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Useful references:

• Slide set lecture_bo0.pdf from a one-day course I gave1

• MIT lecture notes,2 lectures 6 and 7

• Chapters 6 and 7 of Bishop’s “Pattern Recognition and Machine Learning” book

• Chapter 16 of “Understanding Machine Learning” book

• Kernel cookbook3

• (Advanced) Lecture videos by Julien Mairal and Jean-Philippe Vert4

1 Feature Space Mappings

• In previous lectures, we looked at linear classifiers for binary labels:

Predict positive label ⇐⇒ θTx + θ0 > 0

and also linear predictors for real-valued variables:

ŷ(x) = θTx + θ0.

• What if x and y and related in a highly non-linear manner?

– We can still use linear classification and regression methods!

• Motivating example 1: Fitting a quadratic. If we know that y is (well-approximated by) a quadratic
function of a single input x, then we can use x to construct x̃ = [x x2]T , and then perform linear
regression with input x̃ and θ ∈ R2. Then ŷ = θT x̃+θ0 evaluates to ŷ = θ2x

2+θ1x+θ0 – an arbitrary
quadratic function!

1https://www.comp.nus.edu.sg/~scarlett/gp_slides
2http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/

lecture-notes/
3http://www.cs.toronto.edu/~duvenaud/cookbook/
4https://www.youtube.com/channel/UCotztBOmGVl9pPGIN4YqcRw/videos
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• Motivating example 2: A circular classification region. Suppose that d = 2 and the binary labels are
generated according to

yt =

+1 x21 + x22 ≤ 1

−1 otherwise

yielding a circular region:

Any linear classifier with input x = [x1 x2]
T will perform poorly. But a linear classifier with input

x̃ = [x1 x2 x21 + x22]
T exists that classifies perfectly!

– Visual illustration: http://www.youtube.com/watch?v=3liCbRZPrZA

– 2D Points at bottom (not linearly separable), mapping to 3D shown above (linearly separable)

• In general, we might hope to get a better classifier by mapping each x to a well-designed feature space:

φ(x) =
[
φ1(x), . . . , φN (x)]T

for some real-valued functions φ1, . . . , φN .
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• A word of caution. We can always get to zero training error by adding more and more features, but
is that always a good idea? Which prediction rule will work better in the following regression example?

The most complex classifier achieves zero training error, but intuitively we should expect the quadratic
classifier to generalize better to unseen points. We will explore the notions of generalization error and
overfitting in a later lecture.

– See the blog post https://www.alexpghayes.com/blog/overfitting-a-guided-tour/#fn1 for
a nice introduction

2 Kernel Methods

Overview.

• Many machine learning algorithms depend on the data x1, . . . ,xn only through the pairwise inner
products 〈xi,xj〉.

– Examples to come later: Ridge regression, SVM

– Example explored in the project: K-nearest neighbors (given a new point, find the K closest
points in the training set, and classify according to a majority vote)

Inner products capture the geometry of the data set, so one generally expects geometrically inspired
algorithms (e.g., SVM) to depend only on inner products:

– For algorithms that use distances, note that ‖x − x′‖2 = 〈x,x〉 + 〈x′,x′〉 − 2〈x,x′〉, so distances
can be expressed in terms of inner products.

– For algorithms that use angles, note that angle(x,x′) = cos−1
( 〈x,x′〉
‖x‖·‖x′‖

)
, so since ‖x‖ =

√
〈x,x〉,

angles can also be expressed in terms of inner products.

• We know that moving to feature spaces can help, so we could map each xi → φ(xi) and apply the
algorithm using 〈φ(xi),φ(xj)〉.
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• A kernel function k(xi,xj) can be thought of as an inner product in a possibly implicit feature space

– Key idea. There are clever choices of the mapping φ(·) ensuring that we can efficiently compute
〈φ(xi),φ(xj)〉 without ever explicitly mapping to the feature space

– In some cases, the feature space is infinite-dimensional, so we could not explicitly map to it even
if we wanted to.

• Kernel trick. The terminology “kernel trick” simply refers to taking any algorithm the depends on the
data only through inner products, and replacing each inner product 〈x,x′〉 by a kernel value k(x,x′).

• Intuition 1. The kernel function is a measure of similarity between xi and xj .

• Intuition 2. The kernel trick applies to problems that depend on the geometry of the data (think of
SVM for example!). In particular, note that ‖x− x′‖2 = 〈x− x′,x− x′〉 = 〈x,x〉 − 2〈x,x′〉+ 〈x′,x′〉,
so algorithms depending on distances can be rewritten in terms of inner products.

Example 1: Polynomial kernels.

• Start with the 1D setting, d = 1. Naively, one might map x
φ→ (1, x, x2) for quadratic features,

x
φ→ (1, x, x2, x3) for cubic features, and so on.

– Similarly for higher dimensions, e.g., (x1, x2)
φ→ (1, x1, x2, x1x2, x

2
1, x

2
2). Notice the presence of

the cross-term x1x2.

• Now, considering the cubic example, I will claim that x φ→ (1,
√
3x,
√
3x2, x3) is a “better” choice than

the one above mapping to (1, x, x2, x3).

– First note that the set of all possible linear classifiers (meaning linear in φ(x)) is exactly the same
regardless of the choice of mapping. This is because the middle two coefficients are just scaled up
or down by

√
3.

– But notice the inner product simplifies nicely under the second choice:

〈φ(x),φ(x′)〉 = 1 + 3xx′ + 3x2(x′)2 + x3(x′)3

= (1 + xx′)3.

• Generalizing this idea to polynomials of degree p and functions in d dimensions, we arrive at the
polynomial kernel k(x,x′) = (1 + 〈x,x′〉)p. The computational savings of avoiding the construction of
φ(x) can be much more significant than the above example.

– Instead of computing a huge number of features (specifically, it can be shown to be
(
p+d
d

)
), the

computation time is linear in d (do d multiplications, sum them, and apply (1 + result)p)

Example 2: String kernels

• Continuing the interpretation of a kernel being a measure of similarity, how can we “measure similarity”
between the following?

– x1 = “This sentence is the first string in my data set”

– x2 = “The second string in my data set is this sentence”
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– x3 = “Tihs sentance is the third stirng in my dataset”

• One possible approach is to let k(x,x′) be the number of words appearing in both strings. This
corresponds to a feature space with dimension equal to the total number of possible words, and with
φj(x) = 1{x contains the j-th word}. This approach has limitations, such as not handling spelling
errors well.

• A more “robust” approach is the String Subsequence Kernel (SSK), which looks at substrings that
are not necessarily contiguous (e.g., “sentnce” is a substring of both “sentence” and “sentance”), but
decreases the weight when this substring is spread a cross a longer length (e.g., “sentnce” is also a
substring of “sent this once”, but this is spread over a longer length so carries less weight).

– Can be computed somewhat-efficiently using dynamic programming techniques.

– If exact computation is still too demanding, approximation computation can be used instead.

– The idea of using substrings instead of exact matches is also very important in biology applications.

Other examples.

• Below we will introduce the commonly-used RBF kernel:

kRBF(x,x
′) = exp

(
− 1

2
‖x− x′‖2

)
,

which indicates that similarity exponentially decays to zero as the squared distance increases.

• The kernel cookbook (link on p1) gives several other examples and insights.

• For data represented in a not-so-standard format (e.g., text, graphs), more unconventional/creative
choices of kernels are often adopted.

Formal definition.

• Definition. A function k : Rd × Rd → R is said to be a positive semidefinite (PSD) kernel if (i) it is
symmetric, i.e., k(x,x′) = k(x′,x); (ii) For any integer m > 0 and any set of inputs x1, . . . ,xm in Rd,
the following matrix is positive semi-definite:

K =


k(x1,x1) . . . k(x1,xm)

...
. . .

...
k(xm,x1) . . . k(xm,xm)

 � 0.

This matrix, with (i, j)-th entry equal to k(xi,xj), is called the kernel matrix (you might also see it
referred to as the Gram matrix).

• Theorem. A function k : Rd × Rd → R is a PSD kernel if and only if it equals an inner product
〈φ(x),φ(x′)〉 for some (possibly infinite dimensional) mapping φ(x).5

5In fact, this statement is a bit imprecise, since in general it may need to be a generalized notion of inner product beyond
standard vector spaces (namely, to Hilbert spaces). However, we will avoid such technicalities and focus on the standard inner
product applied to real-valued vectors.
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– The “if” part is easy to show (at least when φ is finite-dimensional): The inner product is certainly
symmetric, and the Gram matrix can be written as K = ΦTΦ, where Φ ∈ Rdim(φ)×m contains the
m feature vectors {φ(xt)}mt=1 as columns. The matrix K = ΦTΦ is trivially positive semidefinite,
since for any z we have zTΦTΦz = ‖Φz‖2 ≥ 0.

– The “only if” part is more challenging, but can be understood fairly easily in the case that x only
takes on finitely many values, using the idea of eigenvalue decomposition.6 Such an approach
can be extended to more general scenarios via Mercer’s theorem, and a fully general treatment is
possible via the notion of a Reproducing Kernel Hilbert Spaces (RKHS).

3 Constructing More Complicated Kernels from Simpler Ones

• Claim. If k1 and k2 are kernels, then so are the following:

1. k(x,x′) = f(x)k1(x,x
′)f(x′) for some function f

2. k(x,x′) = k1(x,x
′) + k2(x,x

′)

3. k(x,x′) = k1(x,x
′)k2(x,x

′)

To set up notation, let φ(1)(x) and φ(2)(x) be the feature vectors corresponding to k1 and k2.

• Proof of #1.

– Let φ(x) = f(x)φ(1)(x). Then

〈φ(x),φ(x′)〉 = φ(x)Tφ(x′) = f(x)k1(x,x
′)f(x′),

which is the desired k(x,x′) in the first claim.

• Proof of #2.

– Let φ(x) =

[
φ(1)(x)

φ(2)(x)

]
, and write

〈φ(x),φ(x′)〉 = φ(x)Tφ(x′) = k1(x,x
′) + k2(x,x

′).

• Proof of #3.

– Let φ(x) contain entries φij(x) = φ
(1)
i (x)φ

(2)
j (x) for each i, j, where φ(1)

i is the i-th feature in
φ(1) and similarly for φ(2)

j .

6Supposing that x can only take values in a finite set {x1, . . . ,xm}, the entire function is described by an m ×m matrix
Kfull with (i, j)-th entry k(xi,xj). By assumption Kfull is a PSD matrix, and then it is known from linear algebra that it
admits an eigenvalue decomposition of the form Kfull =

∑m
j=1 λjvjv

T
j . This fact can easily be translated to a length-m feature

map with i-th entry given by φ(xj) =
√
λi(vi)j , where (vi)j is the j-th entry of vi.
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– We have

〈φ(x),φ(x′)〉 = φ(x)Tφ(x)

=
∑
i,j

φij(x)φij(x
′)

=
∑
i,j

φ
(1)
i (x)φ

(2)
j (x)φ

(1)
i (x′)φ

(2)
j (x′)

=
∑
i

φ
(1)
i (x)φ

(1)
i (x′)

∑
j

φ
(2)
j (x)φ

(2)
j (x′)

= k1(x,x
′)k2(x,x

′).

Example 3: Radial basis function (RBF) kernel

• Letting k1(x,x
′) = k2(x,x

′) = xTx′ in property 3 above, we see that (xTx′)2 is a PSD kernel.
Repeating several times, the same is true of (xTx′)p for any integer p. (Side note: A similar argument
gives an alternative proof that the polynomial kernel (1 + xTx′)p is a PSD kernel.)

• By the identity et =
∑∞

j=0
tj

j! , and applying property 2 an “infinite number of times” (a formal proof
of the validity of this is omitted here), we deduce that ex

Tx is also a PSD kernel.

• Finally, define

k(x,x′) = exp

(
− 1

2
‖x− x′‖2

)
(1)

= exp

(
− 1

2
‖x‖2

)
· exp

(
xTx′

)
· exp

(
− 1

2
‖x′‖2

)
, (2)

and use property 1 to deduce that k(x,x′) is a PSD kernel.

• This kernel goes by several names: Radial basis function (RBF) kernel, Gaussian kernel, squared
exponential kernel. It is usually defined with a length-scale parameter `:

k(x,x′) = exp

(
− 1

2`2
‖x− x′‖2

)
.

Such a parameter represents the rough scale over which the function varies (example below).

– More generally, can have different lengths in each dimension, ` = (`1, . . . , `d).

• The associated feature space is infinite-dimensional, as hinted by the fact that we used the infinite
expansion et =

∑∞
j=0

tj

j! in its derivation.

• An illustration of the sorts of classification regions that can be produced by the kernel SVM (to be
introduced in the next lecture) with an RBF kernel
– Here the prediction rule is of the form ŷ = sign(g(x)) as usual, and the colors in this figure

represent the values of g(x).
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4 Linear Regression Revisited

• Here we look at linear regression with kernels. In the next lecture we will look at SVM with kernels.
The same can be done for logistic regression, but we will skip that.

• We previously considered the regularized least squares estimator (ridge regression); in the case of no

offset (θ0 = 0), it is written as follows (with X =


xT
1

...
xT
n

 ∈ Rn×d):

θ̂ = argmin
θ

‖y −Xθ‖2 + λ‖θ‖2,

and has the closed-form solution
θ̂ = (XTX + λI)−1XTy.

• Now let’s apply some useful matrix manipulations. To help with readability, let Id and In denote
identity matrices with the size made explicit. First observe

(XTX + λId)X
T = XTXXT + λXT = XT (XXT + λIn).

Multiplying by (XTX + λId)
−1 on the left and (XXT + λIn)

−1 on the right gives

XT (XXT + λIn)
−1 = (XTX + λId)

−1XT ,

meaning we obtain the following equivalent form for θ̂:

θ̂ = XT (XXT + λI)−1y.

• Therefore, given a new input x′ ∈ Rd, the prediction ŷ(x′) = θ̂
T
x′ = (x′)T θ̂ can be written as

ŷ(x′) = (x′)TXT (XXT + λI)−1y.
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• Crucial observation. The prediction depends on the data only through inner products, since

(x′)TXT =


〈x′,x1〉

...
〈x′,xn〉


T

, XXT =


〈x1,x1〉 . . . 〈x1,xn〉

...
. . .

...
〈xn,x1〉 . . . 〈xn,xn〉

 .

• Therefore, we can apply the kernel trick and consider the more general prediction function

ŷ(x′) = k(x′)(K + λI)−1y, (3)

where

k(x′) =


k(x′,x1)

...
k(x′,xn)


T

, K =


k(x1,x1) . . . k(x1,xn)

...
. . .

...
k(xn,x1) . . . k(xn,xn)

 .
This is known as kernel ridge regression.

– Rough intuition behind equation (3). The estimate ŷ is a weighted sum of the previously-
observed outputs y1, . . . , yn. The more similar x′ is to the corresponding xt (i.e., the higher
k(x,x′)), the more weight is given to that y. (But the similarities among training points them-
selves also play a role through the presence of K)

– Can be thought of as performing regularized least squares on the model y = θTφ(x) + z, where
φ(x) is the feature vector corresponding to the kernel k, and z is Gaussian noise.

• An example using the RBF kernel (with length-scale `):

– Observe that even among a given class of kernels, the choice of their parameter(s) may be very
important (e.g., length-scale ` in this example, degree p in polynomial example, etc.).

– Often the parameters are chosen using maximum likelihood.

– We will also cover model selection later, a special case of which is kernel selection.
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