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Useful references:

• Blog post by Jeremy Kun1

• MIT lecture notes,2 lecture 3

• Chapter 7 of Bishop’s “Pattern Recognition and Machine Learning” book

• Chapter 15 of “Understanding Machine Learning” book

• Wikipedia page on Support Vector Machine

• Supplementary notes lec3a.pdf

1 Binary Classification

Recap of the classification problem:

• The data set is given by D = {(xt, yt)}nt=1 where xt ∈ Rd are the input vectors and yt ∈ {−1,+1} are
the targets/labels

• A classifier is a function f : Rd → {−1,+1} that takes x as input and tries to predict the corresponding
label y.

• Linear classifiers are those in the set

F =
{
f : f(x) = sign(xTθ) for some θ ∈ Rd

}
.

• The data set D is said to be linearly separable if there exists a linear classifier (i.e., a choice of θ) that
classifies everything in the data set D correctly. We will continue with this assumption initially, but
will shortly drop it.

Margin of a classifier.
1http://jeremykun.com/2017/06/05/formulating-the-support-vector-machine-optimization-problem/
2http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/
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• Recall that we defined the margin corresponding to θ as γgeom = γ
‖θ‖ , where

γ = min
t=1,...,n

ytθ
Txt.

• At least intuitively, a larger margin should lead to a “more robust” classifier.

2 Maximum Margin Classifier – Initial Formulation

Maximizing the margin.

• We can write down the maximum margin classifier as an optimization problem:

maximizeθ,γ
γ

‖θ‖
subject to ytθ

Txt ≥ γ, ∀t = 1, . . . , n.

• For convenience, we rewrite the maximization as minimizing the inverse:

minimizeθ,γ
‖θ‖
γ

subject to
ytθ

Txt
γ

≥ 1, ∀t = 1, . . . , n.

We have also divided both sides by γ > 0 in each constraint.

• Then, since everything depends on θ and γ only through θ
γ , we can just define θ̃ = θ

γ and form the
equivalent problem

minimizeθ̃ ‖θ̃‖ subject to ytθ̃
T
xt ≥ 1, ∀t = 1, . . . , n.

• Finally, maximizing a quantity is equivalent to maximizing its square, so we write yet another equivalent
form (let’s also drop the tilde on θ̃ for simpler notation):

minimizeθ
1

2
‖θ‖2 subject to ytθ

Txt ≥ 1, ∀t = 1, . . . , n. (1)

The solution θ to this problem is a basic version (i.e., one only suited to linearly separable data) of
the support vector machine (SVM) classifier.

Uniqueness of the solution:

• Claim. The solution to the optimization problem (1) is unique.

• Proof:

– Suppose, to the contrary, there were two solutions θ1 and θ2. Such solutions clearly need to
satisfy ‖θ1‖ = ‖θ2‖; let’s give this norm a name V ∗.

– Now consider the alternative choice θ̄ = 1
2θ1 + 1

2θ2. The triangle inequality gives

‖θ̄‖ ≤ 1

2

(
‖θ1‖+ ‖θ2‖

)
= V ∗, (2)

so the norm cannot be any larger than V ∗. Also, since the constraints are linear and satisfied
by both θ1 and θ2, they are satisfied by θ̄. Since V ∗ is the smallest possible norm by definition,
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we conclude that (2) can only hold with equality: ‖θ̄‖ = V ∗. Substituting θ̄ = 1
2θ1 + 1

2θ2 and
squaring gives ‖θ1 + θ2‖2 = 4(V ∗)2.

– Next, using expansion of the square, we have

‖θ1 + θ2‖2 = ‖θ1‖2 + 2〈θ1,θ2〉+ ‖θ2‖2 = 2((V ∗)2 + 〈θ1,θ2〉)

‖θ1 − θ2‖2 = ‖θ1‖2 − 2〈θ1,θ2〉+ ‖θ2‖2 = 2((V ∗)2 − 〈θ1,θ2〉)

and adding these equations together gives

‖θ1 + θ2‖2 + ‖θ1 − θ2‖2 = (4V ∗)2.

But we already showed ‖θ1 + θ2‖2 = 4(V ∗)2, so these can only be consistent if ‖θ1 − θ2‖2 = 0,
meaning θ1 = θ2.

3 Support Vector Machine – Towards a General Formulation

Adding an offset parameter

• Let’s slightly generalize linear classifiers as follows:

F =
{
f : f(x) = sign(θTx + θ0) for some θ ∈ Rd, θ0 ∈ R

}
.

The previous formulation corresponds to choosing θ0 = 0. This extra parameter is called the offset or
bias of the classifier.

– We will usually refer to these as linear classifiers as well, though the more precise terminology
would be affine classifiers.

• The added flexibility of the offset parameter can improve the margin:
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• The inclusion of θ0 changes the SVM formulation slightly:

minimizeθ,θ0
1

2
‖θ‖2 subject to yt(θ

Txt + θ0) ≥ 1, ∀t = 1, . . . , n. (3)

• Notes:

– θ0 only appears in the constraints, not the objective

– If we were to apply (1) to the modified domain x̃t = [xTt 1]T with [θT θ0]T in place of θ, the
parameter θ0 would affect both the constraints and objective. The two formulations are not
equivalent; it is only (3) that is correct for maintaining the maximum-margin interpretation.

Allowing mis-classified examples.

• Most data sets are not linearly separable (even with the flexibility of the offset θ0).

• Intuition on the general SVM: Allow margin violations and mis-classified examples, but pay a penalty
for them.

– Since violations are allowed, we refer to this as the soft-margin SVM. The previous formulation
with no violations is called the hard-margin SVM.

• The optimization formulation:

minimizeθ,θ0,ζ
1

2
‖θ‖2 + C

n∑
t=1

ζt subject to yt(θ
Txt + θ0) ≥ 1− ζt and ζt ≥ 0, ∀t (4)

where ζ = (ζ1, . . . , ζn) is an extra set of optimization variables called slack variables, and C is a
parameter controlling how the two terms in the objective are weighted.

• Remarks.

1. If ζt = 0, we still satisfy yt(θTxt + θ0) ≥ 1 as before. If ζt > 0, we are no longer “within the
margin”. If ζt > 1, we don’t even classify xt correctly (see below).

2. As C grows very large, the optimal slack variables ζt will become closer to zero (why?), and we
simply recover the maximum margin rule (if the data set is linearly separable). But if C gets
small, more and more margin violations are permitted.

3. Overall, C controls the trade-off between having a large margin ( 12‖θ‖
2 term) and few margin

violations (
∑n
t=1 ζt term).

• In practice, C might require some tuning (e.g., via cross-validation, to be covered later).

So what is a support vector?

• The support vectors are the samples (xt, yt) falling into any of the following categories:

– Those that lie exactly on the margin

– Those that violate the margin constraint, but not enough to be mis-classified

– Those that are mis-classified
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• An example (separable case on left, non-separable on right):

• If we apply the SVM to a reduced data set consisting of only the support vectors, we get back the
exact same classifier.

– We will skip a formal proof of this fact here; it can be shown using techniques that we introduce
for a “dual” SVM formulation later in the course.

– The intuition (separable case): Attaining the maximum margin can be viewed as stretching out
a “slab” (parallel to the decision boundary) until some data points are “hit”. Even if we remove
those that were not hit, we still hit the same ones that were kept.

Yet another equivalent formulation.

• Claim. The optimization (4) is equivalent to the unconstrained problem

minimizeθ,θ0
1

2
‖θ‖2 + C

n∑
t=1

[
1− yt(θTxt + θ0)

]
+
, (5)

where [z]+ = max{0, z}.

– Proof. (i) If yt(θTxt + θ0) > 1, then we have [1 − yt(θTxt + θ0)]+ = 0 and pay no penalty, just
like in (4). (ii) If yt(θTxt + θ0) ≤ 1, then we have [1− yt(θTxt + θ0)]+ = 1− yt(θTxt + θ0), which
matches the penalty ζt in (4).

– (To properly establish the last part of this argument, try to convince yourself that whenever ζt > 0

the constraint yt(θTxt + θ0) ≥ 1− ζt holds with equality.)
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• The function Lossh(z) = [1− z]+ is referred to as the hinge loss:

• So (5) can be interpreted as balancing the total hinge loss with the regularization term 1
2‖θ‖

2. The
terminology “regularization” will be discussed more in later lectures.

• A note on computation.

– The above SVM formulations are so-called convex optimization problems (to be defined formally in
a later lecture), for which there exist general-purpose solvers that can efficiently find the solution
numerically. For instance, (1) minimizes a quadratic function subject to linear constraints.

– By contrast, if we tried replacing the hinge loss by the 0-1 loss, we would have an optimization
formulation that is extremely hard to solve in general (specifically, NP-hard).

• In a later lecture:

– A completely different yet equivalent optimization formulation called the dual expression (the
ones we have presented so far are called primal expressions).

– A way to produce non-linear classifiers via the “kernel trick”.
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