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Useful references:
e Blog post by Jeremy Kurﬂ
e Slide set lecture_bo0.pdf from a one-day course I gaveﬂ

MIT lecture notesE| lecture 5

Chapter 3 of Bishop’s “Pattern Recognition and Machine Learning” book

Section 9.2 of “Understanding Machine Learning” book

1 Linear Prediction

e In previous lectures, we looked at predicting binary labels y; € {—1,1}. This is relevant in trying to
learn “yes/no” questions (e.g., is this a spam email?) Here, we switch to the scenario where y; € R.

This is relevant when trying to predict (continuous) real-valued quantities (e.g., a stock price).

e We initially focus on linear predictors of the form
§(x) = 0Tx + 6y (1)
for some 0 € R% and 6, € R. Non-linear predictors will be handled in later lectures.
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e As with the binary setting, we can derive predictors via several approaches:

1. Consider D = {(x¢,y:)}, as simply being given, and try to find a predictor that fits the data.

2. Model each (x¢,y:) as being independently drawn from a distribution P(x)P(y|x) parametrized

by (0,0), and estimate these parameters using maximum likelihood.

3. (Bayesian view) Model both the data and the parameters as random, so we have distributions
P(x)P(y|x) and P(8,6y).

We start with the second case, but we will quickly see that the resulting estimates (9, é) have a natural

interpretation in the first case. The Bayesian view is discussed at the end of the lecture.

e Motivating example:

— Suppose we have a list of 1000 days’ stock prices, and we want to train a regression algorithm

that takes 10 consecutive days as input (x), and outputs the prediction for the next day (y).

— We can construct a data set D = {(x¢,y¢)}, as follows: (i) Let x; € R contain the first 10
prices, and y; be the 11th; (ii) Let x5 € RV contain the prices 2-11, and y» be the 12th; (iii) etc.

— A linear model is reasonable, because it captures rules like “predict the next price to be the current

price + the average increase of the 9 days before that”.

e Reminder: All models are wrong, but some models are useful

2 Gaussian Model

Model and noise distribution.

e Consider a probabilistic model in which y; is generated from x; according to
g = (0°)"x + 05 + 2, (2)

where (0", 65) are fixed and unknown, and z; is random noise. (Included on the basis that we can

rarely measure anything in the real world perfectly)

e The most widely-adopted noise distribution is Gaussian: z; ~ N(0,02). Recall that the PDF of a

Gaussian is
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e Under such a noise model, we see from that

P(ylx) = N(y;0"x + 0y, 0?).

Again, we sometimes make the dependence on (0,6y) and o>

P(y|xa 0; 007 0-2)'

explicit by writing P(y|x) as

Maximum likelihood estimation.

e Suppose the data set D = {(x¢,y;)}7_; is known to consist of independent samples generated via (2)).
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e Since we don’t know o, we can treat it as an additional parameter to be estimated along with (8, ).

The likelihood function is then

T o1 (y — 0"x¢ — 0p)?
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where the product H?Zl is due to the assumption of independent data samples.

e Maximizing L is equivalent to maximizing its log, but the latter is more convenient to work with:
n 1 «
log L(0, 6y, 0; D) = const. — — logo? — — — 0%, — 6y)?, 3
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where const. represents a term that does not depend on (0, 6y, 0?).

e We now notice that in this case there is no need to explicitly estimate o2; no matter what its value is,
the maximum likelihood (ML) estimate of (8, 6y) is

(0,0) = argmaxlog L(0, 0y, 0*|D) = arg min Z(yt —07x; — 6,)*. (4)
6,00 0.60 1=

This is known as the least squares estimate.

— Naturally, once these estimates are computed, the prediction rule for a new point x’ is given by
T R
9(x’) = 0 x' + 0. The least squares rule is trying to minimize the sum of squared error terms

(squares of the differences between the predictions and the actual labels):

A:é{(ac)
¢ !
Y




e If we had assumed non-Gaussian noise, the ML estimate would have been different (and possibly more

complicated).

3 Finding the Least Squares Estimate

e Like with logistic regression, we could try to solve using stochastic gradient descent (in fact, this is

often the best way to go for huge data sets!)
e But in this particular case, we can actually find a closed-form solution.

e First, let’s switch to matrix notation:

n
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e Using basic vector calculus (which you don’t need to know), the derivative of ||y — X®||? with respect
to © is 2X7T(y — X@®). Setting this to zero and solving for © gives

e = (XTX)"1xTy. (5)

The matrix (X7X)~!X” is known as the pseudo-inverse of X (it is easy to check that it equals X!

whenever X is square and invertible).

e Remarks.

- 0

— The estimate © = l . ] is a linear function of y (but the dependence on X is non-linear)
0

— We have implicitly assumed that X7 X is invertible, which is usually OK when n > d (more

equations than unknowns) but not when d < n (the “high-dimensional” setting).

e Once we have (é, éo), we can substitute back into (3) and compute the ML estimate of o2:

n

N 1 T «
5% = - > (=8 % —60)°.
t=1
(Proving this requires a little calculus, taking the derivative with respect to 02). This does not enter
into the predictor § (see ), but it gives a useful measure of the average prediction error for the

samples in D.



4 Bias and Variance

Illustrative picture.

e Roughly speaking, “low bias” means “correct on average”, and "low variance” means “tending to behave

similarly” (e.g., across several realizations of the random noise). An analogy in archery:

Low
VARIANCE

HIGH
VARIANVCE

— Note: This picture is purely for intuition and shouldn’t be viewed as a regression problem!
Motivating linear regression example.

e Suppose we are trying to predict a day’s stock price based on the 20 prior days’ prices (d = 20) — but
we only have 20 data points (n = 20).

o Assuming XX is invertible, we can find 6 such that |y — X6||> = 0 — but if the noise level is
significant, this might end up being a very strange 6 amounting to “learning the noise” (e.g., 8 =
(1,-3,2.6,—17,0.5,...))

— If the noise values had been different, a very different @ may have been chosen (high variance)

e Intuitively, if we could find a “simpler” 0 (e.g., 0 = (3, %,%,%,...)) that gives ||y — X8| fairly small

but not quite zero, we might still expect it to give better predictions for unseen x.

e However, if we use least squares with lots of data (compared to the number of parameters) and/or the

data is less noisy, then we are typically less likely to encounter this kind of problem.

— More data = Less risk of spurious solutions

— More noise =— More risk of spurious solutions
e The notions of bias and variance help us understand this intuition.

Calculations for least squares.



Continuing with matrix notation, let’s write the model as

y = XO" + z, (6)
where we use a superscript (-)* to highlight that these are the “true” parameters. The noise vector
z € R" is distributed as A/(0, o21).

Substituting (6)) into (5)) gives
0 =0"+ (XTX)"'XTg, (7)
and we can interpret the right-hand side as “true value + error term”.

Since E[z] = 0, we immediately obtain (for fixed X) that
E[®] = @

This means that we are “correct on average” — in statistics terminology, the estimator is unbiased.

It is also easy to compute the covariance (for fixed X):

Cov[®] = E[(© — ©")(© — )]
=E[(X"X)'X"zz" X(X"X) ']
= (X"X)"'XTE[2z"]X(X"X)"!
= o2(XTX) !,
where the second-last line uses linearity of expectation (note that X is not random here), and the last
line applies E[zz”] = oI (since z ~ N(0,5°I)) and then cancels (X”X) with its inverse.
This is potentially not such good news — if the matrix (X7 X)~! has any large entries, the corresponding

entries of © will have high variance.

— If we are lucky enough to be able to choose the inputs x1,...,x, and then observe their labels
Y1y -, Yn, we could try to choose them in a way that avoids this scenario. Learning problems

with this flexibility are known as active learning.
General bias vs. variance property:

— Consider goal of minimizing the mean square error (MSE) E[H(;) — ©||2], which measures how
well we estimate ®* on average (and can be viewed as an indication of how well we will perform

prediction on unseen data samples).

— The MSE vector estimate © with true value ©* satisfies the following:

E[|© - 0] = |E[6] - ©'|* +E[|© — E[O]|’] (®)

bias (squared) variance

— No reason to believe bias = 0 is optimal! (in general, it is not — see below)

— It is a simple exercise to prove that variance = Tr[Cov[®]] (Hint: First get to the expression
E[Tr[(© — E[®])7(© — E[O))]], then apply Tr[AB] = Tr[BA] )



5 Regularization and Ridge Regression

e The ridge regression estimator reduces variance at the expense of increasing the bias:

n d
(8,60 = argminZ(yt —0"x; — ) + )\Z 03,
j=1

6,00 =3
for some A > 0 (setting A\ = 0 recovers (4)).
— Note that just like with SVM, we do not penalize 6.
e For notational convenience, let’s focus on the case that there is no offset: 6y = 0, and we only minimize
S (e — 07x)2 4+ A 2?21 07. In matrix form, this gives

6 = argmin [ly — X0|| + A[0]%, 9)
2]

where now X € R"*¢ only has d columns; we don’t append the column of 1s.

— Returning to the motivating example in the previous section, since we penalize large values of ||0||?,

we are now less likely to choose the spurious solution that has large values but gives ||y —X8||?> = 0.
e Finding the optimal 0 is done similarly to the case A = 0, and yields:

— The closed-form solution
6 = (XTX + A1)~ XTy. (10)
Note that XTX + Al is always invertible when A > 0.
T

— Once again, the prediction rule for a new point x’ is §(x’) = 0 x'.

e Bias-variance trade-off:
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— The bias (derived using (10, E[y] = X0", and writing X7X = X7X + AI — AI) is

E[0] — 6" = —A(XTX 4+ \I)"'0*.



The eigenvalues of I — A\(XTX + AI)~! are between 0 and 1, so on average the estimate “shrinks”

the ground truth. This is to be expected given that higher values of ||@||? are penalized more.

— The covariance (requires more effort to derive) is
Cov]8] = o2 ((XTX P - AXTX + )\I)‘Q).

Taking the trace yields the variance corresponding to ({g]).

e We will see a simple example of the bias-variance trade-off for ridge regression in the tutorials. To
gain intuition, it is easier to give an example in polynomial regression (fitting a polynomial instead of

a straight line — see the next lecture on how we can still use “linear” regression techniques to do this):

— Example curves fit to some data points:

— The more erratic (blue) curve has no regularization, and is very sensitive in the sense that it tends
to track noise in the data.

— The less erratic (red) curve has regularization, and gives a simpler curve more aligned with the

general trend of the data while being less sensitive to noise.
— Generally speaking, regularization acts as a stabilizer, in the sense that it makes the output stay

more similar when small changes are made to the data

e Recalling that least squares (i.e., A = 0) is equivalent to maximum likelihood (ML) estimation under
Gaussian noise, this is one of many examples showing that ML is not always the right thing to do

(especially with limited data)

e The bias-variance trade-off is certainly not unique to linear regression and ¢;-regularization. Another
example is the k-nearest neighbors rule, which (given an unseen x) predicts y to be the average label
value among the k closest points from the data set. Increasing k increases bias, but reduces VarianceEI

6 Bayesian Viewpoint

e There are (at least) two distinct viewpoints in statistics and machine learning:

4See https://www.youtube . com/watch?v=n5Zxi22801Q for a video lecture containing this example.
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— Frequentist view. The parameter 0 is just some fixed vector that we don’t know
— Bayesian view. We can encode our belief of the possible/likely values of @ through a distribution

p(0) (e.g., 6 ~ N(u, X))

e Bayes’ rule:
p(D|6)p(6)

o) = P2

which reads in Bayesian terminology as

Likelihood x Prior
Evidence

Posterior =

Note that the likelihood p(D|@) should be interpreted as p(yi,...,yn|X1,...,Xn,0) (as opposed to a

joint probability on x’s and y’s), since the input x is always given/known.
e Advantages and disadvantages of Bayesian methods:

- (4) Natural way to incorporate prior knowledge

- (4) Gives not only a prediction, but a full posterior distribution (e.g., to provide estimates of the

level of (un)certainty)
- (4) State-of-the-art performance in several applications
- (=) Choosing a prior can be difficult

- (=) With an incorrect prior, can have very undesirable behavior (e.g., claiming high confidence

but actually being completely wrong)

- (—) Exact posterior calculation usually impossible, need to approximate (e.g., with Monte Carlo

or variational methods)

- (=) Even with approximations, considerable computation time is often required
e Bayesian perspective on Ridge Regression:

— A useful observation: Gaussian prior & Gaussian noise = Gaussian posterior

x This is an example of so-called “conjugate priors”, where the prior and posterior distributions

are in the same family
— More precise description:
x Linear model y; = 07, + 2, with random 6
* Gaussian prior 8 ~ N(0,I)
* Gaussian noise z; ~ N(0,0?) with independence between samples

— Since the posterior of @ is Gaussian, it is fully specified by its mean and covariance matrix. It can

be shown (see the tutorial question) that the posterior mean is
oy = (XX + 0211 XTy

which is precisely ridge regression.

* The covariance matrix also has a simple closed form (also explored in the tutorial question)

— this can be used to give uncertainty estimates.
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