
CS5339 Lecture Notes #3:

Logistic Regression

Jonathan Scarlett

March 30, 2021

Useful references:

• MIT lecture notes,1 lecture 4

• Section 4.3.2 of Bishop’s “Pattern Recognition and Machine Learning” book (and also Section 1.5 for
more on discriminative vs. generative models, Section 4.1.2 for a brief discussion on forming multi-class
classifiers from binary ones)

• Section 9.3 of of “Understanding Machine Learning” book (and Section 17.1 for multi-class methods)

• For those wanting to learn about gradient-based optimization beyond the bare basics that we introduce,
see http://ruder.io/optimizing-gradient-descent/ for a good summary

1 Data Modeling

• So far, we have considered the data setD = {(xt, yt)}nt=1 as simply being fixed and given, and sometimes
assumed it to satisfy certain assumptions (e.g., exact or approximate linear separability). We used D
to learn a θ corresponding to a binary linear classifier ŷ = fθ(x) ∈ {−1,+1}, but we did not say
anything about where the data set came from.

• We will now turn to the idea of placing probabilistic models on the data.

• Data models are often broadly categorized into the following two types:

– Discriminative models focus on learning a conditional distribution P (y|x), indicating the proba-
bility of each y value given the input x.

– Generative models also seek to learn P (x|y) and/or P (x), which is often followed by an application
of Bayes’ rule to deduce P (y|x).

• In this course, we will focus on discriminative models. These can already provide notable benefits over
non-probabilistic methods:

1http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/
lecture-notes/

1

http://ruder.io/optimizing-gradient-descent/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/

– Instead of merely predicting y = 1 or y = −1, we can also give a confidence to our prediction,
which can be very important – e.g., in sports betting, receiving the information “I predict Team
A has a 55% chance of beating Team B” is much more useful (if accurate) than just “I predict
Team A will beat Team B”. (Even more so for applications in medicine, law, etc.)

– The simple methods that we introduce may be a sub-component in a larger learning system,
and outputting “soft” (probabilistic) information may be more useful (e.g., if combining multiple
classifiers’ decisions, one could place less weight on those that are less confident).

• Attaining an accurate generative model is a more demanding task, e.g., P (x) or P (x|y) may be very
complicated (and hence require lots of data to learn) even when P (y|x) is simple. However, if it can
be done, it can have further benefits:

– It allows us to generate additional “synthetic” data (more data is always a good thing, at least
when it is representative of the unseen inputs one ultimately wants to do prediction on)

– When we are trying to classify new (unseen) x, we can perform outlier detection, i.e., notice that
this x is a “non-typical” one, and accordingly be wary of our predicted y.

– Data generation can be of interest in its own right (e.g., imaging software, speech generation)

• The vast majority of theoretical studies assume (not necessarily realistically!) that different data
samples (xt, yt) are statistically independent from each other (but with the same distribution), and we
will do the same throughout the course. For instance, P (y1, y2|x1,x2) = P (y1|x1)P (y2|x2).

• A common phrase to keep in mind: All models are “wrong”, but some models are useful

2 The Logistic Model

• In this lecture, we will consider the logistic likelihood model:

P (y = 1|x) = 1

1 + exp(−(θTx+ θ0))
(1)

for some θ ∈ Rd and θ0 ∈ R. When we want to make the dependence explicit, we will write P (y =

1|x;θ, θ0). We will also shorten notation by using g(z) = 1
1+e−z , which gives P (y = 1|x) = g(θTx+θ0).

– Note: The distribution P (x) will not play any significant role in this lecture, and in fact, the
{xt}nt=1 can be viewed as remaining non-probabilistic.

2

• Simple example.

– Suppose that yt indicates whether user t will like a product.

– Possible inputs: x1 = 1{user is male}, x2 = (age), x3 = (#similar products bought).

– From (1), the higher θTx+ θ0 is, the higher the probability that the user likes the product.

– Therefore, e.g., θ3 should be positive, θ2 should be negative if the product is a toy, etc.

• We have P (y = −1|x) = 1− P (y = 1|x) = exp(−(θTx+θ0))
1+exp(−(θTx+θ0))

, and therefore

log
P (y = 1|x)
P (y = −1|x)

= θTx+ θ0,

which tells us that
P (y = 1|x) > P (y = −1|x) ⇐⇒ θTx+ θ0 > 0.

In other words, the classifier fθ(x) = sign(xTθ + θ0) can be interpreted as choosing the label that is
more likely under the logistic model.

• By further simplifying exp(−(θTx+θ0))
1+exp(−(θTx+θ0))

= g(−(θTx + θ0)), we find a unified way to write down the
likelihood function for y = 1 and y = −1:

P (y|x) = g(y(θTx+ θ0)).

This is verified by just checking the cases y = +1 and y = −1 separately.

• For linear classifiers, the decision boundaries of (θ, θ0) remains unchanged when the pair is scaled by
a positive constant c > 0. However, despite the same decision boundary, such scaling can still affect
the likelihoods assigned to points in the logistic model:

Notice that scaling by c > 1 pushes the predictions closer to 0 (if it was originally < 1
2) or 1 (if it was

originally > 1
2).

• Next, we discuss basic methods for learning “good” choices of (θ, θ0) from data.

3

3 Maximum Likelihood Estimation

Formulation.

• The overall likelihood (i.e., the conditional probability of (y1, . . . , yn) given (x1, . . . ,xn) as a function
of (θ, θ0)) is

L(θ, θ0|D) =
n∏
t=1

P (yt|xt;θ, θ0),

where the product
∏n
t=1 is due to the assumption of independent data samples.

• Given the data set D and knowledge that it comes from a logistic model, it is natural to construct a
linear classifier by selecting (θ, θ0) to maximize the likelihood:

(θ̂, θ̂0) = argmax
θ,θ0

L(θ, θ0|D).

– Intuitively, choose (θ, θ0) that “best explains” the data.

– For now, we take for granted that this is a reasonable thing to do; there is theory showing it to
succeed in a certain sense when the number of data points n is large enough. We will later discuss
limitations when n is small.

• Maximizing L is equivalent to maximizing logL, so we get

(θ̂, θ̂0) = argmax
θ,θ0

n∑
t=1

logP (yt|xt;θ, θ0)

= argmin
θ,θ0

n∑
t=1

− logP (yt|xt;θ, θ0)

= argmin
θ,θ0

n∑
t=1

− log g(yt(θ
Txt + θ0))

= argmin
θ,θ0

n∑
t=1

log
(
1 + exp(−yt(θTxt + θ0))

)
. (2)

• The function z → log(1 + e−z) is often called the logistic loss:

Optimization.

• Unfortunately, we cannot solve (2) in closed form. Instead, we can resort to numerical optimization.

4

• We will cover simple (but extremely useful and widespread) gradient-based optimization methods in
Lecture 6b. For now, it suffices to say that there exist efficient methods for finding the minimizer to a
high degree of accuracy.

Making a prediction.

• As suggested above, once we have chosen (θ, θ0), upon observing a new input x′ we can predict that
y′ = 1 with probability g(θTx+ θ0).

– Hence, we are giving a confidence level in the prediction.

– We report complete confidence when θTx+θ0 → ±∞, but only 50% confidence when θTx+θ0 = 0.

– Word of caution: These “confidence levels” may be highly misleading if the logistic modeling as-
sumption was incorrect/inaccurate.

4 Regularization

• If the data set D is linearly separable, then there exists θ, θ0 such that yt(θTxt + θ0) > 0 for all t.

– By scaling θ, θ0 up by a common constant factor, we can make yt(θTxt + θ0) arbitrarily large,
leading to a lower value of

∑n
t=1 log

(
1 + exp(−yt(θTxt + θ0))

)
in (2).

– Therefore, the optimal parameters are unbounded, and it is easy to show that this corresponds
to always reporting 100% confidence in the prediction. In this case, the likelihood is 1 (meaning
the logistic loss is zero) on the training data.

– However, maybe the data set was only linearly separable because we didn’t collect enough data
points! (i.e., n is too small) If we were to then collect more data and make a wrong prediction
with 100% confidence, this would correspond to a likelihood of zero, or a logistic loss of ∞ – the
worst possible.

– More generally, even if the confidence is not always 100%, similar “over-confidence” problems can
occur when there are too few data points.

• To avoid this type of behavior, one can penalize large parameters in the optimization problem. To do
this, we regularize just like in the SVM objective function:

minimizeθ,θ0
n∑
t=1

log
(
1 + exp(−yt(θTxt + θ0))

)
+
λ

2
‖θ‖2

for some λ > 0, or equivalently,

minimizeθ,θ0
1

2
‖θ‖2 + C

n∑
t=1

log
(
1 + exp(−yt(θTxt + θ0))

)
for some C > 0.

– We will study regularization in more detail (but in a different context) next lecture, and see that
it acts as a stabilizer (i.e., avoiding wildly different solutions due to small changes in the data) and
mitigates overfitting (i.e., learning spurious patterns that only occur due to fluctuations/noise)

5

• In fact, this simply corresponds to taking (one form of) the SVM optimization problem and replacing
the hinge loss by the logistic loss.

• Once again, C is a parameter that needs to be tuned (e.g., via cross-validation covered later)

5 Multi-Class Classification

• We have looked at binary classification: yt ∈ {−1, 1} (e.g., spam or not spam). What if we have more
than two classes (e.g., action, comedy, drama, etc.)? Generically, let’s call these class labels {1, . . . ,M}.

• One possibility is to try to solve the multi-class problem using binary methods.

• One vs. rest.

– For each c ∈ {1, . . . ,M}, apply binary classification with labels yt = 1 if the t-th sample has class
c, and yt = −1 otherwise. Hence, the label simply says “Is this in class c?”

– Let θ(c), θ(c)0 be the c-th learned classifier parameters.

– To predict a new sample, plug the input x into all of the M classifiers. Let the estimate ĉ be the
class with the highest value of (θ(c))Tx+ θ

(c)
0 .

• One vs. one.

– Take all
(
M
2

)
pairs c, c′ from {1, . . . ,M}, and train a binary classifier for each pair to get θ(c,c′),

θ
(c,c′)
0 . That is, the (c, c′)-th classifier tries to distinguish the class c (corresponding to y = 1)
from the class c′ (corresponding to y = −1).

– When training for c, c′, all samples with labels differing from these two values are omitted.

– To predict a new sample, plug the input x into all of the
(
M
2

)
classifiers, and let ĉ be the one that

was preferred over its competitor the highest number of times.

• Both of these approaches are heuristic, perform well in some cases but not others, and have known
potentially major issues.

– As an example, try applying the one vs. rest rule to 2D data with 3 classes, with the data points
being spread evenly among 3 circles (one per class) of unit radius centered at (−2, 0), (0, 0), and
(2, 0). Assume that the fraction of points in each class is 0.4, 0.2, and 0.4, respectively.

– See Example 17.1 of “Understanding Machine Learning” for the solution.

• What about a more direct approach?

– Different classification algorithms have different difficulties in deriving multi-class counterparts
(e.g., impossible/difficult/do-able/easy/trivial).

– Examples: SVM (see Section 17.2.5 of “Understanding Machine Learning”), boosting (to be cov-
ered later; multi-class version will be an advanced tutorial question).

– Logistic regression has a very natural multi-class counterpart: Replace (1) by the soft-max function

P (y = c|x) = exp(θTc x+ θ0,c)∑M
c′=1 exp(θ

T
c′x+ θ0,c′)

, c = 1, . . . ,M, (3)

6

where we now have a different pair (θc, θ0,c) for each class. Without loss of generality we can
assume that one of the classes has (θc, θ0,c) = (0, 0) (why?), which is useful for showing that (1)
is a special case of (3).

7

	Data Modeling
	The Logistic Model
	Maximum Likelihood Estimation
	Regularization
	Multi-Class Classification

