
CS5339 Notes #8:
A Detour Into Concentration of Measure

Jonathan Scarlett

April 3, 2021

Useful references:

• Blog post by Jeremy Kun1

• First section of Boucheron et al.’s “Concentration Inequalities” notes2

• Appendix B of “Understanding Machine Learning” book

1 Introduction

• Given a random variable Y , how “concentrated” is Y (e.g., around its mean)?

• Rough statement: Suppose that we can find a deterministic value m, such that

P[|Y −m| > t] ≤ TailBound(t)

where TailBound(t) decreases drastically to 0 in t.

– Typically m = E[Y ], and often TailBound(t) decreases exponentially, such as TailBound(t) ∼ e−ct

or TailBound(t) ∼ e−ct2 for some c > 0.

– In statistics, Y can be the estimation/prediction error. In computer science, Y can be the outcomes
of randomized algorithms. There are many other applications in information theory, statistical
physics, random matrices, statistical learning theory, etc.

• Simple example: Suppose Yn = 1
n

∑n
i=1 Xi, where the Xi are i.i.d. with mean µ and variance σ2.

– Law of Large Numbers: P[|Yn − µ| > ε]→ 0 as n→∞.

– Central Limit Theorem: P
[
|Yn − µ| > α√

n

]
→ 2Φ

(
− α

σ

)
as n → ∞, where Φ is the standard

normal CDF.

– Large Deviations: Under some technical assumptions, P[|Yn − µ| > ε] ≤ e−n·ψ(ε) for some
ψ(ε) > 0. This type of result is the focus of this lecture.

– Moderate Deviations: Decay rate of P[|Yn − µ| > εn] when εn → 0 sufficiently slowly so that
εn
√
n→∞.

1http://jeremykun.com/2013/04/15/probabilistic-bounds-a-primer/
2http://www.econ.upf.edu/~lugosi/mlss_conc.pdf

1

http://jeremykun.com/2013/04/15/probabilistic-bounds-a-primer/
http://www.econ.upf.edu/~lugosi/mlss_conc.pdf


• In many applications, we want the bounds to be non-asymptotic (i.e., holding for any n, as opposed to
only in the limit n→∞).

2 Basic Inequalities

• Markov’s inequality. Let Z be a nonnegative random variable. Then P[Z ≥ t] ≤ E[Z]
t .

– Proof:

P[Z ≥ t] =
∫ ∞

0
fZ(z)1{z ≥ t}dz

≤
∫ ∞

0

z

t
fZ(z)1{z ≥ t}dz

≤
∫ ∞

0

z

t
fZ(z)dz

= E[Z]
t
.

– This result definitely doesn’t hold in general for RVs that can take negative values (e.g., take
Z ∼ N(0, 1) as a counter-example).

• Markov’s inequality applied to functions: Let φ denote any non-decreasing and non-negative function.
Let Z be any random variable. Then Markov’s inequality gives

P[Z ≥ t] ≤ P[φ(Z) ≥ φ(t)] ≤ E[φ(Z)]
φ(t) ,

where the first inequality uses the non-decreasing property, and the second uses Markov’s inequality
and the non-negative property.

• Chebyshev’s inequality: Choose φ(t) = t2, and replace Z by |Z − E[Z]|. Then

P
[
|Z − E[Z]| ≥ t

]
≤ Var[Z]

t2
.

• Chernoff bound: Choose φ(t) = eλt where λ ≥ 0. Then we have

P[Z ≥ t] ≤ e−λtE[eλZ ].

Despite being a simple application of Markov’s inequality, this bound is extremely useful.

3 Simplifying the Chernoff Bound

Rewriting the bound.

• The log-moment-generating function ψZ(λ) of a random variable Z is defined as

ψZ(λ) = logE[eλZ ], λ ≥ 0.

Observe that the Chernoff bound above can be written as P[Z ≥ t] ≤ e−(λt−ψZ(λ)).
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– Note: If E[eλZ ] = ∞ for some λ, then this value of λ does not give a meaningful bound (but a
smaller λ might be OK). If Z is sufficiently heavy-tailed, it could even be that E[eλZ ] =∞ for all
λ > 0, in which case, the Chernoff bound cannot be used.

• The Cramér transform of Z is defined as

ψ∗Z(t) = sup
λ≥0

(
λt− ψZ(λ)

)
. (1)

By a direct substitution, setting λ = 0 would make the right-hand term zero, so since we are maximizing
over all λ ≥ 0, we conclude that ψ∗Z(t) ≥ 0 for all t.

• By simply optimizing over all λ in the Chernoff bound, we have for any random variable Z that

P[Z ≥ t] ≤ exp(−ψ∗Z(t)).

This is known as the Cramér-Chernoff Inequality.

Sums of independent random variables.

• Let Z = X1 + · · ·+Xn where {Xi}ni=1 are independent and identically distributed (i.i.d.). We expect
better concentration of Yn = Z

n to as n increases:

• Chebyshev’s inequality on the sum: We have Var[Z] = nVar[X] (by the i.i.d. assumption), and hence
Chebyshev’s inequality with t = nε gives

P

[
1
n

∣∣Z − E[Z]
∣∣ ≥ ε] ≤ Var[X]

nε2
.

– This is an O
( 1
n

)
probability of a “large” deviation, which can be useful but is typically not the

best possible.

• Cramér-Chernoff inequality on the sum: We have

ψZ(λ) = logE[eλZ ] = logE
[
eλ
∑n

i=1
Xi

]
= logE

[ n∏
i=1

eλXi
]

= log
n∏
i=1
E
[
eλXi

]
= log

(
E
[
eλX

])n
= nψX(λ),
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where in the second line we used independence and then the identical distribution property. Then the
Cramér-Chernoff inequality with t = nε gives

P[Z ≥ nε] ≤ exp
(
− nψ∗X(ε)

)
.

– This is looking better – exponential decay!

– But ψ∗X(ε) is a bit complicated (it is not a closed-form formula, and it involves an optimization
over λ) – can we simplify further?

• A simple case: Gaussian random variables.

– Let X ∼ N (0, σ2).

– A direct computation yields ψX(λ) = λ2σ2

2 (this requires a bit of integration).

– Substituting into (1), we get the expression λt − λ2σ2

2 . Setting the derivative to zero gives the
optimal λ∗ = t

σ2 , and hence ψ∗X(t) = t2

2σ2 .

– Therefore,

P[X ≥ t] ≤ exp
(
− t2

2σ2

)
.

Since X and −X have the same distribution, the union bound Pr[A ∪B] ≤ Pr[A] + Pr[B] gives

P[|X| ≥ t] ≤ 2 exp
(
− t2

2σ2

)
,

or, when we sum n independent copies Z = X1 + · · ·+Xn,

P[|Z| ≥ nε] ≤ 2 exp
(
−nε

2

2σ2

)
.

Since this example appears so frequently, it is used as a baseline for a much larger class of
distributions with similar concentration behavior.

4 Sub-Gaussian Random Variables and Hoeffding’s Inequality

Sub-Gaussian Random Variables.

• From the definition in (1) along with the above Gaussian example, we find that if ψX(λ) ≤ λ2σ2

2 , then
ψ∗X(t) ≥ t2

2σ2 . This motivates the following definition.

• Definition. A zero-mean random variable X is said to be sub-Gaussian with parameter σ2 if ψX(λ) ≤
λ2σ2

2 , ∀λ > 0. Denote the set of all such random variables by G(σ2).

• Properties of sub-Gaussian random variables:

1. P[|X| ≥ t] ≤ 2 exp
(
− t2

2σ2

)
(as we already proved for Gaussians)

2. If Xi ∈ G(σ2
i ) are independent, then

∑n
i=1 aiXi ∈ G

(∑n
i=1 a

2
iσ

2
i

)
(just like with Gaussians)

The straightforward proofs of these properties are omitted.
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• Combining these properties (with t = nε), we find that if Z = X1 + . . . + Xn where the Xi are
independent and sub-Gaussian with parameter σ2, then

P[|Z| ≥ nε] ≤ 2 exp
(
−nε

2

2σ2

)
,

just like the sum of n independent Gaussians.

Bounded Random Variables.

• An important class of sub-Gaussian random variables is the class of bounded random variables.

• Theorem. Let X be a random variable with E[X] = 0, taking values in a bounded interval [a, b].
Then we have X ∈ G

( (b−a)2

4
)
.

– A proof outline is below, with the details left as an optional tutorial exercise.

• Using this result and the first sub-Gaussian property above, we find that for X ∈ [a, b],

P
[
|X − E[X]| > t

]
≤ 2 exp

(
− 2t2

(b− a)2

)
.

– Although the theorem assumed E[X] = 0, we can always replace X by X − µ and [a, b] by
[a− µ, b− µ], which clearly doesn’t change b− a.

Using a similar argument along with the fact that sums of sub-Gaussian variables are sub-Gaussian,
we obtain the following.

• Corollary (Hoeffding’s inequality) Let Z = X1 + · · · + Xn, where the Xi are independent and
supported on [ai, bi]. Then

P

[
1
n

∣∣Z − E[Z]
∣∣ > ε

]
≤ 2 exp

(
− 2nε2

1
n

∑n
i=1(bi − ai)2

)
.

5 Proof Outline: Bounded RVs are Sub-Gaussian

• Main steps of the proof.

1. Prove that Var[Z] ≤ (b−a)2

4 for any Z bounded on [a, b].

2. Show ψX(0) = 0, ψ′X(0) = 0, and ψ′′X(λ) = Var[Z], where Z is a random variable with PDF
fZ(z) = e−ψX(λ)eλzfX(z); hence ψ′′X(λ) ≤ (b−a)2

4 by Step 1.

3. Taylor expand ψX(λ) = ψX(0) + λψ′X(0) + λ2

2 ψ
′′
X(θ) (for some θ ∈ [0, λ]) and substitute Step 2

to upper bound this by λ2

2 ·
(b−a)2

4 .

• The details are left as an optional tutorial exercise.

6 Example Applications

Example 1: Typical Sequences.
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• Let (U1, . . . , Un) be i.i.d. random variables drawn from a PMF PU . Assume that U is integer-valued
and finite, only taking values {1, . . . ,m} for some integer m.

• Question. How many occurrences of each value u ∈ {1, . . . ,m} occur?

• Let Zu =
∑n
i=1 1{Ui = u}. This is a sum of i.i.d. random variables bounded within [0, 1], and

E[Zu] = nPU (u). So by Hoeffding’s inequality,

P
[∣∣Zu − nPU (u)

∣∣ ≥ nε] ≤ 2e−2nε2
.

• Since there are m values that U can take, the union bound gives

P

[ ⋃
u=1,...,m

{∣∣Zu − nPU (u)
∣∣ ≥ nε}] ≤ 2m · e−2nε2

.

Re-arranging, we find that probability is upper bounded by δ > 0 under the choice ε =
√

log 2m
δ

2n .
Equivalently, if n ≥ 1

2ε2 log 2m
δ , then the above probability is at most δ.

• The above findings can be viewed in at least two ways:

– With high probability, all of the counts are within O(
√
n logm) of their mean as n grows large.

– For the counts to deviate from their mean by at most nε with high probability, it suffices to have
n = constant× logm

ε2 samples.

Example 2: Graph Degree.

• As an exercise, see if you can use the analysis of Example 1 to bound the maximum degree in a random
graph with high probability.

– More precisely, consider a random graph with n nodes, in which each given edge is present with
probability p (independent from all other edges). The edges have no direction, so there are

(
n
2
)

potential edges, and the average number of edges is p
(
n
2
)
.

– The degree of a node is defined as the number of edges attached to that node. For a given node,
its mean is (n− 1)p. The maximum degree of the graph is the highest degree among the n nodes.

Example 3: Network Tomography.

• Network tomography problem:

Observed

Hidden

x1 x2 x3 x4 x5 x6 x7 x8

p12

p21

Source

Loss probability p11
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– Starting at the source, a packet is sent along both branches following the arrows until hitting the
leaves (shown in red)

– Each link has a probability of the packet being lost (independent of all other links)

– We only get to observe which packets ended up arriving at the leaves.

• In the case of n packets and p leaf nodes, define

– X
(i)
k = 1{packet i arrives at node k} for i = 1, · · · , n and k = 1, · · · , p

– Goal: Given these n independent samples, reconstruct the tree structure.

• Outline of analysis in the paper [Ni, 2011]:3

– Show that the tree can be recovered from the values qkl = P[packet reaches xk and xl]

– Show robustness, in the sense that any q̂ with |q̂kl − qkl| ≤ ε suffices

– Set q̂kl = 1
n

∑n
i=1 1{X(i)

k = 1 ∩X(i)
l = 1}, and bound using Hoeffding’s inequality:

P[|q̂kl − qkl| > ε] ≤ 2 exp(−2nε2).

– Apply the union bound over the
(
p
2
)
≤ 1

2p
2 possible pairs of leaf nodes to conclude that P[error] ≤ δ

as long as n ≥ 1
2ε2 log p2

2δ .

Example 4: Statistical Learning Theory.

• ...see the next lecture!

7 Bounded Differences

(This section is included for the sake of interest, but we will not make use of it)

• A function f : Xn → R has the bounded differences property if, for some positive c1, .., cn,

sup
x1,...,xn,x′

i
∈X
|f(x1, .., xi, ..., xn)− f(x1, ..., x

′
i, ..., xn)| ≤ ci

for all i = 1, . . . , n. This means that changing any single input value does not change the output value
too much.

• Example. Let V = {1, · · · , n}, and letG be a random graph such that each pair i, j ∈ V is independently
connected with probability p. Let

Xij =

1 (i, j) are connected

0 otherwise.

The chromatic number of G is the minimum number of colors needed to color the vertices such that
no two connected vertices have the same color. Writing

chromatic number = f(X11, · · · , Xij , · · · , Xnn),
3The first two steps here are not obvious nor particularly easy to prove, so let’s take them for granted and focus on the

concentration part (third step).
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we find that f satisfies the bounded difference property with cij = 1.

– Countless other examples also exist

• Theorem (McDiarmid’s Inequality). Let X1, ..., Xn be independent random variables, and let f
satisfy the bounded differences property with ci’s. Then

P
(
|f(X1, ..., Xn)− E[f(X1, ..., Xn)]| > t

)
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

– A very useful generalization of Hoeffding’s inequality (which is recovered from this result by
choosing f(x1, . . . , xn) =

∑n
i=1 xi when the random variables satisfy Xi ∈ [ai, bi]).

– Harder to prove (beyond the scope of this course)

8


	Introduction
	Basic Inequalities
	Simplifying the Chernoff Bound
	Sub-Gaussian Random Variables and Hoeffding's Inequality
	Proof Outline: Bounded RVs are Sub-Gaussian
	Example Applications
	Bounded Differences

