
CS5339 Lecture Notes #1:

The Perceptron Algorithm

Jonathan Scarlett

March 30, 2021

Useful references:

• Blog post by Jeremy Kun1

• MIT lecture notes,2 lectures 1 and 2

• Chapter 4 (primarily Section 4.1.7) of Bishop’s “Pattern Recognition and Machine Learning” book

• Section 9.1 of “Understanding Machine Learning” book

1 Binary Classification

The classification problem:

• As described in the introduction lecture, a data set is a collection of pairs: D = {(xt, yt)}nt=1 where
xt ∈ Rd and yt ∈ {−1,+1}

• A classifier is a function fθ : Rd → {−1,+1} that takes x as input and tries to predict the corre-
sponding label y

• Linear classifiers take the form

Predict positive label ⇐⇒ 〈θ,x〉 > 0

for some θ ∈ Rd. This is equivalent to saying fθ(x) = sign(θTx).

– The entries of θ are written as (θ1, . . . , θd), and similarly for x and other vectors.

– For two vectors u and v of the same length, 〈u,v〉 = uTv = vTu =
∑n
t=1 utvt is the standard

inner product. Hence, 〈θ,x〉 =
∑n
t=1 θtxt is a linear combination of the entries of x (weighted

according to θ).

• In this lecture, assume that there exists a linear classifier (i.e., a choice of θ) that classifies everything
in the data set D correctly. In this case, we say that D is linearly separable.

1http://jeremykun.com/2011/08/11/the-perceptron-and-all-the-things-it-cant-perceive/
2http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/

lecture-notes/

1

http://jeremykun.com/2011/08/11/the-perceptron-and-all-the-things-it-cant-perceive/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/


• The linear classifier can be written as fθ(x) = sign(θTx) = sign(x1θ1 + . . . + xdθd), and corresponds
to a “straight line” (or more generally, hyperplane) passing through the origin:

Motivating example 1 (spam detection):

• Let each xt represent an email, and each yt be +1 is it is a spam email (and −1 otherwise).

• For instance, one reasonable representation of an email is xt = (xt,1, . . . , xt,d) where xt,j is the number
of times the j-th word appears.

• For words like “viagra” and “free” we should expect θj > 0

• For words like “NUS” and “confirmation” we should expect θj < 0

Motivating example 2 (image authentication):

• Let each xt represent an image of a face, obtained by arranging all the pixel values into a vector (e.g.,
d = 104 for a 100× 100 image)

• Let yt = 1 if the person in image xt should be allowed entry, and otherwise yt = −1

• (In both this example and the previous, the linearly separable assumption is highly questionable! But
don’t worry, we will increasingly move away from it throughout the course.)

2 The Perceptron Algorithm

Training error.

• For a given classifier parameter vector θ, define the training error

Ê(θ) =
1

n

n∑
t=1

Loss(yt, fθ(xt)),

where

Loss(y, ŷ) = 1{ŷ 6= y} =

1 ŷ 6= y

0 otherwise.

The function 1{·} is referred to as the indicator function (1 if the event is true, 0 otherwise).

2



– The word “training” refers to the fact that we are evaluating on the data set D = {(xt, yt)} that
is used for finding θ. Later, we will introduce the notion of “test error”, in which we evaluate the
error on different data that we haven’t seen previously (this is what we are ultimately interested
in being able to do!)

• The linearly separable assumption means there exists θ such that Ê(θ) = 0.

Introducing the perceptron update.

• We will present an algorithm that iterates through D and updates its current estimate of θ

• Specifically, if θ is the current estimate, and we observe the pair (xt, yt), we do the following:

– If yt = fθ(xt), leave θ unchanged (The classifier is already correct, so don’t touch it!)

– If yt 6= fθ(xt), update to θnext = θ + ytxt

• Reasoning:

– When we make a mistake (i.e., yt 6= fθ(xt)), it must be that the sign of θTxt disagrees with yt,
or equivalently, ytθTxt < 0.

– But if we instead consider the updated classifier, we get

ytθ
T
nextxt = yt(θ + ytxt)

Txt

= ytθ
Txt + y2t x

T
t xt

= ytθ
Txt + ‖xt‖2,

so this quantity either becomes “less negative”, or even better, shifts to being positive.

– Clearly, if we apply the update to the same pair (xt, yt) over and over, we will eventually classify
that sample correctly.

– But could it be the case that increasing ytθTxt for one sample decreases it for other samples?
Could this behavior just go back and forth indefinitely?

Full description of the perceptron algorithm.

1. Initialize θ(0) to some value (e.g., 0), and initialize the index k to 0.

2. Repeatedly perform the following:

• Select the next example (xt, yt) from the training set3 and check whether θ(k) classifies it correctly.

• If it is incorrect (i.e., yt(θ(k))Txt < 0), set θ(k+1) = θ(k) + ytxt and increment k ← k + 1.

3 Analysis of Convergence and Correctness

Assumptions and theorem statement.
3If we reach the end of the training set, we cycle back to t = 1. In fact, we don’t have to cycle through in order; we could

use some other pre-specified order.

3



• Assumption 1. There exists R ∈ (0,∞) such that every input xt in D satisfies ‖xt‖ ≤ R (i.e., the input
vectors are bounded)

• Assumption 2. There exists a parameter θ∗ and positive constant γ > 0 such that

min
t=1,...,n

yt(θ
∗)Txt ≥ γ. (1)

This is a “strict” form of the linearly separable assumption.

• Theorem. Under the initial vector θ(0) = 0, for any data set D satisfying the above assumptions, the
perceptron algorithm produces a vector θ(k) classifying every example correctly after at most

kmax =
R2‖θ∗‖2

γ2

update steps, where θ∗, γ and R are defined in the two assumptions.

• Idea of the proof (below):

– Show that (θ∗)Tθ(k) increases at least linearly in k. i.e., θ∗ and θ(k) are “highly correlated”

– Show that ‖θ(k)‖2 increases at most linearly in k. i.e., the “high correlation” just mentioned isn’t
merely due to θ(k) growing huge.

– Deduce that θ∗ and θ(k) must be close for large enough k

The proof.

• Part one:

– Observe that

(θ∗)Tθ(k+1) = (θ∗)T (θ(k) + ytxt)

= (θ∗)Tθ(k) + yt(θ
∗)Txt

≥ (θ∗)Tθ(k) + γ.

– Applying this recursively with θ(0) = 0, we obtain

(θ∗)Tθ(k) ≥ kγ.

• Part two:

– Recall that updates are only made when a mistake occurs, i.e., for each k the corresponding
sample indexed by t gives 〈θ(k), ytxt〉 ≤ 0. We can then write

‖θ(k+1)‖2 = ‖θ(k) + ytxt‖2 (2)

= ‖θ(k)‖2 + 2〈θ(k), ytxt〉+ ‖xt‖2 (3)

≤ ‖θ(k)‖2 + ‖xt‖2. (4)

4



– Applying the assumption ‖xt‖ ≤ R and recursing (with θ(0) = 0), we obtain

‖θ(k)‖2 ≤ kR2.

• Part three:

– The famous Cauchy-Schwarz inequality states that 〈v,w〉 ≤ ‖v‖ · ‖w‖ for any v,w ∈ Rd. One
way to understand this is that 〈v,w〉 = ‖v‖ · ‖w‖ · cos

(
angle(v,w)

)
and cos(a) ∈ [−1, 1].

– Applying it with v = θ(k) and w = θ∗, we obtain

1 ≥ 〈θ(k),θ∗〉
‖θ(k)‖ · ‖θ∗‖

(5)

≥ kγ

‖θ∗‖ ·
√
kR2

(by Part 1) (6)

=

√
kγ

‖θ∗‖ ·R
(by Part 2). (7)

– Re-arranging gives k ≤ ‖θ
∗‖2R2

γ2 , i.e., it is impossible for k to go beyond this number of updates.
Stated differently, after this many updates, every example must be classified correctly.

Non-separable case.

• The “strict” separability assumption (1) is crucial to make the above proof work.

• If the separation is not strict (i.e., γ = 0), it could take an arbitrarily long time to converge.

• What if the data set is non-separable?

• Extensions. Several variations of the perceptron algorithm exist, some of which are discussed in the
supplementary document lec1a.pdf:

– Variations ensuring a margin at least a constant fraction (e.g., half) of the best possible margin γ

– Variable increments (i.e., update by η(k)ytxt instead of just ytxt)

– Batch updates (i.e., update according to multiple (xt, yt) at once, not just one at a time)

4 Margin and Geometry

• For fixed θ separating positive from negative samples, the highest possible γ satisfying Eq. (1) is the
one such that equality holds: γ = mint=1,...,n ytθ

Txt. Let’s look further at this choice.

• Claim: Upon setting γ = mint=1,...,n ytθ
Txt, the quantity γgeom = γ

‖θ‖ is the smallest distance from
any example xt to the decision boundary specified by θ.

• Proof:

– The decision boundary is the set (hyperplane) of points satisfying 〈θ,x〉 = 0

– The vector θ points perpendicular to this hyperplane (see the figure below)

5



– Take a point xt and define the vector zt = xt−s ytθ‖θ‖ with s chosen so that zt lies on the hyperplane.
Then since θ

‖θ‖ has unit norm, s is the distance we are looking for (if we choose t to index the
nearest point to the hyperplane).

– Since zt lies on the decision boundary hyperplane (which is specified by zero inner product), we
have θT zt = 0, and therefore

0 = ytθ
T zt

= ytθ
T

(
xt − s

ytθ

‖θ‖

)
(by definition of zt)

= ytθ
Txt − s‖θ‖. (since θTθ = ‖θ‖2)

– If we consider t being the index such achieving the minimum in the definition of γ, we obtain
ytθ

Txt = γ, and consequently
s =

γ

‖θ‖

as claimed.

• Discussion.

– We can view γ−1geom as a measure of difficulty (smaller γgeom is harder)

– The bound kmax in the above theorem for the perceptron algorithm can be expressed as kmax =(
R

γgeom

)2. It is not directly4 dependent on the dimension d.

– It is not directly5 dependent on the number of samples n.

4The subtlety is that γgeom depends on the input vectors xt ∈ Rd, so it is unclear how to compare two different d values.
5Adding more samples do a data set, even in a way that is sure to preserve linear separability, could decrease γgeom.

6


	Binary Classification
	The Perceptron Algorithm
	Analysis of Convergence and Correctness
	Margin and Geometry

