CS5339 Notes \#8:

A Detour Into Concentration of Measure

Jonathan Scarlett

April 3, 2021

Useful references:

- Blog post by Jeremy Kun ${ }^{1}$
- First section of Boucheron et al.'s "Concentration Inequalities" notes ${ }^{2}$
- Appendix B of "Understanding Machine Learning" book

1 Introduction

- Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?
- Rough statement: Suppose that we can find a deterministic value m, such that

$$
\mathbb{P}[|Y-m|>t] \leq \operatorname{TailBound}(t)
$$

where TailBound (t) decreases drastically to 0 in t.

- Typically $m=\mathbb{E}[Y]$, and often TailBound (t) decreases exponentially, such as TailBound $(t) \sim e^{-c t}$ or TailBound $(t) \sim e^{-c t^{2}}$ for some $c>0$.
- In statistics, Y can be the estimation/prediction error. In computer science, Y can be the outcomes of randomized algorithms. There are many other applications in information theory, statistical physics, random matrices, statistical learning theory, etc.
- Simple example: Suppose $Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, where the X_{i} are i.i.d. with mean μ and variance σ^{2}.
- Law of Large Numbers: $\mathbb{P}\left[\left|Y_{n}-\mu\right|>\epsilon\right] \rightarrow 0$ as $n \rightarrow \infty$.
- Central Limit Theorem: $\mathbb{P}\left[\left|Y_{n}-\mu\right|>\frac{\alpha}{\sqrt{n}}\right] \rightarrow 2 \Phi\left(-\frac{\alpha}{\sigma}\right)$ as $n \rightarrow \infty$, where Φ is the standard normal CDF.
- Large Deviations: Under some technical assumptions, $\mathbb{P}\left[\left|Y_{n}-\mu\right|>\epsilon\right] \leq e^{-n \cdot \psi(\epsilon)}$ for some $\psi(\epsilon)>0$. This type of result is the focus of this lecture.
- Moderate Deviations: Decay rate of $\mathbb{P}\left[\left|Y_{n}-\mu\right|>\epsilon_{n}\right]$ when $\epsilon_{n} \rightarrow 0$ sufficiently slowly so that $\epsilon_{n} \sqrt{n} \rightarrow \infty$.

[^0]- In many applications, we want the bounds to be non-asymptotic (i.e., holding for any n, as opposed to only in the limit $n \rightarrow \infty$).

2 Basic Inequalities

- Markov's inequality. Let Z be a nonnegative random variable. Then $\mathbb{P}[Z \geq t] \leq \frac{\mathbb{E}[Z]}{t}$.
- Proof:

$$
\begin{aligned}
\mathbb{P}[Z \geq t] & =\int_{0}^{\infty} f_{Z}(z) \mathbf{1}\{z \geq t\} d z \\
& \leq \int_{0}^{\infty} \frac{z}{t} f_{Z}(z) \mathbf{1}\{z \geq t\} d z \\
& \leq \int_{0}^{\infty} \frac{z}{t} f_{Z}(z) d z \\
& =\frac{\mathbb{E}[Z]}{t}
\end{aligned}
$$

- This result definitely doesn't hold in general for RVs that can take negative values (e.g., take $Z \sim N(0,1)$ as a counter-example).
- Markov's inequality applied to functions: Let ϕ denote any non-decreasing and non-negative function. Let Z be any random variable. Then Markov's inequality gives

$$
\mathbb{P}[Z \geq t] \leq \mathbb{P}[\phi(Z) \geq \phi(t)] \leq \frac{\mathbb{E}[\phi(Z)]}{\phi(t)}
$$

where the first inequality uses the non-decreasing property, and the second uses Markov's inequality and the non-negative property.

- Chebyshev's inequality: Choose $\phi(t)=t^{2}$, and replace Z by $|Z-\mathbb{E}[Z]|$. Then

$$
\mathbb{P}[|Z-\mathbb{E}[Z]| \geq t] \leq \frac{\operatorname{Var}[Z]}{t^{2}}
$$

- Chernoff bound: Choose $\phi(t)=e^{\lambda t}$ where $\lambda \geq 0$. Then we have

$$
\mathbb{P}[Z \geq t] \leq e^{-\lambda t} \mathbb{E}\left[e^{\lambda Z}\right]
$$

Despite being a simple application of Markov's inequality, this bound is extremely useful.

3 Simplifying the Chernoff Bound

Rewriting the bound.

- The log-moment-generating function $\psi_{Z}(\lambda)$ of a random variable Z is defined as

$$
\psi_{Z}(\lambda)=\log \mathbb{E}\left[e^{\lambda Z}\right], \quad \lambda \geq 0
$$

Observe that the Chernoff bound above can be written as $\mathbb{P}[Z \geq t] \leq e^{-\left(\lambda t-\psi_{Z}(\lambda)\right)}$.

- Note: If $\mathbb{E}\left[e^{\lambda Z}\right]=\infty$ for some λ, then this value of λ does not give a meaningful bound (but a smaller λ might be OK). If Z is sufficiently heavy-tailed, it could even be that $\mathbb{E}\left[e^{\lambda Z}\right]=\infty$ for all $\lambda>0$, in which case, the Chernoff bound cannot be used.
- The Cramér transform of Z is defined as

$$
\begin{equation*}
\psi_{Z}^{*}(t)=\sup _{\lambda \geq 0}\left(\lambda t-\psi_{Z}(\lambda)\right) \tag{1}
\end{equation*}
$$

By a direct substitution, setting $\lambda=0$ would make the right-hand term zero, so since we are maximizing over all $\lambda \geq 0$, we conclude that $\psi_{Z}^{*}(t) \geq 0$ for all t.

- By simply optimizing over all λ in the Chernoff bound, we have for any random variable Z that

$$
\mathbb{P}[Z \geq t] \leq \exp \left(-\psi_{Z}^{*}(t)\right)
$$

This is known as the Cramér-Chernoff Inequality.

Sums of independent random variables.

- Let $Z=X_{1}+\cdots+X_{n}$ where $\left\{X_{i}\right\}_{i=1}^{n}$ are independent and identically distributed (i.i.d.). We expect better concentration of $Y_{n}=\frac{Z}{n}$ to as n increases:

- Chebyshev's inequality on the sum: We have $\operatorname{Var}[Z]=n \operatorname{Var}[X]$ (by the i.i.d. assumption), and hence Chebyshev's inequality with $t=n \epsilon$ gives

$$
\mathbb{P}\left[\frac{1}{n}|Z-\mathbb{E}[Z]| \geq \epsilon\right] \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}
$$

- This is an $O\left(\frac{1}{n}\right)$ probability of a "large" deviation, which can be useful but is typically not the best possible.
- Cramér-Chernoff inequality on the sum: We have

$$
\begin{aligned}
\psi_{Z}(\lambda) & =\log \mathbb{E}\left[e^{\lambda Z}\right]=\log \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\log \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] \\
& =\log \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]=\log \left(\mathbb{E}\left[e^{\lambda X}\right]\right)^{n}=n \psi_{X}(\lambda),
\end{aligned}
$$

where in the second line we used independence and then the identical distribution property. Then the Cramér-Chernoff inequality with $t=n \epsilon$ gives

$$
\mathbb{P}[Z \geq n \epsilon] \leq \exp \left(-n \psi_{X}^{*}(\epsilon)\right)
$$

- This is looking better - exponential decay!
- But $\psi_{X}^{*}(\epsilon)$ is a bit complicated (it is not a closed-form formula, and it involves an optimization over λ) - can we simplify further?
- A simple case: Gaussian random variables.
- Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
- A direct computation yields $\psi_{X}(\lambda)=\frac{\lambda^{2} \sigma^{2}}{2}$ (this requires a bit of integration).
- Substituting into (11), we get the expression $\lambda t-\frac{\lambda^{2} \sigma^{2}}{2}$. Setting the derivative to zero gives the optimal $\lambda^{*}=\frac{t}{\sigma^{2}}$, and hence $\psi_{X}^{*}(t)=\frac{t^{2}}{2 \sigma^{2}}$.
- Therefore,

$$
\mathbb{P}[X \geq t] \leq \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

Since X and $-X$ have the same distribution, the union bound $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$ gives

$$
\mathbb{P}[|X| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

or, when we sum n independent copies $Z=X_{1}+\cdots+X_{n}$,

$$
\mathbb{P}[|Z| \geq n \epsilon] \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right)
$$

Since this example appears so frequently, it is used as a baseline for a much larger class of distributions with similar concentration behavior.

4 Sub-Gaussian Random Variables and Hoeffding's Inequality

Sub-Gaussian Random Variables.

- From the definition in (1) along with the above Gaussian example, we find that if $\psi_{X}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}$, then $\psi_{X}^{*}(t) \geq \frac{t^{2}}{2 \sigma^{2}}$. This motivates the following definition.
- Definition. A zero-mean random variable X is said to be sub-Gaussian with parameter σ^{2} if $\psi_{X}(\lambda) \leq$ $\frac{\lambda^{2} \sigma^{2}}{2}, \forall \lambda>0$. Denote the set of all such random variables by $\mathcal{G}\left(\sigma^{2}\right)$.
- Properties of sub-Gaussian random variables:

1. $\mathbb{P}[|X| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)$ (as we already proved for Gaussians)
2. If $X_{i} \in \mathcal{G}\left(\sigma_{i}^{2}\right)$ are independent, then $\sum_{i=1}^{n} a_{i} X_{i} \in \mathcal{G}\left(\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)$ (just like with Gaussians)

The straightforward proofs of these properties are omitted.

- Combining these properties (with $t=n \epsilon$), we find that if $Z=X_{1}+\ldots+X_{n}$ where the X_{i} are independent and sub-Gaussian with parameter σ^{2}, then

$$
\mathbb{P}[|Z| \geq n \epsilon] \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right),
$$

just like the sum of n independent Gaussians.

Bounded Random Variables.

- An important class of sub-Gaussian random variables is the class of bounded random variables.
- Theorem. Let X be a random variable with $\mathbb{E}[X]=0$, taking values in a bounded interval $[a, b]$. Then we have $X \in \mathcal{G}\left(\frac{(b-a)^{2}}{4}\right)$.
- A proof outline is below, with the details left as an optional tutorial exercise.
- Using this result and the first sub-Gaussian property above, we find that for $X \in[a, b]$,

$$
\mathbb{P}[|X-\mathbb{E}[X]|>t] \leq 2 \exp \left(-\frac{2 t^{2}}{(b-a)^{2}}\right)
$$

- Although the theorem assumed $\mathbb{E}[X]=0$, we can always replace X by $X-\mu$ and $[a, b]$ by $[a-\mu, b-\mu$], which clearly doesn't change $b-a$.

Using a similar argument along with the fact that sums of sub-Gaussian variables are sub-Gaussian, we obtain the following.

- Corollary (Hoeffding's inequality) Let $Z=X_{1}+\cdots+X_{n}$, where the X_{i} are independent and supported on $\left[a_{i}, b_{i}\right]$. Then

$$
\mathbb{P}\left[\frac{1}{n}|Z-\mathbb{E}[Z]|>\epsilon\right] \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) .
$$

5 Proof Outline: Bounded RVs are Sub-Gaussian

- Main steps of the proof.

1. Prove that $\operatorname{Var}[Z] \leq \frac{(b-a)^{2}}{4}$ for any Z bounded on $[a, b]$.
2. Show $\psi_{X}(0)=0, \psi_{X}^{\prime}(0)=0$, and $\psi_{X}^{\prime \prime}(\lambda)=\operatorname{Var}[Z]$, where Z is a random variable with PDF $f_{Z}(z)=e^{-\psi_{X}(\lambda)} e^{\lambda z} f_{X}(z)$; hence $\psi_{X}^{\prime \prime}(\lambda) \leq \frac{(b-a)^{2}}{4}$ by Step 1 .
3. Taylor expand $\psi_{X}(\lambda)=\psi_{X}(0)+\lambda \psi_{X}^{\prime}(0)+\frac{\lambda^{2}}{2} \psi_{X}^{\prime \prime}(\theta)$ (for some $\left.\theta \in[0, \lambda]\right)$ and substitute Step 2 to upper bound this by $\frac{\lambda^{2}}{2} \cdot \frac{(b-a)^{2}}{4}$.

- The details are left as an optional tutorial exercise.

6 Example Applications

Example 1: Typical Sequences.

- Let $\left(U_{1}, \ldots, U_{n}\right)$ be i.i.d. random variables drawn from a PMF P_{U}. Assume that U is integer-valued and finite, only taking values $\{1, \ldots, m\}$ for some integer m.
- Question. How many occurrences of each value $u \in\{1, \ldots, m\}$ occur?
- Let $Z_{u}=\sum_{i=1}^{n} \mathbf{1}\left\{U_{i}=u\right\}$. This is a sum of i.i.d. random variables bounded within $[0,1]$, and $\mathbb{E}\left[Z_{u}\right]=n P_{U}(u)$. So by Hoeffding's inequality,

$$
\mathbb{P}\left[\left|Z_{u}-n P_{U}(u)\right| \geq n \epsilon\right] \leq 2 e^{-2 n \epsilon^{2}}
$$

- Since there are m values that U can take, the union bound gives

$$
\mathbb{P}\left[\bigcup_{u=1, \ldots, m}\left\{\left|Z_{u}-n P_{U}(u)\right| \geq n \epsilon\right\}\right] \leq 2 m \cdot e^{-2 n \epsilon^{2}}
$$

Re-arranging, we find that probability is upper bounded by $\delta>0$ under the choice $\epsilon=\sqrt{\frac{\log \frac{2 m}{\delta}}{2 n}}$. Equivalently, if $n \geq \frac{1}{2 \epsilon^{2}} \log \frac{2 m}{\delta}$, then the above probability is at most δ.

- The above findings can be viewed in at least two ways:
- With high probability, all of the counts are within $O(\sqrt{n \log m})$ of their mean as n grows large.
- For the counts to deviate from their mean by at most $n \epsilon$ with high probability, it suffices to have $n=$ constant $\times \frac{\log m}{\epsilon^{2}}$ samples.

Example 2: Graph Degree.

- As an exercise, see if you can use the analysis of Example 1 to bound the maximum degree in a random graph with high probability.
- More precisely, consider a random graph with n nodes, in which each given edge is present with probability p (independent from all other edges). The edges have no direction, so there are ($\left.\begin{array}{l}n \\ 2\end{array}\right)$ potential edges, and the average number of edges is $p\binom{n}{2}$.
- The degree of a node is defined as the number of edges attached to that node. For a given node, its mean is $(n-1) p$. The maximum degree of the graph is the highest degree among the n nodes.

Example 3: Network Tomography.

- Network tomography problem:

- Starting at the source, a packet is sent along both branches following the arrows until hitting the leaves (shown in red)
- Each link has a probability of the packet being lost (independent of all other links)
- We only get to observe which packets ended up arriving at the leaves.
- In the case of n packets and p leaf nodes, define
$-X_{k}^{(i)}=\mathbf{1}\{$ packet i arrives at node $k\}$ for $i=1, \cdots, n$ and $k=1, \cdots, p$
- Goal: Given these n independent samples, reconstruct the tree structure.
- Outline of analysis in the paper $[\mathrm{Ni}, 2011]^{3}$
- Show that the tree can be recovered from the values $q_{k l}=\mathbb{P}\left[\right.$ packet reaches x_{k} and $\left.x_{l}\right]$
- Show robustness, in the sense that any \hat{q} with $\left|\hat{q}_{k l}-q_{k l}\right| \leq \epsilon$ suffices
- Set $\hat{q}_{k l}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{X_{k}^{(i)}=1 \cap X_{l}^{(i)}=1\right\}$, and bound using Hoeffding's inequality:

$$
\mathbb{P}\left[\left|\hat{q}_{k l}-q_{k l}\right|>\epsilon\right] \leq 2 \exp \left(-2 n \epsilon^{2}\right) .
$$

- Apply the union bound over the $\binom{p}{2} \leq \frac{1}{2} p^{2}$ possible pairs of leaf nodes to conclude that $\mathbb{P}[$ error $] \leq \delta$ as long as $n \geq \frac{1}{2 \epsilon^{2}} \log \frac{p^{2}}{2 \delta}$.

Example 4: Statistical Learning Theory.

- ...see the next lecture!

7 Bounded Differences

(This section is included for the sake of interest, but we will not make use of it)

- A function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has the bounded differences property if, for some positive $c_{1}, . ., c_{n}$,

$$
\sup _{x_{1}, \ldots, x_{n}, x_{i}^{\prime} \in \mathcal{X}}\left|f\left(x_{1}, . ., x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for all $i=1, \ldots, n$. This means that changing any single input value does not change the output value too much.

- Example. Let $V=\{1, \cdots, n\}$, and let G be a random graph such that each pair $i, j \in V$ is independently connected with probability p. Let

$$
X_{i j}= \begin{cases}1 & (i, j) \text { are connected } \\ 0 & \text { otherwise }\end{cases}
$$

The chromatic number of G is the minimum number of colors needed to color the vertices such that no two connected vertices have the same color. Writing

$$
\text { chromatic number }=f\left(X_{11}, \cdots, X_{i j}, \cdots, X_{n n}\right),
$$

[^1]we find that f satisfies the bounded difference property with $c_{i j}=1$.

- Countless other examples also exist
- Theorem (McDiarmid's Inequality). Let X_{1}, \ldots, X_{n} be independent random variables, and let f satisfy the bounded differences property with c_{i} 's. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

- A very useful generalization of Hoeffding's inequality (which is recovered from this result by choosing $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}$ when the random variables satisfy $\left.X_{i} \in\left[a_{i}, b_{i}\right]\right)$.
- Harder to prove (beyond the scope of this course)

[^0]: ${ }^{1}$ http://jeremykun.com/2013/04/15/probabilistic-bounds-a-primer/
 ${ }^{2}$ http://www.econ.upf.edu/~lugosi/mlss_conc.pdf

[^1]: ${ }^{3}$ The first two steps here are not obvious nor particularly easy to prove, so let's take them for granted and focus on the concentration part (third step).

