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Useful references:

• Blog post by Jeremy Kun1

• Slide set lecture_bo0.pdf from a one-day course I gave2

• MIT lecture notes,3 lecture 5

• Chapter 3 of Bishop’s “Pattern Recognition and Machine Learning” book

• Section 9.2 of “Understanding Machine Learning” book

1 Linear Prediction

• In previous lectures, we looked at predicting binary labels yt ∈ {−1, 1}. This is relevant in trying to
learn “yes/no” questions (e.g., is this a spam email?) Here, we switch to the scenario where yt ∈ R.
This is relevant when trying to predict (continuous) real-valued quantities (e.g., a stock price).

• We initially focus on linear predictors of the form

ŷ(x) = θTx + θ0 (1)

for some θ ∈ Rd and θ0 ∈ R. Non-linear predictors will be handled in later lectures.

1http://jeremykun.com/2013/08/18/linear-regression/
2https://www.comp.nus.edu.sg/~scarlett/gp_slides
3http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/

lecture-notes/
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• As with the binary setting, we can derive predictors via several approaches:

1. Consider D = {(xt, yt)}nt=1 as simply being given, and try to find a predictor that fits the data.

2. Model each (xt, yt) as being independently drawn from a distribution P (x)P (y|x) parametrized
by (θ, θ), and estimate these parameters using maximum likelihood.

3. (Bayesian view) Model both the data and the parameters as random, so we have distributions
P (x)P (y|x) and P (θ, θ0).

We start with the second case, but we will quickly see that the resulting estimates (θ̂, θ̂) have a natural
interpretation in the first case. The Bayesian view is discussed at the end of the lecture.

• Motivating example:

– Suppose we have a list of 1000 days’ stock prices, and we want to train a regression algorithm
that takes 10 consecutive days as input (x), and outputs the prediction for the next day (y).

– We can construct a data set D = {(xt, yt)}nt=1 as follows: (i) Let x1 ∈ R10 contain the first 10
prices, and y1 be the 11th; (ii) Let x2 ∈ R10 contain the prices 2–11, and y2 be the 12th; (iii) etc.

– A linear model is reasonable, because it captures rules like “predict the next price to be the current
price + the average increase of the 9 days before that”.

• Reminder: All models are wrong, but some models are useful

2 Gaussian Model

Model and noise distribution.

• Consider a probabilistic model in which yt is generated from xt according to

yt = (θ∗)Txt + θ∗0 + zt, (2)

where (θ∗, θ∗0) are fixed and unknown, and zt is random noise. (Included on the basis that we can
rarely measure anything in the real world perfectly)

• The most widely-adopted noise distribution is Gaussian: zt ∼ N (0, σ2). Recall that the PDF of a
Gaussian is

N (z;µ, σ2) =
1√
2πσ2

exp

(
− (z − µ)2

2σ2

)
.

An illustration:
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• Under such a noise model, we see from (2) that

P (y|x) = N (y;θTx + θ0, σ
2).

Again, we sometimes make the dependence on (θ, θ0) and σ2 explicit by writing P (y|x) as
P (y|x;θ, θ0, σ2).

Maximum likelihood estimation.

• Suppose the data set D = {(xt, yt)}nt=1 is known to consist of independent samples generated via (2).

• Since we don’t know σ2, we can treat it as an additional parameter to be estimated along with (θ, θ0).
The likelihood function is then

L(θ, θ0, σ
2;D) =

n∏
t=1

1√
2πσ2

exp

(
− (yt − θTxt − θ0)2

2σ2

)
,

where the product
∏n
t=1 is due to the assumption of independent data samples.

• Maximizing L is equivalent to maximizing its log, but the latter is more convenient to work with:

logL(θ, θ0, σ
2;D) = const.− n

2
log σ2 − 1

2σ2

n∑
t=1

(yt − θTxt − θ0)2, (3)

where const. represents a term that does not depend on (θ, θ0, σ
2).

• We now notice that in this case there is no need to explicitly estimate σ2; no matter what its value is,
the maximum likelihood (ML) estimate of (θ, θ0) is

(θ̂, θ̂0) = argmax
θ,θ0

logL(θ, θ0, σ
2|D) = argmin

θ,θ0

n∑
t=1

(yt − θTxt − θ0)2. (4)

This is known as the least squares estimate.

– Naturally, once these estimates are computed, the prediction rule for a new point x′ is given by
ŷ(x′) = θ̂

T
x′ + θ̂0. The least squares rule is trying to minimize the sum of squared error terms

(squares of the differences between the predictions and the actual labels):
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• If we had assumed non-Gaussian noise, the ML estimate would have been different (and possibly more
complicated).

3 Finding the Least Squares Estimate

• Like with logistic regression, we could try to solve (4) using stochastic gradient descent (in fact, this is
often the best way to go for huge data sets!)

• But in this particular case, we can actually find a closed-form solution.

• First, let’s switch to matrix notation:

n∑
t=1

(yt − θTxt − θ0)2 = ‖y −XΘ‖2,

where y =


y1
...
yn

 ∈ Rn, X =


xT1 1
...

...
xTn 1

 ∈ Rn×(d+1), and Θ =

[
θ

θ0

]
∈ Rd+1.

• Using basic vector calculus (which you don’t need to know), the derivative of ‖y−XΘ‖2 with respect
to Θ is 2XT (y −XΘ). Setting this to zero and solving for Θ gives

Θ̂ = (XTX)−1XTy. (5)

The matrix (XTX)−1XT is known as the pseudo-inverse of X (it is easy to check that it equals X−1

whenever X is square and invertible).

• Remarks.

– The estimate Θ̂ =

[
θ̂

θ̂0

]
is a linear function of y (but the dependence on X is non-linear)

– We have implicitly assumed that XTX is invertible, which is usually OK when n > d (more
equations than unknowns) but not when d < n (the “high-dimensional” setting).

• Once we have (θ̂, θ̂0), we can substitute back into (3) and compute the ML estimate of σ2:

σ̂2 =
1

n

n∑
t=1

(yt − θ̂
T
xt − θ̂0)2.

(Proving this requires a little calculus, taking the derivative with respect to σ2). This does not enter
into the predictor ŷ (see (1)), but it gives a useful measure of the average prediction error for the
samples in D.
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4 Bias and Variance

Illustrative picture.

• Roughly speaking, “low bias” means “correct on average”, and ”low variance” means “tending to behave
similarly” (e.g., across several realizations of the random noise). An analogy in archery:

– Note: This picture is purely for intuition and shouldn’t be viewed as a regression problem!

Motivating linear regression example.

• Suppose we are trying to predict a day’s stock price based on the 20 prior days’ prices (d = 20) – but
we only have 20 data points (n = 20).

• Assuming XTX is invertible, we can find θ such that ‖y − Xθ‖2 = 0 – but if the noise level is
significant, this might end up being a very strange θ amounting to “learning the noise” (e.g., θ =

(1,−3, 2.6,−17, 0.5, . . . ))

– If the noise values had been different, a very different θ may have been chosen (high variance)

• Intuitively, if we could find a “simpler” θ (e.g., θ = ( 12 ,
1
3 ,

1
5 ,

1
8 , . . . )) that gives ‖y −Xθ‖2 fairly small

but not quite zero, we might still expect it to give better predictions for unseen x.

• However, if we use least squares with lots of data (compared to the number of parameters) and/or the
data is less noisy, then we are typically less likely to encounter this kind of problem.

– More data =⇒ Less risk of spurious solutions

– More noise =⇒ More risk of spurious solutions

• The notions of bias and variance help us understand this intuition.

Calculations for least squares.
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• Continuing with matrix notation, let’s write the model (2) as

y = XΘ∗ + z, (6)

where we use a superscript (·)∗ to highlight that these are the “true” parameters. The noise vector
z ∈ Rn is distributed as N (0, σ2I).

• Substituting (6) into (5) gives
Θ̂ = Θ∗ + (XTX)−1XT z, (7)

and we can interpret the right-hand side as “true value + error term”.

• Since E[z] = 0, we immediately obtain (for fixed X) that

E[Θ̂] = Θ∗.

This means that we are “correct on average” – in statistics terminology, the estimator is unbiased.

• It is also easy to compute the covariance (for fixed X):

Cov[Θ̂] = E
[
(Θ̂−Θ∗)(Θ̂−Θ∗)T

]
= E

[
(XTX)−1XT zzTX(XTX)−1

]
= (XTX)−1XTE

[
zzT ]X(XTX)−1

= σ2(XTX)−1,

where the second-last line uses linearity of expectation (note that X is not random here), and the last
line applies E

[
zzT ] = σ2I (since z ∼ N (0, σ2I)) and then cancels (XTX) with its inverse.

This is potentially not such good news – if the matrix (XTX)−1 has any large entries, the corresponding
entries of Θ̂ will have high variance.

– If we are lucky enough to be able to choose the inputs x1, . . . ,xn and then observe their labels
y1, . . . , yn, we could try to choose them in a way that avoids this scenario. Learning problems
with this flexibility are known as active learning.

• General bias vs. variance property:

– Consider goal of minimizing the mean square error (MSE) E
[
‖Θ̂ −Θ∗‖2

]
, which measures how

well we estimate Θ∗ on average (and can be viewed as an indication of how well we will perform
prediction on unseen data samples).

– The MSE vector estimate Θ̂ with true value Θ∗ satisfies the following:

E
[
‖Θ̂−Θ∗‖2

]
= ‖E[Θ̂]−Θ∗‖2︸ ︷︷ ︸

bias (squared)

+E
[
‖Θ̂− E[Θ̂]‖2

]︸ ︷︷ ︸
variance

(8)

– No reason to believe bias = 0 is optimal! (in general, it is not – see below)

– It is a simple exercise to prove that variance = Tr[Cov[Θ̂]] (Hint: First get to the expression
E
[
Tr[(Θ̂− E[Θ̂])T (Θ̂− E[Θ̂])]

]
, then apply Tr[AB] = Tr[BA] )
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5 Regularization and Ridge Regression

• The ridge regression estimator reduces variance at the expense of increasing the bias:

(θ̂, θ̂0) = argmin
θ,θ0

n∑
t=1

(yt − θTxt − θ0)2 + λ

d∑
j=1

θ2j ,

for some λ ≥ 0 (setting λ = 0 recovers (4)).

– Note that just like with SVM, we do not penalize θ0.

• For notational convenience, let’s focus on the case that there is no offset: θ0 = 0, and we only minimize∑n
t=1(yt − θTxt)

2 + λ
∑d
j=1 θ

2
j . In matrix form, this gives

θ̂ = argmin
θ

‖y −Xθ‖2 + λ‖θ‖2, (9)

where now X ∈ Rn×d only has d columns; we don’t append the column of 1s.

– Returning to the motivating example in the previous section, since we penalize large values of ‖θ‖2,
we are now less likely to choose the spurious solution that has large values but gives ‖y−Xθ‖2 = 0.

• Finding the optimal θ is done similarly to the case λ = 0, and yields:

– The closed-form solution
θ̂ = (XTX + λI)−1XTy. (10)

Note that XTX + λI is always invertible when λ > 0.

– Once again, the prediction rule for a new point x′ is ŷ(x′) = θ̂
T
x′.

• Bias-variance trade-off:

– The bias (derived using (10), E[y] = Xθ∗, and writing XTX = XTX + λI− λI) is

E[θ̂]− θ∗ = −λ(XTX + λI)−1θ∗.
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The eigenvalues of I− λ(XTX+ λI)−1 are between 0 and 1, so on average the estimate “shrinks”
the ground truth. This is to be expected given that higher values of ‖θ‖2 are penalized more.

– The covariance (requires more effort to derive) is

Cov[θ̂] = σ2
(
(XTX + λI)−1 − λ(XTX + λI)−2

)
.

Taking the trace yields the variance corresponding to (8).

• We will see a simple example of the bias-variance trade-off for ridge regression in the tutorials. To
gain intuition, it is easier to give an example in polynomial regression (fitting a polynomial instead of
a straight line – see the next lecture on how we can still use “linear” regression techniques to do this):

– Example curves fit to some data points:

– The more erratic (blue) curve has no regularization, and is very sensitive in the sense that it tends
to track noise in the data.

– The less erratic (red) curve has regularization, and gives a simpler curve more aligned with the
general trend of the data while being less sensitive to noise.

– Generally speaking, regularization acts as a stabilizer, in the sense that it makes the output stay
more similar when small changes are made to the data

• Recalling that least squares (i.e., λ = 0) is equivalent to maximum likelihood (ML) estimation under
Gaussian noise, this is one of many examples showing that ML is not always the right thing to do
(especially with limited data)

• The bias-variance trade-off is certainly not unique to linear regression and `2-regularization. Another
example is the k-nearest neighbors rule, which (given an unseen x) predicts y to be the average label
value among the k closest points from the data set. Increasing k increases bias, but reduces variance.4

6 Bayesian Viewpoint

• There are (at least) two distinct viewpoints in statistics and machine learning:
4See https://www.youtube.com/watch?v=n5Zxi22801Q for a video lecture containing this example.
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– Frequentist view. The parameter θ is just some fixed vector that we don’t know

– Bayesian view. We can encode our belief of the possible/likely values of θ through a distribution
p(θ) (e.g., θ ∼ N(µ,Σ))

• Bayes’ rule:

p(θ|D) = p(D|θ)p(θ)
p(D)

which reads in Bayesian terminology as

Posterior =
Likelihood× Prior

Evidence

Note that the likelihood p(D|θ) should be interpreted as p(y1, . . . , yn|x1, . . . ,xn,θ) (as opposed to a
joint probability on x’s and y’s), since the input x is always given/known.

• Advantages and disadvantages of Bayesian methods:

· (+) Natural way to incorporate prior knowledge

· (+) Gives not only a prediction, but a full posterior distribution (e.g., to provide estimates of the
level of (un)certainty)

· (+) State-of-the-art performance in several applications

· (−) Choosing a prior can be difficult

· (−) With an incorrect prior, can have very undesirable behavior (e.g., claiming high confidence
but actually being completely wrong)

· (−) Exact posterior calculation usually impossible, need to approximate (e.g., with Monte Carlo
or variational methods)

· (−) Even with approximations, considerable computation time is often required

• Bayesian perspective on Ridge Regression:

– A useful observation: Gaussian prior & Gaussian noise =⇒ Gaussian posterior

∗ This is an example of so-called “conjugate priors”, where the prior and posterior distributions
are in the same family

– More precise description:

∗ Linear model yt = θTxt + zt with random θ

∗ Gaussian prior θ ∼ N(0, I)

∗ Gaussian noise zt ∼ N(0, σ2) with independence between samples

– Since the posterior of θ is Gaussian, it is fully specified by its mean and covariance matrix. It can
be shown (see the tutorial question) that the posterior mean is

µn = (XTX + σ2I)−1XTy

which is precisely ridge regression.

∗ The covariance matrix also has a simple closed form (also explored in the tutorial question)
– this can be used to give uncertainty estimates.
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