
CS5339 Lecture Notes #9:

Statistical Learning Theory

Jonathan Scarlett

March 31, 2021

Useful references:

• Blog post by Jeremy Kun1

• Bousquet et al.’s “Introduction to Statistical Learning Theory” notes2

• Supplementary notes lec9.pdf and lec14a.pdf

• Simons Berkeley video lectures on Generalization3

• Part I of“Understanding Machine Learning” book, especially Chapters 3–6

1 Introduction

Motivation:

• We have discussed a variety of classification and regression methods, typically based on attaining
small error on training data (this is the data set that we plug into the algorithm we are using)

• What we are more interested in is the performance on unseen data (e.g., it is no good to classify all
previous spam emails correctly if we get most future ones wrong)

• Hence, to get a better idea of performance in a practical scenario we should check the performance
on test data (data that is not used by the algorithm)

• We have discussed how the complexity of the classifier can impact the performance:

– If too simple, we may underfit (be unable to capture the patterns in the data)

– If too complex, we may overfit (capture spurious patterns that are just due to fluctuations and
noise), and do poorly on test data despite having low training error

We also discussed how regularization can help with the latter of these.
1http://jeremykun.com/2014/09/19/occams-razor-and-pac-learning/
2http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/pdfs/pdf2819.pdf
3https://simons.berkeley.edu/workshops/schedule/10624

1

http://jeremykun.com/2014/09/19/occams-razor-and-pac-learning/
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/pdfs/pdf2819.pdf
https://simons.berkeley.edu/workshops/schedule/10624

• In this lecture, we take a theoretical view of the trade-off between complexity and generalization
(generalization meaning the gap between train vs. test performance). By doing so, we can get a
better understanding of when we might be underfitting or overfitting, and how to avoid doing so.

Abstract setup of statistical learning:

• The learner has access to a data set D = {(xi, yi)}ni=1, drawn from (xi, yi) ∼ PXY independently.

– Importantly, the distribution PXY is considered to be unknown

• The learner uses the data to decide on a classification function f(x) mapping inputs to labels (i.e.,
to {−1, 1} for binary classification, or R for regression). The set of all possible functions under
consideration is called the function class F :4

– e.g., set of all linear classifiers

– e.g., set of polynomial functions up to order p in regression

– e.g., set of all classifiers that can be expressed by a weighted vote ofM = 1000 decision stumps

• The performance is measured according to a loss function `(y, f(x)) that we hope to be small

– Particularly common for classification: 0-1 loss `(y, f(x)) = 1{y 6= f(x)}

– Particularly common for regression: Squared loss `(y, f(x)) = (y − f(x))2

– Others we have seen: Hinge loss, logistic loss, exponential loss, etc.

• For a given choice of function f ∈ F , the expected loss is given by

R(f) = E[`(y, f(x))]

with (x, y) ∼ PXY . This is called the (true) risk.

• If the distribution PXY were known, then one could find the Bayes-optimal classifier, given by

f∗ = argmin
f∈F

E[`(y, f(x))]. (1)

4In the literature, you will often see references to a hypothesis class H, with general loss functions of the form `h(x, y)
for h ∈ H. This is a more general formulation capturing other problems like clustering and density estimation. Since we
are mainly interested in classification and regression, we focus on the “function class” formulation.

2

Since the distribution is unknown, it is natural to replace the expectation by the empirical average
over the training set:

ferm = argmin
f∈F

Rn(f) Rn(f) =
1

n

n∑
i=1

`(yi, f(xi)). (2)

This is known as the empirical risk minimization (ERM) rule.

– In general, the ERM rule may be computationally infeasible to implement (e.g., 0-1 loss), but it
is still of interest to understand its theoretical properties. Even for loss functions where ERM
is infeasible, we can use a surrogate loss that is computationally feasible, and still infer results
about the original loss function (see Section 12.3 of “Understanding Machine Learning”).

– We have already seen a few examples of ERM in the special case that F is the class of linear
classifiers (or linear predictors for regression):

∗ If `(·, ·) is the logistic loss, we recover the maximum likelihood rule for logistic regression

∗ If `(·, ·) is the squared loss in regression, then we recover the least squares rule (which,
unlike most, has a closed-form expression)

∗ More generally, when we set `(·, ·) to be the negative log-likelihood for any model, ERM
becomes the maximum-likelihood rule

– Regularization (e.g., to reduce overfitting) is of significant interest in this broad framework,
but we will only study the non-regularized ERM rule.

• A decomposition of the risk. As above, when we define the true risk and empirical risk as

R(f) := E[`(y, f(x))], Rn(f) =
1

n

n∑
i=1

`(yi, f(xi)),

we can make use of the following useful decomposition:

R(f)︸ ︷︷ ︸
test error

= Rn(f)︸ ︷︷ ︸
training error

+
(
R(f)−Rn(f)

)︸ ︷︷ ︸
generalization error

.

– R(f) is called the test error because it is the average error we get on an unseen sample (drawn
from the same distribution as the training data D).

– Evidently, small training error does not imply small test error, because the generalization error
might be large (in particular, we may be overfitting)

– Hence, a fundamental question is when can we ensure small generalization error?

2 Probably Approximately Correct (PAC) Learning

• While the following definition is rather technical, the general idea is rather simple:

– Seek to attain a (true) risk within a small value ε of that achieved by the best f in the function
class being considered;

3

– Since the data is random, we can’t expect this to happen with probability one, so instead only
insist on probability 1− δ;

– The number of samples required depends on both ε and δ, and also critically on the function
class F (the richer F is, the harder it is to get close to the best f ∈ F).

• Definition. Given a loss function `(·, ·), a function class F is said to be PAC-learnable if there
exists an algorithm A(Dn) (with Dn containing n independent samples) and a function n(ε, δ) such
that the following holds: For any distribution PXY used to generate D, and any ε, δ ∈ (0, 1), if
n ≥ n(ε, δ), then the following holds with probability at least 1− δ:

R(f̂) ≤ min
f∈F

R(f) + ε.

– The probability 1− δ corresponds to probably correct

– The ε gap in the risk corresponds to approximately correct

– The function n(ε, δ) is called the sample complexity

• Often a distinction is made between two settings:

– (Realizable setting) It holds that y = f(x) for some f ∈ F , i.e., there exists a “perfect” classifier
that classifies everything correctly. See the tutorial for a more detailed treatment of this case.

– (Agnostic setting) There is no function in F that classifies perfectly, so we only try to compete
with the best in F . The results we give below are suited to this case.

Two examples: (i) It is easy to imagine a scenario where even the best linear classifier still has, say,
a 10% error rate. (ii) If Y is not deterministic given X, then the inherent randomness means that
we must incur some probability of being wrong.

• Sometimes people define PAC learnability with the extra condition that the computation time of
A is polynomial in n, 1

δ and 1
ε . We consider the above definition where this is not required.

3 PAC Learnability for Finite Hypothesis Classes

• Suppose that the loss function is bounded, and specifically satisfies

`(y, f(x)) ∈ [0, 1]

for all f ∈ F , with probability one.5 In addition, suppose that the function class is finite, i.e., F is
a finite set.

– Theorem. For any bounded loss function in [0, 1], any finite function class F is PAC-learnable
with sample complexity n(ε, δ) = 2

ε2 log
2|F|
δ .

– Note 1: Stronger bounds (with 1
ε dependence instead of 1

ε2) are known in the realizable case.

5Any loss function taking values in [a, b] can be shifted and scaled to an “equivalent” loss function with values in [0, 1].

4

– Note 2: The sample complexity is in the worst case sense with respect to all possible PXY .
Because of this, the bound can often be overly pessimistic for “easier” PXY .

– Note 3: We will prove this result using the ERM rule as our choice of A(Dn).

– Note 4: Solving n = 2
ε2 log

2|F|
δ for ε gives ε =

√
2
n log 2|F|

δ , so the theorem statement is
equivalent to saying that

R(ferm)−min
f∈F

R(f) ≤
√

2

n
log

2|F|
δ

(3)

with probability at least 1− δ.

• We proceed with the proof. For any fixed function f ∈ F , the generalization error satisfies

R(f)−Rn(f) = E[`(y, f(x))]− 1

n

n∑
i=1

`(yi, f(xi))

by definition, and hence

P
[∣∣R(f)−Rn(f)∣∣ ≥ ε0] = P

[∣∣∣∣ 1n
n∑
i=1

`(yi, f(xi))− E[`(y, f(x))]
∣∣∣∣ ≥ ε0].

• Recall that {(xi, yi)}ni=1 are i.i.d. with some joint distribution PXY . Hence, the random variables
`(yi, f(xi)) for i = 1, . . . , n are i.i.d., bounded in [0, 1], and have mean E[`(y, f(x))]. Therefore, we
can bound the above probability using Hoeffding’s inequality from the previous lecture:

P
[∣∣R(f)−Rn(f)∣∣ ≥ ε0] ≤ 2e−2nε

2
0 . (4)

– Problem. We would like to apply this concentration bound to the selected ferm, but simply
substituting f = ferm in (4) would not be valid. This is because (4) holds for any fixed choice
of f , but ferm is not fixed – it is a random variable (because it depends on the data set D).

– Solution. Bound the probability that there exists any f ∈ F satisfying
∣∣R(f) − Rn(f)∣∣ ≥ ε0.

If this probability can be made small for any choice of ε0 by a suitably large choice of n, we
say that uniform convergence holds.

• Since we are considering finite F , we can simply apply the union bound P[A1∪. . .∪Am] ≤
∑m
i=1 P[Ai]

to (4) to obtain

P
[⋃
f∈F

{∣∣R(f)−Rn(f)∣∣ > ε0

}]
≤ 2|F|e−2nε

2
0 . (5)

By setting the right-hand side to a target value δ and re-arranging, we find that a sufficient number
of samples is n = 1

2ε20
log 2|F|

δ .

– Solving n = 1
2ε20

log 2|F|
δ for ε0 gives ε0 =

√
1
2n log 2|F|

δ , so similarly to (3), an equivalent

statement is that
∣∣R(f)−Rn(f)∣∣ ≤√ 1

2n log 2|F|
δ for all f ∈ F , with probability at least 1− δ.

– Notice that the size of the function class serves as a measure of its complexity – to get good
generalization, it suffices to have n� log |F| samples.

5

– In the following, we consider the ERM rule, but in fact we have shown that the generalization
error is small (for large enough n) for any algorithm that always returns a function in F .

• Now assume that the probability 1 − δ event occurs, namely,
∣∣R(f) − Rn(f)∣∣ ≤ ε0 for all f ∈ F .

Letting f∗ be the function that minimizes R(f), we have

R(ferm)−R(f∗) = R(ferm)−Rn(ferm)︸ ︷︷ ︸
≤ε0

+Rn(ferm)−Rn(f∗)︸ ︷︷ ︸
≤0

+Rn(f
∗)−R(f∗)︸ ︷︷ ︸
≤ε0

≤ 2ε0,

where the middle ≤ 0 claim is by the definition of ferm.

• Setting ε0 = ε
2 gives the desired bound R(ferm)− R(f∗) in the definition of PAC learnability, and

yields a number of samples given by n = 2
ε2 log

2|F|
δ . This proves the theorem.

4 Infinite Hypothesis Classes and the VC Dimension

Overview.

• In most cases, we have infinitely many classifiers to potentially choose from (e.g., the set of all linear
classifiers of the form fθ(x) = sign(θTx)). So the analysis of the previous section does not apply.

– Note. Despite this, finite classes can certainly arise naturally – imagine a scenario where 100
researchers independently develop 100 classifiers using their own data, and our goal is to select
the best one among them using our own independent data, hence |F| = 100.

• VC theory [Vapnik and Chervonenkis, 1971] provides analogous bounds for infinite function classes
in the binary setting (i.e., y ∈ {+1,−1}), with the 0-1 loss (`(y, f(x)) = 1{f(x) 6= y}).

• Intuition. Even with infinitely many hypotheses, there may be only finitely many effective hy-
potheses.

• Motivating example 1.

– Consider 1D data with binary labels (i.e., x ∈ R and y ∈ {−1, 1}), and suppose that F is the
class of all threshold classifiers: There exists a threshold a ∈ R such that f(x) = +1 for x ≤ a,
and f(x) = −1 for x > a.

– If we re-order the points as x(1) ≤ x(2) ≤ . . . ≤ x(n), then we see that any choice of a ∈
(x(i), x(i+1)) gives an equivalent classifier (for this data set). Observe that there are at most
n+ 1 such classifiers – a finite number!

– Hence, intuitively (but not quite formally according to this argument), we should expect to
get a similar PAC sample complexity to the finite-F case, with n+ 1 in place of |F|.

• Motivating example 2.

– To make things a little less straightforward, assume now that F contains all interval classifiers:
There are two numbers a and b such that f(x) = +1 for x ∈ [a, b], and f(x) = −1 otherwise.

6

– Again, any a ∈ (x(i), x(i+1)) gives an equivalent classifier (when b is fixed), and similarly for b
(when a is fixed). Hence, for a given data set, there are at most (n+ 1)2 possible classifiers.

– So by the same reasoning as the first example, we should expect (n+ 1)2 in place of F .

– Generalizing this intuition, we can expect a result with (n+1)dVC in place of |F|, where dVC is
a quantity known as the VC dimension. Taking logs, this means we can expect dVC log(n+1)

in place of log |F|; in fact, with more sophisticated reasoning (not covered here), the log(n+1)

term can be avoided.

Formal definition and statement.

• Definitions.

1. For an integer n, the growth function Sn(F) (also known as shattering number) is Sn(F) =

supx1,...,xn

∣∣{(f(x1), . . . , f(xn)) : f ∈ F
}∣∣.

– To be clear, |{·}| means the size of the set defined in the {·}.
– This is the number of different assignments that hypotheses from F can make to x1, . . . ,xn.

It is an integer between 1 and 2n.

2. The VC dimension dVC = dVC(F) of a function class F is the largest k such that Sk(F) = 2k.
If Sk(F) = 2k for all k, then we define dVC =∞.

– A set of points x1, . . . ,xk satisfying
∣∣{(f(x1), . . . , f(xk)) : f ∈ F

}∣∣ = 2k is said to be
shattered by F (i.e., hypotheses from f can produce all 2k possible assignments)

• A result known as Sauer’s lemma states that Sn(F) ≤
∑dVC

i=0

(
n
i

)
.

– Using some standard combinatorial bounds, this can be used to show that

Sn(F)

= 2n n ≤ dVC

≤
(
dVC e
n

)dVC
n > dVC.

– A slightly weaker bound is simply Sn(F) ≤ (n + 1)dVC , which generalizes the (n + 1) and
(n+ 1)2 terms in the motivating examples.

– Hence, the VC dimension and the general shattering numbers are closely related.

• Theorem. If the VC dimension dVC = dVC(F) satisfies dVC < ∞, then the function class F is
PAC-learnable under the 0-1 loss with sample complexity

n(ε, δ) = C ·
dVC + log 1

δ

ε2
(6)

for some constant C. Conversely, if dVC =∞ then F is not PAC-learnable.

– Hence, dVC serves as a fundamental measure of richness of the function class – to get good
generalization, it suffices to have n� dVC samples.

– Even if dVC is infinite, efficient learning might be possible for a given data distribution PXY .
The VC theory only establishes the difficulty of worst-case distributions.

7

– For worst-case distributions, the number of samples increasing linearly with dVC (as in (6)) is
unavoidable. Intuitively, if dVC points are shattered by F but only dVC/2 of them are observed
in the data set, then there is no way to know the labels of the other half.

– The proof is outlined below. Alternatively, see Section 6.5.2 of ‘Understanding Machine Learn-
ing” for a simpler analysis, albeit one that leads to a weaker result.

5 VC Dimension Examples

Example 1 (Rectangular classifiers):

• Consider the case of d = 2 features, and let F be the set of all axis-aligned rectangular classifiers:

ha1,a2,b1,b2 =

+1 a1 ≤ x1 ≤ a2 and b1 ≤ x2 ≤ b2
−1 otherwise.

• We will show that dVC(F) = 4. An illustration:

• The left figure shows a set of 4 points that is clearly shattered by F (a classification of one assignment
is drawn; see if you can convince yourself of the other 15)

• The right figure illustrates why 5 points can never be shattered: If we try to label the left-most,
right-most, top-most, and bottom-most to +1, then there is no way the final one can be −1.

Example 2 (Linear classifiers):

• For linear classifiers in dimension d, dVC = d with no offset, or dVC = d+ 1 with an offset.

– Hence, this is a simple case where VC dimension = dimension. Of course, such a property
need not hold for classes of non-linear classifiers, as the previous example shows.

• Let’s show this for d = 2 when there is an offset: (See the tutorial for the general case)

• The left figure shows 3 points that can clearly be shattered (try all 8 combinations)

8

• The right figure (partially) shows why 4 points can never be shattered: If the left-most and right-
most points are −1 and the top-most and bottom-most points are +1, then we get a contradiction:

– If a linear classifier classifies two points the same, it also classifies all points on the line
connecting those points that way (this is easily shown by the definition of linearity)

– But the lines connecting (+1,+1) and (−1,−1) labeled points intersect, so the point of inter-
section is labeled in two different ways – a contradiction!

• This argument applies to any set of 4 points such that no point lies inside the triangle formed by
the other 3. The case that some point does lie inside such a triangle is even easier – just label that
point ‘+’, and label the 3 points forming the triangle as ‘−’.

Example 3 (Motivating examples):

• Using similar (but simpler) reasoning to the first two examples, it can be shown that the “Motivating
examples” (where we argued there are effective at most (n+1) and (n+1)2 classifiers) have function
classes with dVC = 1 and dVC = 2 respectively.

• Related examples are explored in the tutorial.

Example 4 (Finite function classes):

• Let’s return to the case that F is finite.

• For a set of k points to be shattered, we need 2k different assignments, so we certainly need |F| ≥ 2k.

• This means that dVC(F) ≤ log2 |F|, and therefore, the finite function class theorem is a special case
of the VC-based theorem (at least up to the constant factor of C in (6))

Example 5 (Infinite VC dimension):

• As a trivial example, suppose that F is the class of all functions from Rd to {−1, 1}

• Clearly, we can shatter any set of k distinct points. Hence, the VC dimension is infinite.

9

• This should be unsurprising, as this function class is far too rich to expect to always achieve the
zero error achieved by f∗.

• Many other (non-trivial) examples when dVC =∞ are also known.

Note: Although we will not cover it, the book ‘Understanding Machine Learning” uses the VC dimension
and related ideas to provide theoretical performance bounds for some of the algorithms we have studied,
including SVM (Section 15.2) and boosting (Section 10.3).

Other approaches to bounding generalization error: There are many other interesting notions in
the statistical learning theory literature that can be shown to imply good generalization. We will not
cover them, but some examples include:

• A relatively small number of data points being “relevant” for producing the final classifier (think of
the support vectors in SVM)

• The classifier attaining a large margin (think SVM, boosting)

• Algorithmic stability (changing one training data point doesn’t change the final classifier too much)

• Robustness (if a test sample is “similar” to a training sample, it incurs a similar loss)

• Other more technical notions: Rademacher complexity, PAC-Bayes, mutual information bounds

6 Rademacher Complexity and a Proof of the VC Dimension

Based PAC Learnability Result

The following is only a brief outline of a more advanced topic, and is based on the lecture notes http://
web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf. The textbook
“Understanding Machine Learning” in the reference list above has considerably more detail.

Definitions.

• As usual, let F be a function class consisting of classifiers with f(x) ∈ {−1, 1},6 and consider a
data set D = {(xi, yi)}ni=1 drawn i.i.d. from an unknown distribution PXY .

• The empirical Rademacher complexity of F with respect to D is defined as

R̂D(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
,

where σ = (σ1, . . . , σn) is an i.i.d. sequence of Rademacher random variables (i.e., σi ∈ {−1, 1}
with probability 1

2 each). The (true) Rademacher complexity of F is defined as

Rn(F) = ED
[
R̂D(F)

]
.

6These definitions can also be extended to more general real-valued predictors and loss functions.

10

http://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf
http://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf

– Intuitively, Rademacher complexity measures how well the function F can fit uniformly random
labels {σi} on average. The richer the function class, the better it can fit random labels, and
the higher the Rademacher complexity.

– Note: The notation Rn(F) should not be confused with the empirical risk Rn(f).

• For the analysis, it will be useful to consider the set L = {`f : f ∈ F}, the set of all 0-1 loss
functions `f (x, y) = 1{f(x) 6= y} induced by some function f ∈ F . Then we can make the
following analogous definitions:

R̂D(L) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σi`f (xi, yi)

]
,

Rn(L) = ED
[
R̂D(L)

]
.

Note that the supf∈F can equivalently be replaced by sup`∈L, since L is just the set of all {`f}f∈F .

– Note: Here it is more convenient to work with the notation `f (x, y) instead of `(y, f(x)) that
was used previously, but the two are equivalent.

• Claim. The above definitions satisfy R̂D(L) = 1
2R̂D(F) and hence Rn(L) = 1

2Rn(F).

– Proof. Using the fact that `f (x, y) = 1{f(x) 6= y} = 1−yif(xi)
2 (just check the two cases of

whether or not yi = f(xi)), the above definition of R̂D(L) simplifies to

R̂D(L) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σi
1− yif(xi)

2

]

=
1

2
Eσ

[
1

n

n∑
i=1

σi + sup
f∈F

1

n

n∑
i=1

σi(−yi)f(xi)
]

(a)
=

1

2
Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
=

1

2
R̂D(F),

where (a) uses the fact that E[σi] = 0, and also the fact that σi and σi · (−yi) have the same
distribution (both are ±1 with equal probability).

Relating Rademacher complexity to uniform convergence.

• Theorem. For any function class F , the empirical risk Rn(f) and and true risk R(f) satisfy the
following uniform convergence bound with probability at least 1− δ:

sup
f∈F

∣∣R(f)−Rn(f)∣∣ ≤ Rn(F) +
√

log 2
δ

2n
.

In addition, we have the following data-dependent bound with probability at least 1− δ:

sup
f∈F

∣∣R(f)−Rn(f)∣∣ ≤ R̂D(F) + 3

√
log 4

δ

2n
.

11

– Proof outline. The idea is to (i) bound the average of the left-hand side in terms of the
Rademacher complexity, and (ii) bound the deviation from the mean via Hoeffding’s inequality.

– Regarding step (i), here we briefly outline how to characterize ED
[
supf∈F (R(f) − Rn(f))

]
;

the idea for ED
[
supf∈F |R(f)− Rn(f)|

]
is similar. Recalling that Rn(f) = 1

n

∑n
i=1 `f (xi, yi)

one can do a few basic tricks to show

ED
[
sup
f∈F

(
R(f)−Rn(f)

)]
≤ ED,D′

[
sup
f∈F

1

n

n∑
i=1

(
`f (xi, yi)− `f (x′i, y′i)

)]

where D′ = {(x′i, y′i)}ni=1 is a second independent data set. But then `f (xi, yi) − `f (x′i, y′i) is
symmetric about zero, so it has the exactly the same distribution as σi

(
`f (xi, yi)− `f (x′i, y′i)

)
for an independent Rademacher variable σi.7 Hence,

ED
[
sup
f∈F

(
R(f)−Rn(f)

)]
≤ ED,D′,σ

[
sup
f∈F

1

n

n∑
i=1

σi
(
`f (xi, yi)− `f (x′i, y′i)

)]
.

Applying supf
(
A(f)+B(f)

)
≤ supf A(f)+supf B(f) and doing some manipulations, we can

bound the right-hand side by 2Rn(L), which equals Rn(F) due to the “Claim” stated above.

– For step (ii), note that Hoeffding’s inequality gives the term
√

log 2
δ

2n just like in the case of
finite function classes. This gives the first part of the theorem.

– To get the second part of the theorem, we replace δ by δ/2 in the first part, and then use a
more advanced concentration bound to show that Rn(F) is close to R̂D(F) with probability
at least 1 − δ/2 (then summing two δ/2-probability events gives an overall probability of δ).
This is done using McDiarmid’s inequality (final section of the previous lecture) – viewed as a
function of σ, the quantity R̂D(F) changes by at most 1

n when one of the σi is changed.

Deducing VC Dimension Based PAC Learnability.

• A useful preliminary step is to bound the Rademacher complexity in the special case of a finite
function class F . For this, a result known as Massart’s lemma states that if f1, . . . , fn is a sequence
taking values in {−1, 1}, then

Eσ

[
sup
f∈F

1

n

n∑
i=1

σifi

]
≤
√

2 log |F|
n

.

The proof is omitted here, but the key steps are similar to our analysis of PAC learnability for finite
F . Instead of using Hoeffding’s inequality directly (which is a high-probability result, whereas here
we are looking at an average), we use some of the ingredients of its proof.

• Now the key idea, as we mentioned previously, is that even for infinite F , the effective number of
functions is finite. In particular, if we let |F|D be the number of different vectors (f(x1), . . . , f(xn))

that can be produced by some f ∈ F (for fixed (x1, . . . ,xn)), then combining the previous display
7This technique is commonly referred to as symmetrization.

12

equation with the definition of empirical Rademacher complexity gives

R̂D(F) ≤
√

2 log |F|D
n

.

• Now, recalling the definition of the growth function (shattering number) Sn(F) from Section 4, we
always have |F|D ≤ Sn(F). Hence, and averaging both sides above over D, we have

Rn(F) ≤
√

2 logSn(f)

n
.

• Substituting into the key theorem on Rademacher complexity, and applying the basic inequality
√
a+
√
b ≤ 2

√
a+ b, we can get to

sup
f∈F

∣∣R(f)−Rn(f)∣∣ ≤
√

8(logSn(f) + log 2
δ)

n

with probability at least 1− δ.

• Finally using Sauer’s lemma (Section 4) to get logSn(f) ≤ dVC log(n+1), we obtain a good enough
bound to establish uniform convergence (and hence PAC learnability) whenever dVC is finite.

– Recall that we already established that supf∈F
∣∣R(f)−Rn(f)∣∣ ≤ ε0 implies that empirical risk

minimization yields true risk R(f) within 2ε0 of the best f ∈ F .

– The sample complexity from the previous equation (i.e., setting the right-hand side to ε
2 and

solving for n) leads to the replacement dVC by a slightly higher term dVC log n in (6); avoiding
this log factor requires a refined analysis.

• Note: The theorem on Rademacher complexity is not only useful for obtaining the VC dimension
based bound – it is also useful in its own right. In particular, for several function classes of interest
in can be bounded directly, so we don’t need to resort to the (looser) notion of VC dimension.

– The notion of a data dependent bound (second part of the theorem above) is also appealing,
because this can allow us to understand the generalization behavior based on the specific data
we have observed. In contrast, the notion of VC dimension concerns the worst-case behavior
over all possible data distributions PXY .

13

	Introduction
	Probably Approximately Correct (PAC) Learning
	PAC Learnability for Finite Hypothesis Classes
	Infinite Hypothesis Classes and the VC Dimension
	VC Dimension Examples
	 Rademacher Complexity and a Proof of the VC Dimension Based PAC Learnability Result

