# CS5339 Lecture Notes \#6a: Dual SVM \& A Detour Into Convex Analysis 

Jonathan Scarlett

March 31, 2021

## Useful references:

- Blog posts by Jeremy Kun on Lagrange multipliers ${ }^{1}$ duality for linear programming ${ }^{2}$ and duality for the support vector machine $(\mathrm{SVM})^{3}$
- Blog posts by Sébastien Bubeck on Lagrangian duality ${ }^{4}$ and SVM+duality+kernels ${ }^{5}$
- Part I of Boyd and Vandenberghe's "Convex Optimization" book ${ }^{6}$
- Boyd's lectures on convex optimization, available on YouTube
- Supplementary notes lec8a.pdf
- Section 12.1 of "Understanding Machine Learning" book


## 1 Convex Sets and Functions

## Basic definitions.

- A set $D$ (e.g., a subset of $\mathbb{R}^{d}$ ) is said to be a convex set if, for all $\mathbf{x} \in D$ and $\mathbf{x}^{\prime} \in D$, it holds that

$$
\lambda \mathbf{x}+(1-\lambda) \mathbf{x}^{\prime} \in D
$$

for all $\lambda \in[0,1]$

- In words (roughly): Draw a straight line between any two points in $D$. This whole line segment must also lie within $D$.
- Examples:

[^0]

- A function $f: D \rightarrow \mathbb{R}$ is said to be a convex function if, for all $\mathbf{x} \in D$ and $\mathbf{x}^{\prime} \in D$, it holds that

$$
f\left(\lambda \mathbf{x}+(1-\lambda) \mathbf{x}^{\prime}\right) \leq \lambda f(\mathbf{x})+(1-\lambda) f\left(\mathbf{x}^{\prime}\right)
$$

for all $\lambda \in[0,1]$. Implicitly, this requires that the domain $D$ is a convex set.

- In words (roughly): Draw a straight line between $\left(\mathbf{x}, f\left(\mathbf{x}^{\prime}\right)\right)$ and $\left(\mathbf{x}^{\prime}, f\left(\mathbf{x}^{\prime}\right)\right)$. For inputs in between $\mathbf{x}$ and $\mathbf{x}^{\prime}$, the function lies below this straight line.
- Illustration:


- We say that $f(\mathbf{x})$ is a concave function if $-f(\mathbf{x})$ is a convex function.
- Convex $=$ "bowl-shaped" $(\cup)$, concave $=$ "arch-shaped" $(\cap)$
- A function is simultaneously convex and concave $\Longleftrightarrow$ it is affine (i.e., a "straight line" (or plane)).
- Key property. For a convex function, any local minimum is also a global minimum.


## Other examples.

- Convex functions: $\|\mathbf{x}\|^{2}, e^{x}, e^{-x}, \log \sum_{i=1}^{d} e^{x_{i}}$, and many more.
- Concave functions: $-\|\mathbf{x}\|^{2}, \log x, \log \operatorname{det} \mathbf{X}, \sum_{i=1}^{d} x_{i} \log \frac{1}{x_{i}}$, and many more.


## Equivalent definitions of convexity.

- Recall the notions of gradient and Hessian for $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right]^{T}$ :

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{d}}
\end{array}\right], \quad \nabla^{2} f=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{d}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{d} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{d} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{d}^{2}}
\end{array}\right] .
$$

- (First order) If $f$ is differentiable, then it is convex if and only if

$$
f\left(\mathbf{x}^{\prime}\right) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}\left(\mathbf{x}^{\prime}-\mathbf{x}\right)
$$

for all $\mathbf{x}, \mathbf{x}^{\prime}$. (The function lies above its tangent plane)

- (Second order) If $f$ is twice differentiable, then it is convex if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}
$$

for all $\mathbf{x} \in D$. (The Hessian is positive semi-definite)

## Operations that preserve convexity.

- If $f_{1}(\mathbf{x})$ and $f_{2}(\mathbf{x})$ are convex, and $\alpha_{1}$ and $\alpha_{2}$ are positive, then $f(\mathbf{x})=\alpha_{1} f_{1}(\mathbf{x})+\alpha_{1} f_{2}(\mathbf{x})$ is convex. By induction, a similar statement holds for $\sum_{\ell=1}^{L} \alpha_{\ell} f_{\ell}(\mathbf{x})$ also for $L>2$.
- If $f_{1}(\mathbf{x}), \ldots, f_{L}(\mathbf{x})$ are convex, then so is $f(\mathbf{x})=\max _{\ell=1, \ldots, L} f_{\ell}(\mathbf{x})$.
- Certain compositions of the form $f(\mathbf{x})=g(h(\mathbf{x}))$ are convex under certain conditions on $g$ and $h$ (see Section 3.2 of Boyd and Vandenberghe's book)
- Simplest case: If $h$ is a linear (or affine) function and $g$ is convex, then $f$ is convex.

Jensen's inequality.

- Jensen's inequality states that, for any random vector $\mathbf{X}$ and convex function $f$, it holds that

$$
f(\mathbb{E}[\mathbf{X}]) \leq \mathbb{E}[f(\mathbf{X})]
$$

This is used in countless proofs in machine learning, statistics, information theory, etc.

- Note that the inequality is true directly from the definition of convexity when $\mathbf{X}$ equals one value $\mathbf{x}$ with probability $\lambda$, and another value $\mathbf{x}^{\prime}$ with probability $1-\lambda$. Jensen's inequality states the more general form for an arbitrary distribution on $\mathbf{X}$.


## 2 Convex Optimization

- In machine learning and other fields, we are frequently interested in minimizing some cost function (or maximizing some utility function), possibly subject to certain constraints.
- We have already seen both constrained and unconstrained examples; recall the unconstrained form of the SVM:

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2}+C \sum_{t=1}^{n}\left[1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)\right]_{+}, \tag{1}
\end{equation*}
$$

where $[z]_{+}=\max \{0, z\}$, and the constrained form of the SVM:

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}, \boldsymbol{\zeta}} \frac{1}{2}\|\boldsymbol{\theta}\|^{2}+C \sum_{t=1}^{n} \zeta_{t} \text { subject to } y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1-\zeta_{t} \text { and } \zeta_{t} \geq 0, \quad \forall t \tag{2}
\end{equation*}
$$

- We will return to the SVM later, but for now let's look at a more general optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize}_{\mathbf{x}} & f_{0}(\mathbf{x})  \tag{3}\\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, \\
& h_{i}(\mathbf{x})=0, \\
& i=1, \ldots, m_{\mathrm{ineq}} \\
& i=1, \ldots, m_{\mathrm{eq}}
\end{array}
$$

There are $m_{\text {ineq }}$ inequality constraints and $m_{\text {eq }}$ equality constraints.

- Example: In (2) we have $\mathbf{x}=\left(\boldsymbol{\theta}, \theta_{0}, \boldsymbol{\zeta}\right), m_{\text {ineq }}=2 n$, and $m_{\text {eq }}=0$, with the corresponding inequality constraint functions $f_{i}(\mathbf{x})$ being $1-\zeta_{t}-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)$ and $-\zeta_{t}$ for $t=1, \ldots, n$.
- Definition. We say that (3) is a convex optimization problem if (i) $f_{0}(\mathbf{x})$ is convex; (ii) $f_{i}(\mathbf{x})$ is convex for all $i=1, \ldots, m_{\text {ineq }}$; (iii) $h_{i}(\mathbf{x})$ is affine for all $i=1, \ldots, m_{\text {eq }}$.
- This definition is very useful because, although solving (constrained or unconstrained) optimization problems is extremely hard in general, convexity is usually enough to permit finding a solution (sometimes analytically, but more often numerically).
- We can get some intuition by looking at the 1D case - which of these functions is easier to optimize using gradient descent techniques?



## 3 Lagrange Multipliers and Duality

- For an optimization problem of the form (3), the Lagrangian is defined as

$$
\begin{equation*}
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f_{0}(\mathbf{x})+\sum_{i=1}^{m_{\text {ineq }}} \lambda_{i} f_{i}(\mathbf{x})+\sum_{i=1}^{m_{\mathrm{eq}}} \nu_{i} h_{i}(\mathbf{x}) \tag{4}
\end{equation*}
$$

where we have introduced extra parameters $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m_{\text {ineq }}}\right)$ and $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{m_{\text {eq }}}\right)$. These are known as Lagrange multipliers.

- We assume that $\lambda_{i} \geq 0$ for all $i$, whereas $\nu_{i} \in \mathbb{R}$ may be positive or negative.
- Intuition: We no longer insist that $f_{i}(\mathbf{x}) \leq 0$, but we pay a penalty (scaled by $\lambda_{i}$ ) if it fails to hold. Conversely, we are "rewarded" if $f_{i}(\mathbf{x})<0$, i.e., strict inequality.
- Important observation. For any $\mathbf{x}$ feasible in (3), and any $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ with $\lambda_{i} \geq 0$, we have

$$
\begin{equation*}
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_{0}(\mathbf{x}) \tag{5}
\end{equation*}
$$

- Proof: Follows immediately from $\lambda_{i} \geq 0, f_{i}(\mathbf{x}) \leq 0$, and $h_{i}(\mathbf{x})=0$.
- Minimizing both sides of (5) over $\mathbf{x}$ gives

$$
\begin{equation*}
\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_{0}\left(\mathbf{x}^{*}\right) \tag{6}
\end{equation*}
$$

where $\mathrm{x}^{*}$ is an optimal solution to (3).

- The function

$$
g(\boldsymbol{\lambda}, \boldsymbol{\nu})=\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})
$$

is called the Lagrange dual function.

- Since $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ lower bounds $f_{0}\left(\mathbf{x}^{*}\right)$ according to (6), it is natural to look for the best (highest) lower bound. This leads to the Lagrange dual problem:

$$
\begin{align*}
\operatorname{maximize}_{\boldsymbol{\lambda}, \boldsymbol{\nu}} & g(\boldsymbol{\lambda}, \boldsymbol{\nu})  \tag{7}\\
\text { subject to } & \lambda_{i} \geq 0, \quad i=1, \ldots, m_{\text {ineq }}
\end{align*}
$$

Henceforth, let $\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)$ denote the maximizer.

## - Duality.

- Since (6) holds for all $(\boldsymbol{\lambda}, \boldsymbol{\nu})$, it holds in particular for $\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)$, yielding

$$
g\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right) \leq f_{0}\left(\mathbf{x}^{*}\right)
$$

This is known as weak duality.

- One of the most important results in convex optimization is that, if the original optimization problem is convex (i.e., $f_{0}$ and $f_{i}$ are convex functions, and $h_{i}$ is are linear functions), and a mild
regularity condition holds, then

$$
\begin{equation*}
g\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)=f_{0}\left(\mathbf{x}^{*}\right) \tag{8}
\end{equation*}
$$

This is known as strong duality.

* There are many possible "mild regularity conditions"; the most well-known is known as Slater's condition: There exists at least one point $\mathbf{x}$ in the relative interior of the domain satisfying the constraints of (3) with strict inequality (i.e., $f_{i}(\mathbf{x})<0$ and $\left.h_{i}(\mathbf{x})=0\right)$.
* Another (more restrictive) sufficient condition is that the constraint functions $f_{i}(i=$ $\left.1, \ldots, m_{\text {ineq }}\right)$ are not only convex, but linear.
- Minimax theorem viewpoint: One way to understand duality is to interpret the original constrained optimization problem as solving

$$
\min _{\mathbf{x}} \max _{\boldsymbol{\lambda} \geq \mathbf{0}, \boldsymbol{\nu}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})
$$

This is because the inner maximization (more precisely a supremum) equals $\infty$ whenever $f_{i}(\mathbf{x})>0$ or $h_{i}(\mathbf{x}) \neq 0$, because any arbitrarily large value can be achieved by taking the corresponding $\lambda_{i}$ or $\nu_{i}$ to be huge. In addition, when $\mathbf{x}$ satisfies the constraints (i.e., each $f_{i}(\mathbf{x}) \leq 0$ and $h_{i}(\mathbf{x})=0$ ), it is not hard to show that that $\max _{\boldsymbol{\lambda} \geq \mathbf{0}, \boldsymbol{\nu}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f_{0}(\mathbf{x})$ (achieved by $\boldsymbol{\lambda}=\mathbf{0}$ and $\left.\boldsymbol{\nu}=\mathbf{0}\right)$.

In contrast, the Lagrange dual problem solves

$$
\max _{\boldsymbol{\lambda} \geq \mathbf{0}, \boldsymbol{\nu}} \min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})
$$

So it's the same problem, just with the max and min swapped!
It a well-known fact of optimization and game theory that $\min _{A} \max _{B} f(A, B) \geq$ $\max _{B} \min _{A} f(A, B)$. Strong duality is related to the minimax theorem (see https://en. wikipedia.org/wiki/Minimax_theorem), which states that in fact

$$
\min _{A} \max _{B} f(A, B)=\max _{B} \min _{A} f(A, B)
$$

in the case that $f(A, \cdot)$ is concave in $B$ and $f(\cdot, B)$ is convex in $A$.

## - Example (Linear programming).

- Consider a linear program of the form

$$
\begin{align*}
\operatorname{maximize}_{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}  \tag{9}\\
\text { subject to } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \tag{10}
\end{align*}
$$

for some matrix $\mathbf{A} \in \mathbb{R}^{m \times d}$ and vectors $\mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{c} \in \mathbb{R}^{d}$. The inequality $\mathbf{x} \geq \mathbf{0}$ should be interpreted as holding element-wise.

- Interpreting this as being in the form (3) with $m_{\text {ineq }}=m$ and $m_{\text {eq }}=d$, we have the Lagrangian

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) & =-\mathbf{c}^{T} \mathbf{x}-\sum_{i=1}^{d} \lambda_{i} x_{i}+\sum_{i=1}^{m} \nu_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right) \\
& =-\mathbf{c}^{T} \mathbf{x}-\boldsymbol{\lambda}^{T} \mathbf{x}+\boldsymbol{\nu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}) \\
& =-\mathbf{b}^{T} \boldsymbol{\nu}+\left(\mathbf{A}^{T} \boldsymbol{\nu}-\boldsymbol{\lambda}-\mathbf{c}\right)^{T} \mathbf{x}
\end{aligned}
$$

where $\mathbf{a}_{i}$ is the $i$-th row of $\mathbf{A}, b_{i}$ is the $i$-th entry of $\mathbf{b}$, etc.

* Note: Switching from "maximize" to "minimize" requires taking $f_{0}(\mathbf{x})=-\mathbf{c}^{T} \mathbf{x}$
- Minimizing over $\mathbf{x}$, we find that $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ (which we recall is $\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ ) takes the form

$$
g(\boldsymbol{\lambda}, \boldsymbol{\nu})= \begin{cases}-\mathbf{b}^{T} \boldsymbol{\nu} & \mathbf{A}^{T} \boldsymbol{\nu}-\boldsymbol{\lambda}-\mathbf{c}=\mathbf{0} \\ -\infty & \text { otherwise }\end{cases}
$$

This is because whenever $\mathbf{A}^{T} \boldsymbol{\nu}+\boldsymbol{\lambda}+\mathbf{c} \neq 0$, one can just make a suitable entry of $x_{i}$ arbitrarily large in either the positive or negative direction.

- Substituting this expression for $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ into (7) yields the dual problem:

$$
\begin{aligned}
\operatorname{maximize}_{\boldsymbol{\lambda}, \boldsymbol{\nu}} & -\mathbf{b}^{T} \boldsymbol{\nu} \\
\text { subject to } & \boldsymbol{\lambda} \geq \mathbf{0} \\
& \mathbf{A}^{T} \boldsymbol{\nu}-\boldsymbol{\lambda}-\mathbf{c}=\mathbf{0}
\end{aligned}
$$

where the second constraint can be introduced since all other values yield a (certainly suboptimal) value of $-\infty$. Since $\boldsymbol{\lambda}$ does not appear in the objective function, we can further simplify the above maximization to

$$
\begin{array}{ll}
\operatorname{minimize}_{\boldsymbol{\nu}} & \mathbf{b}^{T} \boldsymbol{\nu} \\
\text { subject to } & \mathbf{A}^{T} \boldsymbol{\nu} \geq \mathbf{c}
\end{array}
$$

- If we replace $\mathbf{A x}=\mathbf{b}$ by $\mathbf{A x} \leq \mathbf{b}$ in the original formulation, then we arrive at a similar dual expression but with the added constraint $\boldsymbol{\nu} \geq 0$.


## - An intuitive interpretation:

* The original problem constrains $\mathbf{A x}=\mathbf{b}$; multiplying both sides on the left by $\boldsymbol{\nu}^{T}$ gives $\boldsymbol{\nu}^{T} \mathbf{A} \mathbf{x}=\boldsymbol{\nu}^{T} \mathbf{b}$, or equivalently $\left(\mathbf{A}^{T} \boldsymbol{\nu}\right)^{T} \mathbf{x}=\mathbf{b}^{T} \boldsymbol{\nu}$ (by standard properties of the transpose)
* Now, since $\mathbf{x} \geq \mathbf{0}$ and we are maximizing $\mathbf{c}^{T} \mathbf{x}$, we find that if $\mathbf{A}^{T} \boldsymbol{\nu} \geq \mathbf{c}$, it holds that $\left(\mathbf{A}^{T} \boldsymbol{\nu}\right)^{T} \mathbf{x}$ is at least as high as $\mathbf{c}^{T} \mathbf{x}$. Then, by the previous dot point, $\mathbf{b}^{T} \boldsymbol{\nu}$ is at least as high as $\mathbf{c}^{T} \mathbf{x}$.
* Hence, for any $\boldsymbol{\nu}$ that satisfies $\mathbf{A}^{T} \boldsymbol{\nu} \geq \mathbf{c}$, we have that $\mathbf{b}^{T} \boldsymbol{\nu}$ is at least as high as the original problem's optimal value, i.e., it is an upper bound to the optimal value.
* By minimizing over all such $\boldsymbol{\nu}$ (as is done in the dual expression), we are finding the lowest (best) possible upper bound, and this turns out to make the upper bound hold with equality.


## 4 The Karush-Kuhn-Tucker (KKT) Conditions

- In the case that strong duality holds as per (8), we have the following chain of inequalities:

$$
\begin{aligned}
f_{0}\left(\mathbf{x}^{*}\right) & =g\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right) \\
& =\min _{\mathbf{x}}\left\{f_{0}(\mathbf{x})+\sum_{i=1}^{m_{\text {ineq }}} \lambda_{i}^{*} f_{i}(\mathbf{x})+\sum_{i=1}^{m_{\text {eq }}} \nu_{i}^{*} h_{i}(\mathbf{x})\right\} \\
& \leq f_{0}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m_{\text {ineq }}} \lambda_{i}^{*} f_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m_{\text {eq }}} \nu_{i}^{*} h_{i}\left(\mathbf{x}^{*}\right) \\
& \leq f_{0}\left(\mathbf{x}^{*}\right),
\end{aligned}
$$

where we first applied the definition of $g$, then upper bounded the minimum by the specific value $\mathbf{x}^{*}$, then used the fact that $f_{i}\left(\mathrm{x}^{*}\right) \leq 0$ and $h_{i}\left(\mathrm{x}^{*}\right)=0$.

- Since we ended up with $f_{0}\left(\mathbf{x}^{*}\right) \leq f_{0}\left(\mathbf{x}^{*}\right)$, both of the inequalities must hold with equality. Let's look at these in more detail:
- The first inequality holding with equality gives

$$
\mathbf{x}^{*}=\underset{\mathbf{x}}{\arg \min } f_{0}(\mathbf{x})+\sum_{i=1}^{m_{\text {ineq }}} \lambda_{i}^{*} f_{i}(\mathbf{x})+\sum_{i=1}^{m_{\text {eq }}} \nu_{i}^{*} h_{i}(\mathbf{x}) .
$$

Assuming the functions are differentiable, the fact that $\mathbf{x}^{*}$ is a minimizer means that the derivative must vanish:

$$
\nabla f_{0}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m_{\text {ineq }}} \lambda_{i}^{*} \nabla f_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m_{\text {eq }}} \nu_{i}^{*} \nabla h_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0} .
$$

- The second inequality holding with equality gives

$$
\lambda_{i}^{*} f_{i}\left(\mathbf{x}^{*}\right)=0, \quad i=1, \ldots, m_{\text {ineq }}
$$

This means that either $f_{i}\left(\mathbf{x}^{*}\right)=0$ (i.e., the constraint holds with equality) or $\lambda_{i}^{*}=0$. This property is known as complementary slackness.

- Summarizing the above leads to a set of conditions on $\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)$ known as the $K K T$ conditions:

1. (Primal feasibility) $f_{i}\left(\mathrm{x}^{*}\right) \leq 0$ for $i=1, \ldots, m_{\text {ineq }}$, and $h_{i}\left(\mathrm{x}^{*}\right)=0$ for $i=1, \ldots, m_{\text {eq }}$.
2. (Dual feasibility) $\lambda_{i}^{*} \geq 0$ for $i=1, \ldots, m_{\text {ineq }}$.
3. (Complementary slackness) $\lambda_{i}^{*} f_{i}\left(\mathbf{x}^{*}\right)=0$ for $i=1, \ldots, m_{\text {ineq }}$.
4. (Vanishing gradient) $\nabla f_{0}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m_{\text {ineq }}} \lambda_{i}^{*} \nabla f_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m_{\text {eq }}} \nu_{i}^{*} \nabla h_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}$.

These generalize the requirement that the unconstrained maximizer of $f_{0}(\mathbf{x})$ should satisfy $\nabla f_{0}\left(\mathbf{x}^{*}\right)=0$.

- General case: If strong duality holds, it is necessary that $\left(\mathrm{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)$ satisfy the KKT conditions.
- Convex case: If strong duality holds and the primal problem is convex, then $\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)$ satisfying the KKT conditions are also sufficient for optimality (the proof of this is omitted).


## 5 Support Vector Machine Revisited

## Forming the dual expression.

- We have seen a few equivalent "primal" formulations of SVM; let's consider the following one (focusing on the hard-margin formulation with offset for now):

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}} \quad \frac{1}{2}\|\boldsymbol{\theta}\|^{2} \text { subject to } y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1, \quad \forall t=1, \ldots, n . \tag{11}
\end{equation*}
$$

This is a convex optimization problem with affine constraints, so strong duality holds.

- The Lagrangian is given by

$$
\begin{equation*}
L\left(\boldsymbol{\theta}, \theta_{0}, \boldsymbol{\lambda}\right)=\frac{1}{2}\|\boldsymbol{\theta}\|^{2}+\sum_{t=1}^{n} \lambda_{t}\left(1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)\right) . \tag{12}
\end{equation*}
$$

- To find $g(\boldsymbol{\lambda})=\min _{\mathbf{x}} L\left(\boldsymbol{\theta}, \theta_{0}, \boldsymbol{\lambda}\right)$, we set the partial derivatives to zero. For $\theta_{0}$ :

$$
\begin{equation*}
\frac{\partial L}{\partial \theta_{0}}=-\sum_{t=1}^{n} \lambda_{t} y_{t}=0, \tag{13}
\end{equation*}
$$

and for $\boldsymbol{\theta}$ (with a bit of basic vector calculus):

$$
\frac{\partial L}{\partial \boldsymbol{\theta}}=\boldsymbol{\theta}-\sum_{t=1}^{n} \lambda_{t} y_{t} \mathbf{x}_{t}=\mathbf{0},
$$

which implies $\boldsymbol{\theta}=\boldsymbol{\theta}^{*}:=\sum_{t=1}^{n} \lambda_{t} y_{t} \mathbf{x}_{t}$.

- Under these optimality conditions, the second term in (12) simplifies to

$$
\begin{align*}
\sum_{t=1}^{n} \lambda_{t}\left(1-y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)\right) & =\sum_{t=1}^{n} \lambda_{t}-\sum_{t=1}^{n} \lambda_{t} y_{t}\left(\sum_{s=1}^{n} \lambda_{s} y_{s} \mathbf{x}_{s}\right)^{T} \mathbf{x}_{t}  \tag{14}\\
& =\sum_{t=1}^{n} \lambda_{t}-\left(\sum_{s=1}^{n} \lambda_{s} y_{s} \mathbf{x}_{s}\right)^{T}\left(\sum_{t=1}^{n} \lambda_{t} y_{t} \mathbf{x}_{t}\right) . \tag{15}
\end{align*}
$$

But $\|\boldsymbol{\theta}\|^{2}$ with $\boldsymbol{\theta}=\sum_{t=1}^{n} \lambda_{t} y_{t} \mathbf{x}_{t}$ is also equal to $\left(\sum_{s=1}^{n} \lambda_{s} y_{s} \mathbf{x}_{s}\right)^{T}\left(\sum_{t=1}^{n} \lambda_{t} y_{t} \mathbf{x}_{t}\right)$, so overall (12) gives

$$
g(\boldsymbol{\lambda})=L\left(\boldsymbol{\theta}^{*}, \theta_{0}^{*}, \boldsymbol{\lambda}\right)= \begin{cases}\sum_{t=1}^{n} \lambda_{t}-\frac{1}{2} \sum_{s=1}^{n} \sum_{t=1}^{n} \lambda_{s} \lambda_{t} y_{s} y_{t} \mathbf{x}_{s}^{T} \mathbf{x}_{t} & \sum_{t=1}^{n} \lambda_{t} y_{t}=0  \tag{16}\\ -\infty & \text { otherwise }\end{cases}
$$

The first case can be thought of as corresponding to 131, and the second case results because if $\sum_{t=1}^{n} \lambda_{t} y_{t} \neq 0$ then one can choose $\theta_{0}$ arbitrarily large (in the positive or negative direction) to make the right-hand side of (12) arbitrarily negative.

- Renaming $\boldsymbol{\lambda}$ as $\boldsymbol{\alpha}$ and maximizing the Lagrange dual function $g$, we arrive at the dual formulation of
the SVM (separable case):

$$
\begin{array}{ll}
\operatorname{maximize}_{\boldsymbol{\alpha}} & \sum_{t=1}^{n} \alpha_{t}-\frac{1}{2} \sum_{s=1}^{n} \sum_{t=1}^{n} \alpha_{s} \alpha_{t} y_{s} y_{t} \mathbf{x}_{s}^{T} \mathbf{x}_{t} \\
\text { subject to } & \alpha_{t} \geq 0 \quad \forall t \in\{1, \ldots, n\} \\
& \sum_{t=1}^{n} \alpha_{t} y_{t}=0
\end{array}
$$

Observe that $-\infty$ case with $\sum_{t=1}^{n} \alpha_{t} y_{t}=0$ was turned into a constraint, on the basis that a value of $-\infty$ can never be optimal.

## Recovering the classifier.

- We have already shown that $\boldsymbol{\theta}=\sum_{t=1}^{n} \alpha_{t} y_{t} \mathbf{x}_{t}$, so to form a classifier we only need to find $\theta_{0}$.
- By the complementary slackness condition in the KKT conditions, each training sample falls into one of the following categories ${ }^{7}$
- (Support vectors) $\alpha_{t}>0$ and $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)=1$, i.e., the point is on the margin's boundary;
- (Not support vectors) $\alpha_{t}=0$ and $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)>1$, i.e., the point is outside the margin.

To find $\theta_{0}$, we can just take any $\left(\mathbf{x}_{t}, y_{t}\right)$ corresponding to the former case, and set $\theta_{0}=\frac{1}{y_{t}}-\boldsymbol{\theta}^{T} \mathbf{x}_{t}$.

## Interpretation of the support vector property.

- In the SVM lecture, we stated that the maximum margin is determined only by the support vectors, and re-running SVM with the non-support-vectors removed leads to exactly the same decision boundary and margins.
- This can be understood better via the theory of convex analysis by observing that the support vectors are exactly those with Lagrange multiplier $\alpha_{t}>0$ (as stated above).
- In convex analysis, a Lagrange multiplier of zero corresponds to an inactive constrained - one which, when removed, does not change the optimal solution (e.g., consider the problem "minimize $z^{2}$ subject to $z \geq-1$ ", whose solution is attained with $z=0$ ).
- Removing a non-support-vector from the data set amounts to removing its constraint from the (primal) SVM optimization formulation. But since the Lagrange multiplier is zero, this does not change the optimal solution.
- (This discussion is not a formal proof, but highlights that this support vector property is a special case of a general phenomenon in convex analysis)


## Soft-margin formulation and kernel SVM.

- For the soft-margin SVM, a similar analysis via Lagrange duality reveals that the primal formulation

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\theta}, \theta_{0}, \boldsymbol{\zeta}} \frac{1}{2}\|\boldsymbol{\theta}\|^{2}+C \sum_{t=1}^{n} \zeta_{t} \text { subject to } y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right) \geq 1-\zeta_{t} \text { and } \zeta_{t} \geq 0, \quad \forall t \tag{17}
\end{equation*}
$$

[^1]has a dual formulation given by
\[

$$
\begin{array}{ll}
\operatorname{maximize}_{\boldsymbol{\alpha}} & \sum_{t=1}^{n} \alpha_{t}-\frac{1}{2} \sum_{s=1}^{n} \sum_{t=1}^{n} \alpha_{s} \alpha_{t} y_{s} y_{t} \mathbf{x}_{s}^{T} \mathbf{x}_{t} \\
\text { subject to } & \alpha_{t} \in[0, C] \forall t \in\{1, \ldots, n\} \\
& \sum_{t=1}^{n} \alpha_{t} y_{t}=0
\end{array}
$$
\]

This is exactly the same as above, except for the added constraint $\alpha_{t} \leq C$. (And as we have seen before, taking $C \rightarrow \infty$ recovers the hard-margin formulation)

- The dual variables are only slightly trickier to understand in this case; one can use complementary slackness to show the following $8^{8}$
- If some $\mathbf{x}_{t}$ is "strictly" on the correct side of the margin (i.e., $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)>1$ ), then $\alpha_{t}=0$.
- If some $\mathbf{x}_{t}$ is inside the margin or mis-classified (i.e., $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)<1$ ), then $\alpha_{t}=C$.
- If $0<\alpha_{t}<C$, then $\mathbf{x}_{t}$ is exactly on the margin (i.e., $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)=1$ ).

Hence, $\mathbf{x}_{t}$ is a support vector if and only if $\alpha_{t}>0$, just like in the separable case.

- The final classifier applied to $\mathbf{x}$ is given by

$$
\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}+\theta_{0}\right)=\operatorname{sign}\left(\sum_{t=1}^{n} \alpha_{t} y_{t} \mathbf{x}_{t}^{T} \mathbf{x}+\theta_{0}\right)
$$

where we have again applied $\boldsymbol{\theta}=\sum_{t=1}^{n} \alpha_{t} y_{t} \mathbf{x}_{t}$ (previously written as $\boldsymbol{\theta}=\sum_{t=1}^{n} \lambda_{t} y_{t} \mathbf{x}_{t}$ ).

- To find $\theta_{0}$, we take any $\left(\mathbf{x}_{t}, y_{t}\right)$ corresponding to a $t$ with $0<\alpha_{t}<C$, and set $\theta_{0}=\frac{1}{y_{t}}-\boldsymbol{\theta}^{T} \mathbf{x}_{t}$.
- Because strong duality holds, the resulting classifier is identical to the primal SVM classifier
- In both the separable and non-separable case, the classifier depends on $\left\{\mathbf{x}_{t}\right\}_{t=1}^{n}$ only through the inner products $\left\langle\mathbf{x}_{s}, \mathbf{x}_{t}\right\rangle=\mathbf{x}_{s}^{T} \mathbf{x}_{t}$, so we can apply the kernel trick, leading to the following:
- Kernel SVM ${ }^{9}$ Find $\boldsymbol{\alpha}$ by solving the optimization problem

$$
\begin{array}{ll}
\operatorname{maximize}_{\boldsymbol{\alpha}} & \sum_{t=1}^{n} \alpha_{t}-\frac{1}{2} \sum_{s=1}^{n} \sum_{t=1}^{n} \alpha_{s} \alpha_{t} y_{s} y_{t} k\left(\mathbf{x}_{s}, \mathbf{x}_{t}\right) \\
\text { subject to } & \alpha_{t} \in[0, C] \forall t \in\{1, \ldots, n\}, \\
& \sum_{t=1}^{n} \alpha_{t} y_{t}=0
\end{array}
$$

and let the final classification rule be

$$
\hat{y}(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{n} \alpha_{t} y_{t} k\left(\mathbf{x}, \mathbf{x}_{t}\right)+\theta_{0}\right)
$$

[^2]where $\theta_{0}$ is found in the same way as above, replacing $\theta_{0}=\frac{1}{y_{t}}-\boldsymbol{\theta}^{T} \mathbf{x}_{t}$ by $\theta_{0}=\frac{1}{y_{t}}-\sum_{s=1}^{n} \alpha_{s} y_{s} k\left(\mathbf{x}_{s}, \mathbf{x}_{t}\right)$.

## Computational considerations.

- The choice of whether to use the primal or dual formulation is often dictated by computational considerations, particularly for large $d$ ("high-dimensional") and/or large $n$ ("big data")
- The bottleneck in the dual formulation is often computing $O\left(n^{2}\right)$ values of $k\left(\mathbf{x}_{s}, \mathbf{x}_{t}\right)$


[^0]:    ${ }^{1}$ http://jeremykun.com/2013/11/30/lagrangians-for-the-amnesiac/
    ${ }^{2}$ http://jeremykun.com/2014/06/02/linear-programming-and-the-most-affordable-healthy-diet-part-1/
    3 http://jeremykun.com/2012/12/09/neural-networks-and-backpropagation/
    ${ }^{4}$ http://blogs.princeton.edu/imabandit/2013/02/21/orf523-lagrangian-duality/
    5 http://blogs.princeton.edu/imabandit/2013/02/26/orf523-classification-svm-kernel-learning/
    ${ }^{6}$ http://web.stanford.edu/~boyd/cvxbook/

[^1]:    ${ }^{7}$ In principle, complementary slackness also allows both $\alpha_{t}=0$ and $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)=1$ to hold simultaneously, but we will not worry about this unusual case.

[^2]:    ${ }^{8}$ See the tutorial for the relevant analysis. Again, in principle when $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)=1$ any $\alpha_{t} \in[0, C]$ could still be allowed, and not just $\alpha_{t} \in(0, C)$. On the other hand, $\alpha_{t} \in(0, C)$ definitively implies that $y_{t}\left(\boldsymbol{\theta}^{T} \mathbf{x}_{t}+\theta_{0}\right)=1$.
    ${ }^{9}$ This is based on the dual SVM formulation. The primal formulation doesn't lend itself directly to the kernel trick, but it is possible to obtain a primal-type kernel SVM formulation (without needing Lagrange duality) using a result called the Representer Theorem. See Section 16.2 of the "Understanding Machine Learning" book for details.

