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1 Overview

Communication complexity was introduced by Yao in the late 1970s [5], and studies the minimum number
of bits that two (or more) parties must exchange in order to cooperatively accomplish some task based on
their inputs. This is abstracted by the problem of computing a function f(x, y), where one party knows x

and the other knows y.
Communication complexity has some conceptual similarity and even technical overlap with the commu-

nication problem we mentioned in the information theory lecture, but with some major differences:

• Most importantly, the goal is to compute a function, not to send a message.

• The communication is typically two-way rather than one-way.

• We usually consider the number of bits with respect to the “worst-case” x and y (possibly restricted
to lie in certain sets), rather than putting probabilistic models on them.

• We usually consider the noiseless exchange of bits, rather than noisy communication channels.

• We usually settle on understanding scaling laws in terms of big-O notation (e.g., O(n) vs. O(log n)
when x, y are in {0, 1}n), rather than trying to establish the precise constants.

Having said this, information theory does play a major role in several proofs on communication complexity,
particularly for randomized protocols (such proofs will be beyond the scope of this lecture).

Perhaps the main use of communication complexity is not to directly model the real world, but rather, to
provide a useful abstraction that connects to extensive other fields throughout theoretical computer science.
Specifically, when a problem in communication complexity is known to be “hard” in the sense of requiring
a large number of bits to be exchanged, reductions can be used to show other problems to be hard, e.g.:

• Lower bounds on the storage required in streaming algorithms;

• Lower bounds on query complexity in learning problems;

• Lower bounds on sample complexity in data-centric problems.

We will give some examples in Section 6.
Deterministic vs. randomized protocols. One of the key defining features of communication com-

plexity problems is determinsitic vs. randomized. For deterministic protocols, both parties are required to act
deterministically and produce the correct output. For randomized protocols, the parties by make random
decisions, and some probability of error is allowed (e.g., output the correct answer with probability 0.9).
This distinction can have a major impact on the amount of communication required, e.g. O(n) deterministic
vs. O(log n) randomized (as we will see later).

Generally speaking, randomized communication complexity turns out to be more useful when it comes to
forming reductions to other problems in computer science. However, deterministic communication complexity
is much more suitable and digestible for an introductory lecture on the topic. Thus, we will focus mainly on
the deterministic case in Sections 2–4, then briefly look at the randomized case in Section 5, before giving
examples of reductions (for both deterministic and randomized settings) in Section 6.
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2 Problem Setup (for Deterministic Protocols)

Assume there are two parties, Alice and Bob, with Alice having access to an input x ∈ X and Bob having
access to another input y ∈ Y. Their collective objective is to compute the function value f(x, y), where the
function f : X × Y → Z is mutually known. The main obstacle is that the two parties are unaware of each
other’s inputs (i.e., Alice knows only x and Bob knows only y). Thus, to compute the value f(x, y), they
will need to communicate with each other, following a fixed protocol agreed upon beforehand.

• Note: Unless stated otherwise, we will take X = {0, 1}n and Y = {0, 1}n (i.e., the inputs are length-n
bit strings), and Z = {0, 1} (i.e., the output is binary), which is the most natural starting point.

• Note: Since we are specifically interested in communication, we allow Alice and Bob to individually
have unlimited storage and computation (though keeping these low is still considered preferable).

A deterministic communication protocol is a protocol π that determines which player sends the
next message and what they send to the other player. Each message sent may depend on the player’s own
knowledge (including their input x or y) and the communication history (all the previously communicated
bits up to that point). We assume that the final message transmitted is the final output π(x, y) (if Z = {0, 1},
then doing so is only 1 bit of extra communication anyway).

Definition. We say that a protocol π computes a function f if, for all x and y, π(x, y) = f(x, y).

For any given function f , there will exist multiple protocols achieving this goal. As already hinted, we
specifically interested in protocols that require as little communication as possible.

Definition. The communication cost of a protocol is the total maximum number of bits exchanged
by the two parties, where the maximum is taken with respect to all possible input pairs (x, y). The
communication complexity of a function f is the smallest such communication cost among all protocols.

We start with some simple examples to better understand these terms.

2.1 Example 1: OR Function

Assume Alice and Bob are two parties who want to compute the OR function of their binary inputs without
revealing their entire inputs to each other. Let x be a binary string of length n held by Alice and y be
another binary string of length n held by Bob. The function f : {0, 1}n × {0, 1}n → {0, 1} they want to
compute is

OR(x, y) = x1 ∨ y1 ∨ x2 ∨ y2 ∨ . . . ∨ xn ∨ yn,

where xi and yi are the individual bits of x and y respectively, and ∨ represents the logical OR.

Protocol 1 A naive protocol would be that Alice sends her entire string x to Bob. Then Bob computes
the OR function directly and sends the result back to Alice. Hence, the cost of this protocol is n + 1 bits.

In fact, for arbitrary f : {0, 1}n × {0, 1}n → {0, 1}, there is always a “trivial” protocol for f that uses
n + 1 rounds. Alice simply sends her entire n-bit x to Bob. Since Bob knows x, he can send f(x, y) in the
next round. Formally, defining cc(f) as the communication complexity of f , we have the following.
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Proposition 2.1. For every f : {0, 1}n × {0, 1}n → {0, 1}, we have cc(f) ≤ n + 1.

When n is very large, a protocol using O(n) bits of communication is highly undesirable. Is there any better
protocol?

Protocol 2 In this OR function example, a better protocol is that Alice firstly computes g(x) = x1 ∨ x2 ∨
. . . ∨ xn and sends g(x) to Bob. Then, Bob computes z = y1 ∨ y2 ∨ . . . ∨ yn ∨ g(x) and sends z back to Alice.
Therefore, the cost of this protocol is just 2 bits.

2.2 Example 2: EQUALS Function

Another important and useful example is the function EQUALS, defined by

EQUALS(x, y) =

1 if x = y

0 otherwise

= 1(x1 = y1) ∧ 1(x2 = y2) ∧ . . . ∧ 1(xn = yn),

where 1 denotes the indicator function, and ∧ is the logical AND operation.

• Note: This is not just a “toy” theoretical example, but is actually very practically motivated – it
corresponds to two parties each having their own version of a file, and they would like to communicate
to check whether the two versions are identical. For example, they could have become out-of-date due
to updates, database read/write errors, etc.

From Proposition 2.1, we know n + 1 bits of communication suffice, achieved via Alice sending her entire
string. A natural question is then: Is there room to improve the naive n+1 bit protocol? In Section 4,
we will demonstrate that n + 1 is in fact optimal for deterministic protocols, meaning EQUALS is a much
“harder” function than OR. To establish this, we will study lower bounds on communication complexity.

• Note: Jumping ahead slightly, this will turn out to be an example where randomization helps a lot. In
Section 5, we’ll discuss simple randomized protocols with communication cost O(log n) or even O(1),
depending on the model of randomness used.

With the over-arching goal of answering the question “For a given function f , what is its communi-
cation complexity?”, we proceed to introduce some key concepts.

3 Representations and Properties of Deterministic Protocols

3.1 Protocol Trees

A natural way to represent a general protocol is using a binary tree in which each branch is based on whether
a certain bit computed and sent (by Alice or Bob) is 0 or 1. An example is shown at the top of the next
page. Elaborating on this example:

• The first bit fa(x) is computed by Alice and sent to Bob.

• Taking the left branch indicates that fa(x) = 0, leading to the node labeled b. In this case, Alice is
responsible for computing and sending another bit fb(x).
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Figure 1: An execution of a protocol in a protocol tree. [1]

• Taking the right branch indicates that fb(x) = 1, leading to the node labeled c. In this case, Bob is
responsible for computing fc(y) and sending it to Alice.

• Taking the right branch indicates that fc(y) = 1, and at this stage the protocol outputs π(x, y) = 0.

This naturally extends to larger trees (i.e., longer protocols). In the above figure, it happens that an output
is always decided after sending 3 bits, but in general this could vary depending on which branches are taken.

For any tree, define the depth to be the distance (number of branches) of the furthest leaf from the root.
With the tree representation, we can immediately deduce the following: The deterministic communica-
tion complexity equals the smallest depth among all protocol trees that compute f(x, y).

3.2 Rectangles

It is often useful to visualize the function f(x, y) as a matrix with |X | rows, |Y| columns, and (x, y)-th entry
equal to f(x, y). This will be done both here and when we discuss ‘Rank’ below.

• Caution: If X = Y = {0, 1}n, then the matrix size is 2n × 2n, not to be confused with n × n. In this
case, the matrix is indexed by length-n strings, rather than integers like you might be more used to.

Given a subset A ⊆ X of the row indices and a subset B ⊆ Y of column indices, the set A × B is called
a combinatorial rectangle; in the following we omit the word “combinatorial” and just call these rectangles.
Importantly, A and B are not necessarily consecutive indices, so the “rectangle” can have gaps in it, e.g.:

Figure 2: An example of a (combinatorial) rectangle with non-consecutive row and column indcies. [1]
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Figure 3: Example of the evolution of a rectangle (taken from [1]). When v is the root node in the protocol
tree, Xv is the entire space X × Y (left figure). Each time a bit is communicated by Alice (resp., Bob), the
rectangle is partitioned horizontally (resp., vertically), and collectively Alice and Bob both know that (x, y)
lies in the rectangle shown.

The key reason for focusing on rectangles is that the sharing of bits in a protocol naturally leads to
“narrowing down” the location of (x, y) to lie withing rectangles. For example, if Alice tells Bob that x ∈ A

and Bob tells Alice that y ∈ B, then both parties have a mutual understanding that (x, y) lies in the rectangle
A × B.

Taking this idea further, it in fact holds that every protocol can be represented using rectangles.
To see this, consider an arbitrary protocol tree, and for each node v, define the subset Sv ⊆ X ×Y to contain
all input pairs (x, y) that would lead the protocol to node v during its execution, and let

Xv = {x ∈ X : ∃y ∈ Y such that (x, y) ∈ Sv}

Yv = {y ∈ Y : ∃x ∈ X such that (x, y) ∈ Sv}.

The following lemma shows that Sv = Xv × Yv (thus being a rectangle), and Figure 3 gives an illustration
of this and how branching in the protocol tree amounts to doing a horizontal (Alice) or vertical (Bob)
partitioning of the previous rectangle.

Lemma 3.1 (Lemma 1.4 in [1]). For every node v in the protocol tree, the set Sv (defined above) is a
rectangle Rv with Rv = Xv × Yv. Moreover, the rectangles corresponding to the leaves of the protocol tree
form a partition of X × Y.

Proof. The lemma follows by induction. For the root node r, we have Rr = X × Y, so indeed the lemma
holds. Now consider an arbitrary node v such that Rv = Xv × Yv, and let u, w be the children of v in the
protocol tree. Without loss of generality, we can suppose Alice is the one sending a bit at node v, that
u is the subsequent node when 0 is sent, and that w is the subsequent node when 1 is sent. In this case,
Yv = Yu = Yw since Bob’s input is not used in this step. Define:

Xu = {x ∈ Xv : fv(x) = 0}

Xw = {x ∈ Xv : fv(x) = 1}.

It follows that Xu and Xw form a partition of Xv, and Ru = Xu × Yu and Rw = Xw × Yw form a partition
of Rv. Having established the base case and the induction step, the desired claim follows for all v, and we
deduce that the rectangles corresponding to the leaves form a partition of X × Y. □

3.2.1 Monochromatic Rectangles

To utilize rectangles as building blocks, we need to further introduce the concept of monochromatic rectangles.

6



Definition 3.1 (Monochromatic Rectangles [1]). Given f : X × Y → Z and a constant z ∈ Z, a
rectangle R is z-monochromatic if f(x, y) = z for all (x, y) ∈ R.

The following figure gives an example of a Boolean function f : X × Y → {0, 1} and one (combinatorial)
rectangle that is 1-monochromatic (black):

Recalling that each leaf node in the protocol has an associated rectangle, and that reaching the leaf node
amounts to outputting a specific value, we immediately deduce the following.

Fact 1. If a protocol π computes a function f : X × Y → {0, 1} and v is a leaf node in the protocol tree of
π, then the rectangle Rv corresponding to node v is a monochromatic rectangle with respect to f .

Since the number of leaves in a rooted binary tree of depth d is at most 2d, we deduce the following
simple but important result.

Theorem 3.2 (Theorem 1.6 in [1]). If the communication complexity of f : X × Y → {0, 1} is c,
then X × Y can be partitioned into at most 2c monochromatic rectangles with respect to f .

A particularly useful consequence of this result is the contrapositive statement: If the function f is
such that we cannot form a partition of X × Y using at most 2c monochromatic rectangles,
then the communication complexity must exceed c. This will be one of the methods for deriving
lower bounds on communication complexity in Section 4.

3.2.2 From Rectangles to Protocols

Theorem 3.2 shows that with communication complexity c, we will have at most 2c monochromatic rectangles.
This raises the natural question of whether we can state a similar kind of reverse relationship – if we can form
a partition of f using a small number of monochromatic rectangles, can we conclude that the communication
complexity is small?

A subtle issue here is that not every partition of rectangles can be induced by a protocol; see Figure 4 for a
simple counter-example. A protocol always amounts to sequentially dividing a larger rectangle into smaller
ones, whereas this “windmill-like” behavior does not fit that description. Nevertheless, it turns out that
when there are at most 2c monochromatic rectangles, we can come up with a protocol of length O(c2), which
is not too much higher than the “ideal” O(c) that would match Theorem 3.2.1 This is stated as follows.

1Recent work has shown that the square is in fact unavoidable in general [6].
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Figure 4: A partition into rectangles that cannot be realized by any protocol. [2]

Theorem 3.3. Suppose that a function f is such that there exists a partitioning into at most 2c monochro-
matic rectangles for some integer c > 0. Then there exists a protocol of length O(c2) that computes f .

The (optional) proof is given in Appendix B.

3.3 Rank

The third concept we introduce is rank, a fundamental notion in linear algebra that can be a useful tool for
bounding the communication complexity.

We continue with the notion of representing a function with inputs x ∈ X and y ∈ Y as an X ×Y matrix,
but we now specifically denote that matrix by M (i.e., Mxy = f(x, y)). We focus mainly on the case that
X = Y = {0, 1}n and binary-valued functions (i.e., each entry of M is 0 or 1). It turns out that the rank of
this matrix has fundamental connections to communication complexity.

As a reminder, the following fact states some equivalent definitions of matrix rank.

Fact 2. For any matrix M (not necessarily square), the following are equivalent:

1. rank(M) = r.

2. r is the maximum size of a set of linearly independent columns in M . (Or similarly for rows.)

3. r is the smallest number such that M can be expressed as M = AB, where A is an m × r matrix, and
B is an r × n matrix.

4. r is the smallest number such that M can be expressed as the sum of r matrices of rank 1.

3.3.1 Communication Complexity and Rank

The following result indicates that low rank implies low communication complexity. Later, in Section 4.4, we
will further establish that the communication complexity is lower bounded by log(rank(M) + 1), and discuss
further results narrowing the gap between the upper and lower bounds.

Theorem 3.4 (Theorem 2.2 in [1]). Consider any f : X ×Y → {0, 1}, and let M be the associated binary
matrix. Then, the communication complexity of f is at most rank(M) + 1.

We proceed with the proof. The idea is to use formatulion #3 of rank from Fact 2, meaning that Alice
and Bob can employ a factorization M = AB, where A is an m × r matrix and B is an r × n matrix. Given
that Alice has x ∈ X and Bob has y ∈ Y , let ex be the standard unit column vector with a 1 in the position
corresponding to x, and similarly, let ey be the one for y. The function can then be computed as follows:
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f(x, y) = eT
x Mey = eT

x ABey.

As a result, Alice only needs to send Bob eT
x A, after which Bob multiplies eT

x A with Bey and returns the
result Mxy = f(x, y) to Alice (requiring 1 bit).

As stated, we face the issue that A may be a non-binary matrix, making it unclear how much communi-
cation is required to send eT

x A. However, it turns out that we can always ensure that A is binary, meaning
we can send eT

x A using r bits, for a total of r + 1 (as desired). This is stated in the following claim.

Claim 1. It is always possible to factorize a Boolean matrix M by M = AB, where A is a binary m × r

matrix and B is a (possibly non-binary) r × n matrix.

Proof. Construct A as an m × r matrix using r columns from M that are linearly independent. Considering
that M is a binary matrix, A is a binary matrix as well. Given that r represents the rank of M , every other
column in M can be expressed as a linear combination of these r columns. Hence, there exists an r × n

matrix B such that M = AB. □

This completes the proof of Theorem 3.4.

4 Lower Bounds for Deterministic Protocols

When studying communication complexity, the natural first step is to devise various protocols, establish
their communication cost, and deduce upper bounds on the communication complexity. However, unless we
manage to bring the communication cost to something that clearly can’t be improved (e.g., O(1) scaling),
we might always be left wondering whether we can do better. It turns out that the answer is often “No, we
cannot do (much) better”, and the way to establish this is by establishing lower bounds on communication
complexity. In other words, we would like to establish that any protocol, no matter how “intelligent”, must
always have some minimum amount of communication.

• Of course, the closer the upper and lower bounds are, the better we understand the communication
complexity. It’s relatively uncommon to get an “exact” answer, and more common to settle on getting
the correct scaling (e.g., Θ(n) or Θ(log n)).

• For communication complexity specifically, lower bounds are arguably even more important than upper
bounds, because most applications of communication complexity in other areas of computer science
are in getting lower bounds via reductions.

4.1 Most Functions Require High Communication

As a starting point, we show that most functions require a high amount of communication. Specifically, in
the case that f : {0, 1}n × {0, 1}n → {0, 1}, the following theorem shows that almost all functions require at
least n − 1 bits of communication to compute.

Theorem 4.1. Consider the case that f : {0, 1}n × {0, 1}n → {0, 1} (i.e., both inputs are n-bit and the
output is 1-bit). Only a vanishingly small (as n → ∞) fraction of such functions can be computed with n − 2
bits (or fewer) of communication using deterministic protocols.
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Proof. In accordance with the theorem statement, we consider protocol trees of depth c, where c ≤ n − 2.
In general, different leaf nodes may appear at different levels in the tree, but if that’s the case, we could
always modify the protocol to send additional “dummy” (non-used) bits until exactly c bits have been sent,
without modifying the output. Thus, without loss of generality, we may assume that every leaf node lies at
depth c (i.e., the protocol always sends exactly c bits).

We proceed to count the number of possible protocol trees. A binary tree with depth c has 2c leaves, and
the number of internal (non-leaf) nodes is 1 + 2 + 4 + . . . + 2c−1 ≤ 2c. Each internal node is specified by (i)
a choice of whether the branch is based on the input of Alice (x) or Bob (y), and (ii) A subset S ⊆ {0, 1}n

specifying when to send ‘1’ as the bit (for strings outside S, a ‘0’ is sent). For a single internal node, the
number of possible choices for (i) and (ii) collectively is at most 2 ·22n = 22n+1 ≤ 22n+1 . Thus, for all internal
nodes collectively, the number of choices is at most(

22n+1
)2c

= 22n+1·2c

= 22n+c+1
.

We also need to consider the leaf nodes. There are 2c of these, and each one is assigned 0 or 1 (as the output
value), meaning there are 22c possible assignments in total. Multiplying the number of choices for the internal
nodes and the number of choices for the leaf nodes, we conclude that the total number of functions with
communication complexity c is at most

22n+c+1
· 22c

= 22c+2n+c+1
.

Next, we count the number of functions f : {0, 1}n × {0, 1}n → {0, 1}. Each function has 22n inputs,
each of which can produce an output of 0 or 1, so there are 222n possible functions. Combining with the
above calculation, the proportion of functions with communication complexity c is at most

22c+2n+c+1

222n = 22c+2n+c+1−22n

.

When c = n − 2, this simplifies to 22n−2+22n−1−22n , and writing 22n−1 = 1
2 · 22n and 2n−2 = o(22n), this

simplifies to 2− 1
2 22n(1−o(1)). This fraction decays to zero as n → ∞, and in fact does so extremely fast

(“doubly exponentially fast”). □

4.2 Lower Bounds from Rectangles

We typically want to understand the communication complexity of specific functions, rather than seeking
(overly) general statements as above. Theorem 3.2 gives a useful means for establishing lower bounds in
such cases; for convenience, its contrapositive form is repeated as follows.

Corollary 4.2. If the function f is such that we cannot form a partition of X × Y using at most 2c

monochromatic rectangles, then the communication complexity must exceed c.

A common strategy is to show that there are no large monochromatic rectangles. For example, if X =
Y = {0, 1}n then the size of X × Y is 22n (i.e., this is the number of entries in the matrix), so if each
monochromatic rectangle contains at most γ entries then we require at least 22n

γ of them just to “cover” the
entire space. We can demonstrate (a slight variation of) this idea through the EQUALS example.
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Equality

Consider the equality function EQUALS : {0, 1}n × {0, 1}n → {0, 1} defined as:

EQUALS(x, y) =

1 if x = y,

0 otherwise.
(1)

The trivial protocol has length n + 1, and we would like to know whether we can do better.
Recall that we represent f as a binary matrix of size 2n ×2n, and we are interested in its 0-monochromatic

and 1-monochromatic rectangles. We observe that EQUALS does in fact have large 0-monochromatic rect-
angles; see Figure 5 for an example. On the other hand, its 1-monochromatic rectangles are extremely small
– just 1 × 1!

Figure 5: The EQUALS func-
tion does have large monochro-
matic rectangles [1].

Claim 2. If R is a 1-monochromatic rectangle, then R has size 1 × 1.

This claim is fairly straightforward to see – if we try to form a rect-
angle including (say) two 1s (shaded entries) in the figure shown, it will
unavoidably also contain two 0s (unshaded entries).

We know there are 2n inputs x with EQUALS(x, x) = 1. Thus, we
need 2n rectangles to cover these inputs. In addition, we also need at
least one 0-monochromatic rectangle to cover the remaining inputs. By
Theorem 3.2, if a function has a communication complexity c, then its
domain can be partitioned into 2c rectangles. Thus, deduce the lower
bound c > n and conclude the following.

Theorem 4.3 (Theorem 1.16 in [1]). The deterministic communica-
tion complexity of EQUALS is exactly n+1.

Disjointness

We now turn to an example in which the above approach gives the correct scaling but a suboptimal constant
(the optimal constant will be established in Section 4.3). Again consider x ∈ {0, 1}n and y ∈ {0, 1}n, and
consider the disjointness function defined by

DISJ(x, y) =

1 if xi = yi = 1 for some i ∈ {1, . . . , n},

0 otherwise.
(2)

In other words, the function is 1 if and only if the sets {i : xi = 1} and {i : yi = 1} are disjoint. Instead of
continuing with this form of the function, it will be more convenient to simply define X = {i : xi = 1} and
Y = {i : yi = 1}, and proceed with the following equivalent definition:

DISJ(X, Y ) =

1 if X ∩ Y = ∅,

0 otherwise.
(3)

Note that there is a one-to-one mapping between (x, y) and (X, Y ). Trivially, Alice can send her whole input
to Bob and achieve a protocol having n + 1 bits of communication.
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Similar to EQUALS, the function DISJ has “very large” 0-monochromatic rectangles, e.g., Ri = {(X, Y ) :
i ∈ X, i ∈ Y } for any fixed i. In fact, it also has “somewhat large” 1-monochromatic rectangles, but only
containing 2n entries which is much smaller than the total matrix size 22n. Formally:

Claim 3. Every 1-monochromatic rectangle of DISJ contains at most 2n entries.

Proof. Let R = A×B be any 1-monochromatic rectangle. Let X ′ = ∪X∈AX and Y ′ = ∪Y ∈BY be the union
of all the sets of A and B, respectively. By the 1-monochromatic property, we have that X ′ and Y ′ are
disjoint, and thus |X ′| + |Y ′| ≤ n. Since A and B consist of subsets of X ′ and Y ′ respectively, we also have
|A| ≤ 2|X′| and |B| ≤ 2|Y ′|, and we conclude that the number of entries in R is |A| · |B| ≤ 2|X′|+|Y ′| ≤ 2n. □

Next, the number of inputs (X, Y ) to DISJ that produce an output of 1 is exactly 3n. This is because
for each element in {1, . . . , n}, there are three possibilities: It is only in X, only in Y , or in neither. Overall,
at least 3n/2n = 2(log 3−1)n monochromatic rectangles are needed to cover just the 1s of DISJ. Since one
further rectangle (at least) is needed for the 0s, we obtain the following.

Theorem 4.4 (Theorem 1.14 in [1]). The deterministic communication complexity of DISJ is at least
(log 3 − 1)n + 1.

This lower bound matches the upper bound of n + 1 to within a constant factor, but it turns out that
we can get a better lower bound via a different approach, which we describe next.

4.3 Fooling Sets

A simple but powerful idea to get improved lower bounds is to identify a “large” subset of S ⊂ X × Y

such that each element of S must be associated with a different rectangle. This means that the number
of rectangles must also be “large”, from which Corollary 4.2 gives us a lower bound. The relevant formal
definition is given as follows.

Definition 4.1 (Fooling sets). A set S ⊂ X × Y is called a fooling set for a function g if every
monochromatic rectangle with respect to g can share at most one element with S.

As hinted above, any partition of the inputs into rectangles must be at least as large as the size of such
a fooling set. Thus, Corollary 4.2 immediately implies the following.

Corollary 4.5 (Theorem 1.20 in [1]). If g has a fooling set of size s, then the communication complexity
of g is at least log s.

The natural question is then how to find a large fooling set. This is often done case-by-case and typically
requires some creativity; we give just one example by returning to the DISJ function.

Disjointness

In the following, we define N = {1, . . . , n} for brevity.

Claim 4. The set S = {(X, N \ X) : X ⊆ [n]} is a fooling set for DISJ.

Proof. Recall the definition of a fooling set, and assume for contradiction that there exist two sets X , X ′

such that (X, N \ X) and (X ′, N \ X ′) appear in some rectangle R. Since X and N \ X are disjoint, it
must be a 1-monochromatic rectangle. By the definition of a rectangle, R must also contain (X, N \ X ′) and
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(X ′, N \ X). However, this is impossible, since the assumption X , X ′ implies that at least one of X \ X ′

or X ′ \ X is non-empty (and thus DISJ should return 0 instead of 1 on either (X, N \ X ′) or (X ′, N \ X)).
This establishes the desired contradiction, and we conclude that S must indeed be a fooling set. □

Since |S| = 2n, we conclude from Corollary 4.5 that the deterministic communication complexity is at
least n. In fact, we can do slightly better by noting that each (X, Y ) ∈ S has DISJ(x, y) = 1, and we need
at least one more 0-monochromatic rectangle on top of the 1-monochromatic ones; this gives the following.

Theorem 4.6 (Theorem 1.22 in [1]). The deterministic communication complexity of DISJ is exactly
n + 1.

4.4 The Rank Lower Bound Method

The following theorem provides a useful counterpart to the upper bound in Theorem 3.4, albeit with a
sizeable gap between the two (rank + 1 vs. log2(rank + 1)).

Theorem 4.7 (Theorem 2.4 in [1]). Consider any f : X ×Y → {0, 1}, and let M be the associated binary
matrix of size |X | × |Y|. If M is not the all 1s matrix, then the communication complexity of f is at least
log2(rank(M) + 1).

Proof. Let c denote the communication complexity. Theorem 3.2 shows that M can be partitioned into at
most 2c monochromatic rectangles. For each rectangle R in the partition, let zR denote the value of the
function in the rectangle, and let MR denote the |X | × |Y| matrix whose (x, y)-th entry is zR if (x, y) ∈ R,
and 0 otherwise. Observe that:

• If zR = 0, then MR contains all 0s and thus has rank 0;

• If zR = 1, then MR contains a single rectangle of 1s, and thus has rank 1 (see item #2 in Fact 2 and
note that every non-zero column is identical).

In both cases, we have rank(MR) ≤ 1. Moreover, M can be expressed as the sum of 2c such matrices, and
at least one of these matrices is 0 because M has at least one zero. Thus, by item #4 in Fact 2, we have
rank(M) ≤ 2c − 1, and thus c ≥ log2(rank(M) + 1). □

Note that the condition that M is not all-1s is necessary, since the all-1s case gives log(rank(M) + 1) = 1
but its communication complexity is trivially 0.

As an example application of Theorem 4.7, we return to the EQUALS function and give an alternative
proof of its lower bound: The matrix M is simply the 2n × 2n identity matrix, which has rank 2n. Thus, the
rank-based lower bound becomes ⌈log(2n + 1)⌉ = n + 1.

(**Optional**) Recent research has shown that both the rank-based upper bound and rank-based
lower bound can be improved, to at least Õ(

√
r) and Ω̃

(
(log r)2)

respectively (with r = rank(M)). It
remains an open problem as to whether the upper bound can be improved to (log r)O(1). See the end of
https://www.youtube.com/watch?v=zFHWmmThdT4 for further discussion.

5 Randomized Communication Complexity

Randomized algorithms are central to theoretical computer science, and also widely used in practice. Ac-
cordingly, it is natural to ask to what extent randomized protocols can help when it comes to communicating
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f(x, y). It turns out that this can in fact change the picture quite drastically. While this is a major topic in
communication complexity, we give it only a brief treatment, omitting most proofs. We first introduce some
important concepts.

Randomization and error probability. By randomization, we mean that Alice and Bob are now
allowed to make decisions such as “Send a 1 with probability p, and a 0 with probability 1 − p”. (The source
of randomness is important, and is discussed below.) Naturally, this means that multiple invocations of the
protocol for fixed (x, y) might produce different outputs. We fix δ > 0 and impose that for all inputs, the
protocol is correct with probability at least 1 − δ:

max
x∈X ,y∈Y

P[π(x, y) , f(x, y)] ≤ δ, (4)

where π(x, y) is the (random) output of the protocol. Typically we consider δ to be a fixed constant in(
0, 1

2
)
, such as 1/3, since a success probability of 2/3 (say) can easily be boosted to any target 1 − δ by

repeating it O
(

log 1
δ

)
times and taking the majority output. (Exercise: Try proving this using results from

the concentration lecture.)
Number of bits communicated. The notion of “number of bits communicated” can also be defined

in one of several ways, since it is now a random variable. Specifically, we could consider its average, its
high-probability behavior, or its worst-case behavior. It turns out that this choice is fairly inconsequential,
at least in terms of scaling laws (Exercise: Think about why this is the case), and in the following we will
take the requirement “at most c bits are communicated” as needing to hold with probability one.

Source of randomness: There are at least 3 distinct models for the source of randomness:

• Shared randomness (the public-coin model): A protocol is said to use public coins if all parties
have access to a common sequence of random bits (sometimes called “on a blackboard”).

• Private randomness (the private-coin model): A protocol is said to use private coins if each
party privately and independently samples a string of random bits.

• Input randomness (the distributional model): Another approach is to assume that the input is
random, and characterize how many bits need to be communicated on average. (Note: In this case,
the above considerations, including (4), need to be suitably modified.)

Usually, when people refer to “the randomized communication complexity”, they are referring to the public-
coin case. This is partially justified by the following result, which shows that converting public-coin to
private-coin loses at most a logarithmic factor (which is typically considered “small”).

Theorem 5.1. (Newman’s Theorem) Any pubic-coin protocol can be converted to a private-coin pro-
tocol with at most a δ′ increase in the error probability and at most an O

(
log n + log 1

δ′

)
increase in the

communication cost (for any δ′ > 0).

In particular, for a constant error probability, if the public-coin communication complexity is Θ(log n),
then its private-coin communication complexity is Θ(log n), and if its public-coin communicaton complexity
is ω(log n) (e.g., Θ(

√
n)), then the private-coin communication complexity is identical up to asymptotically

lower-order terms. Of course, any private-coin protocol can trivially be converted to a public-coin protocol.
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Equality

While EQUALS served as a “very hard” function (requiring n + 1 bits of communciation) for determinstic
protocols, it turns out that this property is lost in the randomized case. This is seen via the following upper
bounds for the public-coin and private-coin cases respectively.

Theorem 5.2. The public-coin randomized communication complexity of EQUALS is O(1).

Theorem 5.3. The private-coin randomized communication complexity of EQUALS is O(log n).

Public-coin case: We first consider the public coin case, and consider the following protocol:

• Alice and Bob extract 2n random bits, say r = (r1, . . . , rn) and r′ = (r′
1, . . . , r′

n) (with ri ∼
Bernoulli(1/2) independently and similarly for r′) from the public source of randomness. Thus, the
same random strings r, r′ are known to both of them.

• Alice computes the inner products r · x and r′ · x and sends them to Bob.

• Bob computes r · y and r′ · y. If r · x = r · y and r′ · x = r′ · y then Bob declares that x = y; otherwise
he declares that x , y.

If x = y, then the correct decision will trivially be made with probability one. On the other hand, if x , y,
it is easy to check that P[r · x = r · y] = 1

2 and similarly for r′, and thus a correct decision is made with
probability 1−

( 1
2
)2 = 3

4 . Observe that this probability can be boosted to 1−2−k by using k length-n strings
instead of just two.

Private-coin case: We could infer the private-coin result from the public-coin one using Theorem 5.1,
but it’s also interesting to give a direct proof. The above strategy cannot directly be used, since Alice’s
random bit string r is not known to Bob, and sending it would be too expensive.

Instead, we consider the following strategy:

• Alice and Bob agree (in advance) on using a binary error-correcting code for length-n messages, pro-
ducing length-βn codewords for some β > 1, and satisfying the property that any two codewords C(x)
and C(y) (for x , y) differ in at least a fraction α of their bits. (We know from the earlier lecture that
such codes exist for suitable constants α and β.)

• Alice computes C(x), and sends the pair (i, C(x)i) for k randomly-chosen indices i ∈ {1, . . . , βn}.

• Bob computes C(y), and checks if (i, C(x)i) = (i, C(y)i) for all such i values. If so, he declares x = y,
and otherwise he declares x , y.

We again have a probability one of being correct in the x = y case, and it is a simple exercise to show that
we succeed with probability at least 3/4 in the x , y case as long as k is large enough as a function of (α, β).
(Exercise: Try showing this.) Sending an index in {1, . . . , βn} requires ⌈log2 βn⌉ bits (plus 1 bit for C(x)i),
so the communication cost is O(log n) when k = O(1).

Disjointness

With EQUALS being an “easy” problem in the randomized case, we need to search for different problems that
are “hard” (as is required for establishing lower bounds via reductions). The most prominent such problem
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in the randomized case is disjointness, somewhat like how SAT is the starting point for NP-hardness
reductions. (Side-note: Another prominent example is “inner product mod 2”, but we’ll skip that.)

The hardness result is formally stated as follows.

Theorem 5.4 (Theorem 6.19 in [1]). Any randomized (public-coin) protocol that computes disjointness
function with error probability at most 1/2 − ϵ must have communication complexity Ω(nϵ2) (in particular,
Ω(n) if ϵ is a constant).

This matches the trivial upper bound of O(n) (via Alice sending her whole input) to within a constant
factor. The proof of this theorem is non-trivial and relies heavily on tools from information theory, but
interested students should now have the prerequisite background to be able to follow it; see [1, Chapter 6]
for a self-contained proof.

Discussion

We have only scratched the surface of randomized communication complexity. Randomized protocols for
specific functions often require some creativity (e.g., see the example ‘Sparse Set Disjointness’ in https:

//cseweb.ucsd.edu/classes/wi19/cse291-b/3-randomized.pdf, or the function “≥” in the homework).
There are also a number of other variations of communication complexity, some of which we briefly mention
in Appendix A.

6 Applications in Theoretical Computer Science

Communication complexity has proven to be an powerful tool for proving lower bounds in other areas of the-
oretical computer science (TCS), including VLSI, decision tree lower bounds, cell probe model and dynamic
data structures, Boolean circuit complexity, Turing machine time-space trade-offs, streaming algorithms,
game theory, high-dimensional estimation, distributed computation, and proof complexity. (Don’t worry if
you haven’t heard of most of these.)

In the following, we give just two examples of how lower bounds on communication complexity imply
certain lower bounds in computer science problems of interest.

6.1 Example 1: Space Complexity Lower Bounds for Streaming Algorithms

• Loosely speaking, a streaming algorithm is one that reads in a list sequentially and outputs some
property of that list, but is unable to store the entire list in memory. Thus, it has to “discard” some
elements along the way.

• As a simple example, if the goal is to output the average, then only two things need to be known –
the sum of all elements, and the number of elements (then output the ratio of the two). When a new
element of list is read, these numbers can be updated and then the list element can be forgotten.

• For other problems, even simple ones, it can be very unclear how much space is required (e.g., if the
goal is median instead of mean, this is already much less obvious).

• Reductions based on communication complexity are a powerful method to prove lower bounds, showing
a certain minimum amount of space is unavoidable.
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Deterministic algorithm example: Number of distinct elements

• Consider the following goal: Given a list of numbers a1, . . . , an, each taking values in the range
{1, 2, . . . , m}, output the number of distinct values appearing in the list. For example, if the list
is (1, 3, 1, 5, 9, 5, 5, 3, 5), then there are 4 distinct elements: 1,3,5,9.

• Claim: If m ≥ n, then any deterministic streaming algorithm for this task must use Ω(n) space.

– The more general result is Θ(min{m, n}), and it is easy to get a near-matching upper bound (just
store the entire list if min{m, n} = n, or store an “indicator bit” for each value if min{m, n} = m).

• To see this, we will perform a reduction based on the Ω(n) communication complexity of the EQUALS
function. Fix any inputs (x, y) to the EQUALS problem, with length n each. Then consider the
following two lists of numbers:

Lx = {i : xi = 1}

Ly = {i : yi = 1}.

These lists both have size at most n.

• Consider the following protocol for EQUALS:

– Alice runs streaming Distinct Elements on Lx, and Bob runs it on Ly (this requires no commu-
nication).

– Alice then sends the memory contents of the Distinct Elements algorithm (after Lx has been
processed) to Bob, who continues running it (with further elements from Ly) to get the number
of Distinct Elements in Lx ◦ Ly (where ◦ denotes list concatenation).

– Alice also sends the number of Distinct Elements in Lx to Bob. (This only requires O(log n) bits
of communication.)

– Bob checks whether Lx, Ly, and Lx ∪ Ly have the same number of distinct elements. If so, then
he declares that EQUALS(x, y)=1, otherwise 0.

It is easy to see that this produces the correct output of EQUALS. Yet if the streaming algorithm’s
memory were o(n), then the same would be true of the communication cost.

• We know that o(n) communication cost is impossible, so we conclude that the streaming algorithm
must have Ω(n) memory.

Randomized algorithm example: Approximate highest count

• Consider the following goal: We are given a list of numbers a1, . . . , an, each taking values in the range
{1, 2, . . . , m}. Let ni be the number of occurrences of symbol i for i = 1, . . . , m, and define nmax =
maxi ni to be the highest count. The goal is to output a number n̂ such that n̂ ∈ [0.8nmax, 1.2nmax]
(i.e., find an approximate value of nmax) with probability at least 2/3.

– The exact numbers 0.8, 1.2 and 2/3 aren’t important, but they provide leniency compared to
the above example – we only need to give an approximate answer, and we can use a randomized
algorithm that has some probability of failing.
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• Claim: If m ≥ n, then any (possibly randomized) streaming algorithm achieving this goal must use
Ω(n) space. (Again, the more general dependence is min{m, n}.)

• The proof is quite similar to before, but based on the hardness of DISJOINT rather than EQUALS
(the latter is no longer suitable, since we are now allowing randomization, and EQUALS has very low
randomized communication complexity).

• Specifically, we use the streaming algorithm A as a subroutine for computing DISJOINT(x, y):

– Alice feeds into A the indices i where xi = 1;

– Alice sends the memory contents of A to Bob;

– Starting with those memory contents, Bob feeds into A the indices i where yi = 1, then reads the
algorithm’s output;

– Bob declares DISJOINT(x, y)=1 if the output is at most 1.5, and 0 otherwise.

• This gives the correct answer for DISJOINT with probability at least 2/3, because nmax is 1 in the
disjoint case (meaning the answer should be in [0.8, 1.2]) but is at least 2 in the non-disjoint case
(meaning the answer should be 1.6 or higher).

• We know that DISJOINT has communication complexity Ω(n), so we conclude that the communication
step (consisting of the memory contents) must have Ω(n) bits. That is, A requires Ω(n) memory.

6.2 (**Optional**) Example 2: Query Complexity of Property Testing

• Property testing is a broad field in computer science and statistics where we seek to determine whether
a given string/function/random variable/etc. has a certain property using limited information (e.g.,
queries to the string/function, or samples from the distribution).

• Here we focus on the problem of motonicity testing:

– There exists a function f(x) with inputs in {0, 1}n and outputs in {0, 1, 2, . . . , R} for some R > 0.

– The function f is not known directly, but instead the algorithm can can only perform queries:
If input x is queried, then the value f(x) is returned. We would like to use as few queries as
possible. (Ideally far fewer than the trivial 2n attained by querying every point.)

– The function f is said to be monotone if changing any coordinate of the input from 0 to 1 increases
the function value (or keeps it the same).

– Goal: Construct a (possibly randomized) algorithm that performs Q queries and then returns:

∗ ’YES’ with probability at least 2/3 if f is monotone;
∗ ’NO’ with probability at least 2/3 is f is ϵ-far from being monotone (i.e., we would need to

modify at least an ϵ-fraction of function values to get a monotone function);
∗ (Either ’YES’ or ’NO’ may be returned in all other cases.)

• Claim: When R = 2(n+1) (or larger) and ϵ = 1
8 (or smaller), this problem requires Q = Ω(n) queries.

– This nearly matches a known upper bound of O
(

n
ϵ log R

)
, e.g., see Chapter 8 of Roughgarden.

• The proof is again based on a reduction involving (a variant of) the DISJOINT problem:
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– It will be convenient to treat binary vectors and sets interchangeably, so we can write f(x)
equivalently as f(S), with S being the set of indices where xi = 1.

– Define V = {1, . . . , n}, let A and B be subsets of V , and consider the following function defined
on subsets of {0, 1}n:

hAB(S) = 2|S| + (−1)|S∩A| + (−1)|S∩B|.

∗ Observe that if A and B are disjoint, then hAB is monotone, because adding an element to
S adds 2 in the first term, but only one of the other two terms can decrease from +1 to −1
(not both).

∗ If A and B have exactly one element in common, then it can be shown that hAB is 1
8 -far from

monotone; roughly, this is because if |A ∩ B| = {i} for some i, then 1
4 of the possible subsets

of {1, . . . , n} \ {i} will give hAB(S ∪ {i}) < hAB(S) due to both |S ∩ A| and |S ∩ A| being
even (and hence changing to odd when i is added).

∗ Observe also that hAB(S) outputs an integer between 0 and 2n + 2, which is consistent with
the choice R = 2(n + 1) above.

– The reduction actually uses a variant of DISJOINT called UniqueDisjoint, where in the case
of being non-disjoint, the strings (x, y) are guaranteed to only differ in one entry. The Ω(n)
communication complexity lower bound is known to still hold for this problem.

– The reduction is as follows:

∗ Alice knows x ∈ {0, 1}n and the corresponding set is called A. Bob knows y ∈ {0, 1}n and
the corresponding set is called B.

∗ Alice and Bob both run monotonicity testing on hAB ; after each query S, Alice sends
(−1)|S∩A| to Bob, and Bob sends (−1)|S∩B| to Alice, so that both of them get the query
response hAB(S).

∗ If the monotonicity tester returns ’YES’ then A and B are declared to be disjoint. Otherwise
they are declared to overlap in a single entry.

– Observe that the total amount of communication is 2Q when Q queries are made.

– The fact that UniqueDisjoint has (randomized) communication complexity Ω(n) thus directly
implies that we need Q = Ω(n).

A (**Optional**) Other Communication Models and Settings

Beyond the settings we have covered, there are a number of other settings of interest, some of which we
mention as follows:

• Average-case complexity: While the most common settings consider the worst-case communication
cost over all x and y, there are also cases where an average-cost notion is of more interest. Specifically,
we can assume that (x, y) ∼ D for some joint distribution D, and then study the average number of
bits exchanged with respect to D.

• Non-Boolean functions: Many functions that we are interested in computing have non-binary out-
puts, say represented by an m-bit string for some m > 1. For example, the Hamming distance between
x ∈ {0, 1}n and y ∈ {0, 1}n is represented by a number in {0, 1, . . . , n}, which can be represented using
⌈log2(n + 1)⌉ bits. See for example [7].
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• One-way communication: In the one-way setting, communication is only allowed from Alice to Bob,
not vice versa. The goal is for Alice to communicate as little as possible while ensuring that Bob can
compute f(x, y). This setup moves things somewhat closer to information theory, and its associated
tools like Fano’s inequality are common.

• Multi-agent settings: Naturally, we can consider more than two agents, e.g., there could be k agents
each knowing one of x1, . . . , xk (say with each xi ∈ {0, 1}n), and the goal is to compute f(x1, . . . , xk).
For the communication model, each agent could be allowed to broadcoast btis to all other agents, or
communication could be more constrained (e.g., only allowed to occur across certain edges in a graph).

• Nondeterministic protocols: (Note: The word “nondeterministic” here should be interpreted simi-
larly to the complexity class NP; it is not synonymous with “randomized”.)

In a nondeterministic protocol, the players are both provided an additional third input z (interpreted
as a “nondeterministic guess”). Apart from this guess, the protocol is deterministic. The cost incurred
on x, y is

min
z

{|z| + number of bits exchanged by the protocol when the guess is z}.

The nondeterministic communication complexity of f is the minimum k such that there is a nondeter-
ministic protocol whose cost for all input pairs is at most k.

B (**Optional**) Proof of Theorem 3.3 (Rectangles to Protocols)

Recall that both Alice and Bob know f . We can similarly assume that they both know the partitioning into
monochromatic rectangles, which we denote by R. The goal is to devise a protocol that identifies the unique
rectangle in R containing (x, y), since this clearly amounts to knowing the function value.

Let the rectangles be arbitrarily indexed as 1, 2, . . . , 2c (or fewer). We consider a protocol that operates in
rounds, where in each round either Alice or Bob sends the index of one such rectangle (we will later convert
from “sending indices” to “sending bits”). Specifically, this will be done in a manner such that the agents
can eliminate at least half of the remaining rectangles (i.e., conclude that they do not contain (x, y)). This
will mean that after at most log2(2c) = c rounds, we have narrowed down to the single (correct) rectangle
containing (x, y), impying that f(x, y) is known.

To achieve the above goal, we introduce the notion of good rectangles. Before doing so, we define the
following notions (illustrated in Figure 6):

• Two rectangles R = A × B and R′ = A′ × B′ intersect horizontally if A intersects A′;

• Two rectangles R = A × B and R′ = A′ × B′ intersect vertically if B intersects B′.

An important observation is that if x belongs to both A and A′ (i.e., x ∈ A ∩ A′) and y belongs to both B

and B′ (i.e., y ∈ B ∩ B′), then (x, y) will lie in both A × B and A′ × B′. This implies the following:

Fact 3. Two disjoint rectangles cannot intersect both horizontally and vertically.

Definition B.1 (Good Rectangles [1]). For a given input (x, y), a rectangle R = (A × B) ∈ R is
horizontally good if x ∈ A and R horizontally intersects at most |R|/2 rectangles in R. Similarly, R is
vertically good if y ∈ B and R vertically intersects at most |R|/2 rectangles in R. We say that R is good
if it is either horizontally good or vertically good.
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Figure 6: Rectangles 1 and 2 intersect vertically,
while rectangles 1 and 3 intersect horizontally. [1]

Figure 7: Either a rectangle aligned with x inter-
sects no more than half of the other rectangles
horizontally, or a rectangle aligned with y inter-
sects at most half of them vertically, as detailed
in [1].

Observe that if Alice can identify a horizontally good rectangle R, announcing its name will reduce the set
of considered rectangles by at least half (since the ones that don’t horizontally intersect R can be removed).
Likewise, Bob can achieve a similar reduction by announcing a vertically good rectangle. Given that we
assume all parties possess infinite computational capabilities, we don’t dwell on the process by which they
identify these good rectangles.

The remaining question is: Is it always possible to find a good rectangle? The answer is YES, as the
following claim establishes.

Claim 5. The unique rectangle in R that contains (x, y), denoted as Rx,y, is good.

Proof. From Fact 3, we know that no rectangle in R can intersect Rx,y both horizontally and vertically.
Consequently, either at most half of the rectangles in R intersect Rx,y horizontally (thus making it horizon-
tally good), or at most half intersect it vertically (thus making it vertically good). This establishes the claim,
and Figure 7 gives an illustration. □

A slight subtlety is that both Alice and Bob might know a good rectangle, and the protocol needs to
specify who should send first. A simple approach is to let them take turns in giving them the opportunity
to send a rectangle’s index; then:

• If they know a good rectangle, they send ‘1’ followed by the rectangle’s index;

• If they don’t know a good rectangle, they send ‘0’.

In this manner, there will be at most 2 extra bits sent for each rectangle index sent. The final communication
cost is computed by noting that (i) with at most 2c rectangles, sending a unique index requires at most
log2(2c) = c bits; and (ii) with 2c candidates initially and halving (or better) each round, there are at most
log2(2c) = c rounds. Thus, the total communication cost is O(c2).
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