# CS5339 Lecture Notes \#2: Support Vector Machine 

Jonathan Scarlett

March 30, 2021

## Useful references:

- Blog post by Jeremy Kun ${ }^{1}$
- MIT lecture notes ${ }^{2}$ lecture 3
- Chapter 7 of Bishop's "Pattern Recognition and Machine Learning" book
- Chapter 15 of "Understanding Machine Learning" book
- Wikipedia page on Support Vector Machine
- Supplementary notes lec3a.pdf


## 1 Binary Classification

## Recap of the classification problem:

- The data set is given by $\mathcal{D}=\left\{\left(\mathbf{x}_{t}, y_{t}\right)\right\}_{t=1}^{n}$ where $\mathbf{x}_{t} \in \mathbb{R}^{d}$ are the input vectors and $y_{t} \in\{-1,+1\}$ are the targets/labels
- A classifier is a function $f: \mathbb{R}^{d} \rightarrow\{-1,+1\}$ that takes $\mathbf{x}$ as input and tries to predict the corresponding label $y$.
- Linear classifiers are those in the set

$$
\mathcal{F}=\left\{f: f(\mathbf{x})=\operatorname{sign}\left(\mathbf{x}^{T} \boldsymbol{\theta}\right) \text { for some } \boldsymbol{\theta} \in \mathbb{R}^{d}\right\} .
$$

- The data set $\mathcal{D}$ is said to be linearly separable if there exists a linear classifier (i.e., a choice of $\boldsymbol{\theta}$ ) that classifies everything in the data set $\mathcal{D}$ correctly. We will continue with this assumption initially, but will shortly drop it.


## Margin of a classifier.

[^0]- Recall that we defined the margin corresponding to $\boldsymbol{\theta}$ as $\gamma_{\text {geom }}=\frac{\gamma}{\|\boldsymbol{\theta}\|}$, where

$$
\gamma=\min _{t=1, \ldots, n} y_{t} \boldsymbol{\theta}^{T} \mathbf{x}_{t}
$$

- At least intuitively, a larger margin should lead to a "more robust" classifier.


## 2 Maximum Margin Classifier - Initial Formulation

## Maximizing the margin.

- We can write down the maximum margin classifier as an optimization problem:

$$
\operatorname{maximize}_{\boldsymbol{\theta}, \gamma} \frac{\gamma}{\|\boldsymbol{\theta}\|} \text { subject to } y_{t} \boldsymbol{\theta}^{T} \mathbf{x}_{t} \geq \gamma, \quad \forall t=1, \ldots, n
$$

- For convenience, we rewrite the maximization as minimizing the inverse:

$$
\operatorname{minimize}_{\boldsymbol{\theta}, \gamma} \frac{\|\boldsymbol{\theta}\|}{\gamma} \text { subject to } \frac{y_{t} \boldsymbol{\theta}^{T} \mathbf{x}_{t}}{\gamma} \geq 1, \quad \forall t=1, \ldots, n .
$$

We have also divided both sides by $\gamma>0$ in each constraint.

- Then, since everything depends on $\boldsymbol{\theta}$ and $\gamma$ only through $\frac{\boldsymbol{\theta}}{\gamma}$, we can just define $\widetilde{\boldsymbol{\theta}}=\frac{\boldsymbol{\theta}}{\gamma}$ and form the equivalent problem

$$
\operatorname{minimize}_{\widetilde{\boldsymbol{\theta}}}\|\widetilde{\boldsymbol{\theta}}\| \text { subject to } y_{t} \widetilde{\boldsymbol{\theta}}^{T} \mathbf{x}_{t} \geq 1, \quad \forall t=1, \ldots, n
$$

- Finally, maximizing a quantity is equivalent to maximizing its square, so we write yet another equivalent form (let's also drop the tilde on $\widetilde{\boldsymbol{\theta}}$ for simpler notation):

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2} \text { subject to } y_{t} \boldsymbol{\theta}^{T} \mathbf{x}_{t} \geq 1, \quad \forall t=1, \ldots, n \tag{1}
\end{equation*}
$$

The solution $\boldsymbol{\theta}$ to this problem is a basic version (i.e., one only suited to linearly separable data) of the support vector machine (SVM) classifier.

## Uniqueness of the solution:

- Claim. The solution to the optimization problem (1) is unique.
- Proof:
- Suppose, to the contrary, there were two solutions $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$. Such solutions clearly need to satisfy $\left\|\boldsymbol{\theta}_{1}\right\|=\left\|\boldsymbol{\theta}_{2}\right\|$; let's give this norm a name $V^{*}$.
- Now consider the alternative choice $\overline{\boldsymbol{\theta}}=\frac{1}{2} \boldsymbol{\theta}_{1}+\frac{1}{2} \boldsymbol{\theta}_{2}$. The triangle inequality gives

$$
\begin{equation*}
\|\overline{\boldsymbol{\theta}}\| \leq \frac{1}{2}\left(\left\|\boldsymbol{\theta}_{1}\right\|+\left\|\boldsymbol{\theta}_{2}\right\|\right)=V^{*} \tag{2}
\end{equation*}
$$

so the norm cannot be any larger than $V^{*}$. Also, since the constraints are linear and satisfied by both $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$, they are satisfied by $\overline{\boldsymbol{\theta}}$. Since $V^{*}$ is the smallest possible norm by definition,
we conclude that (2) can only hold with equality: $\|\overline{\boldsymbol{\theta}}\|=V^{*}$. Substituting $\overline{\boldsymbol{\theta}}=\frac{1}{2} \boldsymbol{\theta}_{1}+\frac{1}{2} \boldsymbol{\theta}_{2}$ and squaring gives $\left\|\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right\|^{2}=4\left(V^{*}\right)^{2}$.

- Next, using expansion of the square, we have

$$
\begin{aligned}
& \left\|\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right\|^{2}=\left\|\boldsymbol{\theta}_{1}\right\|^{2}+2\left\langle\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right\rangle+\left\|\boldsymbol{\theta}_{2}\right\|^{2}=2\left(\left(V^{*}\right)^{2}+\left\langle\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right\rangle\right) \\
& \left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|^{2}=\left\|\boldsymbol{\theta}_{1}\right\|^{2}-2\left\langle\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right\rangle+\left\|\boldsymbol{\theta}_{2}\right\|^{2}=2\left(\left(V^{*}\right)^{2}-\left\langle\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right\rangle\right)
\end{aligned}
$$

and adding these equations together gives

$$
\left\|\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right\|^{2}+\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|^{2}=\left(4 V^{*}\right)^{2} .
$$

But we already showed $\left\|\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right\|^{2}=4\left(V^{*}\right)^{2}$, so these can only be consistent if $\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|^{2}=0$, meaning $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{2}$.

## 3 Support Vector Machine - Towards a General Formulation

## Adding an offset parameter

- Let's slightly generalize linear classifiers as follows:

$$
\mathcal{F}=\left\{f: f(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}+\theta_{0}\right) \text { for some } \boldsymbol{\theta} \in \mathbb{R}^{d}, \theta_{0} \in \mathbb{R}\right\} .
$$

The previous formulation corresponds to choosing $\theta_{0}=0$. This extra parameter is called the offset or bias of the classifier.

- We will usually refer to these as linear classifiers as well, though the more precise terminology would be affine classifiers.
- The added flexibility of the offset parameter can improve the margin:

- The inclusion of $\theta_{0}$ changes the SVM formulation slightly:

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2} \text { subject to } y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1, \quad \forall t=1, \ldots, n \tag{3}
\end{equation*}
$$

- Notes:
- $\theta_{0}$ only appears in the constraints, not the objective
- If we were to apply (1) to the modified domain $\tilde{\mathbf{x}}_{t}=\left[\begin{array}{ll}\mathbf{x}_{t}^{T} & 1\end{array}\right]^{T}$ with $\left[\begin{array}{l}\boldsymbol{\theta}^{T} \\ \theta_{0}\end{array}\right]^{T}$ in place of $\boldsymbol{\theta}$, the parameter $\theta_{0}$ would affect both the constraints and objective. The two formulations are not equivalent; it is only (3) that is correct for maintaining the maximum-margin interpretation.


## Allowing mis-classified examples.

- Most data sets are not linearly separable (even with the flexibility of the offset $\theta_{0}$ ).
- Intuition on the general SVM: Allow margin violations and mis-classified examples, but pay a penalty for them.
- Since violations are allowed, we refer to this as the soft-margin SVM. The previous formulation with no violations is called the hard-margin SVM.
- The optimization formulation:

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}, \boldsymbol{\zeta}} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2}+C \sum_{t=1}^{n} \zeta_{t} \text { subject to } y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1-\zeta_{t} \text { and } \zeta_{t} \geq 0, \quad \forall t \tag{4}
\end{equation*}
$$

where $\boldsymbol{\zeta}=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ is an extra set of optimization variables called slack variables, and $C$ is a parameter controlling how the two terms in the objective are weighted.

- Remarks.

1. If $\zeta_{t}=0$, we still satisfy $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1$ as before. If $\zeta_{t}>0$, we are no longer "within the margin". If $\zeta_{t}>1$, we don't even classify $\mathbf{x}_{t}$ correctly (see below).
2. As $C$ grows very large, the optimal slack variables $\zeta_{t}$ will become closer to zero (why?), and we simply recover the maximum margin rule (if the data set is linearly separable). But if $C$ gets small, more and more margin violations are permitted.
3. Overall, $C$ controls the trade-off between having a large margin ( $\frac{1}{2}\|\boldsymbol{\theta}\|^{2}$ term $)$ and few margin violations $\left(\sum_{t=1}^{n} \zeta_{t}\right.$ term).

- In practice, $C$ might require some tuning (e.g., via cross-validation, to be covered later).


## So what is a support vector?

- The support vectors are the samples $\left(\mathbf{x}_{t}, y_{t}\right)$ falling into any of the following categories:
- Those that lie exactly on the margin
- Those that violate the margin constraint, but not enough to be mis-classified
- Those that are mis-classified


- An example (separable case on left, non-separable on right):
- If we apply the SVM to a reduced data set consisting of only the support vectors, we get back the exact same classifier.
- We will skip a formal proof of this fact here; it can be shown using techniques that we introduce for a "dual" SVM formulation later in the course.
- The intuition (separable case): Attaining the maximum margin can be viewed as stretching out a "slab" (parallel to the decision boundary) until some data points are "hit". Even if we remove those that were not hit, we still hit the same ones that were kept.


## Yet another equivalent formulation.

- Claim. The optimization (4) is equivalent to the unconstrained problem

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2}+C \sum_{t=1}^{n}\left[1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)\right]_{+}, \tag{5}
\end{equation*}
$$

where $[z]_{+}=\max \{0, z\}$.

- Proof. (i) If $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)>1$, then we have $\left[1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)\right]_{+}=0$ and pay no penalty, just like in (4). (ii) If $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \leq 1$, then we have $\left[1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)\right]_{+}=1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)$, which matches the penalty $\zeta_{t}$ in 4 .
- (To properly establish the last part of this argument, try to convince yourself that whenever $\zeta_{t}>0$ the constraint $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1-\zeta_{t}$ holds with equality.)
- The function $\operatorname{Loss}_{\mathrm{h}}(z)=[1-z]_{+}$is referred to as the hinge loss:

- So (5) can be interpreted as balancing the total hinge loss with the regularization term $\frac{1}{2}\|\boldsymbol{\theta}\|^{2}$. The terminology "regularization" will be discussed more in later lectures.
- A note on computation.
- The above SVM formulations are so-called convex optimization problems (to be defined formally in a later lecture), for which there exist general-purpose solvers that can efficiently find the solution numerically. For instance, (1) minimizes a quadratic function subject to linear constraints.
- By contrast, if we tried replacing the hinge loss by the 0-1 loss, we would have an optimization formulation that is extremely hard to solve in general (specifically, NP-hard).
- In a later lecture:
- A completely different yet equivalent optimization formulation called the dual expression (the ones we have presented so far are called primal expressions).
- A way to produce non-linear classifiers via the "kernel trick".


[^0]:    ${ }^{1}$ http://jeremykun.com/2017/06/05/formulating-the-support-vector-machine-optimization-problem/
    ${ }^{2}$ http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/

