
CS5339 Lecture Notes #6b:

Gradient-Based Optimization Algorithms

Jonathan Scarlett

March 31, 2021

Useful references:

• Blog post on gradient-based algorithms1

• Part I of Boyd and Vandenberghe’s “Convex Optimization” book2

• Chapter 14 of “Understanding Machine Learning” book

• Duchi’s machine learning summer school video on optimization3

• (Advanced) Lecture videos by Constantine Caramanis4

1 Introduction

• Optimization is central to the majority of machine learning algorithms, both classical and modern.
Specifically, such algorithms typically seek to solve a problem of the following form (or similar):

minimize
θ

1

n

n∑
t=1

Loss(xt, yt;θ)

for some vector of parameters θ (possibly much more complex than just linear classification/regression
parameters – e.g., neural network weights) and loss function Loss(·) (e.g., squared-loss in regression).

• In this lecture, we look at the question of how to numerically solve such a minimization problem.

• We will focus on minimization problems taking the above form, but the same ideas apply if we have

minimize
θ

1

n

n∑
t=1

Loss(xt, yt;θ) + λ · Regularization(θ),

e.g., with squared `2-regularization of the form ‖θ‖2.
1https://ruder.io/optimizing-gradient-descent/
2http://web.stanford.edu/~boyd/cvxbook/
3https://sites.google.com/view/mlss-2019/lectures-and-tutorials
4https://www.youtube.com/playlist?list=PLXsmhnDvpjORzPelSDs0LSDrfJcqyLlZc

1

https://ruder.io/optimizing-gradient-descent/
http://web.stanford.edu/~boyd/cvxbook/
https://sites.google.com/view/mlss-2019/lectures-and-tutorials
https://www.youtube.com/playlist?list=PLXsmhnDvpjORzPelSDs0LSDrfJcqyLlZc

• To simplify the notation, we will switch to studying a generic optimization problem of the form

minimizex f(x), where f(x) =
1

n

n∑
i=1

fi(x), (1)

with fi(·) being generic functions, and x ∈ Rd being the vector of parameters being optimized (not to
be confused with xt in classification and regression – rather, the x here plays the role of θ there).

• The algorithms that we can discuss can also be applied to more general f(x) that don’t decompose
into a sum from i = 1 to n, but this decomposition is so ubiquitous in machine learning that it deserves
special attention.

2 Gradient Descent and its Variants

In this section, we assume that each fi (and hence f) is differentiable. We will discuss non-differentiable
functions in the next section.

Gradient descent.

• The idea of gradient descent is simple: Picturing the function being optimized as a “landscape”, and
starting in some initial location, try to repeatedly “step downhill” until the minimum is reached.

• Formally, the parameters x are repeatedly updated as follows:

xnext = x− η · ∇f(x),

where ∇f =
[
∂f
∂x1

, . . . , ∂f∂xd

]T is the gradient vector associated with f , and η > 0 is a step size (i.e.,
dictating how large the steps are that we are taking).

– In what sense is moving in the −∇f moving downhill? To answer this, consider taking a very
small step from x in some direction ∆ (with ‖∆‖ = 1) to obtain x + ε∆, where ε� 1.

– By a first-order Taylor expansion, we have

f(x + ε∆) = f(x) + ε〈∇f,∆〉+O(ε2).

– Since ε � 1, we can treat the O(ε2) term as negligible. So if we want f(x + ε∆) to be as small
as possible, then we want 〈∇f(x),∆〉 to be as negative as possible.

– But the Cauchy-Schwartz inequality states that |〈∇f(x),∆〉| ≤ ‖∇f(x)‖ · ‖∆‖, with equality if
and only if ∆ = c∇f(x) for some constant c.

– Hence, the most negative value of ‖∇f(x)‖ · ‖∆‖ = −‖∇f(x)‖ (recall that ‖∆‖ = 1) is obtained
when ∆ points in the −∇f direction.

2

• An illustration of minimizing a 2D function (d = 2):

– The algorithm starts near the top of the figure, then slowly “steps downhill” until it arrives at the
black ‘X’ point.

• Of course, in general, this strategy could get stuck in a suboptimal local minimum:

On the other hand, if f(x) is a convex function, then there is any local minimum is guaranteed to be
a global minimum.

Stochastic gradient descent.

• Substituting f(x) = 1
n

∑n
i=1 fi(x) into the gradient descent update equation gives

xnext = x− η · 1

n

n∑
i=1

∇fi(x),

since the gradient of a sum is the sum of gradients.

• For large n (i.e., “big data”, as is often the case in modern applications), this causes computational
headaches – we sum n terms on every iteration, but each step might not actually be gaining us much!

• A more efficient (but “noisier”) alternative for large n is stochastic gradient descent:

xnext = x− η · ∇fi(x),

where we have some method for sequentially selecting t (e.g., cycle through {1, . . . , n} in order, or just
perform uniformly random selection).

3

– Compared to gradient descent, the average over i = 1, . . . , n is replaced by a single index i. So
“on average” (with respect to t) we are still performing the correct update.

– As we will illustrate below, the SGD iterates can “jump around” more throughout the updates.
In fact, this is not an entirely bad thing – it can help in escaping local minima.

• In practice, it is most common to take an approach in between the extremes of GD and SGD, and
average over a mini-batch of indices, I ⊂ {1, . . . , n} of some fixed size (e.g., 5, 10, or 20). This leads
to mini-batch stochastic gradient descent:

xnext = x− η · 1

|I|
∑
i∈I
∇fi(x),

where again, there is some flexibility in how to choose I (e.g., it could contain a fixed number of
randomly-chosen indices).

– Setting |I| = n gives gradient descent, and setting |I| = 1 gives stochastic gradient descent.

Example: Logistic regression

• Recall that in logistic regression, we wish to solve the following:

min
θ,θ0

n∑
t=1

log
(
1 + exp(−yt(θTxt + θ0))

)
.

Note that mapping this to our generic notation f(x) requires substituting x = [θT θ0]T .

• The relevant derivatives are evaluated as follows (details omitted):

∂

∂θ0
log
(
1 + exp(−yt(θTxt + θ0))

)
= −yt(1− P (yt|xt;θ, θ0))

∂

∂θ
log
(
1 + exp(−yt(θTxt + θ0))

)
= −ytxt(1− P (yt|xt;θ, θ0)),

where ∂
∂θ denotes a gradient vector (a length-d vector whose i-th entry contains the ∂

∂θi
term).

• Gradient descent updates:

θ0,next = θ0 + η · 1

n

n∑
t=1

yt(1− P (yt|xt;θ, θ0))

θnext = θ + η =
1

n

n∑
t=1

ytxt(1− P (yt|xt;θ, θ0))

• Stochastic gradient descent updates (without mini-batches):

θ0,next = θ0 + η · yt(1− P (yt|xt;θ, θ0))

θnext = θ + η · ytxt(1− P (yt|xt;θ, θ0)).

• An example illustration of how the θ parameters behave throughout the updates is as follows:

4

✓1

✓2

✓(0)

✓(final)

GD

SGD

– Notice that both move solutions towards the same direction (namely, towards the [1,−1]T direc-
tion), but SGD does so in a much more erratic manner. We could make its behavior somewhat
less erratic by using mini-batches and/or reducing the step size over time.

3 Non-Differentiable Functions

Non-differentiability and subgradients.

• Even in the special case of convex optimization, the objective function f(x) may be non-differentiable.
Some examples in the 1D case are as follows (e.g., hinge loss on the left):

• Fortunately, for convex functions, we can introduce a generalized gradient-like notion that is well-
defined at all points, and use it in place of the gradient.

• Specifically, for a convex function, the subgradient is defined as follows:

∂f(x) = {g ∈ Rd : f(x′) ≥ f(x) + 〈g,x′ − x〉,∀x′}

– Note that ∂f(x) is a set of vectors, not (necessarily) just a single vector

– On the other hand, if f is differentiable at x, then ∂f(x) = {∇f(x)}, i.e., the gradient is the only
element in the set defining the subgradient.

• Example: In a 1D setting, suppose that f(x) = |x|. Then for x < 0 we have ∂f(x) = −1, for x > 0

we have ∂f(x) = 1, and for x = 0 we have ∂f(x) = [−1, 1]. This is because for any m ∈ [−1, 1], there

5

exists a slope of gradient m passing through (0, 0) and lying below the entire function. An illustration:

Subgradient-based optimization.

• The subgradient method iteratively updates as follows:

xnext = x− ηg,

where g is any subgradient of x (i.e., g ∈ ∂f(x)).

• If f is differentiable, then this reduces to regular gradient descent, since ∂f(x) = {∇f(x)}. Stochastic
variants also follow in the same way as above.

• More generally, the idea is clearly similar, in the sense of trying to step downhill. However, while
gradient descent can be shown to literally descend (i.e., f(x1) ≥ f(x2) ≥ . . .) under mild technical
conditions, this is not always the case for the subgradient method (see the tutorial).

• Hence, instead of just returning the final x (denoted by xK after K iterations), it may be better to
keep track of all x1, . . . ,xK and return the one with the lowest f(·) value.

4 Convergence Analysis

Notes.

• In general, proving that an optimization algorithm converges (ideally to the optimal value) requires
making smoothness assumptions on the function f . Common assumptions include differentiability, con-
vexity, Lipschitz continuity, strong convexity, and less straightforward notions such as self-concordance
(we will not define these here).

• Here we present just one example of a convergence analysis, considering a slight variation of the
subgradient method in which the step size may vary from iteration to iteration:

xk+1 = xk − ηkgk,

where gk is any subgradient of xk.

Formal statement.

6

• We make the following assumptions:

1. f is convex;

2. There exists some x∗ achieving minx∈Rd f(x);

3. Lipschitz condition: ‖g‖ ≤M for any subgradient g corresponding to any x;

4. The initialization x(1) satisfies ‖x(1) − x∗‖ ≤ R for some finite R.

• Theorem. Under the preceding assumptions, using the subgradient method with any sequence of step
sizes {ηk}∞k=1 satisfying limk→∞ ηk = 0 and limK→∞

∑∞
k=1 ηk =∞, we have

min
k=1,...,K

f(xK)→ f(x∗)

as k →∞.

• In optimization theory, one is not only interested in converging to f(x∗), but also the convergence rate
(i.e., how fast it gets there). This is discussed briefly after the proof.

Proof of the theorem:

• We start by establishing how close the (k + 1)-th iterate is to x∗ as a function of the k-th iterate:

1

2
‖xk+1 − x∗‖2 (a)

=
1

2
‖xk − ηkgk − x∗‖2

(b)
=

1

2
‖xk − x∗‖2 − ηkgTk (xk − x∗) +

η2k
2
‖gk‖2

(c)

≤ 1

2
‖xk − x∗‖2 − ηk(f(xk)− f(x∗)) +

η2k
2
‖gk‖2.

where (a) substitutes the subgradient method’s update rule, (b) expands the square, and (c) uses the
definition of subgradient for convex functions, i.e., f(xk) ≥ f(x∗) + gTk (xk − x∗) (to visualize in the
1D case, this is just the fact that the tangent curve lies below the function).

• Re-arranging the above gives

ηk(f(xk)− f(x∗)) ≤ 1

2
‖xk − x∗‖2 − 1

2
‖xk+1 − x∗‖2 +

η2k
2
‖gk‖2,

and summing from k = 1 to any fixed iteration index K gives

K∑
k=1

ηk(f(xk)− f(x∗))
(d)

≤ 1

2
‖x1 − x∗‖2 − 1

2
‖xK+1 − x∗‖2 +

K∑
k=1

η2k
2
‖gk‖2

(e)

≤ 1

2
‖x1 − x∗‖2 +

K∑
k=1

η2k
2
‖gk‖2,

(e)

≤ 1

2
R2 +

1

2
M2

K∑
k=1

η2k,

where (d) uses the fact that the addition (first term) and subtraction (second term) of each ‖xi−x∗‖2

cancels to zero (except for i = 1 and i = K + 1), (e) applies the trivial bound ‖ · ‖2 ≥ 0, and (f) uses
the assumptions ‖g‖ ≤M and ‖x1 − x∗‖ ≤ R.

7

• Now consider what the best xk found so far is. Since the minimum is certainly less than (or at least
no higher than) any weighted average, we have

(K∑
k=1

ηk

)(
min

k=1,...,K
(f(xk)− f(x∗))

)
≤

K∑
k=1

ηk(f(xk)− f(x∗)),

and combining this with the above inequality gives

min
k=1,...,K

(f(xk)− f(x∗)) ≤
1
2R

2 + 1
2M

2
∑K
k=1 η

2
k∑K

k=1 ηk
.

• It is straightforward to show that if the sequence ηk satisfies both ηk → 0 (as k →∞) and
∑K
k=1 ηk →∞

(as K → ∞), then the ratios
1
2R

2∑K
k=1 ηk

and
1
2M

2 ∑K
k=1 η

2
k∑K

k=1 ηk
both approach zero as K → ∞ (the former is

immediate, and the letter is essentially because η2 � η when η is small). Hence,

min
k=1,...,K

(f(xk)− f(x∗))→ 0 as K →∞

which proves the theorem.

Convergence rate and extensions.

• Some choices of {ηk} are investigated in the tutorial, with a good choice being ηk = η0√
k
, and yielding

a convergence to zero at rate O
(
logK√
K

)
.

• A sharper analysis can also give O
(

1√
K

)
, which is in fact the best possible for the standard subgradient

method without further assumptions. On the other hand, if further smoothness assumptions are
imposed (e.g., differentiability, strong convexity, etc.) and/or a more sophisticated gradient algorithm
is used, then improvements such as O

(
1
K

)
or even O(e−cK) are possible.

• The above analysis can be extended to stochastic versions of the subgradient method (i.e., gk is random
and satisfies E[gk|xk] ∈ ∂f(xk)), and a projected version for constrained optimization (see below).

5 More Advanced Variants

Projected gradient methods for constrained problems:

• As we discussed in the previous lecture, optimization problems are often constrained, taking the form

minimize f(x) subject to x ∈ C,

where C is some constraint set. For instance, in the formulation of the previous lecture, the set would
be C = {x ∈ Rd : fi(x) ≤ 0,∀i and hi(x) = 0,∀i}.Li

• In this case, we can easily modify the above gradient-based methods to the following:

xnext = ΠC(x− ηg),

where g = ∇f(x) (gradient descent) or g ∈ ∂f(x) (subgradient descent), and ΠC(·) is a projection
operator onto the set C. That is, ΠC(x

′) is the point in C that is closest to x′.

8

– Example: If C is the set of x satisfying ai ≤ xi ≤ bi for i = 1, . . . , d, then the projection operation
keeps the i-th coordinate unchanged if it is already in [ai, bi], rounds up to ai when below this
range, or rounds down to bi when above this range.

• The convergence analysis of the previous section easily extends to this variant with projection, under
the same assumptions along with the assumption that C is a convex set. In fact, we can fairly easily
additionally generalize from subgradients (g ∈ ∂f(x)) to stochastic subgradients (g is random and
E[g|x] ∈ ∂f(x)) – see the tutorial.

Other more advanced variants. We have only scratched the surface of optimization algorithms, and the
topic could easily fill multiple entire courses. Below, just a small sample of additional concepts are outlined
that we do not cover:

• Line search: Instead of specifying a fixed step size or a fixed sequence, one can use a method called
line search to try to automatically take a good step size on each iteration (essentially, trying multiple
step sizes and choosing a good one based on the resulting function values). This can be more effective,
but also increases the computation.

• Momentum: One way to overcome erratic/oscillatory behavior is through the use of momentum, which
updates as follows for some γ ∈ [0, 1]:

vk = η∇f(xk) + γvk−1

xk+1 = xk − ηvk.

– Setting γ = 0 recovers regular gradient descent, whereas typically γ is around 0.9.

– The inclusion of γvk−1 amounts to remembering part of the previous update and including it.

– Intuitively, if the solution is jumping back and forth among some direct, then combining the new
gradient ∇f(xk) with the previous term γvk−1 helps to “dampen” this (e.g., negative and positive
terms cancel). An illustration (with ellipses representing “level sets”, like on a contour map)

• Further algorithms: More sophisticated gradient-based methods are frequently used in the op-
timization of neural networks (e.g., Adagrad, RMSprop, Adam). See https://ruder.io/

optimizing-gradient-descent/ for a useful summary.

• Distributed algorithms: A variety of parallel and distributed optimization algorithms exist, which are
beneficial when the required computation is to expensive for a single machine.

9

https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/

• Second-order methods: Second-order methods exist that exploit second-derivative information (e.g.,
Newton or Newton-like methods). Standard forms of these are not suited to large-scale machine learn-
ing, since a d-dimensional function has O(d2) second derivatives (as opposed to only O(d) gradients)
of the form ∂2f

∂xi∂xj
, but lower-computation approximations can still be suitable.

• Zero-th order methods: In some cases, we don’t have the luxury of having access to gradients (e.g.,
because the function value itself is the output of a procedure that has no mathematical description to
“take the derivative of”). For such settings, there exist zero-th order methods (also known as black-box
optimization) that optimize using only queries to f(·).

10

	Introduction
	Gradient Descent and its Variants
	Non-Differentiable Functions
	Convergence Analysis
	More Advanced Variants

