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Useful references:

• Blog post on Hamming codes1

• TCS Toolkit lectures: https://www.youtube.com/watch?v=H7XFslRXJys and the 4 videos after

• Cover/Thomas “Elements of Information Theory”, Section 7.11

• MacKay “Information Theory, Inference, and Learning Algorithms”, Sections 11.4–11.5, Chapters 13–14

• (Beyond the scope of this course) Survey article on coding,2 and/or the advanced textbook “Modern
Coding Theory” (Richardson and Urbanke)

1 Background: Reliable Communication

• The communication problem was already mentioned in the information theory lecture, and is slightly
modified here to highlight that what we are sending is bits.

• The setup is summarized as follows (we will explain the equation x = uG later):

– u = (u1, . . . , uk) is a sequence of k bits that we would like to send.

– That sequence gets encoded into a binary codeword x = (x1, . . . , xn) (later we will also consider
non-binary codewords), where n ≥ k because the idea of encoding is to add redundancy that allows
resilience to bits getting flipped.

– The codeword x = (x1, . . . , xn) is sent through a communication channel to produce y =

(y1, . . . , yn), which is also binary. The channel can be described as y = x⊕ z, where z ∈ {0, 1}n

indicates which bits are flipped, and the operator ⊕ is applied bit-by-bit.

– These output bits are used to construct an estimate û = (û1, . . . , ûk) of the original k bits.
1https://jeremykun.com/2015/03/02/hammings-code/
2https://arxiv.org/pdf/1908.09903.pdf
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• Our goal is to achieve speed and reliability in communication:

– Reliability means ensuring that û = u (or, if the channel is modeled as being random, having a
high probability of this occurring).

– Speed is captured by the notion of rate:

R =
k

n
.

For example, if the encoder maps k bits to n = 3k bits, then the rate is 1
3 .

• We will consider two types of modeling for the channel:

– Under a probabilistic model, each yi is assumed to be produced from the corresponding xi by
passing it through a binary symmetric channel (BSC):

That is, the output is correct with probability 1− δ, but flipped with probability δ.

– An alternative approach is to have no probabilistic model, but simply assume that at most δn bits
are flipped for some δ ∈ (0, 1).

• In the probabilistic case, much more general channel models are possible, with transition law PY |X

and possibly non-binary alphabets, but we will focus on the BSC.

• Another model of particular interest is the erasure model, where (in the probabilistic case) Y = X with
probability 1− ϵ, but Y equals an “erasure symbol” with probability ϵ, with that symbol indicating “xi

is unknown”. Similarly, in the non-probabilistic case, we could assume that at most ϵn symbols get
erased for some ϵ ∈ (0, 1).

2 Parity Checks and the Hamming Code

Parity check.

• A parity check of a sequence of bits b1, . . . , bm is an additional bit equaling 1 if the number of 1’s in
b1 . . . , bm is odd, and 0 if the number of 1’s is even.

– Hence, in either case, there is an even number of 1’s in the sequence b1, . . . , bmc, where c is the
parity check bit

• We can express this via modulo-2 arithmetic: For a, b ∈ {0, 1}, let the ⊕ operator be defined as

0⊕ 0 = 1⊕ 1 = 0

0⊕ 1 = 1⊕ 0 = 1.

Then the parity check of b1, . . . , bm is c = b1 ⊕ . . .⊕ bm.

2



• If we transmit the length-(m + 1) sequence b1 . . . bmc across a channel, and one of the bits is flipped,
we will notice that the total number of 1’s is no longer even. Hence, we can detect a single bit flip.
However, a little thought reveals that we cannot correct it.

• The idea that permits error correction: Send multiple parity checks applied to different groups of bits

Simple examples.

• Perhaps the simplest type of code is the repetition code, which (for example) encodes 1010 into
111000111000. By a majority vote rule, this permits the correction of one bit flip in each of the
groups of 3 bits. We can also repeat more than 3 times for improved reliability, but this quickly
becomes extremely inefficient in terms of the communication rate.

• A famous example of a less trivial code is the Hamming code, which (for the simplest version of it)
maps 4 bits to 7 bits and can correct a single bit flip:

Here the original bits are b1b2b3b4, and the check bits c1c2c3 are chosen to make the number of 1’s per
circle even. In the above terminology, each ci is a parity check of the bi’s in the corresponding circle.

– Note: When we talk about being able to correct a certain number of bit flips, this may include
flips in both the uncoded bits bi and the check bits ci.

– How to correct one bit flip: Observe that each possible single bit flip changes a unique combina-
tion of circles from “even number of 1s” to “odd number of 1s” (e.g., the middle bit changes all 3
circles; the top-left bit only changes the top-left circle). Therefore, the decoder can check which
circles have an odd number of 1s, and un-flip the corresponding bit. If the decoder sees all 3
circles already having an even number of 1s, then no changes are made.

3 Linear Codes

Recall from the first section that k is the number of message bits, n is the number of codeword bits, and
R = k

n is the communication rate.

Definition and generator matrix.

• For reasons to be made clear shortly, we say that any code comprised of parity checks is a linear code.
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• We distinguish between the following two cases:

– A systematic parity-check code is one in which the first k (out of n) bits of x are always
precisely the original k bits, and the remaining n− k bits are parity checks:

xi = ui, i = 1, . . . , k,

xi =

k⊕
j=1

ujgj,i, i = k + 1, . . . , n

where gj,i = 1 if the parity check in location i includes uj , and gj,i = 0 otherwise. For instance,
the Hamming code described above is a systematic parity-check code.

– A general parity-check code is one in which all n codeword bits may be arbitrary parity checks:

xi =

k⊕
j=1

ujgj,i, i = 1, . . . , n.

Clearly a systematic code is a special case of this, since it corresponds to setting gj,i = 1{j = i}
for i = 1, . . . , k.

• The above (general) formula for generating each xi from u1, . . . , uk can be succinctly summarized as a
(modulo-2) vector-matrix multiplication:

x = uG, (in modulo-2 arithmetic)

where x = (x1, . . . , xn) and u = (u1, . . . , uk) are the suitable row vectors, and

G =


g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n
...

...
. . .

...
gk,1 gk,2 . . . gk,n


is known as the generator matrix.

– Interpretation: The 1’s in each column indicate which bits are included in the parity check

• In the special case of a systematic code, this simplifies to

G =


1 0 . . . 0 g1,k+1 . . . g1,n

0 1 . . . 0 g2,k+1 . . . g2,n
...

...
. . .

...
...

. . .
...

0 0 . . . 1 gk,k+1 . . . gk,n


with the left-most k × k sub-matrix being the identity matrix.

• With the mapping from u to x being described by the matrix multiplication x = uG (in modulo-2
arithmetic), we can now justify the terminology linear code: If u and u′ are two different message
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sequences, and their corresponding codewords are x = uG and x′ = uG′, then

x⊕ x′ = uG⊕ u′G

= (u⊕ u′)G,

which means that x ⊕ x′ is also a codeword (corresponding to message u ⊕ u′). In other words, the
(modulo-2) sum of any two valid codewords is another valid codeword.

– Note: We have extended the ⊕ notation to vectors/sequences, which is done via a bit-by-bit
application of the definition above, e.g., 0001⊕ 1101 = 1100 and 101⊕ 010 = 111.

• Examples. With k = 4, the generator matrices for the single-parity-check code and Hamming code
(described at the start of the lecture) are given by

Gparity =


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

 , GHamming =


1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

 . (1)

Sometimes you might see the latter with the last 3 columns in a different order, but re-ordering columns
just amounts to re-labeling the indices of parity check bits.

– Pre-multiplying GHamming by all 16 possible u sequences, we can list all the codewords of the
Hamming code:

0000000 0001111 0010011 0011100

0100101 0101010 0110110 0111001

1000110 1001001 1010101 1011010

1100011 1101100 1110000 1111111.

– For instance, the codeword 1100011 is obtained from u = 1100 by taking the modulo-2 sum of
the first two rows of GHamming. For u = 1111, we take the modulo-2 sum of all 4 rows.

• As we will see in the tutorial, any general code can be reduced to an “equivalent” systematic code by
applying a technique similar to Gaussian elimination on G.

Parity-check matrix.

• A matrix closely related to G, but which will be more directly useful when it comes to decoding, is
called the parity-check matrix H. It is an n× (n− k) matrix that satisfies

xH = 0 ⇐⇒ x is a valid codeword.

Notice the distinction:

– G is used to generate x from u;

– H is used to check if x can be generated from any u (doing this naively using G by testing all 2k

possible u would be grossly inefficient).
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• While such check matrices exist for all generator matrices, we will focus our attention on the systematic
case, as it is much simpler. Recall the two formulas we gave for xi (in terms of the {uj} and {gj,i}) in
the systematic case; substituting the first into the second gives

xi =

k⊕
j=1

xjgj,i, i = k + 1, . . . , n.

Adding xi (modulo 2) to both sides, the left-hand side gives xi ⊕ xi = 0, and we are left with

( k⊕
j=1

xjgj,i

)
⊕ xi = 0, i = k + 1, . . . , n.

Converting to matrix form reveals that the following choice of H indeed gives xH = 0:

H =



g1,k+1 g1,k+2 . . . g1,n

g2,k+1 g2,k+2 . . . g2,n
...

...
. . .

...
gk,k+1 gk,k+2 . . . gk,n

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


.

It is also not hard to establish the opposite, i.e., if xH = 0 then x is indeed a valid codeword.

• Stated more succinctly, we have

G = [Ik P] =⇒ H =

[
P

In−k

]
,

where Im is the m×m identity matrix, and P is the remaining k × (n− k) submatrix of G.

• Examples. The check matrices corresponding to (1) are

Hparity =


1

1

1

1

1

 , HHamming =



1 1 0

1 0 1

0 1 1

1 1 1

1 0 0

0 1 0

0 0 1


.

• To give a flavor of why the check matrix is useful for decoding, notice that if y = x⊕z with z indicating
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which bits got flipped, then

yH = (x⊕ z)H

=
(
xH

)
⊕
(
zH

)
= zH, (2)

where we first used linearity, and then the fact that xH = 0 for any valid codeword x.

– In particular, if z only contains a single 1 (i.e., only one bit got flipped), then yH is simply the
i-th row of H, where i is the index of the flipped bit.

– But notice that in HHamming, all the rows are distinct! This means that by looking at HHamming,
we can immediately identify which bit got flipped and therefore correct it.

Notes on storage and computation.

• Notice that the code is fully specified by G (or H), which only requires nk bits of storage – much
smaller than the exponential storage requirement for the random coding technique used to prove the
channel coding theorem!

• However, efficient decoding (getting from the noisy channel output y back to u) is still challenging,
and designing a good choice of G is also difficult (but do-able!).

• In fact, at this stage it is unclear whether any good choices of G exist! This is addressed in Chapter
14 of MacKay’s book (optional reading), where it is shown that a random generator matrix G (i.e.,
each entry is 1 or 0 with equal probability) achieves arbitrarily small error probability on the BSC at
all rates below capacity, when used in conjunction with an optimal decoder. Thus, very good linear
codes exist, at least if we ignore computational constraints on the decoder.

4 Distance Properties

We will only touch on the basics of distance properties here; if you are interested in knowing more, see
Chapter 13 of MacKay’s book.

Definition and properties.

• Definition 1. The Hamming distance between two vectors x = (x1, . . . , xn) an x′ = (x′
1, . . . , x

′
n)

(having the same length n) is the number of positions in which they differ:

dH(x,x
′) =

n∑
i=1

1{xi ̸= x′
i}.

For instance, the Hamming distance between 00110011 and 00010111 is 2.

• Definition 2. The minimum distance of a codebook C of length-n codewords is

dmin = min
x∈C,x′∈C : x̸=x′

dH(x,x
′).

Intuitively, we should expect higher dmin to mean better robustness to noise in the channel.

7



• The following illustration shows that if the minimum distance is dmin, then (at least given enough
computation time) it is possible to correct up to dmin − 1 erasures and correct up to dmin−1

2 bit flips:

– For correcting erasures: Simply note that if dmin − 1 code symbols are replaced by an erasure
symbol ’?’, then there is only one way to fill them in to get a valid codeword (otherwise, the
minimum distance would be dmin − 1 or less!)

– For correcting flips: Note that the balls of radius dmin−1
2 around each codeword cannot overlap.

This means that if we decode each y to the codeword in its closest ball, we will always be correct
if at most dmin−1

2 flips occurred.

• Claim. If C is the set of codewords formed by a given linear code with dmin > 0,3 then

dmin = min
x∈C : x̸=0

w(x),

where w(x) =
∑n

i=1 1{xi = 1} is the weight of the codeword x. Hence, for linear codes, the minimum
distance equals the minimum weight.

– Proof: Let x′,x′′ be the two codewords at a minimum distance from each other. Then by linearity,
x′ ⊕ x′′ is also a valid codeword, and its weight is precisely dH(x

′,x′′) = dmin. In addition, the
assumption dmin > 0 implies that it is not the all-zero codeword.

Conversely, since x = 0 is always a valid codeword (corresponding to u = 0), any codeword weight
also corresponds to a distance (to the all-zero codeword).

• Example. Recall the 16 codewords we listed earlier for the Hamming code. The minimum non-zero
weight (and hence minimum distance) is 3, which is consistent with the fact that the Hamming code
can correct 3−1

2 = 1 bit flip.

• Notes on more general codes.

– Naturally, there is an inherent trade-off between achieving a high minimum distance (i.e., high
dmin) and a high rate (i.e., high R = k

n ). Understanding this trade-off has been a major aspect

3A code with dmin = 0 is a terrible idea – it means two different vectors of information bits u,u′ lead to the same codeword!

8



of coding theory for decades, with two famous examples being the Gilbert-Varshamov bound
(achievability / existence) and the Sphere Packing bound (converse / impossibility), which you
can look up if you are interested.

– When designing practical codes, even the following goal is non-trivial: As n → ∞, achieve a
positive rate (i.e., k

n → R∗ > 0) and a constant-fraction minimum distance (i.e., dmin

n → δ∗ > 0).

– In Section 6 we will cover a particularly well-known class known as Reed-Solomon Codes with
very strong distance properties, and in the next lecture we will show that a class called Expander
Codes can also achieve the above goal.

(**Optional**) Distance vs. capacity.

• While a high minimum distance seems like a nice property to have, it corresponds to a fundamentally
different modeling assumption compared to the channel capacity:

– The minimum distance goal is aligned with worst-case errors, where (for instance) we need to be
able to correct arbitrary patterns of up to δn bit flips introduced by the channel.

– The channel capacity goal is aligned with random errors, where (for instance) we need to be able
to correct bit flips that occur independently with probability δ each.

Neither of these goals should be viewed as “better” than the other in general; either may be preferable
depending on the application.

• Of course, it is worth asking whether achieving capacity and attaining good distance properties are
actually equivalent goals. However, as argued in Chapter 13 of MacKay’s book, this is not the case:

– The best possible rate with minimum distance δn is at most the channel capacity with double the
noise level, 2δ;

– The channel capacity is positive for any δ ∈
(
0, 1

2

)
, but no positive rate can be achieved for δ > 1

4

if one insists on a minimum distance δn;

– Examples are known where the channel capacity is achieved despite a “bad” minimum distance.

• Although distinct from achieving capacity, the design of codes with good distance properties is a very
important problem in its own right. Examples of such codes include BCH codes (a generalization of
Hamming codes), and Reed-Solomon codes, the latter of which we cover below.

5 Decoding Techniques

Decoding is the aspect of linear codes that is much harder to make efficient (while maintaining strong
guarantees and/or practical performance). We will not explore this aspect in significant detail (see Section
7 for some pointers to topics that cover this).

In this section, we briefly outline some decoding rules that are optimal (in some sense to be described)
but computationally inefficient (unless the number of bit flips is very small).

Maximum-likelihood decoding:

• Suppose that the output y is produced from x via a probabilistic model PY|X.
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• Then, it can be shown (proof omitted) that if the message bits are uniformly random, the following
decoding rule is optimal in the sense of minimizing the error probability PeP[û ̸= u]:

û = argmax
u′

PY|X(y|x(u′)),

where x(u′) is the codeword corresponding to u′. This is true even for non-linear codes.

• Unfortunately, the above maximum is over 2k choices, so checking all of these is prohibitive unless k is
very small.

Minimum distance decoding:

• For the binary symmetric channel (BSC), we can write PY|X(y|x) as a product
∏n

i=1 PY |X(yi|xi),
where each PY |X(y|xi) is equal to 1− δ if y = xi, and δ otherwise.

• Using this, it can fairly easily be shown that the maximum-likelihood decoding rule becomes equivalent
to the following for the BSC when δ < 1

2 :

û = argmin
u′

dH(x(u
′),y).

This is known as minimum distance decoding.

• Minimum distance decoding is also highly desirable under the non-probabilistic (distance-based) view-
point – if there are at most dmin−1

2 bit flips, then minimum distance decoding is guaranteed to recover
the correct codeword.

• However, like with maximum-likelihood decoding, the computational cost may be highly prohibitive.

Syndrome decoding.

• Syndrome decoding is a technique that takes the idea of minimum distance one step further in the
special case of linear codes.

• Recall the evaluation of yH given above:

yH = (x⊕ z)H

=
(
xH

)
⊕
(
zH

)
= zH, (3)

with the middle step using the fact that xH = 0 for any valid codeword x.

• The quantity
S = zH = yH

is called the syndrome, and we have just shown that it can immediately be computed from the check
matrix H given the channel output y.

• It can fairly easily be shown that for a linear code, if the syndrome is S, then the minimum-distance
codeword to y can be obtained by finding

ẑ = argmin
z̃ : z̃H=S

w(z̃)
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(where w(z̃) is the number of 1’s in z̃) and then computing

x̂ = y ⊕ ẑ.

In addition, if the code is systematic, the estimate û of the original information bits can then be formed
by taking the first k entries of x̂.

• Using syndrome decoding, if very few bit flips occurred during transmission, then we may avoid search-
ing over an exponentially large number of codewords – there are only n vectors z̃ ∈ {0, 1}n of weight
1,

(
n
2

)
of weight 2, and so on. Since we are minimizing w(·), we can start from the smallest weights,

work upwards, and stop once a match is found.

• On the other hand, if a significant number of bit flips occur during transmission, this decoding method
still typically requires far too much computation to be practical. But the general idea still forms the
basis of certain very powerful computationally efficient codes.

Interested students may refer to https://www.comp.nus.edu.sg/~scarlett/CS3236_notes/06-Codes.pdf
for the proofs that were omitted in this section.

6 Reed-Solomon Codes

This section gives an overview Reed-Solomon Codes, which are of one of the most widely-used distance-based
codes (i.e., codes designed to have high dmin). These are used extensively throughout theoretical computer
science, as well as practical applications such as DVD and QR codes.

Unlike what we covered in the previous sections, these codes are non-binary, i.e., the symbols of the
length-n codewords take values in an alphabet with (significantly) more than two symbols. We will later
discuss methods for converting a non-binary code to a binary code.

6.1 Intuition

Here we give the rough idea behind Reed-Solomon Codes using concepts that should be more familiar (but
can’t be used directly).

Imagine that we want to communicate 5 real-valued numbers u0, u1, u2, u3, u4 from a sender to a receiver,
but whenever a number is sent, there is a chance that it gets “erased” and the receiver instead sees a special
symbol ‘?’ to indicate that. The following strategy gives a way that we could combat such erasures:

• Interpret u0, u1, u2, u3, u4 as coefficients of a degree-4 polynomial : p(x) = u0+u1x+u2x
2+u3x

3+u4x
4.

• Pick more than 5 points x to evaluate the polynomial at, say x ∈ {−2,−1.5, . . . , 0, . . . , 1.5, 2}, e.g.:
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-2 -1 0 1 2
2

4

6

8

10

12

14

16

• The encoder sends the corresponding p(·) values, e.g., p(−2), p(−1.5), . . . , p(2) corresponding to the
red circles in the above figure.

• The receiver receives a length-9 output, but some of the values are replaced by ‘?’ to mean ‘erasure’.

• However, as long as 5 (or more) of them are non-erased, the decoder can recover p(x) – this is because a
degree-d polynomial is uniquely specified by any d+1 points. Since there is a one-to-one correspondence
between p(·) and (u0, u1, u2, u3, u4), recovering the former means recovering the latter.

Naturally, if some of the p(·) values get altered rather than erased, then recovery might be more difficult,
but mathematically it could still be possible, especially if we increase the number ‘9’ of evaluations above.
For example, one could design the decoder based on recovering many polynomials, each corresponding to a
different subset of 5 received values. If the number of altered values is small enough, then the polynomial
that is recovered most often should be the correct one.

What is perhaps most unrealistic in the above description is the notion of sending and receiving (and
performing computation on) infinite-precision real numbers. The idea of Reed-Solomon codes is to use the
same idea, but with finite fields instead of the real number field. The use of a finite field makes it plausible
to implement on a computer.

6.2 Finite Fields

• Mathematically, a field is a set of “numbers” together with addition (+) and multiplication (×) oper-
ations that satisfy natural axioms that we mostly won’t delve into (e.g., a × b = b × a). Importantly,
there should be a “zero element” (usually denoted by 0) such that a + 0 = a, and an “identity ele-
ment” (usually denoted by 1) such that a × 1 = a. Moreover, every non-zero element a should have
some “multiplicative inverse” a−1 such that a × a−1 = 1, and some “additive inverse” (−a) such that
a+ (−a) = 0.

• The set of real numbers with the usual + and × forms a field. The same goes for the rational numbers.
The integers, however, do not form a field, because we can’t have a× a−1 = 1 for integer-valued a−1.

• In previous sections, we worked with mod-2 arithmetic, in particular using ⊕ for addition. Multiplica-
tion is trivial in this case: 0× a = 0 and 1× a = a. This is known as the two-element Galois field or
GF(2). (In this context you can take “Galois” to be synonymous with “finite”.)
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• More generally, the numbers {0, 1, . . . , p− 1} with mod-p arithmetic form a field whenever p is a prime
number. For example, if p = 7, then we can pick any element (e.g., 3) and find an additive inverse
(e.g., 4, since 3 + 4 ≡ 0 (mod 7)) and a multiplicative inverse (e.g., 5, since 3× 5 ≡ 1 (mod 7)).

• It turns out that the only possible sizes of finite fields are of the form pm, where p is a prime number
and m is a positive integer. Moreover, once such a size is specified, the field is unique (up to relabeling).

• We will proceed using only the above (limited) knowledge, but interested students can refer to Forney’s
“Introduction to finite fields” lecture notes (Stanford University) for a proper introduction.

6.3 Code Construction

The parameters of a Reed-Solomon code are as follows:

• The message length k and codeword length n;

• The size q of a finite field F; as noted above, we must have q = pm for some prime p and positive
integer m. We further impose the requirement q ≥ n.

Note that the message of length k is now a sequence of finite field elements rather than a sequence of bits,
so the total number of messages is qk rather than 2k.

Then, similar to what we did with real numbers in Section 6.1, the code construction is as follows:

• Fix a set of n distinct evaluation points a1, a2, . . . , an in F. Since we assumed q ≥ n, we can do this
in a way such that the ai are all distinct. There is flexibility in the specific choice of ai’s; a common
choice is to let them be of the form 1, α, α2, . . . , αn−1 for suitably-chosen α ∈ F.

• Given the message symbols u0, . . . , uk−1 (each in F), define the following polynomial:

p(x) =

k−1∑
i=0

uix
i,

where here and subsequently, all arithmetic is done over the finite field F.

• The length-n codeword is then simply (p(a1), p(a2), . . . , p(an)), i.e., we evaluate the polynomial at the
n evaluation points.

This defines a linear code, where now the notion of linear is a bit more general than the binary case: If c
and c′ are both codewords, then so is αc+ βc′ for any α ∈ F and β ∈ F. (Exercise: Try to prove this.)

Much like in the real-valued case in Section 6.1, dealing with erasures is easiest: Since we used a degree-
(k − 1) polynomial, we can recover the polynomial (and hence the message sequence) as long as k or more
symbols remain non-erased. On the other hand, if some of the code symbols are substituted by other elements
of F (rather than ‘erased’), decoding becomes more difficult.

Having said that, various computationally efficient algorithms are known for decoding Reed-Solomon
codes with substitution noise, such as Berlekamp-Welch with time O(n3), Berlekamp-Massey which is con-
nected to syndrome decoding, and other approaches based on the Fast Fourier Transform. The details of
how these decoders work is beyond the scope of this course.
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6.4 Properties

In this section, we state and prove some of the most important properties of Reed-Solomon codes. Analogous
to the binary case, we define dmin to be the minimum distance (i.e., number of differing symbols) between
two codewords.

Claim. The minimum distance of a Reed-Solomon code is dmin = n− k + 1.

Proof:

• Like in the binary case, we start with the fact (with a similar proof) that the minimum distance equals
the minimum non-zero weight, where “weight” now means “number of non-zero symbols”.

• The minimum non-zero weight is equal to n − τ , where τ equals the maximum number of zeros in a
non-zero codeword.

• Then, the following fact about polynomials in R carries over to polynomials on finite fields: Any
non-zero polynomial of degree d has at most d zeros.

• Since p(x) has degree k − 1, this implies τ ≤ k − 1 and hence dmin ≥ n− k + 1. The next claim below
is sufficient for deducing that this is not only a lower bound but in fact an equality.

Claim. For any (n, k, q) with q ≥ n, the minimum distance of a Reed-Solomon code is optimal; no code
from Fk to Fn can attain a minimum distance higher than n− k− 1. (Note: This is known as the Singleton
Bound, or at least a certain form of it)

Proof:

• Fix an arbitrary code, and suppose that its minimum distance is dmin = d.

• If we delete the first d − 1 symbols from each codeword, the list of remaining shortened codewords
must still all be distinct (due to the minimum distance being d).

• But the number of such codewords is at most qn−d+1, since each symbol takes on one of q values.

• For for a code from Fk to Fn, the number of codewords is exactly qk. Comparing to the previous dot
point, we get qk ≤ qn−d+1, hence k ≤ n− d+ 1, hence d ≤ n− k + 1.

Discussion.

• So if Reed-Solomon codes have optimal distance properties and can be implemented in a computation-
ally efficient manner, why don’t we use them everywhere?

• The answer is that they have a significant disadvantage: Requiring a large alphabet size (q ≥ n).

• The reason this is a disadvantage is that real-world codes typically need to be binary, or need to be
some other size (typically much smaller than n) according to the communication channel being used.

• We will next discuss how to “convert” a Reed-Solomon code into a binary code. Unfortunately doing
so comes at the cost of losing the property of having the best possible minimum distance, but it can
still lead to a very good code.
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6.5 From Non-Binary to Binary

A codeword in a Reed-Solomon is a sequence of non-binary characters; for concreteness, let’s say that they
come from a size-25 set of symbols that we label as {A,B,C, . . . ,X, Y }. But if we want to transmit over a
binary channel, or store the codeword on a DVD or QR code (etc.), we need to use binary symbols. How
can we use Reed-Solomon codes in such scenarios?

The fact that the message symbols (u1, . . . , uk) above are non-binary is not a significant issue; what’s
more important is making the codeword symbols binary. To do so, the basic idea is to map each non-binary
codeword symbol to a binary sequence, e.g.:

• We could map A → 10 . . . 0, B → 010 . . . 0, and so on, up to Y → 0 . . . 01. This is called one-hot
encoding. This strategy can be sufficient in certain cases, but it is typically far from ideal, since the
code length is blown up by the alphabet size q, leading to a low communication rate.

• If the alphabet size is q, we could map each letter to a unique length-⌈log2 q⌉ binary sequence. This
means that the code length only grows according to the logarithm of the alphabet size. However, this
may not be ideal in terms of error resilience: Within each length-⌈log2 q⌉ block, any one of those bits
getting flipped amounts to having a symbol substitution in the non-binary code.

• To better balance the goals of error-resilience and not increasing the code length too much, the best
approach is usually to use another (small) error-correcting code to map each non-binary symbol to a
binary sequence. For example, one might use a Hamming-like code that can at least correct a small
number of bit flips. This is known as concatenated coding, with the Reed-Solomon code being the
“outer code” and the binary code being the “inner code”.

To name just one specific example, the Justesen code (https://en.wikipedia.org/wiki/Justesen_code)
is a binary code based on Reed-Solomon coding and concatenation, and it comes with a simple and explicit
trade-off between the rate and the minimum distance.

To re-iterate, the conversion of Reed-Solomon codes to binary codes invariably loses the “optimal minimum
distance” property stated above, but it often gives something that is still very good.

7 (**Optional**) Other Coding Methods

7.1 Distance-Based Codes

Here we mention just one other famous example beyond Reed-Solomon codes: Bose-Chaudhuri-Hocquenghem
(BCH) codes are also based on polynomials on finite fields, and they can also be viewed as a generalization
of Hamming codes.

Very briefly, the idea is to interpret the message as a polynomial (e.g., in the binary case, interpret
010011 as x4 + x+ 1 if the bits are listed from most significant to least significant) and multiply it by some
generator polynomial g(x) (using finite field arithmetic) to produce another polynomial – its coefficients give
the codeword. A suitably-chosen g(x) can ensure good distance separation, and there are also variants that
ensure the resulting code is systematic.

BCH codes are well-defined over general finite field sizes (in particular, we have the option of sticking to
binary), allow precise control over the minimum distance, and are generally considered easier to decode (using
syndrome decoding methods) than Reed-Solomon codes. They have found widespread use in applications
such as satellite communication, storage devices, and QR codes.
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7.2 Capacity-Achieving Codes

History.

• The channel coding theorem was published in 1948. This spawned decades of research on practical
coding techniques, but none were seen to come close to achieving capacity for a long time.

• In the early 1990s, turbo codes were (empirically) seen to be very close to achieving capacity.

• Low density parity check (LDPC) codes were invented in the 1960s, but perhaps due to limited com-
puting power, they remained unused for a long time. After the invention of turbo codes, they were
rediscovered and also shown to be nearly capacity-achieving.

• Polar codes are a more recent development (2008). They are much nicer to analyze theoretically, in
particular to rigorously establish that they are capacity-achieving. Initially they weren’t as good in
practice, but now they have caught up with (and in same cases even “overtaken”) the others and are
used extensively.

(Very) Brief overview of LDPC codes.

• As a rough definition, an LDPC code is a (typically non-systematic) linear code such that the check
matrix H contains mostly 0’s and relatively few 1’s.

• We can picture this via a factor graph representation:

Here circles correspond to the n codeword bits (“variable nodes”), and squares correspond to the n− k

parity equations (“check nodes”), i.e., if there are no errors, there should be an even number of 1’s
connected to each square. The low density assumption amounts to saying that the above graph is
sparse (has few edges).

• The reason sparsity / low density is useful is that it permits effective belief propagation decoding, in
which information is shared between variable nodes and check nodes until accurate beliefs (posterior
probability estimates) on the transmitted bits are obtained.

• Strictly speaking, this is only guaranteed to end up with accurate posterior estimates when the under-
lying graph has no cycles (i.e., one can never follow any path of edges and end up back at the starting
node). Although sparse graphs like the ones above do have cycles, they have very few short cycles, and
for practical purposes this is often nearly as good as having no cycles.

• For a much better introduction to LDPC codes, see Chapter 47 of MacKay’s book (see also https:

//www.youtube.com/watch?v=RWUxtGh-guY for a brief introduction in Layman’s terms).

(Very) Brief overview of polar codes.
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• The rough idea of polar codes is as follows:

– First consider 2 uses of the channel, (X1, X2) → (Y1, Y2).

– The idea: Apply some pre-processing to (X1, X2) to create a related channel (X̃1, X̃2) → (Y1, Y2)

such that (i) I(X1, X2;Y1, Y2) = I(X̃1, X̃2;Y1, Y2) (no information is lost); (ii) Comparing the
new channel to the original channel, one “channel use” is less noisy, and the other is more noisy.

– Repeat this procedure several times, moving from 2 to 4 uses of the channel, then 8 uses of the
channel, then 16, etc., with many “channel uses” getting less and less noisy, and the rest getting
more and more noisy.

– For a symmetric binary channel with capacity C ∈ (0, 1), repeating this procedure eventually leads
to a fraction C of “near-perfect” channel uses, and a fraction 1−C of “near-useless” channel uses.

– Perfect and useless channels are very easy to handle! If it were truly perfect, we could just send
a bit and receive it without noise. If it were truly useless, we would simply avoid using it at all.
Polar codes do something similar, sending information only over the “near-perfect” uses.

• Extensions to non-binary and non-symmetric channels were established later.

• For a much better introduction to polar codes, see the following lecture by Emre Telatar: https:

//www.youtube.com/watch?v=VhyoZSB9g0w
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