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Useful references:
e Blog post by Jeremy Kunﬂ
e First section of Boucheron et al.’s “Concentration Inequalities” notes’]

e Appendix B of “Understanding Machine Learning” book

1 Introduction

e Given a random variable Y, how “concentrated” is Y (e.g., around its mean)?

e Rough statement: Suppose that we can find a deterministic value m, such that
P[|Y — m| > t] < TailBound(t)

where TailBound(t) decreases drastically to 0 in ¢.
— Typically m = E[Y], and often TailBound(t) decreases exponentially, such as TailBound(t) ~ e~
or TailBound(t) ~ e=" for some ¢ > 0.

— In statistics, Y can be the estimation/prediction error. In computer science, Y can be the outcomes
of randomized algorithms. There are many other applications in information theory, statistical

physics, random matrices, statistical learning theory, etc.

e Simple example: Suppose Y;, = 2 37" | X, where the X; are i.i.d. with mean p and variance o2.

— Law of Large Numbers: P[|Y,, — u| > €] — 0 as n — oo.

— Central Limit Theorem: P[|Y,, — u| > %] — 20(— 2) as n — oo, where ® is the standard
normal CDF.

— Large Deviations: Under some technical assumptions, P[|Y;, — pu| > €] < e ™%(©) for some
1(€) > 0. This type of result is the focus of this lecture.

— Moderate Deviations: Decay rate of P[|Y,, — u| > €,] when €, — 0 sufficiently slowly so that

€n /1 — 00.

Thttp://jeremykun.com/2013/04/15/probabilistic-bounds-a-primer/
%http://www.econ.upf.edu/~lugosi/mlss_conc.pdf


http://jeremykun.com/2013/04/15/probabilistic-bounds-a-primer/
http://www.econ.upf.edu/~lugosi/mlss_conc.pdf

e In many applications, we want the bounds to be non-asymptotic (i.e., holding for any n, as opposed to

only in the limit n — 00).

2 Basic Inequalities

e Markov’s inequality. Let Z be a nonnegative random variable. Then P[Z > t] < @.
— Proof:
oo
P2 > = / F2(2) 1z > t}d=
0
>z
< / ;fz(z)l{z >t}dz
0
< EfZ(,z)dz
o 1
_E[Z]
ral

— This result definitely doesn’t hold in general for RVs that can take negative values (e.g., take

Z ~ N(0,1) as a counter-example).

e Markov’s inequality applied to functions: Let ¢ denote any non-decreasing and non-negative function.

Let Z be any random variable. Then Markov’s inequality gives

PLZ > 1] < Pl6(2) 2 0(0)] < =252,

where the first inequality uses the non-decreasing property, and the second uses Markov’s inequality

and the non-negative property.

e Chebyshev’s inequality: Choose ¢(t) = t?, and replace Z by |Z — E[Z]|. Then

Var[Z]
2

P[|Z —E[Z]| > ] <

e Chernoff bound: Choose ¢(t) = e where A\ > 0. Then we have
P[Z > t] < e ME[eM].

Despite being a simple application of Markov’s inequality, this bound is extremely useful.

3 Simplifying the Chernoff Bound

Rewriting the bound.

e The log-moment-generating function ¥z (\) of a random variable Z is defined as
Yz (N) = log E[eM], A > 0.

Observe that the Chernoff bound above can be written as P[Z > t] < e~(M=¥z(\),



— Note: If E[e’] = oo for some A, then this value of A does not give a meaningful bound (but a
smaller A might be OK). If Z is sufficiently heavy-tailed, it could even be that E[e*?] = oo for all
A > 0, in which case, the Chernoff bound cannot be used.

e The Cramér transform of Z is defined as
Yz (t) = sup (M — 1z (). (1)
A>0

By a direct substitution, setting A = 0 would make the right-hand term zero, so since we are maximizing
over all A > 0, we conclude that ¥ () > 0 for all ¢.

e By simply optimizing over all A in the Chernoff bound, we have for any random variable Z that
P[Z > 1] < exp(—¢z(1)).
This is known as the Cramér-Chernoff Inequality.

Sums of independent random variables.

o Let Z=X; +---+ X,, where {X;}"; are independent and identically distributed (i.i.d.). We expect

better concentration of Y;, = % to as n increases:

poF oF ¥ COF OF /n

o Chebyshev’s inequality on the sum: We have Var[Z] = nVar[X] (by the i.i.d. assumption), and hence
Chebyshev’s inequality with ¢ = ne gives

Var[X]

P[i!Z—E[ZH >e} < —

— This is an O(%) probability of a “large” deviation, which can be useful but is typically not the
best possible.

o Cramér-Chernoff inequality on the sum: We have
Yz(\) = logE[e?M] = logE[e)‘ 2 X’] = logE{H eAX’}

= logﬁE[e’\Xﬂ = log (E[e)‘x])n =nihx(N),



where in the second line we used independence and then the identical distribution property. Then the

Cramér-Chernoff inequality with ¢ = ne gives
P[Z > ne] < exp (— nyk(€)).

— This is looking better — exponential decay!

— But 9% (¢) is a bit complicated (it is not a closed-form formula, and it involves an optimization

over \) — can we simplify further?
o A simple case: Gaussian random variables.

— Let X ~ N(0,0?).

— A direct computation yields ¥x(\) =

—’\22"2 (this requires a bit of integration).

— Substituting into , we get the expression A\t — # Setting the derivative to zero gives the

t2

optimal \* = ﬁ, and hence ¢ (t) = 5 5.

— Therefore,

t2
P[X > t] < exp (—22> .
o

Since X and —X have the same distribution, the union bound Pr[A U B] < Pr[A] + Pr[B] gives

t2
PllX| >t <2 -
151 6 < 2ex0 (=55 ).

or, when we sum n independent copies Z = X1 +--- + X,,,

TL€2
Pl|Z| > <2 —-— .
1212 ne] < 200 (355 )

Since this example appears so frequently, it is used as a baseline for a much larger class of

distributions with similar concentration behavior.

4 Sub-Gaussian Random Variables and Hoeffding’s Inequality

Sub-Gaussian Random Variables.

e From the definition in along with the above Gaussian example, we find that if ¥ x (\) < >‘22”2, then
i (t) > % This motivates the following definition.

e Definition. A zero-mean random variable X is said to be sub-Gaussian with parameter o2 if 1 x () <

>‘22"2, VA > 0. Denote the set of all such random variables by G(a?).

e Properties of sub-Gaussian random variables:

202

1. P[|X| >t] < 2exp (—i) (as we already proved for Gaussians)

2. If X; € G(o?) are independent, then .1 | a;X; € G( Y1 | a?o?) (just like with Gaussians)

The straightforward proofs of these properties are omitted.



e Combining these properties (with ¢ = ne), we find that if 7 = X; + ... + X,, where the X, are

independent and sub-Gaussian with parameter o2, then

ne

2
Pl|Z| > <2 e
1212 e < 20w (35 ).

just like the sum of n independent Gaussians.

Bounded Random Variables.

e An important class of sub-Gaussian random variables is the class of bounded random variables.

e Theorem. Let X be a random variable with E[X] = 0, taking values in a bounded interval [a, b].

Then we have X € g(%).

— A proof outline is below, with the details left as an optional tutorial exercise.

e Using this result and the first sub-Gaussian property above, we find that for X € [a, ],

P[|X —E[X]| > t] <2exp (- (1;2—]52(1)2)

— Although the theorem assumed E[X] = 0, we can always replace X by X — u and [a,b] by
[@ — p, b — p], which clearly doesn’t change b — a.

Using a similar argument along with the fact that sums of sub-Gaussian variables are sub-Gaussian,

we obtain the following.

e Corollary (Hoeffding’s inequality) Let Z = X; + --- + X,,, where the X; are independent and
supported on [a;, b;]. Then

PE}Z—E[ZH > e} < 2exp (— iZZi?gj—ai)Q)

5 Proof Outline: Bounded RVs are Sub-Gaussian

e Main steps of the proof.

1. Prove that Var[Z] < % for any Z bounded on [a, b].

2. Show ¥x(0) = 0, ¥ (0) = 0, and ¢¥%(\) = Var[Z], where Z is a random variable with PDF
fz(2) = e7¥xNeA2 fy(2); hence Yk (N) < % by Step 1.

3. Taylor expand ¥x(A) = ¥x(0) + M\ (0) + A;w’;((e) (for some 0 € [0, A]) and substitute Step 2

to upper bound this by § . %'

e The details are left as an optional tutorial exercise.

6 Example Applications

Example 1: Typical Sequences.



Let (Uy,...,U,) be ii.d. random variables drawn from a PMF Py. Assume that U is integer-valued

and finite, only taking values {1,...,m} for some integer m.

Question. How many occurrences of each value v € {1,...,m} occur?

Let Z, = >, 1{U; = u}. This is a sum of i.i.d. random variables bounded within [0,1], and
E[Z,] = nPy(u). So by Hoeffding’s inequality,

IP’HZu — nPU(u)| > ne] < 2e~2n¢”

Since there are m values that U can take, the union bound gives

P[ U {|ZunPU(u)|2ne}}§2m-62"62.

u=1,....m

2m
Re-arranging, we find that probability is upper bounded by § > 0 under the choice ¢ = lOgQTj .
1
2e2

Equivalently, if n > log 277”, then the above probability is at most d.

e The above findings can be viewed in at least two ways:

— With high probability, all of the counts are within O( v/nlogm) of their mean as n grows large.

— For the counts to deviate from their mean by at most ne with high probability, it suffices to have

1
n = constant X =™ samples.

Example 2: Graph Degree.

e As an exercise, see if you can use the analysis of Example 1 to bound the maximum degree in a random

graph with high probability.

— More precisely, consider a random graph with n nodes, in which each given edge is present with
probability p (independent from all other edges). The edges have no direction, so there are (3)

potential edges, and the average number of edges is p(g)

— The degree of a node is defined as the number of edges attached to that node. For a given node,

its mean is (n — 1)p. The maximum degree of the graph is the highest degree among the n nodes.
Example 3: Network Tomography.

e Network tomography problem:

Source

Loss probability pi11

o Hidden
@ Observed

X1 X2 X3 X4 X5 X6 X7 X8



— Starting at the source, a packet is sent along both branches following the arrows until hitting the

leaves (shown in red)
— Each link has a probability of the packet being lost (independent of all other links)

— We only get to observe which packets ended up arriving at the leaves.
e In the case of n packets and p leaf nodes, define

— X,ii) = 1{packet i arrives at node k} fori=1,--- ;nand k=1,--- ,p

— Goal: Given these n independent samples, reconstruct the tree structure.
e Outline of analysis in the paper [Ni, 2011]E|

— Show that the tree can be recovered from the values gx; = P[packet reaches xj, and ;]
— Show robustness, in the sense that any § with |§r; — qxi| < € suffices

— Set gu =+3", 1{X,§i) =1N Xl(i) = 1}, and bound using Hoeffding’s inequality:
P[ldr — qri| > €] < 2exp(—2ne?).
— Apply the union bound over the (’2’) < %pZ possible pairs of leaf nodes to conclude that Plerror] < §
as long as n > ﬁ log %.
Example 4: Statistical Learning Theory.

e ...see the next lecture!

7 Bounded Differences

(This section is included for the sake of interest, but we will not make use of it)

e A function f: X™ — R has the bounded differences property if, for some positive c1, .., ¢y,

sup lf(@1, @iy ooy ) — (@1, 0, @y )| < 4
T1, T, TG €EX

for all 4 =1,...,n. This means that changing any single input value does not change the output value

too much.
e Example. Let V = {1,--- ,n}, and let G be a random graph such that each pair ¢, j € V is independently
connected with probability p. Let

1 (¢,7) are connected

0 otherwise.

The chromatic number of G is the minimum number of colors needed to color the vertices such that

no two connected vertices have the same color. Writing

chromatic number = f(Xq1,---, X5, , Xun),

3The first two steps here are not obvious nor particularly easy to prove, so let’s take them for granted and focus on the
concentration part (third step).



we find that f satisfies the bounded difference property with ¢;; = 1.
— Countless other examples also exist

e Theorem (McDiarmid’s Inequality). Let X, ..., X, be independent random variables, and let f
satisfy the bounded differences property with ¢;’s. Then

2
P(If(X1, 00, Xp) — E[f(X1, .., Xn)]| > £) < 2exp ( - Z?fcz>

— A very useful generalization of Hoeffding’s inequality (which is recovered from this result by

choosing f(z1,...,2,) = Y., x; when the random variables satisfy X; € [a;, b;]).

— Harder to prove (beyond the scope of this course)
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