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Useful references:

• Blog posts by Jeremy Kun on Lagrange multipliers,1 duality for linear programming,2 and duality for
the support vector machine (SVM)3

• Blog posts by Sébastien Bubeck on Lagrangian duality4 and SVM+duality+kernels5

• Part I of Boyd and Vandenberghe’s “Convex Optimization” book6

• Boyd’s lectures on convex optimization, available on YouTube

• Supplementary notes lec8a.pdf

• Section 12.1 of “Understanding Machine Learning” book

1 Convex Sets and Functions

Basic definitions.

• A set D (e.g., a subset of Rd) is said to be a convex set if, for all x ∈ D and x′ ∈ D, it holds that

λx+ (1− λ)x′ ∈ D

for all λ ∈ [0, 1]

– In words (roughly): Draw a straight line between any two points in D. This whole line segment
must also lie within D.

– Examples:
1http://jeremykun.com/2013/11/30/lagrangians-for-the-amnesiac/
2http://jeremykun.com/2014/06/02/linear-programming-and-the-most-affordable-healthy-diet-part-1/
3http://jeremykun.com/2012/12/09/neural-networks-and-backpropagation/
4http://blogs.princeton.edu/imabandit/2013/02/21/orf523-lagrangian-duality/
5http://blogs.princeton.edu/imabandit/2013/02/26/orf523-classification-svm-kernel-learning/
6http://web.stanford.edu/~boyd/cvxbook/
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• A function f : D → R is said to be a convex function if, for all x ∈ D and x′ ∈ D, it holds that

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′)

for all λ ∈ [0, 1]. Implicitly, this requires that the domain D is a convex set.

– In words (roughly): Draw a straight line between (x, f(x′)) and (x′, f(x′)). For inputs in between
x and x′, the function lies below this straight line.

– Illustration:

– We say that f(x) is a concave function if −f(x) is a convex function.

– Convex = “bowl-shaped” (∪), concave = “arch-shaped” (∩)

– A function is simultaneously convex and concave ⇐⇒ it is affine (i.e., a “straight line” (or plane)).

– Key property. For a convex function, any local minimum is also a global minimum.

Other examples.

• Convex functions: ‖x‖2, ex, e−x, log
∑d
i=1 e

xi , and many more.

• Concave functions: −‖x‖2, log x, log detX,
∑d
i=1 xi log

1
xi
, and many more.

2



Equivalent definitions of convexity.

• Recall the notions of gradient and Hessian for x = [x1, . . . , xd]
T :

∇f =


∂f
∂x1
∂f
∂x2

...
∂f
∂xd

 , ∇2f =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xd

...
...

. . .
...

∂2f
∂xd∂x1

∂2f
∂xdx2

. . . ∂2f
∂x2

d

 .

• (First order) If f is differentiable, then it is convex if and only if

f(x′) ≥ f(x) +∇f(x)T (x′ − x)

for all x,x′. (The function lies above its tangent plane)

• (Second order) If f is twice differentiable, then it is convex if and only if

∇2f(x) � 0

for all x ∈ D. (The Hessian is positive semi-definite)

Operations that preserve convexity.

• If f1(x) and f2(x) are convex, and α1 and α2 are positive, then f(x) = α1f1(x) + α1f2(x) is convex.
By induction, a similar statement holds for

∑L
`=1 α`f`(x) also for L > 2.

• If f1(x), . . . , fL(x) are convex, then so is f(x) = max`=1,...,L f`(x).

• Certain compositions of the form f(x) = g(h(x)) are convex under certain conditions on g and h (see
Section 3.2 of Boyd and Vandenberghe’s book)

– Simplest case: If h is a linear (or affine) function and g is convex, then f is convex.

Jensen’s inequality.

• Jensen’s inequality states that, for any random vector X and convex function f , it holds that

f(E[X]) ≤ E[f(X)].

This is used in countless proofs in machine learning, statistics, information theory, etc.

• Note that the inequality is true directly from the definition of convexity when X equals one value x

with probability λ, and another value x′ with probability 1 − λ. Jensen’s inequality states the more
general form for an arbitrary distribution on X.

2 Convex Optimization

• In machine learning and other fields, we are frequently interested in minimizing some cost function (or
maximizing some utility function), possibly subject to certain constraints.
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• We have already seen both constrained and unconstrained examples; recall the unconstrained form of
the SVM:

minimizeθ,θ0
1

2
‖θ‖2 + C

n∑
t=1

[
1− yt(θTxt + θ0)

]
+
, (1)

where [z]+ = max{0, z}, and the constrained form of the SVM:

minimizeθ,θ0,ζ
1

2
‖θ‖2 + C

n∑
t=1

ζt subject to yt(θ
Txt + θ0) ≥ 1− ζt and ζt ≥ 0, ∀t. (2)

• We will return to the SVM later, but for now let’s look at a more general optimization problem:

minimizex f0(x) (3)

subject to fi(x) ≤ 0, i = 1, . . . ,mineq

hi(x) = 0, i = 1, . . . ,meq.

There are mineq inequality constraints and meq equality constraints.

– Example: In (2) we have x = (θ, θ0, ζ), mineq = 2n, and meq = 0, with the corresponding
inequality constraint functions fi(x) being 1− ζt − yt(θTxt + θ0) and −ζt for t = 1, . . . , n.

• Definition. We say that (3) is a convex optimization problem if (i) f0(x) is convex; (ii) fi(x) is convex
for all i = 1, . . . ,mineq; (iii) hi(x) is affine for all i = 1, . . . ,meq.

• This definition is very useful because, although solving (constrained or unconstrained) optimization
problems is extremely hard in general, convexity is usually enough to permit finding a solution (some-
times analytically, but more often numerically).

• We can get some intuition by looking at the 1D case – which of these functions is easier to optimize
using gradient descent techniques?
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3 Lagrange Multipliers and Duality

• For an optimization problem of the form (3), the Lagrangian is defined as

L(x,λ,ν) = f0(x) +

mineq∑
i=1

λifi(x) +

meq∑
i=1

νihi(x), (4)

where we have introduced extra parameters λ = (λ1, . . . , λmineq
) and ν = (ν1, . . . , νmeq

). These are
known as Lagrange multipliers.

– We assume that λi ≥ 0 for all i, whereas νi ∈ R may be positive or negative.

– Intuition: We no longer insist that fi(x) ≤ 0, but we pay a penalty (scaled by λi) if it fails to
hold. Conversely, we are “rewarded” if fi(x) < 0, i.e., strict inequality.

• Important observation. For any x feasible in (3), and any λ and µ with λi ≥ 0, we have

L(x,λ,ν) ≤ f0(x). (5)

– Proof: Follows immediately from λi ≥ 0, fi(x) ≤ 0, and hi(x) = 0.

• Minimizing both sides of (5) over x gives

min
x
L(x,λ,ν) ≤ f0(x∗), (6)

where x∗ is an optimal solution to (3).

– The function
g(λ,ν) = min

x
L(x,λ,ν)

is called the Lagrange dual function.

• Since g(λ,ν) lower bounds f0(x∗) according to (6), it is natural to look for the best (highest) lower
bound. This leads to the Lagrange dual problem:

maximizeλ,ν g(λ,ν) (7)

subject to λi ≥ 0, i = 1, . . . ,mineq.

Henceforth, let (λ∗,ν∗) denote the maximizer.

• Duality.

– Since (6) holds for all (λ,ν), it holds in particular for (λ∗,ν∗), yielding

g(λ∗,ν∗) ≤ f0(x∗).

This is known as weak duality.

– One of the most important results in convex optimization is that, if the original optimization
problem is convex (i.e., f0 and fi are convex functions, and hi is are linear functions), and a mild
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regularity condition holds, then
g(λ∗,ν∗) = f0(x

∗). (8)

This is known as strong duality.

∗ There are many possible “mild regularity conditions”; the most well-known is known as Slater’s
condition: There exists at least one point x in the relative interior of the domain satisfying
the constraints of (3) with strict inequality (i.e., fi(x) < 0 and hi(x) = 0).

∗ Another (more restrictive) sufficient condition is that the constraint functions fi (i =

1, . . . ,mineq) are not only convex, but linear.

– Minimax theorem viewpoint: One way to understand duality is to interpret the original con-
strained optimization problem as solving

min
x

max
λ≥0,ν

L(x,λ,ν).

This is because the inner maximization (more precisely a supremum) equals∞ whenever fi(x) > 0

or hi(x) 6= 0, because any arbitrarily large value can be achieved by taking the corresponding λi
or νi to be huge. In addition, when x satisfies the constraints (i.e., each fi(x) ≤ 0 and hi(x) = 0),
it is not hard to show that that maxλ≥0,ν L(x,λ,ν) = f0(x) (achieved by λ = 0 and ν = 0).

In contrast, the Lagrange dual problem solves

max
λ≥0,ν

min
x
L(x,λ,ν).

So it’s the same problem, just with the max and min swapped!

It a well-known fact of optimization and game theory that minAmaxB f(A,B) ≥
maxB minA f(A,B). Strong duality is related to the minimax theorem (see https://en.

wikipedia.org/wiki/Minimax_theorem), which states that in fact

min
A

max
B

f(A,B) = max
B

min
A
f(A,B)

in the case that f(A, ·) is concave in B and f(·, B) is convex in A.

• Example (Linear programming).

– Consider a linear program of the form

maximizex cTx (9)

subject to Ax = b, x ≥ 0 (10)

for some matrix A ∈ Rm×d and vectors b ∈ Rm and c ∈ Rd. The inequality x ≥ 0 should be
interpreted as holding element-wise.
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– Interpreting this as being in the form (3) with mineq = m and meq = d, we have the Lagrangian

L(x,λ,ν) = −cTx−
d∑
i=1

λixi +

m∑
i=1

νi(a
T
i x− bi)

= −cTx− λTx+ νT (Ax− b)

= −bTν + (ATν − λ− c)Tx,

where ai is the i-th row of A, bi is the i-th entry of b, etc.

∗ Note: Switching from “maximize” to “minimize” requires taking f0(x) = −cTx

– Minimizing over x, we find that g(λ,ν) (which we recall is minx L(x,λ,ν)) takes the form

g(λ,ν) =

−bTν ATν − λ− c = 0

−∞ otherwise.

This is because whenever ATν + λ + c 6= 0, one can just make a suitable entry of xi arbitrarily
large in either the positive or negative direction.

– Substituting this expression for g(λ,ν) into (7) yields the dual problem:

maximizeλ,ν − bTν

subject to λ ≥ 0,

ATν − λ− c = 0,

where the second constraint can be introduced since all other values yield a (certainly suboptimal)
value of −∞. Since λ does not appear in the objective function, we can further simplify the above
maximization to

minimizeν bTν

subject to ATν ≥ c.

– If we replace Ax = b by Ax ≤ b in the original formulation, then we arrive at a similar dual
expression but with the added constraint ν ≥ 0.

– An intuitive interpretation:

∗ The original problem constrains Ax = b; multiplying both sides on the left by νT gives
νTAx = νTb, or equivalently (ATν)Tx = bTν (by standard properties of the transpose)

∗ Now, since x ≥ 0 and we are maximizing cTx, we find that ifATν ≥ c, it holds that (ATν)Tx

is at least as high as cTx. Then, by the previous dot point, bTν is at least as high as cTx.

∗ Hence, for any ν that satisfies ATν ≥ c, we have that bTν is at least as high as the original
problem’s optimal value, i.e., it is an upper bound to the optimal value.

∗ By minimizing over all such ν (as is done in the dual expression), we are finding the lowest
(best) possible upper bound, and this turns out to make the upper bound hold with equality.
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4 The Karush-Kuhn-Tucker (KKT) Conditions

• In the case that strong duality holds as per (8), we have the following chain of inequalities:

f0(x
∗) = g(λ∗,ν∗)

= min
x

{
f0(x) +

mineq∑
i=1

λ∗i fi(x) +

meq∑
i=1

ν∗i hi(x)

}

≤ f0(x∗) +
mineq∑
i=1

λ∗i fi(x
∗) +

meq∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗),

where we first applied the definition of g, then upper bounded the minimum by the specific value x∗,
then used the fact that fi(x∗) ≤ 0 and hi(x∗) = 0.

• Since we ended up with f0(x∗) ≤ f0(x
∗), both of the inequalities must hold with equality. Let’s look

at these in more detail:

– The first inequality holding with equality gives

x∗ = argmin
x

f0(x) +

mineq∑
i=1

λ∗i fi(x) +

meq∑
i=1

ν∗i hi(x).

Assuming the functions are differentiable, the fact that x∗ is a minimizer means that the derivative
must vanish:

∇f0(x∗) +
mineq∑
i=1

λ∗i∇fi(x∗) +
meq∑
i=1

ν∗i∇hi(x∗) = 0.

– The second inequality holding with equality gives

λ∗i fi(x
∗) = 0, i = 1, . . . ,mineq.

This means that either fi(x∗) = 0 (i.e., the constraint holds with equality) or λ∗i = 0. This
property is known as complementary slackness.

• Summarizing the above leads to a set of conditions on (x∗,λ∗,ν∗) known as the KKT conditions:

1. (Primal feasibility) fi(x∗) ≤ 0 for i = 1, . . . ,mineq, and hi(x∗) = 0 for i = 1, . . . ,meq.

2. (Dual feasibility) λ∗i ≥ 0 for i = 1, . . . ,mineq.

3. (Complementary slackness) λ∗i fi(x∗) = 0 for i = 1, . . . ,mineq.

4. (Vanishing gradient) ∇f0(x∗) +
∑mineq

i=1 λ∗i∇fi(x∗) +
∑meq

i=1 ν
∗
i∇hi(x∗) = 0.

These generalize the requirement that the unconstrainedmaximizer of f0(x) should satisfy∇f0(x∗) = 0.

– General case: If strong duality holds, it is necessary that (x∗,λ∗,ν∗) satisfy the KKT conditions.

– Convex case: If strong duality holds and the primal problem is convex, then (x∗,λ∗,ν∗) satisfying
the KKT conditions are also sufficient for optimality (the proof of this is omitted).
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5 Support Vector Machine Revisited

Forming the dual expression.

• We have seen a few equivalent “primal” formulations of SVM; let’s consider the following one (focusing
on the hard-margin formulation with offset for now):

minimizeθ,θ0
1

2
‖θ‖2 subject to yt(θ

Txt + θ0) ≥ 1, ∀t = 1, . . . , n. (11)

This is a convex optimization problem with affine constraints, so strong duality holds.

• The Lagrangian is given by

L(θ, θ0,λ) =
1

2
‖θ‖2 +

n∑
t=1

λt
(
1− yt(θTxt + θ0)

)
. (12)

• To find g(λ) = minx L(θ, θ0,λ), we set the partial derivatives to zero. For θ0:

∂L

∂θ0
= −

n∑
t=1

λtyt = 0, (13)

and for θ (with a bit of basic vector calculus):

∂L

∂θ
= θ −

n∑
t=1

λtytxt = 0,

which implies θ = θ∗ :=
∑n
t=1 λtytxt.

• Under these optimality conditions, the second term in (12) simplifies to

n∑
t=1

λt
(
1− yt(θTxt + θ0)

)
=

n∑
t=1

λt −
n∑
t=1

λtyt

( n∑
s=1

λsysxs

)T
xt (14)

=

n∑
t=1

λt −
( n∑
s=1

λsysxs

)T( n∑
t=1

λtytxt

)
. (15)

But ‖θ‖2 with θ =
∑n
t=1 λtytxt is also equal to

(∑n
s=1 λsysxs

)T (∑n
t=1 λtytxt

)
, so overall (12) gives

g(λ) = L(θ∗, θ∗0 ,λ) =


∑n
t=1 λt −

1
2

∑n
s=1

∑n
t=1 λsλtysytx

T
s xt

∑n
t=1 λtyt = 0

−∞ otherwise.
(16)

The first case can be thought of as corresponding to (13), and the second case results because if∑n
t=1 λtyt 6= 0 then one can choose θ0 arbitrarily large (in the positive or negative direction) to make

the right-hand side of (12) arbitrarily negative.

• Renaming λ as α and maximizing the Lagrange dual function g, we arrive at the dual formulation of
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the SVM (separable case):

maximizeα
n∑
t=1

αt −
1

2

n∑
s=1

n∑
t=1

αsαtysytx
T
s xt

subject to αt ≥ 0 ∀t ∈ {1, . . . , n},
n∑
t=1

αtyt = 0.

Observe that −∞ case with
∑n
t=1 αtyt = 0 was turned into a constraint, on the basis that a value of

−∞ can never be optimal.

Recovering the classifier.

• We have already shown that θ =
∑n
t=1 αtytxt, so to form a classifier we only need to find θ0.

• By the complementary slackness condition in the KKT conditions, each training sample falls into one
of the following categories:7

– (Support vectors) αt > 0 and yt(θTxt + θ0) = 1, i.e., the point is on the margin’s boundary;

– (Not support vectors) αt = 0 and yt(θTxt + θ0) > 1, i.e., the point is outside the margin.

To find θ0, we can just take any (xt, yt) corresponding to the former case, and set θ0 = 1
yt
− θTxt.

Interpretation of the support vector property.

• In the SVM lecture, we stated that the maximum margin is determined only by the support vectors, and
re-running SVM with the non-support-vectors removed leads to exactly the same decision boundary
and margins.

• This can be understood better via the theory of convex analysis by observing that the support vectors
are exactly those with Lagrange multiplier αt > 0 (as stated above).

• In convex analysis, a Lagrange multiplier of zero corresponds to an inactive constrained – one which,
when removed, does not change the optimal solution (e.g., consider the problem “minimize z2 subject
to z ≥ −1”, whose solution is attained with z = 0).

• Removing a non-support-vector from the data set amounts to removing its constraint from the (primal)
SVM optimization formulation. But since the Lagrange multiplier is zero, this does not change the
optimal solution.

• (This discussion is not a formal proof, but highlights that this support vector property is a special case
of a general phenomenon in convex analysis)

Soft-margin formulation and kernel SVM.

• For the soft-margin SVM, a similar analysis via Lagrange duality reveals that the primal formulation

minimizeθ,θ0,ζ
1

2
‖θ‖2 + C

n∑
t=1

ζt subject to yt(θ
Txt + θ0) ≥ 1− ζt and ζt ≥ 0, ∀t (17)

7In principle, complementary slackness also allows both αt = 0 and yt(θTxt + θ0) = 1 to hold simultaneously, but we will
not worry about this unusual case.
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has a dual formulation given by

maximizeα
n∑
t=1

αt −
1

2

n∑
s=1

n∑
t=1

αsαtysytx
T
s xt

subject to αt ∈ [0, C] ∀t ∈ {1, . . . , n},
n∑
t=1

αtyt = 0.

This is exactly the same as above, except for the added constraint αt ≤ C. (And as we have seen
before, taking C →∞ recovers the hard-margin formulation)

• The dual variables are only slightly trickier to understand in this case; one can use complementary
slackness to show the following:8

– If some xt is “strictly” on the correct side of the margin (i.e., yt(θTxt + θ0) > 1), then αt = 0.

– If some xt is inside the margin or mis-classified (i.e., yt(θTxt + θ0) < 1), then αt = C.

– If 0 < αt < C, then xt is exactly on the margin (i.e., yt(θTxt + θ0) = 1).

Hence, xt is a support vector if and only if αt > 0, just like in the separable case.

• The final classifier applied to x is given by

sign(θTx+ θ0) = sign

( n∑
t=1

αtytx
T
t x+ θ0

)
,

where we have again applied θ =
∑n
t=1 αtytxt (previously written as θ =

∑n
t=1 λtytxt).

– To find θ0, we take any (xt, yt) corresponding to a t with 0 < αt < C, and set θ0 = 1
yt
− θTxt.

– Because strong duality holds, the resulting classifier is identical to the primal SVM classifier

• In both the separable and non-separable case, the classifier depends on {xt}nt=1 only through the inner
products 〈xs,xt〉 = xTs xt, so we can apply the kernel trick, leading to the following:

• Kernel SVM:9 Find α by solving the optimization problem

maximizeα
n∑
t=1

αt −
1

2

n∑
s=1

n∑
t=1

αsαtysytk(xs,xt)

subject to αt ∈ [0, C] ∀t ∈ {1, . . . , n},
n∑
t=1

αtyt = 0.

and let the final classification rule be

ŷ(x) = sign

( n∑
t=1

αtytk(x,xt) + θ0

)
,

8See the tutorial for the relevant analysis. Again, in principle when yt(θTxt + θ0) = 1 any αt ∈ [0, C] could still be allowed,
and not just αt ∈ (0, C). On the other hand, αt ∈ (0, C) definitively implies that yt(θTxt + θ0) = 1.

9This is based on the dual SVM formulation. The primal formulation doesn’t lend itself directly to the kernel trick, but
it is possible to obtain a primal-type kernel SVM formulation (without needing Lagrange duality) using a result called the
Representer Theorem. See Section 16.2 of the “Understanding Machine Learning” book for details.
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where θ0 is found in the same way as above, replacing θ0 = 1
yt
−θTxt by θ0 = 1

yt
−
∑n
s=1 αsysk(xs,xt).

Computational considerations.

• The choice of whether to use the primal or dual formulation is often dictated by computational con-
siderations, particularly for large d (“high-dimensional”) and/or large n (“big data”)

• The bottleneck in the dual formulation is often computing O(n2) values of k(xs,xt)
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