# CS5339 Lecture Notes #1: The Perceptron Algorithm

#### Jonathan Scarlett

March 30, 2021

#### Useful references:

- Blog post by Jeremy Kun<sup>1</sup>
- MIT lecture notes,<sup>2</sup> lectures 1 and 2
- Chapter 4 (primarily Section 4.1.7) of Bishop's "Pattern Recognition and Machine Learning" book
- Section 9.1 of "Understanding Machine Learning" book

## 1 Binary Classification

#### The classification problem:

- As described in the introduction lecture, a *data set* is a collection of pairs:  $\mathcal{D} = \{(\mathbf{x}_t, y_t)\}_{t=1}^n$  where  $\mathbf{x}_t \in \mathbb{R}^d$  and  $y_t \in \{-1, +1\}$
- A classifier is a function  $f_{\theta} : \mathbb{R}^d \to \{-1, +1\}$  that takes **x** as input and tries to predict the corresponding label y
- *Linear classifiers* take the form

Predict positive label  $\iff \langle \boldsymbol{\theta}, \mathbf{x} \rangle > 0$ 

for some  $\boldsymbol{\theta} \in \mathbb{R}^d$ . This is equivalent to saying  $f_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$ .

- The entries of  $\boldsymbol{\theta}$  are written as  $(\theta_1, \ldots, \theta_d)$ , and similarly for **x** and other vectors.
- For two vectors  $\mathbf{u}$  and  $\mathbf{v}$  of the same length,  $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u} = \sum_{t=1}^n u_t v_t$  is the standard inner product. Hence,  $\langle \boldsymbol{\theta}, \mathbf{x} \rangle = \sum_{t=1}^n \theta_t x_t$  is a linear combination of the entries of  $\mathbf{x}$  (weighted according to  $\boldsymbol{\theta}$ ).
- In this lecture, assume that there exists a linear classifier (i.e., a choice of  $\theta$ ) that classifies everything in the data set  $\mathcal{D}$  correctly. In this case, we say that  $\mathcal{D}$  is *linearly separable*.

<sup>&</sup>lt;sup>1</sup>http://jeremykun.com/2011/08/11/the-perceptron-and-all-the-things-it-cant-perceive/

 $<sup>^{2} \</sup>rm http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/$ 

• The linear classifier can be written as  $f_{\theta}(\mathbf{x}) = \operatorname{sign}(\theta^T \mathbf{x}) = \operatorname{sign}(x_1\theta_1 + \ldots + x_d\theta_d)$ , and corresponds to a "straight line" (or more generally, hyperplane) passing through the origin:



#### Motivating example 1 (spam detection):

- Let each  $\mathbf{x}_t$  represent an email, and each  $y_t$  be +1 is it is a spam email (and -1 otherwise).
- For instance, one reasonable representation of an email is  $\mathbf{x}_t = (x_{t,1}, \dots, x_{t,d})$  where  $x_{t,j}$  is the number of times the *j*-th word appears.
- For words like "viagra" and "free" we should expect  $\theta_j > 0$
- For words like "NUS" and "confirmation" we should expect  $\theta_j < 0$

#### Motivating example 2 (image authentication):

- Let each  $\mathbf{x}_t$  represent an image of a face, obtained by arranging all the pixel values into a vector (e.g.,  $d = 10^4$  for a  $100 \times 100$  image)
- Let  $y_t = 1$  if the person in image  $\mathbf{x}_t$  should be allowed entry, and otherwise  $y_t = -1$
- (In both this example and the previous, the linearly separable assumption is highly questionable! But don't worry, we will increasingly move away from it throughout the course.)

## 2 The Perceptron Algorithm

#### Training error.

• For a given classifier parameter vector  $\boldsymbol{\theta}$ , define the *training error* 

$$\hat{E}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{t=1}^{n} \text{Loss}(y_t, f_{\boldsymbol{\theta}}(\mathbf{x}_t)).$$

where

$$\operatorname{Loss}(y, \hat{y}) = \mathbf{1}\{\hat{y} \neq y\} = \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise.} \end{cases}$$

The function  $\mathbf{1}\{\cdot\}$  is referred to as the indicator function (1 if the event is true, 0 otherwise).

- The word "training" refers to the fact that we are evaluating on the data set  $\mathcal{D} = \{(\mathbf{x}_t, y_t)\}$  that is used for finding  $\boldsymbol{\theta}$ . Later, we will introduce the notion of "test error", in which we evaluate the error on *different* data that we haven't seen previously (this is what we are ultimately interested in being able to do!)
- The linearly separable assumption means there exists  $\boldsymbol{\theta}$  such that  $\hat{E}(\boldsymbol{\theta}) = 0$ .

#### Introducing the perceptron update.

- We will present an algorithm that iterates through  $\mathcal D$  and updates its current estimate of  $\boldsymbol heta$
- Specifically, if  $\theta$  is the current estimate, and we observe the pair  $(\mathbf{x}_t, y_t)$ , we do the following:
  - If  $y_t = f_{\theta}(\mathbf{x}_t)$ , leave  $\theta$  unchanged (The classifier is already correct, so don't touch it!)
  - If  $y_t \neq f_{\theta}(\mathbf{x}_t)$ , update to  $\theta_{\text{next}} = \theta + y_t \mathbf{x}_t$
- Reasoning:
  - When we make a mistake (i.e.,  $y_t \neq f_{\theta}(\mathbf{x}_t)$ ), it must be that the sign of  $\theta^T \mathbf{x}_t$  disagrees with  $y_t$ , or equivalently,  $y_t \theta^T \mathbf{x}_t < 0$ .
  - But if we instead consider the updated classifier, we get

$$y_t \boldsymbol{\theta}_{\text{next}}^T \mathbf{x}_t = y_t (\boldsymbol{\theta} + y_t \mathbf{x}_t)^T \mathbf{x}_t$$
$$= y_t \boldsymbol{\theta}^T \mathbf{x}_t + y_t^2 \mathbf{x}_t^T \mathbf{x}_t$$
$$= y_t \boldsymbol{\theta}^T \mathbf{x}_t + \|\mathbf{x}_t\|^2,$$

so this quantity either becomes "less negative", or even better, shifts to being positive.

- Clearly, if we apply the update to the same pair  $(\mathbf{x}_t, y_t)$  over and over, we will eventually classify that sample correctly.
- But could it be the case that increasing  $y_t \theta^T \mathbf{x}_t$  for one sample decreases it for other samples? Could this behavior just go back and forth indefinitely?

#### Full description of the perceptron algorithm.

- 1. Initialize  $\boldsymbol{\theta}^{(0)}$  to some value (e.g., **0**), and initialize the index k to 0.
- 2. Repeatedly perform the following:
  - Select the next example  $(\mathbf{x}_t, y_t)$  from the training set<sup>3</sup> and check whether  $\boldsymbol{\theta}^{(k)}$  classifies it correctly.
  - If it is incorrect (i.e.,  $y_t(\boldsymbol{\theta}^{(k)})^T \mathbf{x}_t < 0$ ), set  $\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} + y_t \mathbf{x}_t$  and increment  $k \leftarrow k+1$ .

# 3 Analysis of Convergence and Correctness

#### Assumptions and theorem statement.

<sup>&</sup>lt;sup>3</sup>If we reach the end of the training set, we cycle back to t = 1. In fact, we don't have to cycle through in order; we could use some other pre-specified order.

- <u>Assumption 1.</u> There exists  $R \in (0, \infty)$  such that every input  $\mathbf{x}_t$  in  $\mathcal{D}$  satisfies  $||\mathbf{x}_t|| \leq R$  (i.e., the input vectors are bounded)
- Assumption 2. There exists a parameter  $\theta^*$  and positive constant  $\gamma > 0$  such that

$$\min_{t=1,\dots,n} y_t(\boldsymbol{\theta}^*)^T \mathbf{x}_t \ge \gamma.$$
(1)

This is a "strict" form of the linearly separable assumption.

• <u>Theorem.</u> Under the initial vector  $\boldsymbol{\theta}^{(0)} = \mathbf{0}$ , for any data set  $\mathcal{D}$  satisfying the above assumptions, the perceptron algorithm produces a vector  $\boldsymbol{\theta}^{(k)}$  classifying every example correctly after at most

$$k_{\max} = \frac{R^2 \|\boldsymbol{\theta}^*\|^2}{\gamma^2}$$

update steps, where  $\boldsymbol{\theta}^*$ ,  $\gamma$  and R are defined in the two assumptions.

- Idea of the proof (below):
  - Show that  $(\boldsymbol{\theta}^*)^T \boldsymbol{\theta}^{(k)}$  increases at least linearly in k. i.e.,  $\boldsymbol{\theta}^*$  and  $\boldsymbol{\theta}^{(k)}$  are "highly correlated"
  - Show that  $\|\boldsymbol{\theta}^{(k)}\|^2$  increases *at most* linearly in *k*. i.e., the "high correlation" just mentioned isn't merely due to  $\boldsymbol{\theta}^{(k)}$  growing huge.
  - Deduce that  $\boldsymbol{\theta}^*$  and  $\boldsymbol{\theta}^{(k)}$  must be close for large enough k

#### The proof.

- <u>Part one:</u>
  - Observe that

$$(\boldsymbol{\theta}^*)^T \boldsymbol{\theta}^{(k+1)} = (\boldsymbol{\theta}^*)^T (\boldsymbol{\theta}^{(k)} + y_t \mathbf{x}_t)$$
$$= (\boldsymbol{\theta}^*)^T \boldsymbol{\theta}^{(k)} + y_t (\boldsymbol{\theta}^*)^T \mathbf{x}_t$$
$$\geq (\boldsymbol{\theta}^*)^T \boldsymbol{\theta}^{(k)} + \gamma.$$

– Applying this recursively with  $\boldsymbol{\theta}^{(0)} = \mathbf{0}$ , we obtain

$$(\boldsymbol{\theta}^*)^T \boldsymbol{\theta}^{(k)} \ge k\gamma.$$

- Part two:
  - Recall that updates are only made when a mistake occurs, i.e., for each k the corresponding sample indexed by t gives  $\langle \boldsymbol{\theta}^{(k)}, y_t \mathbf{x}_t \rangle \leq 0$ . We can then write

$$\|\boldsymbol{\theta}^{(k+1)}\|^2 = \|\boldsymbol{\theta}^{(k)} + y_t \mathbf{x}_t\|^2 \tag{2}$$

$$= \|\boldsymbol{\theta}^{(k)}\|^2 + 2\langle \boldsymbol{\theta}^{(k)}, y_t \mathbf{x}_t \rangle + \|\mathbf{x}_t\|^2$$
(3)

$$\leq \|\boldsymbol{\theta}^{(k)}\|^2 + \|\mathbf{x}_t\|^2. \tag{4}$$

- Applying the assumption  $\|\mathbf{x}_t\| \leq R$  and recursing (with  $\boldsymbol{\theta}^{(0)} = \mathbf{0}$ ), we obtain

$$\|\boldsymbol{\theta}^{(k)}\|^2 \le kR^2.$$

• <u>Part three:</u>

- The famous Cauchy-Schwarz inequality states that  $\langle \mathbf{v}, \mathbf{w} \rangle \leq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$  for any  $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ . One way to understand this is that  $\langle \mathbf{v}, \mathbf{w} \rangle = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos(\operatorname{angle}(\mathbf{v}, \mathbf{w}))$  and  $\cos(a) \in [-1, 1]$ .
- Applying it with  $\mathbf{v} = \boldsymbol{\theta}^{(k)}$  and  $\mathbf{w} = \boldsymbol{\theta}^*$ , we obtain

$$1 \ge \frac{\langle \boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^* \rangle}{\|\boldsymbol{\theta}^{(k)}\| \cdot \|\boldsymbol{\theta}^*\|} \tag{5}$$

$$\geq \frac{k\gamma}{\|\boldsymbol{\theta}^*\| \cdot \sqrt{kR^2}} \qquad \text{(by Part 1)} \tag{6}$$

$$= \frac{\sqrt{k\gamma}}{\|\boldsymbol{\theta}^*\| \cdot R} \qquad \text{(by Part 2)}. \tag{7}$$

- Re-arranging gives  $k \leq \frac{\|\boldsymbol{\theta}^*\|^2 R^2}{\gamma^2}$ , i.e., it is impossible for k to go beyond this number of updates. Stated differently, after this many updates, every example *must* be classified correctly.

#### Non-separable case.

- The "strict" separability assumption (1) is crucial to make the above proof work.
- If the separation is not strict (i.e.,  $\gamma = 0$ ), it could take an arbitrarily long time to converge.
- What if the data set is non-separable?
- <u>Extensions</u>. Several variations of the perceptron algorithm exist, some of which are discussed in the supplementary document lec1a.pdf:
  - Variations ensuring a margin at least a constant fraction (e.g., half) of the best possible margin  $\gamma$
  - Variable increments (i.e., update by  $\eta^{(k)}y_t\mathbf{x}_t$  instead of just  $y_t\mathbf{x}_t$ )
  - Batch updates (i.e., update according to multiple  $(\mathbf{x}_t, y_t)$  at once, not just one at a time)

### 4 Margin and Geometry

- For fixed  $\boldsymbol{\theta}$  separating positive from negative samples, the highest possible  $\gamma$  satisfying Eq. (1) is the one such that equality holds:  $\gamma = \min_{t=1,...,n} y_t \boldsymbol{\theta}^T \mathbf{x}_t$ . Let's look further at this choice.
- <u>Claim</u>: Upon setting  $\gamma = \min_{t=1,...,n} y_t \boldsymbol{\theta}^T \mathbf{x}_t$ , the quantity  $\gamma_{\text{geom}} = \frac{\gamma}{\|\boldsymbol{\theta}\|}$  is the smallest distance from any example  $\mathbf{x}_t$  to the decision boundary specified by  $\boldsymbol{\theta}$ .
- $\underline{\text{Proof:}}$ 
  - The decision boundary is the set (hyperplane) of points satisfying  $\langle \boldsymbol{\theta}, \mathbf{x} \rangle = 0$
  - The vector  $\boldsymbol{\theta}$  points perpendicular to this hyperplane (see the figure below)



- Take a point  $\mathbf{x}_t$  and define the vector  $\mathbf{z}_t = \mathbf{x}_t s \frac{y_t \theta}{\|\theta\|}$  with s chosen so that  $\mathbf{z}_t$  lies on the hyperplane. Then since  $\frac{\theta}{\|\theta\|}$  has unit norm, s is the distance we are looking for (if we choose t to index the nearest point to the hyperplane).
- Since  $\mathbf{z}_t$  lies on the decision boundary hyperplane (which is specified by zero inner product), we have  $\boldsymbol{\theta}^T \mathbf{z}_t = 0$ , and therefore

$$0 = y_t \boldsymbol{\theta}^T \mathbf{z}_t$$
  
=  $y_t \boldsymbol{\theta}^T \left( \mathbf{x}_t - s \frac{y_t \boldsymbol{\theta}}{\|\boldsymbol{\theta}\|} \right)$  (by definition of  $\mathbf{z}_t$ )  
=  $y_t \boldsymbol{\theta}^T \mathbf{x}_t - s \|\boldsymbol{\theta}\|$ . (since  $\boldsymbol{\theta}^T \boldsymbol{\theta} = \|\boldsymbol{\theta}\|^2$ )

- If we consider t being the index such achieving the minimum in the definition of  $\gamma$ , we obtain  $y_t \boldsymbol{\theta}^T \mathbf{x}_t = \gamma$ , and consequently

$$s = \frac{\gamma}{\|\boldsymbol{\theta}\|}$$

as claimed.

- <u>Discussion</u>.
  - We can view  $\gamma_{\text{geom}}^{-1}$  as a measure of difficulty (smaller  $\gamma_{\text{geom}}$  is harder)
  - The bound  $k_{\text{max}}$  in the above theorem for the perceptron algorithm can be expressed as  $k_{\text{max}} = \left(\frac{R}{\gamma_{\text{geom}}}\right)^2$ . It is not *directly*<sup>4</sup> dependent on the dimension *d*.
  - It is not *directly*<sup>5</sup> dependent on the number of samples n.

<sup>&</sup>lt;sup>4</sup>The subtlety is that  $\gamma_{\text{geom}}$  depends on the input vectors  $\mathbf{x}_t \in \mathbb{R}^d$ , so it is unclear how to compare two different d values.

<sup>&</sup>lt;sup>5</sup>Adding more samples do a data set, even in a way that is sure to preserve linear separability, could decrease  $\gamma_{\text{geom}}$ .