater if we exploit the fact that different groups of letters are more likely to
appear together (e.g., if we have already seen “Fill in the blan”, then there is clearly a much more likely
letter than ‘e’ coming next!)

• Spoiler: While it requires 5 bits (or at least log2 27 ≈ 4.75) to uniquely identify one of 27 characters (‘a’
to ‘z’ and also spaces), the actual “information content” of each letter in English text is only about 1.34
bits. This will mean that we can compress down by a factor of at least 3× without losing anything.

– See the appendix of this document for further details

Information-theoretic viewpoint.

• Information theory adopts probabilistic models, e.g., a string of 1000 English characters is modeled by
some joint distribution PX1X2...X999X1000

, where each Xi takes some value in a . . . z (or space).

– Probabilistic modeling can provide a very good trade-off between accuracy in modeling the real
world vs. tractability of the mathematical analysis.

• Two distinct approaches to compression:

– (Variable-length) Map more probable sequences to shorter binary strings, at the expense of map-
ping less probable sequences to longer strings. How low can the average length be?

– (Fixed-length) Map the most probable sequences to binary strings of a given length, at the expense
of not having enough such strings for the low-probability sequences. How low can the length
be while having a very low probability of failure?

• Source coding theorem (informal). In both of these settings, the fundamental compression limit
is given by the Shannon entropy H. The (average) storage length can be arbitrarily close to H, but
can never be any lower than H.

6 (**Optional**) A Brief Overview of Data Communication

Familiar examples of communication.

• When military pilots want to read a sequence of letters over an intercom, they use “alpha”, “bravo”,
“Charlie”, etc.

• If someone on the other end of the phone is having trouble hearing us, we might repeat the same thing
2–3 times to make sure they hear it.

• If we’re talking to someone in their non-native language, we might talk slower.

• Our WiFi slows down as we move further away from the router.

• Common theme: Send information more slowly but also more reliably.

– For a given reliability, how slow do we need to go?

Simple communication setting.

12

• Let’s suppose that we are communicating in binary:

– A “transmitter” sends a sequence of 0s and 1s

– A “receiver” receives the sequence with some corruptions: Each bit is flipped (from 0 to 1, or from
1 to 0) independently with probability δ ∈

(
0, 12

)
.

– This is depicted in the following “channel transition diagram”:

– e.g., The sequence 01101000 might be received as 00101100 (two corruptions)

Approach 1: Uncoded communication.

• Suppose that the transmitter wants to send one of 16 messages (e.g., it has done a weather reading
and wants to send one of 16 possibilities among “sunny”, “rainy”, “partly cloudy”, etc.)

• Naively, it can do this by mapping each outcome to a unique sequence of 4 bits (e.g., sunny → 0000,
rainy → 1010, etc.)

• Since each bit is flipped with probability δ, the probability of all 4 bits coming out correct is (1− δ)4.
For instance, if δ = 0.1, we have P[correct] = 0.94 = 0.6561.

• Things get worse as we send more messages, e.g., if we encode one of 28 = 256 messages to a length-8
binary string and transmit it, we get P[correct] = (1− δ)8, which is roughly 0.43 when δ = 0.1.

Approach 2: Repetition code.

• As mentioned above, let’s try transmitting slower but more reliably!

• Let’s start with just sending one of two messages, which we will label as 0 and 1.

• Repetition code R3 of length 3:

– To send “0”, transmit the sequence “000”

– To send “1”, transmit the sequence “111”

– At the receiver, take the majority vote (e.g., 000 or 010 get decoded as “0”, whereas 111 or 110
get decoded as “1”)

• Clearly, we get correct decoding if there are no flips or one flip, so P[correct] = (1− δ)3 + 3δ(1− δ)2,
which equals 0.972 when δ = 0.1.

• We can then transmit, say, one of 16 messages by mapping (e.g.) 0101 to 000111000111. The probability
of getting back the correct message is 0.9724 ≈ 0.893

– A fair bit more reliable than uncoded – but three times slower!

13

• We can do the same with more repetitions:

– e.g., map 0101 to 0000000111111100000001111111 (repetition code R7)

– Any given bit (out of the 4 sent) is decoded correctly with probability

(1− δ)7 + 7δ(1− δ)6 +

(
7

2

)
δ2(1− δ)5 +

(
7

3

)
δ3(1− δ)4 ≈ 0.9973

(This is the probability that a Binomial(7, 0.1) random variable is at most 3)

– The overall message is decoded correctly with probability ≈ 0.99734 ≈ 0.989.

– Now the communication is very reliable, but we are 7 times slower than uncoded! Do we have to
keep getting slower and slower?

Approach 3: Hamming code.

• Here we give a famous example of how to map a binary string of length 4 (so 16 messages) to a binary
string of length 7 while still being able to correct one bit flip.

• The technique: In the following figure, fill in b1b2b3b4 (‘b’ for ‘bit’) with the original four bits, and
assign c1c2c3 (‘c’ for ‘check’) the values that make the three bits in their circle add up to an even
number. (An example is shown on the right)

• Observe that any single bit flip (whether it be one of the bi or one of the ci) changes a unique
combination of circles from “even” to “odd”! Therefore, if a single bit flip occurs, we can uniquely
identify which bit caused it, and therefore correct it.

– We can also distinguish the case that no bit flips occurred, and hence all 3 circles remain “even”.

• Therefore

P[correct] ≥ P[zero or one bit flip(s)]

= (1− δ)7 + 7δ(1− δ)6

≈ 0.85,

where the last line holds when δ = 0.1.

14

• Nearly as reliable as the repetition code, despite mapping to only 7 bits instead of 12! (i.e., we are
transmitting a fair bit “less slowly”)

Information-theoretic results.

• Definition. If we map k bits to n bits in the encoding procedure, then the rate is k
n (e.g., 4

7 for the
above Hamming code, 1

3 for the repetition code, 1 for uncoded)

• Clearly, there is an inherent trade-off between rate and error probability.

– Higher rate = Send faster

– Lower error probability = Send more reliably

• Channel coding theorem (informal). There exists a channel-dependent quantity called the (Shan-
non) capacity C such that arbitrarily small error probability can be achieved for all rates less than C,
but for no rates higher than C. Specifically, we have C = maxPX

I(X;Y), where PX is optimized and
PY |X is the channel transition law.

– In the above example with δ = 0.1, we get C ≈ 0.531 (more generally C = 1 − H2(δ)). So for
arbitrarily small error probability (e.g., P[error] ≤ 10−10), not only is it unnecessary to multiply
the number of bits by a higher and higher number, but we can get away with fewer than double
the original number (!)

– Caveat: We may need to code over a much longer block length (e.g., map k = 5000 bits to
n = 10000 bits, rather than mapping k = 3 bits to n = 6 bits)

Principles of information theory:

• First fundamental limits, then practical methods

• First asymptotic results, then finite-length refinements

• Mathematically tractable yet powerful probabilistic models

7 (**Optional**) Proof Outline for the Channel Coding Theorem

• The proofs of the source and channel coding theorems use similar ideas; we will focus on the latter.

• The proof is split into two statements:

– (Achievability) For any transmission rate R < C, there exists a sequence of codes (indexed by the
block length n) such that Pe → 0.

– (Covnerse) For any transmssion rate R > C, it is impossible to obtain Pe → 0, regardless of the
choice of code (in fact a stronger statement Pe → 1 can be shown).

Note that ‘Achievability’ means ‘mathematical existence property’ and ‘Converse’ means ’mathematical
impossibility result’.

Outline of achievability proof:

15

• The setup is depicted as follows:

• We need to specify the behavior of both the encoder and decoder:

– (Encoder) Given a message m, produce a length-n codeword x(m). The codewords can be collected
into a codebook {x(i)}.

– (Decoder) Given knowledge of the coedbook but not the specific message m, and also given the
received sequence y, produce an estimate m̂.

• Codebook design:

– Designing a good codebook explicitly is very difficult (it was the focus of decades of research after
information theory was introduced!)

– Instead, the original proofs show the existence of good codebooks in a non-constructive way.

– This was done using random coding (a case of the probabilistic method) – analyze the average
performance of a codebook whose codewords have entries drawn independently from PX . If the
average performance is “good”, then the best specific code’s performance is certainly no worse.

• Decoder design and analysis:

– There are multiple decoding rules that suffice to prove the channel coding theorem, with the most
powerful (optimal) rule being maximum-likelihood decoding. The rule usually found in textbooks
is joint typicality decoding.

– Roughly, joint typicality decoding is based on searching for a codeword that “looks like” it was
drawn i.i.d. from PX × PY |X (with PX from random coding, and PY |X being the channel).

– Under random coding, it can be shown that the correct codeword passes this joint typicality
condition with probability approaching one, whereas any incorrect codeword only passes it with
probability roughly 2−nI(X;Y). Hence, if the number of messages is 2nR with R < I(X;Y), then
the decoder succeeds with high probability.

– Optimizing PX gives the capacity formula C = maxPX
I(X;Y).

Outline of converse proof:

• The proof is roughly outlined as follows:

– Relate the error probability to I(m; m̂), where m a uniformly random message and m̂ is the final
estimate. Intuitively, if m̂ = m with high probability then I(m; m̂) should be large, and the
contrapositive version of this leads to a statement on the error probability.

– Use a property called data processing inequality to bound I(m; m̂) ≤ I(X;Y), where X is the
transmitted codeword and Y is the channel output. Intuitively, the end-to-end information that
m̂ reveals about m cannot exceed the bottleneck imposed by (X,Y) in between.

16

– Use mutual information properties (e.g., chain rule) and the memoryless channel assumption to
show that I(X;Y) ≤

∑n
i=1 I(Xi;Yi). This is upper bounded by nC since C = maxPX

I(X;Y),
and putting everything together completes the proof.

• The first of these steps uses Fano’s inequality, which is very widespread for proving converse results in
information theory and statistics. In generic notation (renaming (m, m̂) to (X, X̂)), the inequality is

H(X|X̂) ≤ H2(Pe) + Pe log2
(
|X | − 1

)
,

where Pe = P[X̂ ̸= X], and X is the set of values X can take.

– Intuition. To resolve the uncertainty in X given X̂, we can first ask whether the two are equal,
which bears uncertainty H2(Pe). In the case that they differ, which only occurs a fraction Pe

of the time, the remaining uncertainty is at most log2
(
|X | − 1

)
, since the uniform distribution

maximizes entropy.

– Notice that mutual information doesn’t appear above, but when X is uniform we have I(X; X̂) =

H(X) − H(X|X̂), and substituting Fano’s inequality (with log2
(
|X | − 1

)
weakened to log2 |X |

and H2(Pe) weakened to 1) and H(X) = log2 |X | gives the following:

I(X; X̂) ≥ (1− Pe) log2 |X | − 1,

or equivalently Pe ≥ 1− I(m;m̂)+1
log2 |X | . (Intuitively, to have small Pe we need the “learned information”

I(X; X̂) to match the prior uncertainty log2 |X |.)

8 (**Optional**) Broader Uses of Information Theory

Information theory is used extensively in computer science, statistics, machine learning, and beyond, e.g.:

• Lower bounds on sample/query complexity for statistical problems (e.g., estimation, optimization,
randomized algorithms)

• Information-theoretic analysis of algorithms, both computationally efficient and inefficient

• Information measures used in machine learning and other areas (e.g., in sequential decision-making,
make decisions that maximize information gain)

Below we give one example in the first category (see, e.g., https://arxiv.org/abs/1901.00555 for others).

Example: Binary search

• Suppose that there are n integers sorted in non-decreasing order, and we want to find the first one to
exceed a threshold γ. We can only interact with the list by asking questions of the form “Does the i-th
element exceed γ?”.

– We will focus on the case that the allowed number of queries Q is pre-specified (with a value that
may depend on n), but this can easily be relaxed.

• Noiseless case: (Every query answer is correct)

17

https://arxiv.org/abs/1901.00555

– We can solve this using binary search: Query the middle element, then recurse left or right
depending on the answer, and after roughly Q ≈ log2 n iterations we will have the answer.

– A simple counting argument shows that no algorithm can do better: If the list is of the form
0 . . . 01 . . . 1 and γ = 1

2 , then there are n possible locations of the transition from 0 to 1. But the
algorithm must produce a different output for each such case, so the list of query answers must
also be different. With Q queries there are 2Q possible sequences of outcomes, so we need 2Q ≥ n,
or Q ≥ log2 n.

– Fano’s inequality (see below) can also used to deduce a similar conclusion, with the mutual
information simply bounded upper by the number of queries (because each query outcome is
binary so can only contribute at most 1 bit).

– Similar ideas can be applied to other problems, e.g., for comparison-based sorting we get that
log2(n!) = Θ(n log n) comparisons are needed.

• Noisy case: (Each query answer is only correct with probability 1− δ)

– Having each query answer be flipped w.p. δ amounts to having the answers passed through a
binary symmetric channel (BSC), so we can view this through the lens of communication.

– In particular, if X is the set of queries made and Y is the sequence of responses, then an argument
based on Fano’s inequality gives

Pe ≥ 1− I(X;Y) + 1

log2 n

when we consider sequences of the form 0 . . . 01 . . . 1 with the transition from 0 to 1 being uniformly
random over n possibilities.

– But by the same analysis as in channel coding, we can derive I(X;Y) ≤ QC where C is the BSC
capacity and Q is the number of queries.

– It follows that Q needs to be roughly log2 n
C to have high reliability (i.e., Pe ≈ 0). Using the

channel capacity formula C = 1−H2(δ), this can further be shown to behave as Θ
(log2 n
(1/2−δ)2

)
.

– Algorithms matching this query complexity to within constant factors is given in the paper “Com-
puting with noisy information” (1994), and the query complexity with precise constants is given
in the paper “Optimal bounds for noisy sorting” (2023).

(**Optional**) Appendix: Entropy of English Text

• Shannon’s famous 1948 paper discussed several (intentionally over-simplified) probabilistic models for
generating English text; see Figure 1 below.

• Stated differently, #3 generates each letter conditioned on the previous one, #4 conditions on the
previous two, #5 lets the “alphabet” X be the set of all words rather than the set of all characters and
generates each word independently, and #6 generates each word conditioned on the previous one.

• Fundamental question: How much information (entropy) does each letter of English text tell us?

– The entropy H(X) of a single character doesn’t capture the fact that previous characters help in
predicting the next one.

18

Figure 1: Excerpt from Shannon’s paper.

– As detailed in Chapter 4 of Cover/Thomas, a more meaningful measure in such scenarios is

H(Xn|X1, . . . , Xn−1),

representing the uncertainty of a given character given all of the previous ones.

– Fitting a model to English text and then calculating the entropy of that model is prone to be
inaccurate (too complex to fit a very accurate model!) – is there a simpler approach?

• Key idea: The entropy is closely related to how many guesses are needed (on average) before the
correct character is guessed, by an optimal guessing algorithm.

– Intuitively, entropy is a measure of uncertainty, and higher uncertainty means more guesses will
be needed on average.

– Writing an optimal guessing algorithm is hard (though an interesting machine learning problem!),
so experiments were done under the assumption that humans are near-optimal guessers.

– Using some theory behind the “optimal guessing” viewpoint, and observing the average number

19

of guesses that several humans required, it was estimated that the entropy of English text is only
around 1.34 bits per character

– Much less than the highest possible value of log2 27 ≈ 4.75 with 27 characters! (a-z and “space”)

• See Chapter 6 of Cover/Thomas for further details.

20

	Information of an Event
	Information of a Random Variable – Entropy
	Properties of Entropy

	A Useful Measure Between Distributions – KL Divergence
	Information Between Random Variables – Mutual Information
	Properties of Mutual Information

	(**Optional**) A Brief Overview of Data Compression
	(**Optional**) A Brief Overview of Data Communication
	(**Optional**) Proof Outline for the Channel Coding Theorem
	(**Optional**) Broader Uses of Information Theory

